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We study the semileptonic decay of the Bcð0−Þ to charmonia through the bottom-to-charm-quark
electroweak current in the framework of basis light-front quantization. Explicitly, we calculate the weak
transition form factors for processes of Bc decaying into ηc or J=ψ based on the corresponding initial and
final valence light-front wave functions both obtained from the basis light-front quantization. We also
present the corresponding differential decay width and branching ratios, as well as the branching ratios for
decays into the ηc

0 and the ψ 0. We observe unphysical frame dependence of the calculated form factors,
which is attributed to only including the valence light-front wave functions. Based on the analysis of the
current component, we propose a preferred set of frames to calculate these form factors.
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I. INTRODUCTION

Precise measurement of elements Vq1q2 in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is crucial to the
electroweak theory. Among these elements, the determi-
nation of Vub and Vcb leads a central test of the Standard
Model for heavy-flavor physics. Although the pure leptonic
decay such as Bc → τν̄ is theoretically simple, information
from this process is not included in the determination of the
CKM matrix due to the lack of accuracy in measurements.
Instead, the inclusive and exclusive semileptonic decays are
experimentally employed [1]. Meanwhile, recent experi-
ments observed anomalies in the decays of B̄ → Dð�Þτν̄ and
Bc → J=ψτν̄ [2–8], which could indicate the existence of
physics beyond the standard model. These processes have
been studied in nonrelativistic quantum chromodynamics
(QCD) [9,10], covariant light-front quark model [11], QCD
sum rules [12], and various other theoretical approaches
[13–17]. These results warrant extra efforts to investigate
the process of semileptonic decays of the B and Bc mesons.
The semileptonic decays can be described by a set of

scalar functions known as form factors. In this work we
study the weak decay form factors of Bc based on the basis
light-front quantization (BLFQ), a light-front Hamiltonian
formalism of quantum field theories [18]. However,
the physically allowed transferred momentum in the

semileptonic decay form factors is timelike, whereas in
the light-front approach the traditional choice of the Drell-
Yan frame only allows for spacelike momentum transfer.
Therefore, within such a frame, one needs to either apply
analytical continuation or use a factorization approach that
introduces extra parameters to reach the timelike region
[13,14,19–26]. Meanwhile, since the mass difference
between Bc and ηcðJ=ψÞ is rather large, it is technically
difficult for some of the approaches to reach the zero-recoil
point of q2max ¼ ðMBc

−MηcðJ=ψÞÞ2 ≈ 11ð10Þ GeV2 [15]. In
this article we explore frames other than the Drell-Yan
frame to gain access to the full physical region of these
form factors using light-front quantum field theories.
Specifically, the weak transition form factors of Bc into

either ηc or J=ψ are closely related to the matrix elements of
the quark current operator. Calculating these matrix ele-
ments requires the knowledge of the light-front wave
functions (LFWFs) for these mesons. Previously, we have
studied the heavy meson systems [27–29] in the framework
of BLFQ. Those studies showed success in predicting the
mass spectrum and in producing expected LFWFs within
the valence Fock sector (jqq̄i). After obtaining these
LFWFs, one can calculate the observables of interest, such
as the form factors of radiative transitions, parton
distribution functions, and generalized parton distributions
[30–32]. Now we use the obtained LFWFs of Bc and ηc
(J=ψ) to calculate the form factors of weak transitions
between them. In principle, form factors are Lorentz
invariants therefore independent of the reference frames.
However, we observe frame dependence of form factors
that has also been discussed in the literature [16,19], which
is an artifact of Fock space truncation. As more Fock
sectors are included, such frame dependence is expected to
be reduced [33,34]. In the present work we retain only the
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leading Fock sector of mesons and seek a frame where
errors due to omitting higher Fock sectors are minimized.
In addition, we investigate how the basis cutoff affects these
form factors and their frame dependence.
We organize this paper as follows: in Sec. II we discuss

the semileptonic decay on the light front, and introduce two
boost invariants to describe the light-front kinematics.
Then we present the calculated results in Sec. III where
we also compare with several other theoretical approaches.
Section IV contains our conclusion and proposes possible
future improvements.

II. SEMILEPTONIC DECAYS IN
LIGHT-FRONT KINEMATICS

A. Form factors and decay width

The hadronic matrix element describing the electroweak
decays of the lowest Bcðbc̄Þ state is given by

Mμ
h ¼ hP2; mjjVμ − AμjP1i; ð1Þ

where P1 and P2 are the momentum of the initial and final
states, respectively. Here mj is the angular momentum
magnetic projection of the daughter meson. Vμ and Aμ are
the vector and axial-vector currents of quark fields,
respectively. In particular, we consider the b → c decay
via the emission of a W− boson. The hadronic matrix
element defined by Eq. (1) can be parametrized by a set of
form factors as functions of the Lorentz invariant q2, where
qμ ¼ ðP1 − P2Þμ is the momentum transfer between the
initial and the final hadrons. We first consider the decay of
Bc to an ηc plus a pair of leptons. The hadronic matrix
elements for the transition between two pseudoscalar (P)
mesons are given by [35]

hP2jAμjP1i ¼ hP2jc̄γμγ5bjP1i ¼ 0;

hP2jVμjP1i ¼ hP2jc̄γμbjP1i
¼ fþðq2ÞPμ þ f−ðq2Þqμ; ð2Þ

where Pμ ¼ ðP1 þ P2Þμ. An alternative to Eq. (2) is
another widely used expression for the vector current
matrix element in terms of fþðq2Þ and f0ðq2Þ, which
are also known as the transverse and the longitudinal form
factors [36]:

hP2jVμjP1i ¼ fþðq2Þ
�
Pμ −

M2
1 −M2

2

q2
qμ
�

þ f0ðq2Þ
M2

1 −M2
2

q2
qμ: ð3Þ

HereM1 andM2 stand for the masses of the mother meson
and the daughter meson, respectively. Consequently, f0 can
be written as a linear combination of fþ and f−:

f0ðq2Þ ¼ fþðq2Þ þ
q2

M2
1 −M2

2

f−ðq2Þ: ð4Þ

The differential decay width for the exclusive process
P → Plν̄l (l ¼ e, μ, and τ) is [37]

dΓðP → Plν̄lÞ
dq2

¼ G2
FjVcbj2
24π3

Kðq2Þ
�
1 −

m2
l

q2

�
2

×

�
K2ðq2Þ

�
1þ m2

l

2q2

�
jfþðq2Þj2

þM2
1

�
1 −

M2
2

M2
1

�
2 3m2

l

8q2
jf0ðq2Þj2

�
: ð5Þ

In the expression above we take into account the lepton
massml. Vcb is the element of the CKMmixing matrix,GF

is the Fermi coupling constant, and Kðq2Þ is a kinematic
factor defined as

Kðq2Þ ¼ 1

2M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 þM2
2 − q2Þ2 − 4M2

1M
2
2

q
: ð6Þ

We present results for fþðq2Þ and f0ðq2Þ in this work as
well as the results for the differential decay width evaluated
with Eq. (5).
In the case of a vector (V) final state, both vector and

axial-vector current matrices are nonzero:

hP2; mjjVμjP1i ¼ hP2; mjjc̄γμbjP1i
¼ igðq2Þεμναβϵ�νPαqβ;

hP2; mjjAμjP1i ¼ hP2; mjjc̄γμγ5bjP1i
¼ fðq2Þϵ�μ þ aþðq2Þðϵ� · PÞPμ

þ a−ðq2Þðϵ� · PÞqμ; ð7Þ

where ϵ� ¼ ϵ�ðP2; mjÞ is the polarization vector of the final
meson that satisfies the Lorentz condition ϵ� · P2 ¼ 0.
These form factors defined in Eq. (7) are related to
form factors given by the Bauer-Stech-Wirbel (BSW)
convention [36,38]:

Vðq2Þ ¼ ðM1 þM2Þgðq2Þ;

A1ðq2Þ ¼
fðq2Þ

M1 þM2

;

A2ðq2Þ ¼ −ðM1 þM2Þaþðq2Þ;

A0ðq2Þ ¼
1

2M2

ffðq2Þ þ ðM2
1 −M2

2Þaþðq2Þ

þ q2a−ðq2Þg: ð8Þ

The differential decay width characterizing the P → Vlν̄l
process can then be expressed with the form factors in the
BSW convention as
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dΓðP → Vlν̄lÞ
dq2

¼ G2
FjVcbj2
48π3

Kðq2Þ
�
1−

m2
l

q2

�
2
��

1þ m2
l

2q2

�

×

��
1þM2

M1

�
2

q2jA1ðq2Þj2 þ
1

2M2
1M

2
2

×

���� 12 ðM2
1 −M2

2 − q2ÞðM1 þM2ÞA1ðq2Þ

−
2K2ðq2ÞM2

1

M1 þM2

A2ðq2Þ
����2

þ 4q2K2ðq2Þ
ðM1 þM2Þ2

jVðq2Þj2
	

þ 3m2
l

q2
K2ðq2ÞjA0ðq2Þj2

�
: ð9Þ

The various form factors appearing in Eqs. (2) and (7) will
be defined in terms of LFWFs in Sec. III.

B. Light-front kinematics

To describe the kinematics of the decay process
in the light-front coordinates where the transferred
4-momentum is defined as qμ ¼ ðqþ; q⃗⊥; q−Þ ¼
ðq0 þ q3; q1; q2; q0 − q3Þ, we introduce two boost invari-
ants z and Δ⃗⊥ [39]. Specifically, z is the relative momentum
transfer in the longitudinal direction and is limited to the
kinematical region 0 ≤ z < 1 in the valence Fock sector.
Meanwhile, Δ⃗⊥ is a combination of the momentum transfer
in the transverse direction and the relative longitudinal
momentum transfer:

z ¼ qþ

Pþ
1

; Δ⃗⊥ ¼ q⃗⊥ − zP⃗1⊥: ð10Þ

Therefore the Lorentz invariant q2 ¼ qμqμ can be written in

terms of z and Δ⃗⊥ as

q2 ¼ z

�
M2

1 −
M2

2

1 − z

�
−

Δ2⊥
1 − z

: ð11Þ

Note that in Eq. (11) q2 is not a monotonic function in z.
Therefore for a given fixed q2 there are different ðz; Δ⃗⊥Þ
combinations defining different frames illustrated in Fig. 1.
Among them, the following special frames are of particular
interest:
(i) Drell-Yan frame: qþ ¼ 0ðz ¼ 0Þ. This frame is widely

adopted in light-front dynamics, especially working in
combination with the “good current” Jþ, which
usually yields a concise setup for the calculation.
However, by choosing the Drell-Yan frame, one can
only access the spacelike region since q2 ¼ −Δ2⊥ ≤ 0.
Recall that in the case of the semileptonic decay of
hadrons, the physically allowed region of q2 is time-
like. It is therefore common practice either to apply
analytic continuation by replacing q⃗⊥ with iq⃗⊥ [19,20]
or to use factorization [13,14] in order to access the
timelike region.

(ii) Longitudinal frame: Δ⃗⊥ ¼ 0. This frame covers both
timelike and spacelike regions. Furthermore, it is the
only frame that grants access to the zero recoil point,
i.e., q2max ¼ ðM1 −M2Þ2 (see Fig. 1). Only at this
point is z ¼ 1 −M2=M1 unique. Unlike the Drell-Yan

FIG. 1. Left panel: The Lorentz invariant q2 as a function of z or Δ2⊥ in two special frames. In the Drell-Yan frame (z ¼ 0), the
momentum transfer squared is given by q2 ¼ −Δ2⊥. In the longitudinal frame (Δ⊥ ¼ 0), q2 ¼ z½M2

1 −M2
2=ð1 − zÞ�. Note that in this

two-dimensional (2D) plot we put the two regions with different frames together only for the sake of visualization; they have different
variables and scales on the horizontal axes. Right panel: The three-dimensional plot of q2 in terms of z and Δ⊥. All q2 values in the
physically allowed region are situated on the convex surface and correspond to a pair of ðz;Δ⊥Þ. The yellow area shows the timelike
region, while the blue area is spacelike. The black curve corresponds to the Drell-Yan frame, the solid red curve represents
the longitudinal-I frame, and the dashed red curve (which drops out of sight over the peak of the convex surface)
traces the longitudinal-II frame.
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frame where q2 ¼ −Δ2⊥, the longitudinal frame has
two branches that indicate the existence of two z
values contributing to the same q2 (except q2max)
in the timelike region: z ¼ ½M2

1 −M2
2 þ q2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
1 −M2

2 þ q2Þ2 − 4M2
1q

2
p

�=ð2M2
1Þ. Thus we treat

them as two different frames. The first branch with
0 < z < 1 −M2=M1 is connected to the Drell-Yan
frame at q2 ¼ 0. We refer to this branch as the
longitudinal-I frame, through which one can only
access the timelike region. The other branch, referred
to as the longitudinal-II frame, starts at the limit q2max
for z ¼ 1 −M2=M1, extending toward spacelike infin-
ity for z → 1. That is, it covers the entire spacelike
region, as well as the physical timelike region.

Aside from these special frames, all other combinations of z
and Δ⊥ on the convex surface in the right panel of Fig. 1
constitute the general frames.
Recall that the LFWFs we employ from Refs. [28,29] are

constrained within the valence Fock sector jqq̄i. Thus we
study the decay process without contributions due to
particle annihilation. This process is referred to as the
leading-order Feynman diagram shown in Fig. 2(a).
Furthermore, the contribution from the particle-number-
changing diagrams, which involves Fock sectors higher
than the valence such as Fig. 2(b), is not yet available in
BLFQ [39,40]. In the literature [41–43], the Drell-Yan
frame together with the good current is adopted since it has
the advantage of suppressing the vacuum pair production/
annihilation including the case in Fig. 2(b); however, this
frame has the limitation that it only allows for spacelike q2

as stated before. In the following section, we will discuss
the variations in the form factors by considering all of the

frames specified in the right panel of Fig. 1. We expect that
some of these variations are due to the Fock space
truncation in our model but incorporating higher Fock
spaces explicitly is beyond the scope of the present work.

III. NUMERICAL RESULTS

A. The decay process Bc → ηclν̄l
In BLFQ, we employ an effective Hamiltonian which

consists of a 2D harmonic oscillator (HO) transverse
confinement, a longitudinal confinement, and an effective
one-gluon-exchange potential [28,29]. In the basis repre-
sentation, the 2D HO function with parameter κ is adopted
for the transverse direction, while we employ the Jacobi
polynomials in the longitudinal direction (see Appendix A
and Refs. [28,29] for details). The basis cutoff Nmax acts
implicitly as the infrared (IR) and ultraviolet (UV) regu-
lators for the LFWFs in the transverse direction, with an IR
cutoff λIR ≈ κ=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and a UV cutoff λUV ≈ κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
. The

basis cutoff Lmax controls the numerical resolution and
regulates the longitudinal direction. For convenience, and
in accordance with previous work, Lmax and Nmax are taken
to be equal for the wave functions we employ in this paper.
The hadronic matrix elements, expressed as the overlaps of
LFWFs, depend on these cutoffs as we will discuss below.1

In Eq. (2), the hadronic matrix element of the vector
current coupled to two pseudoscalar mesons is decomposed
in terms of two Lorentz scalar functions, i.e., the transition
form factors f�ðq2Þ. In perturbative QCD, this hadronic
matrix element can be factorized in terms of the meson
distribution amplitudes. The form factors are then expressed
as convolutions of these amplitudes with hard scattering
kernels [44,45]. However, instead of using these distribution
amplitudes, we calculate the hadronic matrix elements using
the LFWFs of mesons directly without factorization. To
construct equations for the transition form factors in Eq. (2),
we employ two current components, μ ¼ þ and μ ¼ R.
The R component of a vector is defined by xR ≜ x1 þ ix2,
with the L component being its conjugate. We do not use
the μ ¼ − component as it violates charge conservation
within our truncated Fock sector. The matrix elements
MþðRÞ ≜ hP2jc̄γþðRÞbjP1i can then be calculated through
the overlap integral of themesonwave functions according to

Mμ ¼
X
ss̄

Z
1

z

dx
2xð1 − xÞ

Z
dk⃗⊥
ð2πÞ3

X
s0

1 − z
x − z

ūs0 ðp0Þ

× γμusðpÞψ�
s0 s̄=ηc

�
x − z
1 − z

; k⃗⊥ −
1 − x
1 − z

Δ⃗⊥
�

× ψ ss̄=Bc
ðx; k⃗⊥Þ; ð12Þ

(a)

(b)

FIG. 2. Diagrams of two dominant contributions to the tran-
sition Bc → ηc in the light-front time order (left to right).

1In this article, we use “basis cutoff” or “basis dependence” to
indicate the dependence on all the model parameters mq, κ, and
Nmax ¼ Lmax. Details of parameters can be found in Refs. [28,29].
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where p ¼ ðxPþ
1 ; k⃗⊥ þ xP⃗1⊥Þ and p0 ¼ ððx − zÞPþ

1 ; k⃗⊥þ
ðx − zÞP⃗1⊥ − Δ⃗⊥Þ are the 3-momentum of the initial quark
(b) and final antiquark (c̄) associated with the spinors us and
ūs0 . Details of the LFWFs ψðx; k⃗⊥Þ expanded within the
BLFQ basis representation are given in Appendix A.
Meanwhile, tables of the spinor matrix components for
our applications are provided in Appendix B. With Eq. (12),
the two form factors in Eq. (2) can be written in terms of the
matrix elements and the two boost invariants z and Δ⊥:

fþðq2Þ ¼
ðΔR þ zPR

1 ÞMþ − zPþ
1 M

R

2ΔRPþ
1

;

f−ðq2Þ ¼
½ΔR − ð2 − zÞPR

1 �Mþ þ ð2 − zÞPþ
1 M

R

2ΔRPþ
1

: ð13Þ

We present the results of fþðq2Þ and f0ðq2Þ obtained
with different frames in Fig. 3, where we sample the q2 with
respect to multiple Δ⊥ and z pairs. The difference of the
form factors between two different frames is referred to as
the frame dependence. The constraint z ¼ 0 selects the
Drell-Yan frame which only supports q2 ≤ 0. It is con-
nected to the longitudinal-I frame (lower branch of the
longitudinal frame curve) at q2 ¼ 0. However, there is a
kink at this connecting point which indicates that the
derivative with respect to q2 is not continuous at the
boundary of the two frames. Therefore, one has to be
careful when applying the analytical continuation of the
form factor from the spacelike region to the timelike region.
In the timelike region, form factors with the longitudinal
frames I and II correspond to the lower and upper limits of
fþ;0ðq2Þ in the figure, whereas the form factors calculated
in general frames with nonzero Δ⊥ fall between these two
curves. Similarly, for small spacelike momenta, the

longitudinal-II and Drell-Yan results for the form factors
correspond to the upper and lower limits of results obtained
in the general frames, but as one moves further into the
spacelike region, results in the general frames may exceed
these two boundaries. However, for the weak decay
processes considered in this article we are mainly interested
in the physical timelike region.
In order to gain a clear impression on how basis truncation

affects the form factors, we include the special frames with
basis cutoffs Nmax ¼ Lmax ¼ 8, 16, 24, and 32 in Fig. 4. We
notice that the dependence on Nmax is decreasing as Nmax

increases within each frame for fþðq2Þ and f0ðq2Þ. Note
that the dependence on Nmax of form factors is almost
negligible at q2max, but the frame dependence becomes
stronger with a larger basis size arising primarily from a
more significant increase in the results of the longitudinal-II
branch in comparison with the Drell-Yan and longitudinal-I
branches. This overall tendency appears to be counterintui-
tive since a larger basis size usually reduces the frame
dependence in several other observables, such as the decay
constant, the elastic form factor, and radiative transition form
factors [29,30,39,40,46]. We recall that the role of the
omitted particle-number-changing diagram is suppressed
by keeping to a value of z as low as possible. In contrast,
the longitudinal-II frame with a larger z increases the weight
of the longitudinal tails of LFWFs in the x-integral of
Eq. (12), and results in a larger dependence of the basis
cutoffs [47]. It is therefore appealing that the smaller
sensitivity to basis space cutoff of the Drell-Yan and
longitudinal-I frames compared to others suggests these
two frames are preferred for calculations with the currently
available LFWFs.
In Table I, we list the numerical values of the form

factors at the kinematical limits, namely q2 ¼ 0 and q2max at
Nmax ¼ Lmax ¼ 32. We also provide results from other

FIG. 3. The frame dependence of the form factors for Bc → ηclνl decay at the basis size Nmax ¼ Lmax ¼ 8. The black dots indicate
the form factors obtained with the Drell-Yan frame, the solid blue curve is from the longitudinal frame, and the other curves are obtained
with both nonzero z andΔ⊥ which we call the general frames. For fþðq2Þ and f0ðq2Þ, the two special frames form a boundary enclosing
form factors obtained from the general frames.
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approaches for comparison. In general, our result with the
longitudinal-I frame shows better agreement with other
approaches. This is encouraging in light of our discussion
above concerning the minimization of effects of the
neglected particle-number-changing term within the longi-
tudinal-I frame.
In Fig. 5, we provide our result for the differential decay

width based on Eq. (5), specifically for the Bc → ηceν̄
channel. Values of the lepton mass and the Fermi constant
are taken from the Particle Data Group (PDG) [1]:

me ¼ 0.5109989461 MeV;

GF ¼ 1.1663787 × 10−5 GeV−2: ð14Þ

The decay width shows similar trends as those found for the
form factors. To be specific, results with the longitudinal-I
frame are less sensitive to basis sizes than those with
longitudinal-II. In addition, the difference between two

frames is most significant at low q2. We therefore adopt the
longitudinal-I frame as our preferred reference frame for
the application of valence LFWFs to semileptonic decay
processes.

B. The decay process Bc → J=ψlν̄l
The hadronic matrix elements describing the semilep-

tonic decay from Bc to the vector meson J=ψ have more
intricate structures than those with a pseudoscalar final
state. The vector current matrix element in Eq. (7) takes a
form similar to the radiative decay matrix element between
pseudoscalar and vector states [48]. Based on a previous
study [30], a combination of the current component μ ¼ R
and the magnetic projection mj ¼ 0 of the LFWF for the
final state meson is favored in calculating the form factor
gðq2Þ on the light front. In addition, this choice employs
the dominant spin component of the LFWFs and ties in
with the nonrelativistic limit of the heavy systems.

TABLE I. Form factors calculated in this work within different frames (first two rows of the table) and with other methods. BLFQ - 1
and BLFQ - 2 at q2 ¼ 0 correspond to longitudinal-I (our preferred frame as discussed in the text) and longitudinal-II frames,
respectively. The BLFQ results are quoted using the LFWFs at the basis cutoff Nmax ¼ Lmax ¼ 32, while the uncertainties are quoted as
εf ¼ 2jfNmax¼32 − fNmax¼24j to show the basis sensitivity. Other methods listed in the table include perturbative QCD (pQCD), covariant
confined quark model (CCQM), relativistic quark model (RQM), light-front quark model (LFQM), and Lattice QCD. For the LFQM, we
quote the results with both linear potential and harmonic oscillator potential (the latter in the square bracket).

fþð0Þ ¼ f0ð0Þ fþðq2maxÞ f0ðq2maxÞ
BLFQ - 1 0.588(19) 1.391(35) 0.811(3)
BLFQ - 2 1.003(130)
pQCD [13] 0.48 1.03 0.78
CCQM [14] 0.75 1.13 0.92
LFQM [16] 0.482 [0.546] 1.084 [1.035] 0.876 [0.872]
RQM [17] 0.47 1.07 0.92
Lattice QCD [15] 0.59

FIG. 4. The dependence of the form factors on the basis cutoff. Different colors are used to distinguish the basis cutoffs; i.e., blue,
yellow, green, and red curves are representing Nmax ¼ 8, 16, 24, 32, repetitively (same for Figs. 5, 7, and 8 below). Meanwhile, we
present the form factors calculated in the Drell-Yan frame with the dots; results in the longitudinal-I and longitudinal-II frames are shown
with solid and dashed curves, respectively.
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Consequently, we use the R component of the hadronic
matrix element VR

0 ≜ hP2; mj ¼ 0jc̄γRbjP1i for the form
factor gðq2Þ,

gðq2Þ ¼ i
2M2

1 − z
ΔR VR

0 ; ð15Þ

where the matrix element Vμ
mj is defined in terms of LFWFs

as

Vμ
mj ¼

X
ss̄

Z
1

z

dx
2xð1 − xÞ

Z
dk⃗⊥
ð2πÞ3

X
s0

1 − z
x − z

ūs0 ðp0Þ

× γμusðpÞψ�ðmjÞ
s0 s̄=J=ψ

�
x − z
1 − z

; k⃗⊥ −
1 − x
1 − z

Δ⃗⊥
�

× ψ ss̄=Bc
ðx; k⃗⊥Þ: ð16Þ

For the other three form factors corresponding to the axial
current matrix element, we employAþ

0 ,A
þ
1 , andA

L
1 for the

calculation, where

Aμ
mj ≜ hP2; mjjc̄γμγ5bjP1i

¼
X
ss̄

Z
1

z

dx
2xð1 − xÞ

Z
dk⃗⊥
ð2πÞ3

X
s0

1 − z
x − z

ūs0 ðp0Þ

× γμγ5usðpÞψ�ðmjÞ
s0 s̄=J=ψ

�
x − z
1 − z

; k⃗⊥ −
1 − x
1 − z

Δ⃗⊥
�

× ψ ss̄=Bc
ðx; k⃗⊥Þ: ð17Þ

Again, we avoid using the “bad current” (μ ¼ −) to
calculate form factors in the vector final state decays.
Then those form factors can be expressed as follows:

fðq2Þ ¼ M2

ð1 − zÞPþ
1

Aþ
0

þ Δ2⊥ −M2
2 þ ð1 − zÞ2M2

1ffiffiffi
2

p ð1 − zÞPþ
1 ΔL

Aþ
1 ;

aþðq2Þ ¼ ð1 − zÞ zP
þ
1 A

L
1 − ðzPL

1 þ ΔLÞAþ
1ffiffiffi

2
p ðΔLÞ2Pþ

1

;

a−ðq2Þ ¼ ð1 − zÞ

×
ðz − 2ÞPþ

1 A
L
1 − ½ðz − 2ÞPL

1 þ ΔL�Aþ
1ffiffiffi

2
p ðΔLÞ2Pþ

1

: ð18Þ

We use the hadronic matrix elements to calculate the form
factors by the relations above, and then convert them into
the BSW conventions according to Eq. (8). Note that the
form factor fðq2Þ depends on both the Aþ

0 and the Aþ
1

matrix elements. That is, fðq2Þ depends on the LFWFs of
J=ψ with both mj ¼ 0 and mj ¼ 1. However in BLFQ we
compute the LFWFs with fixed mj independently, leaving
the relative phase undetermined between any two
states with different mj. Subsequently, we determine the

relative sign between ψ
ðmj¼0Þ
J=ψ and ψ

ðmj¼1Þ
J=ψ by comparing the

nonrelativistic component of the LFWFs, and ensure
that the light-front eigenstates approximately satisfy
J þjmj ¼ 0i ¼ Cjmj ¼ 1i, where C is a positive coeffi-
cient corresponding to the ladder operator J þ on the
light front.
Our results for the various form factors as functions of q2

are shown in Figs. 6 and 7. The numerical results at q2 ¼ 0

and q2max are listed in Table II in comparison with other
approaches. We notice that the frame dependence of the
vector form factor Vðq2Þ, which is calculated using only
one vector meson state and one current component, is
significantly reduced compared to that of the axial vector
form factors, which depend on two hadronic matrix
elements involving different current components and differ-
ent vector meson states. The frame dependence of Vðq2Þ
shows about 10% deviation at q2 ¼ 0 which is consistent
with Ref. [40]; in fact, our results for Vðq2Þ with the
longitudinal-II is within about 15% of the longitudinal-I
and Drell-Yan frames over a wide range of q2, both in the
timelike and in the spacelike region.
The other three form factors (A1, A2, A0) show behavior

similar to fþðq2Þ and f−ðq2Þ and exhibit a significantly
stronger frame dependence than Vðq2Þ. When we further
examine the basis dependence of form factors in Fig. 7, we
find only very modest sensitivity to the basis truncation,
much less than the form factors f�ðq2Þ in the previous
subsection. A similar insensitivity to basis space cutoff is
found for the differential decay width of Bc → J=ψ as
shown in Fig. 8. Unlike the decay width for Bc → ηc where
the longitudinal-I results vary by as much as 100%, this
decay width with a vector meson final state does not

FIG. 5. The differential decay width of semileptonic decay of
Bc → ηceν̄. Results are presented with longitudinal-I (solid
curve) and longitudinal-II (dashed curve) frames at different
basis cutoffs.
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change substantially with basis truncation, leaving the
frame dependence as the dominant source of variations.
Similar to the case with pseudoscalar final states, we keep
our preference in results based on the longitudinal-I
frame for these from factors with a vector meson final
state.
For further investigation, we integrate the differential

decay width over q2 in the physical region m2
l ≤ q2 ≤ q2max

to obtain the corresponding total decaywidth and, from that,
the branching ratio. Table III is a comparison of our results
with other calculations from Refs. [13,14,17,25,49–53] for
the semileptonic decays into ηc and J=ψ , as well as the
decays into the 2S radial excited states η0c and ψ 0. The
following supporting physical parameters including jVcbj
are adopted from PDG [1]:

mμ ¼ 105.6583745 MeV; mτ ¼ 1776.86 MeV

jVcbj ¼ 41.0 × 10−3; τBc
¼ 0.510 × 10−12 s: ð19Þ

The decay modes with e and μ in the final products have
negligible difference in branching ratios, while the decay

modes with a τ in the final states are suppressed due to
limits in the phase space. Despite the difference between
BLFQ - 1 and BLFQ - 2 results, we note that there exist
other methods that appear compatible with either of our
BLFQ results. Specifically, we found that the BLFQ - 1
results for the decays into pseudoscalar states have better
agreement with other methods than BLFQ - 2, which is in
accord with our preference for the longitudinal-I frame.
However, for the decays into vector states, neither frame
seems to be superior when compared to other calculations.
Nevertheless, also for the branching ratios into vector
states, we expect our BLFQ - 1 results to be more reliable
than our BLFQ - 2 results.

IV. SUMMARY

We investigated the semileptonic decay form factors,
differential decay width, and the branching ratios of the Bc
meson to the pseudoscalar state ηc and vector state J=ψ
with the BLFQ approach. In order to access the electroweak
form factors in the timelike region using light-front
kinematics, we introduced two boost invariants z and

FIG. 6. The frame dependence of form factors for Bc → J=ψlνl decay at the basis cutoff Nmax ¼ Lmax ¼ 8. Among the four form
factors displayed here, Vðq2Þ is only associated with a single hadronic matrix element, and it shows a smaller frame dependence than the
others.
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Δ⃗⊥ that specify the choice of reference frames. The
frame dependence of form factors arises due to our Fock
space truncation. We expect our results in the Drell-Yan and
longitudinal-I frames to be more reliable than those in the
longitudinal-II frame because the contribution from the
particle-number-changing diagrams, which are not incor-
porated in our truncated Fock space, is suppressed in the
frames with small longitudinal momentum transfer.
We employ the LFWFs obtained in our previous work

[28,29] which are available for certain basis sizes. Within

the Hilbert space truncated by the basis cutoffs, we
observed that the influence on the form factors due to
the basis truncation is smaller than the frame dependence.
This conclusion is supported best in the Drell-Yan and
longitudinal-I frames, which coincide with the ones min-
imizing the error due to omitting the particle-number-
changing diagram. In general, when comparing our results
of form factors and branching ratios to those in the literature
(see Tables II and III), we find reasonable agreement but
some differences are noticeable. Further calculations of the

TABLE II. Form factors by this work (rows labeled BLFQ - 1 and BLFQ - 2) and other methods at selected values of q2. The BLFQ
results listed here are calculated with Nmax ¼ Lmax ¼ 32, and the uncertainties are induced by the same source as in Table I.

Vð0Þ Vðq2maxÞ A1ð0Þ A1ðq2maxÞ A2ð0Þ A2ðq2maxÞ A0ð0Þ A0ðq2maxÞ
BLFQ - 1 0.956(8) 2.166(29) 0.224(2) 0.773(7) 0.345(15) 1.020(36) 0.162(10) 1.017(14)
BLFQ - 2 1.082(64) 0.540(8) 0.724(54) 0.445(16)
pQCD [13] 0.42 0.94 0.46 0.79 0.64 1.86 0.52 0.99
CCQM [14] 0.78 1.32 0.56 0.79 0.55 0.89 0.56 0.82
RQM [17] 0.49 1.34 0.50 0.88 0.73 1.33 0.40 1.06
Lattice QCD [15] 0.70 0.48

FIG. 7. The dependence of the form factors on basis size as a function of q2. Dotted lines are the results from the Drell-Yan frame, solid
curves are from the longitudinal-I frame, while dashed curves are with the longitudinal-II frame.
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weak transition form factors can be repeated for other weak
decay processes involving Bð�Þ, Bð�Þ

s , Dð�Þ, and Dð�Þ
s [7,54]

with the corresponding LFWFs [46]. Also note that for the
decay into J=ψ , we select a certain combination of current
components and final state magnetic projection as specified
in Eq. (18). It is worthwhile to test other combinations in a
future work and investigate the sensitivity to the choices of
current and magnetic projection.
Our preference of the Drell-Yan and the longitudinal-I

frames is linked with the Fock space of the LFWFs being
limited to the valence quarks. With BLFQ for mesons
incorporating higher Fock sectors in the future, we expect
a reduction of the existing artifact of frame dependence.

We anticipate future experimental facilities such as LHCb
to provide more data to test our results and motivate further
theoretical improvements.
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APPENDIX A: BASIS REPRESENTATION

The effective Hamiltonian we employed for the mesons
include the HO transverse confining potential, a longi-
tudinal confinement, and an effective one-gluon exchange
[27,28]

Heff ¼
k⃗2⊥ þm2

q

x
þ k⃗2⊥ þm2

q̄

1 − x
þ κ4ζ⃗2⊥

−
κ4

ðmq þmq̄Þ2
∂xðxð1 − xÞ∂xÞ

−
CF4παsðQ2Þ

Q2
ūs0 ðk0ÞγμusðkÞv̄s̄ðk̄Þγμvs̄0 ðk̄0Þ: ðA1Þ

TABLE III. Branching ratios (in %) of semileptonic Bc decays into ηc and J=ψ and the radial excited states η0c and ψ 0. The branching
ratio (BR) central values for BLFQ are calculated with Nmax ¼ Lmax ¼ 32, while the uncertainties are given by εBR ¼
2jBRðNmax ¼ 32Þ − BRðNmax ¼ 24Þj to show the sensitivity to basis cutoffs. This work is compared with other frameworks
including the nonrelativistic QCD (NRQCD) approach, the continuum Schwinger function (CSM) method, and the Bethe-Salpeter
equation (BSE) method. Note that in some references, slightly different values of Vcb and τBc

are adopted for the calculation.

BR Bc → ηclν̄lðl ¼ e; μÞ Bc → ηcτν̄τ Bc → J=ψ lν̄lðl ¼ e; μÞ Bc → J=ψτν̄τ

BLFQ - 1 0.722� 0.034 0.188� 0.006 0.727� 0.014 0.228� 0.004
BLFQ - 2 1.88� 0.39 0.404� 0.06 1.75� 0.02 0.452� 0.006
pQCD [13] 0.441 0.137 1.003 0.292
CCQM [14] 0.96� 0.19 0.24� 0.05 1.67� 0.33 0.40� 0.08
NRQCD [49] 2.1þ0.5þ0.4þ0.2

−0.3−0.1−0.2 0.64þ0.07þ0.14þ0.10
−0.08−0.06−0.05 6.7þ0.07þ0.14þ0.10

−0.08−0.06−0.05 0.52þ0.16þ0.08þ0.08
−0.09−0.03−0.05

RQM [50] 0.606þ0.035
−0.025 0.195þ0.011

−0.007 1.10þ0.06
−0.09 0.264þ0.022

−0.016
CSM [51] 0.810� 0.045� 0.055 0.254� 0.010� 0.017 1.72� 0.019� 0.012 0.417� 0.066� 0.028
BR Bc → η0clν̄lðl ¼ e; μÞ Bc → η0cτν̄τ Bc → ψ 0lν̄lðl ¼ e; μÞ Bc → ψ 0τν̄τ
BLFQ - 1 0.0371� 0.0001 1.36� 0.02 × 10−3 0.0710� 0.0036 4.86� 0.421 × 10−3

BLFQ - 2 0.315� 0.050 6.91� 0.83 × 10−3 0.0442� 0.0081 3.12� 0.592 × 10−3

pQCD [25] 0.77þ0.20þ0.58þ0.20
−0.14−0.55−0.05 5.3þ1.4þ4.1þ1.4

−1.0−3.8−0.3 × 10−2 1.2þ0.6þ0.1þ0.3
−0.3−0.1−0.1 8.4þ3.6þ0.4þ1.5

−1.3−0.4−0.1 × 10−2

RQM [17] 0.032 0.031
RQM [52] 0.02 0.12
BSE [53] 0.0665þ0.0052

−0.0060 0.103þ0.013
−0.018

FIG. 8. The differential decay width for the semileptonic decay
of Bc → J=ψeν̄. Results are presented with longitudinal-I (solid
curve) and longitudinal-II (dashed curves) frames at different
basis cutoffs.
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Diagonalizing this Hamiltonian in our chosen basis space
provides the eigenvalues as squares of the bound state
eigenmasses, and the eigenvectors ψh which specify the
LFWFs as

ψ
ðmjÞ
ss̄=hðx; k⃗⊥Þ ¼

X
nml

ψhðn;m; l; s; s̄ÞχlðxÞ

× ϕnmðk⃗⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
Þ: ðA2Þ

Here ϕnmðq⃗⊥Þ is the 2D HO function we adopt as the
transverse basis function:

ϕnmðq⃗⊥Þ ¼
1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn!

ðnþ jmjÞ!

s �
q⊥
κ

�jmj
e−

1
2
q2⊥=κ2

× Ljmj
n ðq2⊥=κ2Þeimθq ; ðA3Þ

where n and m are the principal and orbital quantum
numbers, respectively; κ is the scale parameter; θq¼argq⃗⊥;
and Ljmj

n is the associated Laguerre polynomial. The

longitudinal basis function χlðxÞ is related to the Jacobi
polynomial with quantum number l by

χlðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ αþ β þ 1Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðlþ 1ÞΓðlþ αþ β þ 1Þ
Γðlþ αþ 1ÞΓðlþ β þ 1Þ

s

× x
β
2ð1 − xÞα2Pðα;βÞ

l ð2x − 1Þ; ðA4Þ

where α and β are two parameters associated with quark
masses, i.e., α¼2mq̄ðmqþmq̄Þ=κ2, β¼2mqðmqþmq̄Þ=κ2.
The basis truncation is specified by the dimensionless
parameters Nmax and Lmax, such that

2nþ jmj þ 1 ≤ Nmax; 0 ≤ l ≤ Lmax: ðA5Þ

One can then write down the hadronic matrix element in
the basis representation. Here we takeMμ ¼ hP2jc̄γμbjP1i
for Bc → ηc as an example:

Mμ ¼
X

nn0mm0ll0ss̄

ψηcðn0; m0; l0; s0; s̄ÞψBc
ðn;m; l; s; s̄Þ

Z
1

z

dx
2xð1 − xÞ

Z
d2k⃗⊥
ð2πÞ3

X
s0

1 − z
x − z

× ūs0 ððx − zÞPþ
1 ; k⃗⊥ þ ðx − zÞP⃗1⊥ − Δ⃗⊥ÞγμusðxPþ

1 ; k⃗⊥ þ xP⃗1⊥Þ

× ϕ�
n0m0

�
k⃗⊥ − ð1−x

1−zÞΔ⃗⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − zÞð1 − xÞp
=ð1 − zÞ

�
χl0

�
x − z
1 − z

�
ϕnm

�
k⃗⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp �
χlðxÞ: ðA6Þ

Note that the basis states for the initial and final mesons
have different values for their constants owing to the
dependence on quark masses and interaction parameters
in their respective Hamiltonians.

APPENDIX B: SPINOR VERTICES

We present the spinor vertex, where usðpÞ and ūs0 ðp0Þ
are the solutions of the Dirac equation for the incoming
quark and outgoing antiquark with masses m1 and m2,
respectively.

1. Vector

ūs0 ðp0ÞγþusðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

δss0 ; ðB1aÞ

ūs0 ðp0Þγ−usðpÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

pþp0þp

×

8>>>>><
>>>>>:

m1m2 þ pRp0L s; s0 ¼ þ;þ
m1m2 þ pLp0R s; s0 ¼ −;−
m2pR −m1p0R s; s0 ¼ þ;−
m1p0L −m2pL s; s0 ¼ −;þ

;

ðB1bÞ

ūs0 ðp0ÞγLusðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

×

8>>>>><
>>>>>:

p0L
p0þ s; s0 ¼ þ;þ
pL

pþ s; s0 ¼ −;−
m2

p0þ − m1

pþ s; s0 ¼ þ;−
0 s; s0 ¼ −;þ

; ðB1cÞ
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ūs0 ðp0ÞγRusðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

×

8>>>>><
>>>>>:

pR

pþ s; s0 ¼ þ;þ
p0R
p0þ s; s0 ¼ −;−

0 s; s0 ¼ þ;−
m1

pþ − m2

p0þ s; s0 ¼ −;þ

: ðB1dÞ

2. Axial vector

ūs0 ðp0Þγþγ5usðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

δss0signðsÞ; ðB2aÞ

ūs0 ðp0Þγ−γ5usðpÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

pþp0þp

×

8>>><
>>>:

−m1m2 þ pRp0L s; s0 ¼ þ;þ
m1m2 − pLp0R s; s0 ¼ −;−
m2pR þm1p0R s; s0 ¼ þ;−
m1p0L þm2pL s; s0 ¼ −;þ

;

ðB2bÞ

ūs0 ðp0ÞγLγ5usðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

×

8>>>>><
>>>>>:

p0L
p0þ s; s0 ¼ þ;þ
− pL

pþ s; s0 ¼ −;−
m1

pþ þ m2

p0þ s; s0 ¼ þ;−

0 s; s0 ¼ −;þ

; ðB2cÞ

ūs0 ðp0ÞγRγ5usðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

×

8>>>>>><
>>>>>>:

pR

pþ s; s0 ¼ þ;þ
− p0R

p0þ s; s0 ¼ −;−

0 s; s0 ¼ þ;−
m1

pþ þ m2

p0þ s; s0 ¼ −;þ

: ðB2dÞ
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