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Nonzero neutrino masses imply the existence of degrees of freedom and interactions beyond those in the
Standard Model. A powerful indicator of what these might be is the nature of the massive neutrinos: Dirac
fermions versus Majorana fermions. While addressing the nature of neutrinos is often associated with
searches for lepton-number violation, there are several other features that distinguish Majorana from Dirac
fermions. Here, we compute in great detail the kinematics of the daughters of the decays into charged-
leptons and neutrinos of hypothetical heavy neutral leptons at rest. We allow for the decay to be mediated
by the most general four-fermion interaction Lagrangian. We demonstrate, for example, that when the
daughter charged-leptons have the same flavor or the detector is insensitive to their charges, polarized
Majorana-fermion decays have zero forward-backward asymmetry in the direction of the outgoing neutrino
(relative to the parent spin), whereas Dirac-fermion decays can have large asymmetries. Going beyond
studying forward-backward asymmetries, we also explore the fully differential width of the three-body
decays. It contains a wealth of information not only about the nature of the new fermions but also the nature

of the interactions behind their decays.
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I. INTRODUCTION

Massive fermions with no conserved quantum numbers
can be either Majorana fermions or Dirac fermions. At
present, there are no identified fundamental Majorana
fermions in nature. A few decades ago, this statement
was neither especially meaningful nor surprising. All
known fundamental fermions are charged under unbroken
gauge symmetries [e.g., the electromagnetic U(1)], except
for neutrinos, which, until the end of the 20th century,
could be considered exactly massless. With the discovery
of nonzero neutrino masses, research into mechanisms to
test the hypothesis that neutrinos are Majorana fermions
has grown in volume and impact.1
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lConcurrently, the evidence for dark matter has also grown
very significant over the last decade. The hypothesis that dark
matter is a new fundamental particle is very attractive and under
intense experimental and theoretical scrutiny. Should this hy-
pothesis be verified, and should the dark matter particle turn out
to be a heavy, neutral fermion, determining its nature will also
become an urgent question for particle physics.
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Nonzero neutrino masses also imply the existence of
new degrees of freedom. Currently, their nature and
properties are very poorly constrained. The new degrees
of freedom associated to nonzero neutrino masses could
be bosons or fermions, charged or neutral, very heavy or
very light. One popular scenario postulates the existence
of new massive Majorana fermions that mix with the
Standard Model neutrinos. In the event of the discovery of
a new neutral lepton—a heavy neutrino or, as is more
common in the literature, a heavy neutral lepton (HNL)—
identifying its nature—Majorana fermion (MF) or Dirac
fermion (DF)—will become an urgent question for par-
ticle physics. HNLs, independent from their possible
connection to the observed neutrino masses, are also a
candidate for the dark matter and remain an ingredient of
potential solutions to the so-called short-baseline anoma-
lies. HNLs are the subject of experimental searches at all
mass scales [1-7].

A very promising way to determine the nature of the
neutrinos, including HNLs, is to test the hypothesis that
global lepton number is conserved in nature. On one hand,
if lepton number is a symmetry of nature, massive neutrinos
must be Dirac fermions since neutrinos are nontrivially
charged under lepton number in such a way that the
neutrino state and the antineutrino state are distinguishable.
On the other hand, if lepton number is violated (by two
units), then neutrinos are Majorana fermions. The deepest
probes for the violation of lepton number are searches
for the neutrinoless double-beta decay of various nuclei.
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These are the subject of intense experimental research (see
[8] for a recent review).

There are ways to distinguish Majorana from Dirac
fermions that do not directly involve searches for the
violation of some symmetry. Majorana fermions are their
own antiparticles, while Dirac fermions are not. Hence,
processes where Dirac and Majorana fermions are created
or destroyed are distinct, and their measurable properties—
differential cross sections and decay rates—are, in princi-
ple, recognizably different. There are several identified
examples of this, including (i) different velocity depend-
ence (near threshold) for fermion—antifermion annihilation,
a fact that has important consequences for dark matter
phenomenology, (ii) the decay of a Majorana fermion into
two self-conjugate final-state particles is, at leading order,
isotropic in the rest frame of the parent independent from
the physics responsible for the decay [9,10], (iii) the rate of
cosmic-background neutrino captured on tritium is twice as
large if the neutrinos are Majorana fermions relative to
Dirac fermions [11], (iv) Majorana fermions have zero
electromagnetic moments (transition moments, however,
are allowed), (v) there are large differences in the rates and
kinematics of neutral-current decays of atoms, very low-
energy electron-photon scattering [12], etc.

Here, we explore in detail the differential decay rate of
polarized Majorana and Dirac fermions and how these
compare to one another. As is the case of two-body decays,
the allowed kinematical distributions of the daughter
particles in three-body decays are more constrained if
the parent particle is a Majorana fermion. This means that,
in principle, there are circumstances under which, if the
parent particle is a Dirac fermion, one can rule out
the “wrong” hypothesis—Majorana fermion in this case.
The converse is not true unless one has independent infor-
mation on the physics responsible for the three-body decay.

We cast our discussion in the context of HNLs and
explore their decays into standard model charged-leptons
and neutrinos; nonetheless, many of the results discussed
here should apply much more broadly. We consider that the
decay is mediated by the most general four-fermion
effective Lagrangian, and hence, our results are not con-
strained by the idiosyncrasies of the Standard Model weak
interactions.

In Sec. II, we present arguments based upon the CPT
properties of the final states to show that if the HNL is a
Majorana fermion in certain classes of decays, there is no
forward-backward asymmetry of the charged-lepton-pair
(dilepton) system relative to the spin of the HNL. In
Sec. III, we discuss the most general possible matrix
element for the decay of a polarized HNL, for both a
Dirac or Majorana fermion. In Sec. IV, we discuss the size
of potential kinematic features in HNL three-body decays
for various well-motivated choices of couplings. Much of
the technical details of the calculations are relegated to
Appendices A-E. In Sec. V, we discuss circumstances

under which it is possible for observations to be consistent
with both the MF and DF hypotheses. In Sec. VI, we extend
our discussion beyond the forward-backward asymmetry of
the dilepton system to include the full differential distri-
butions and discuss how analyzing these distributions
allows for further separation of the Dirac and Majorana
hypotheses, as well as allowing for distinction between
certain coupling structures. We conclude in Sec. VII.

II. FORWARD-BACKWARD SYMMETRY OF
FERMION DECAYS FROM CPT

References [9,10] demonstrated that the two-body decay
of a polarized Majorana fermion N into a light Majorana
neutrino v and a self-conjugate boson X° is isotropic; i.e.,
the differential partial width dI'/dQ is constant. On the
contrary, two-body decays of a Dirac fermion N may have
strong cos y dependence, where 6y is the direction of the
outgoing X" relative to the spin of N in the rest frame of the
decaying N.

General two-body decays N — vX°, when N is 100%
polarized, can be expressed, in the N rest frame, as

dU(N-vX%) T
— - =—(14+2A 0
dcos Oy 2( 24 08 0),

(2.1)
where the forward-backward asymmetry Agg is defined as

I_dr _ _ [0 _dr
_ Jo Teosay 4 €08 Ox 12 Teosa; 4 €0s Ox

AFB =
1_dr 0 _ dr .
f() dcosOy d cos ex + f—l dcos Oy d cos GX

(2.2)

Assuming only CPT-invariance, Refs. [9,10] demonstrated
that, when X is a self-conjugate boson, at leading order,”
Agp is zero when N is a Majorana fermion. Indeed, the
decays of Majorana N are isotropic in terms of the direction
of the outgoing X (or equivalently, the direction of the
outgoing neutrino).

Extending the results of Refs. [9,10] to three-body
decays of MF and DF requires additional considerations
because the final-state phase space now depends on five
kinematic variables.” However, if it is possible to interpret
two of the three final-state particles as a “system” X° (as
above) with definite CPT properties, we can, based on
these CPT properties, make connections between the two-
body and three-body decays.

For clarity, we will focus on the decay of N into a neutrino
v and two charged leptons ¢, and f/}L, a,fp = e, u, 7. When

applying CPT arguments, we consider two separate cases—
one in which the final-state charged leptons have identical
flavor (¢ = ) and one in which their flavors are distinct, but
whatever detector is measuring these final-state particles

The result is exact if CP symmetry is strictly conserved.
*We define this phase space in Sec. IV and discuss it further in
Appendix C.
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cannot determine the charge of the individual particles on an
event-by-event basis. For both of these situations, we will be
considering the charged lepton system £} zf; as a single

system, which we refer to as X with a (variable) invariant
mass m%,. This will allow us to express the decay
N - vt 5 as a pseudo-two-body decay N — vX°.

In order to consider the final-state particles f;f;; as a
system X°, we must integrate over the kinematical quantities
in the three-body phase space that contain internal informa-
tion regarding the individual four-momenta of £ and L”/J;.
Thus, the CPT arguments will not be able to determine
whether the decays N — m,”;fﬁ* are (an)isotropic, but they
will allow us to determine that the MF decays are isotropic in
terms of the direction of the system X°.

A. Same flavor final-state charged leptons

In the case of same flavor final-state leptons, we define
X°=75¢5, and X° is self-conjugate. Additionally, we
define 4, and Ay to be the spin projection of the outgoing
neutrino and X° along their respective directions of motion
and A = 4, — Ax. Here, and throughout, we assume that the
operators generating the decay of N are of the four-fermion
type, i.e., N can be thought of as a pointlike particle
decaying through a contact interaction. Unless otherwise
noted, we are in the reference frame where N is at rest and,
in these calculations, we assume N and v are Majorana
fermions and that N is polarized in the spin-up direction,
denoted by “1”. Defining I';_,/, and I')__;, to be the
corresponding partial widths for decays with 1 = +1/2
and A = —1/2, respectively, we may express the decay
N — vX? as

dU(N - vX% 1
Tdeosty, EF/1=+1/2(1 + cos O)

1
+ =11 /2(1 = cos Oy).

: (2.3)

If we define the momenta of v and X° to be ¢ and —¢,
respectively, we can express the leading-order transition-
amplitude-squared for the spin-up decay as

AP = [(1(4. 4)X°(=g. A [HIN(D)) . (2.4)
where H is the interaction Hamiltonian governing this
decay. If we apply CPT to |.A|?, defining the operator & as

the action of CPT, and if we assume that the Hamiltonian is
CPT-invariant, we obtain

JAP = [(EHETIEN(1)I6v(q. A)X (=, Ax) [P, (2.5)
= [((q. —2,)X°(=4. —4x) [HIN (1)) %, (2.6)
= [((=4.=2,)X°(q. —4x) [HIN (1)) %, (2.7)

where the last line is obtained by rotation of the system by
an angle 7z about an axis perpendicular to both the N spin
direction and g. Summing expressions (2.4) and (2.7) over
the helicities for which 4, — Ay = 4 = +1/2, and compar-
ing (2.4) to (2.7), we see that I')_;,, =I,__;/,. From
Eq. (2.3), dU'/dcos@x =T'/2, a constant, and this implies
the X¥ direction distribution is isotropic.

B. Charge-blind detector
Here, we define X° = fjf; (a # p) and note that now,

X% £ X0 Tt is not a self-conjugate state. However, we
assume that our detector is charge blind and cannot
distinguish between these two states, and so the object
we are interested in is the sum of two differential partial

widths N — vX° and N — vX°. The differential width for
N — vX? follows the same form as Eq. (2.3), while the

decay N — vX° takes the form,

dr'(N — vX° 1-

1

+5T1/2(1 = cos Oy),

: (2.8)

where I';_, /> refers to the partial widths of these decays
for A = £1/2. Using the same CPT application as above,
we can now relate the decays by

AP = [((q. 4)X°(=G. Ax) [HIN (1))

2, (2.9)

= [(HEEN(1)IEv(q. A)X°(=G. 4)) >, (2.10)

= (. ~2,)X* (=G, —2x)[HIN (L)), (2.11)

= [(U(=G. =2,)X°(G. —2x) [ HIN (1)) (2.12)

Again, the last line is obtained by a z-rotation around
an axis perpendicular to the decay plane. Here, because X is
no longer self-conjugate, we cannot relate I')_,, to
[;—_i/,. Instead, we obtain (after summing over the unob-
served 4, and Ax) [y p =0y p and Ty p =T 5.
Then, the object we wish to calculate is

dT'(N = vX°)
dcos Oy

dr _dr(N - vX")
dcosOy  dcosfOy

, (2.13)

1 1
=T y1/2(1 +cosby) +§F/1=—1/2<1 —costy)

2
1 1
) z:+1/2(1—COSG’X)‘FEFA:—l/z(l+0039x),
(2.14)
=D + T (2.15)
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Again, we see a flat distribution with respect to cos @y—this
will yield zero forward-backward asymmetry.

III. GENERAL AMPLITUDES FOR HEAVY
NEUTRINO DECAY

We now consider the entire three-body phase space of
MF and DF decays. Many studies of heavy neutral leptons
and their decays exist in the literature [13-38], but the focus
of these is usually on the scenario in which the new
fermion’s only interactions with the Standard Model (SM)
are via mixing with the light, SM neutrinos. This predicts
that its decays are mediated by the SM W and Z bosons,
and the interaction structure of the decays is known.

Here, we define a general framework for describing the
decays of MF and DF in a way that is mostly independent
from the nature of the new-physics interactions. We focus
on the scenario where the new particle decays to a SM
neutrino and a pair of charged leptons. However, this
framework can apply for decays into three light neutrinos or
other combinations of three final-state fermions, with
appropriate substitutions. The only assumption required
for our framework to hold is that the particle(s) mediating
the MF or DF decay are massive enough to be integrated
out, yielding a dimension-six four-fermion contact
interaction.

We consider the following most-general four-fermion
interaction Lagrangian,

_Einl = Z (G?\l/ﬁL [DFNN} [I?HFLK/}]
N,L.,ap

+ G INC)[€,T165)) + Hee, (3.1
where the gamma matrices 'y and I'; are defined to
include all possible interactions in this four-fermion struc-
ture, and the indices aff = ee, uu, 17, eu, e, ,ur.4 In prac-
tice, however, due to the available production mechanisms,
we will mostly ignore z-lepton final-states. In what follows,
we will often be restricting to a particular choice of lepton
flavors and will suppress the af indices for notational
convenience.

We express the gamma matrices in terms of their Lorentz
representation,

i
IﬁNﬂl—‘Le {ﬂ7y57y”’7ﬂysvgﬂyE§[7M7yy]}’ (32)

and we will use the subscripts “SPVAT” to refer to scalar,
pseudoscalar, vector, axial-vector, and tensor representa-
tions, respectively. Lorentz invariance means that there are
only nine possible interaction structures, and we allow for
interference among the different terms in our calculations.

‘G, G, GP*, G are coefficients to only two independent
interactions in the MF case.

The effective Lagrangian of Eq. (3.1) is U(1)gy gauge
invariant but not SU(2), x U(1), invariant. It can, of
course, be expressed as the low-energy limit of an
SU(2), x U(1)y gauge-invariant effective Lagrangian.

Equation (3.1) is valid if the HNL and the neutrino are
both DFs or MFs. In the MF-case, however, the v and N
are four-component Majorana fields. Under these condi-
tions, the fermion bilinears I'yN and NT yv are related:
tI'yN = {yNT yv, where {y = +1 for N= S, P, A and
{y=-1 for N=V, T. Hence, if N is a MF, the
independent couplings5 are G%jL -¢ NG%L. For pragmatic
reasons, we use the couplings defined in Eq. (3.1) to
describe both MF and DF neutral leptons.

While Eq. (3.1) is identical for DFs and MFs, the rest of
the Lagrangian is not. Ignoring light neutrino masses, the
bilinear mass part of the Lagrangian is

1 -
‘Cmass = EmNNCN (33)
for Majorana fermions and
[’mass = mNNN (34)

for Dirac fermions. The number of degrees of freedom is
different for MF (two) and DF (four) HNLs. The most
general Lagrangian that contains four HNL degrees of
freedom contains Eq. (3.4) and m'N¢(a + bys)N (these
contain both “left-left” and “right-right” Majorana masses).
For m’ # 0, the Lagrangian describes, generically, two MF
HNLs. The DF choice m’ =0 is protected by a U(1)
lepton-number symmetry. Here, we only consider the one-
Majorana-fermion case—Eq. (3.3)—or the one-Dirac-
fermion case—Eq. (3.4).

While we keep the ordering of the fermion fields in
Eq. (3.1) in the “neutral-current” ordering, this parametri-
zation is general. Since I'y and I'; span a complete basis,
this allows for any type of ultraviolet completion with a
charged and/or neutral force-carrier(s) mediating the N
decay. Depending on the UV completion, not all the
couplings presented in (3.1) will be independent, and
several can contribute to the same physical process. For
instance, a DF that undergoes the decay N — v£} £ will
receive contributions from both G§% and (G%%)*. As we
discuss below, instead of focusing on the terms in the
Lagrangian, it is more convenient to structure the calcu-
lation in terms of the possible matrix elements associated to
N decay.

Throughout, we will concentrate on a few examples,
including the special cases already highlighted: @ = f and

>The relative minus sign comes from the fact that, when
considering matrix elements of spinors instead of fields in a
Lagrangian, the ¢y flips sign. For example, oN = Nv, but
u,uy = —vyv,, which will enter our calculations of decay widths.
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TABLE L.

Couplings g; and g that enter the Lagrangian in Eq. (3.5) and matrix elements in Eq. (3.20), assuming

that N only mixes with v, with mixing angle U,y. Here, s2 = 0.223 is the (sine-squared of the) Weinberg angle.

Scenario

Distinct Final-State Charged Leptons

Identical Final-State Charged Leptons

N = yu~p*

N - Ue/"_e+

N - vy,e et

Example Process gL IR
|U/4N| 0

—%|U”N|(1—2S3V) |UyN|sv2v

%‘UMN|(1 +2S%\/) |U;4N|S2w

experimental setups that cannot distinguish #* from £~.
We will also discuss what happens when the N decay is
mediated by SM interactions. In this case, the effective
Lagrangian for both Majorana and Dirac N is

—Lin = ZﬁGF[DyﬂPLN} [?ay”(gZﬂPL + Q%ﬂPR)f/}] + H.,
(3.5)

where P, = (1 Fy5)/2. g, and gg depend on the
coupling between N and the W and Z bosons and the
light neutrinos. g}’f 8,4, while the value of gz}, and
whether it vanishes when a # f, depends on the existence
of a coupling between N, the W boson, and 7,,.

If we further assume that all of these couplings are
generated by N mixing with one light neutrino, e.g., v, with
amixing angle Uy, then the couplings may be determined:
We give them in Table L.

A. Matrix elements

We first consider the decay amplitude M, of a spin-
polarized DF N into a light neutrino DF v and two charged
leptons £, and f;. The matrix element can be written as

My = Gypla,IyPsuyl[il'Lvgl, (3.6)
where Pg= % (1+y°¢) is a spin-projection operator.6
Above, and henceforth, we suppress the lepton flavor
indices on Gy;. In M, there are nine independent
complex Gy, i.e., 18 free parameters, dictating this decay.

If M, describes the matrix element for the decay
N — vty f/j, we may write a related matrix element that

describes the decay (if N is a DF) N — 0,7,

My = Gy [onPsTyw, ][, vp). (3.7)
The matrix element M, is related to M, by charge
conjugating the N/v portion of the corresponding
Feynman diagram, while the charged lepton piece remains
untouched. Gy, and Gy, can be completely unrelated:

®Here, s# is the spin of N, defined such that s> = —1 and
(py - s) = 0. Its spatial component points in the direction of the
(assumed-to-be-polarized) N’s spin.

If N is a DF with “muon lepton number,” then the decays of
N will always produce a u~, and the decays of N will
always produce a u*. If we are interested in final states with
ute™, then M, will not contribute to any decay, while
M, will

The Hermitian conjugate of the Lagrangian that leads
to the decays to the £ f; final state will contribute to the
charge-conjugated final state (£}¢7). Specifically, cou-
plings proportional to G}, will contribute to N decay, and
couplings proportional to G}, will contribute to N decay.
In the case where a # f, but we have a charge-blind
detector (one that can distinguish muons from electrons,
but not x~ from p or e~ from e™), we must consider all of
these contributions summed incoherently.

When writing Egs. (3.6) and (3.7) in terms of four-
spinors, we have adopted the canonical matrix element
expression assuming that N and v are Dirac fermions. In the
case that N and v are Majorana fermions, however, both
M, and M, contribute to the decay N — vf;f;. This can

be seen at the level of the Lagrangian where Gf\’,ﬂL and Gf’VﬁL
both allow Majorana fermion N to decay to the same final
state. Furthermore, the matrix elements for M and M, are
proportional up to an overall sign that depends on the
gamma-matrix structure. In the standard literature, e.g.,
Refs. [13,14,27], Majorana fermion decay distributions
and rates are calculated by taking the (noninterfering)
matrix-elements-squared from Eqs. (3.6) and (3.7). This is
valid in these works, when chiral projection operators
P; and Py are acting on all spinors associated with v,
causing any interference between these amplitudes to
vanish (in the limit where the mass of v is zero). When
we allow for more generic Gy, and Gy; however,
interference can occur.

1. Restrictions if a=p

The Hermitian conjugate of the Lagrangian that gen-
erates matrix elements M, and M, generates two new

"The ordering of spinors in the charged lepton leg in Eq. (3.7)
is the same as in Eq. (3.6)—the outgoing negatively charged
lepton is labeled “a,” and the positively charged one is labeled
“B”. We will be interested in the decays of Dirac fermion N, N,
and Majorana fermion N when comparing identical final states,
such as N — yu~e’ and N — Du~e™, so the ordering of these
labels is important.
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matrix elements, related to M; and M, by charge
conjugation, which we refer to as M{ and M. These are

MG = nyn Gy [BnPsT v, )il v, (3.8)

MS = nyn Gy [, Uy Psuy|[igl v, ). (3.9)
The prefactors 7y and #; take into account the properties of
the Lorentz structures I'y and I'; under conjugation, with
ny =+1forX =S8, V,A, T and —1 for X = P. If the final-
state charged-leptons are identical, a = 3, and these new
matrix elements contribute to the same process as M . If
N is a DF, the decays of N must be calculated using the
(interfering) sum of M, and M¢: The decay rate of N is
proportional to |M; + MS5J?, and the decay rate of N
1S o |M2 + Mﬂz

2. Majorana fermion N with a=p

If the two charged fermions are of the same flavor, then
all four matrix elements contribute, and the decay rate of N
is o [M; + M, + M 4+ MS|?. Furthermore, the differ-
ent ordering of spinors in each matrix element leads to
various cancellations when the sum is performed for a
Majorana fermion N decaying into a neutrino and identical
final-state charged leptons. We denote the four possible
combinations of couplings as
Ry, =Re(Gyp £ Gyp). Iy = Im(Gy, £ Gyr).  (3.10)
The nine combinations that appear in the expression for the
matrix element squared are I5g, Rsp, Rpg, Ipps Riy. R4,
I3y, I 4, Rf7. The final expressions for the matrix element
in this case are given in Table VIII, in Appendix A.

3. Restrictions if all new mediators are neutral

A well-motivated model is where the new-physics
particles that mediate the N decay are neutral.® Since we
focus on my < O(GeV), which can be probed in fixed-
target environments, strong constraints on new, charged
mediators below the electroweak scale exist, and charged
mediators with masses above the electroweak scale would
likely provide small contributions to decays of this type
relative to either those from the SM electroweak bosons or a
new, light, neutral mediator.

Integrating out the neutral mediators present in a UV
completion of this type induces relationships between the
Lagrangian couplings in Eq. (3.1) and consequently,
between the parameters in matrix elements. For example,

8An example of this case is where a new Z’' boson, heavier
than N, is included to induce decays like N — ve™e™ via an off-
shell Z'.

GN'L
*

VL)
NL GN’L

- G
|Gyi| = |Gy, |and GNL = 1nTL

where, in the second relationship, N’ is the “other” I' matrix
with which I'y can interfere; e.g., if N = V, then N = A,
etc. We provide further details about what occurs under this
neutral mediator assumption in Appendix A 1.

B. Lorentz invariants

When calculating the matrix-elements-squared, we find
it useful to express our results as a linear combination of
thirteen different’ Lorentz-invariant quantities, which we
label as Kj (j = 1,2, ...13). The subscript “m” refers to the
negatively charged lepton £, and “p” to the positively
charged lepton f;. Likewise, m,, (m,) is the mass of the
negatively (positively) charged lepton. Six of these
Lorentz-invariant quantities are N-spin independent,

K, = mmmp(PypN)’ K, = mmmN(Pppb)’

K; = mpmN(pmpv)v (312)
K4 = (pppN)(pmpy)ﬂ KS - (pmpN)(pppu)’
The remaining seven are N-spin dependent,
K7:mN(pppm)(pbs)» K8 :mNmmmp(pvs)’ (314)
Ko =my(pup,)(Pps),  Kio=my(p,p,)(Pns)

(3.15)
K, = mm[(pva)(pps) - (pppN)(pys)]7
Ky, = mp[(ppr)(pms) - (pmpN)(pvs>]’ (316)
K13 = €03y PmPo DS (3.17)

13 /mﬂnpmpppv

Note that except for K3, all have mass dimension four.
This choice of Lorentz-invariants is not unique, but it does
have the benefit that the K; have simple properties under
integration over subsets of the full phase space, as we
discuss in Appendix C.

Given this set of Lorentz-invariants, any matrix element
squared describing N decay can be expressed as

13
IM(N = veze))]P =Y CiK;. (3.18)
j=1

In Appendix A, we provide the C; for Dirac fermion
and Majorana fermion N decays of the type N — wf;f;.

"We discard terms proportional to m,.
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TABLE II

Lorentz-invariant contributions C; for decays into final states, including u~e™ (left) and u*e™ (right)

under our benchmark model, where decays are generated by mixing between N and v, with mixing angle U,,y. All
other C; are zero, and a common G2 is factored out of each C;.

Final-state u~e*

Final-state pe™

C; Dirac N Dirac N Majorana N Dirac N Dirac N Majorana N
Cy 64|10, [ 0 64|U,n? 0 0 0

Cs 0 0 0 0 64|U/4N|2 64\U”N\2
C9 _64’|U/4N|2 0 _64’|U;4N|2 0 0 0

Cio 0 0 0 0 64|U v |? 64|U,n|*

We also analyze a few specific examples: when the physics
mediating these decays is of the neutral-current variety and
when the final-state charged leptons are identical (o = f3).

In Eq. (3.5), we introduced the Lagrangian of interest
when the decays of N are mediated by SM interactions. In
this case,

M, = 2V2G [, " P Psuy] o, (9L PL + grPR) Vs,
(3.19)
M, = 2V2Gg[oyPsyPLv,) [tay, (91 PL + 9rPr)vg].
(3.20)
The couplings j( Lr) ATC, in principle, related to g g (see,

for instance, Table I). If the final-state charged leptons are
of the same flavor, then g ) = g’(L’R). If the final-state

charged leptons are distinct, then only a charged-current
diagram with a W boson contributes, and gz = g = 0. The
matrix elements in Eqgs. (3.19) and (3.20) can be mapped
onto the language of Eqgs. (3.6) and (3.7), using

Gyv = ~Gay = Grlgr +9)/V2. (321
Gva =—Gaa = Grlgr —g1)/V2,  (322)
Gyy = =Gay = Grp(gy + gp)/V2,  (3.23)
Gya = =Gan = Grlgg —9,)/V2.  (3.24)

For concreteness, we explore the scenario in which
the decays of N all arise due to N mixing with v,, via a
“mixing angle” U,,y. Two specific considerations are worth
exploring—whether the final-state charged leptons are
identical or not.

In Table II, we explore the case where they are not
identical, with final-states being y~e™ or u*e™. If N only
mixes with v, and lepton number is conserved, then a Dirac
fermion N can only decay into y~e™ and a Dirac fermion N
into u*e”. In these cases, g, 9; = |U,n| and gg, gz — 0,
as demonstrated in Table I. The only Lorentz invariants that
appear in these cases are K4, K5, K9, and K.

If the final-state charged leptons are identical, we find it
simpler to provide results of C; in terms of g; and g and
present them in Table III. The primed couplings are
identical to the unprimed ones and are determined by
the mixing U,y along with SM couplings given in Table I.
The difference between g; for e"e™ and u"p~ final states
comes from the fact that, for the u*u~ final state, the
W-boson diagram interferes with the Z-boson one, whereas
for e™e™, only the Z contributes. For Majorana fermion N
decays, there are relationships among the C;, such as
Cy=0Cs, Cg =0, and Cy = —Cyy. These are directly
related to the resulting lack of forward-backward asym-
metry of Majorana fermion N decays.

IV. ANISOTROPY OF DIRAC AND MAJORANA
FERMION DECAYS

We now wish to make connection with the kinematic
observables that have the potential to distinguish between
the MF and DF hypotheses. We restrict our discussion to
the N rest frame; recasting the discussion to the laboratory
frame is possible but often very cumbersome, especially
since we are interested in three-body decays. If N pro-
duction is through meson decay at rest (e.g., z7 — u*N), it
is simple to reconstruct the N rest frame, and the results
discussed here are readily applicable.

We will discuss the hypotheses that both the HNL and
the light neutrino are either MF or DF, and assume the HNL
is 100% polarized unless otherwise noted.

TABLE III. C; for simple benchmark model of N decay into
identical final-state charged-lepton states N — v£} ¢}, through
N — v, mixing [see Egs. (3.19) and (3.20)]. All other C; are zero,
and a common G2 is factored out of each C;. Here, g, =
|U/4N|5/m —%|U;;N|(] - 25%») and gg = ‘U;tN‘S%/-

C; Dirac N Dirac N Majorana N
C, 644 9r 649 9r 1289, gr
Cy 6497 649k 64(g7 + gx)
Cs 6497 6497 64(g2 + g%)
Cy —649:.9r 649..9r 0

Co —64g; 6447 64(g% — 97)
o —644% 6497 —64(g% — 97)
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In the N rest frame, the momentum vectors of the three
decay products are coplanar, and we parametrize their
energies using m2,, the invariant mass squared of the charged
lepton system, and m2,,, the invariant mass squared of the
neutrino and the negatively charged lepton £,. The orienta-
tion of the plane relative to the N spin direction §, which we
take to be aligned with the z axis, is defined by three angles:
cos O, the (cosine of the) angle between the N spin direction
5 and the direction of the outgoing charged-lepton pair,
P¢¢ = Po + Pps ¥ ee> arotation angle about j ., defined such
that y,, = 0 corresponds to the vector normal to the decay
plane being perpendicular to the z axis, and an azimuthal
angle ¢, which corresponds to rotations of the entire system
about the spin direction 5. Figure 1 displays the coordinate
system we adopt throughout this work.

Using this choice of phase-space variables, the fully
differential partial width for the N decay is

dl'(N - yf,;f;) 1 1 P
dm2,d cos 0ppdm?,dyspdp — (27)° 64m3, M

1 1 13
=— N CK,
(27 sy 2 G5

(4.1)

The expressions for K; in terms of the lab-frame phase
space variables are given in Appendix C.
In order to determine the “geometric” properties of the
decay, including the forward-backward asymmetry and the
dependency of the differential width on y,,, we integrate
over the nonangular variables mﬁf and m?,, (a reminder
that ¢ can be trivially integrated for all cases of interest).
This procedure is detailed in Appendix D. The forward-
backward asymmetry Agp is defined in Eq. (2.2) and can be
computed exactly, further integrating the differential width
over y.p, for all of the decay models defined earlier. In
Sec. IVB and in Appendix D, we discuss the forward-
backward asymmetry for certain test cases and explicitly
confirm the results discussed in Sec. II. Namely, we verify
that, if N is a MF,
(1) Apg = 0 if the final-state charged leptons are iden-
tical, a = .

(i) Apg = 0 if the experiment detecting the final-state
particles is charge blind and cannot distinguish
between the final states f;f; and £} Zy.

Previous results in the literature, such as Ref. [13,27],
concluded that Majorana fermion N decays can have
anisotropy (even in some of the cases listed above) because
the decay distributions were analyzed in terms of the

|

Apg8P) =

Re(GppGp + GsGps)To = [Re(GppGip) + 0°Re(GssGpg)]T)

z

| §

N rest frame

[TH = ﬁm + ﬁp = =P,

TR LEEELLETEEETEEEETEPETEEEPEE =

FIG. 1. Kinematics of the decay N — v(p,)+ 5 (p,) +
f; (p,) in the rest frame of the decaying parent particle N.
Black, solid arrows represent the three-momenta of the three
final-state particles, and the red arrow is the sum of the two
charged-lepton three-momenta, p,, = p,, + p,. The three an-
gles involved in the kinematics are as follows: 1) 6,,, the angle
between the spin direction of N (which defines the Z direction)
and p,,—in the diagram. We label 7 — 0,, for convenience.
2) y¢¢, the angle that defines the orientation of the plane defined
by p, and p,, relative to py,. 3) ¢, the azimuthal angle of p,.

outgoing direction of a single charged lepton, as opposed
to the charged lepton pair.

A. Allowed asymmetry for Dirac fermion decays

While there are general circumstances where the decay
of a MF N is guaranteed to be forward-backward sym-
metric, the decay of a DF N can be highly anisotropic. We
discuss this in more detail in this subsection, concentrating
on Agg.

Apg # 0 requires the presence of at least two types of
couplings. If only two types of couplings are nonzero,
anisotropy can occur for scalar and pseudoscalar only or
vector and axial-vector only. All other pairwise combina-
tions result in zero Agpg. These two combinations of
operators would arise if N was coupled to the SM through
exchange of either a spin-0 boson or a spin-1 boson with
generic couplings to the SM fermions.

1. Scalar and pseudoscalar interactions only

The forward-backward asymmetry with only scalar and
pseudoscalar interactions is

[|Gssl* + |Gspl* + |Gps|* + |Gpp|*] Ty — [*(IGpp|* + |Gspl*) + 6*(|Gss|* + |Gps[H)] Ty

(4.2)
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Here T |, computed in Appendix E, are dimensionless functions of the particle masses, while o, § are ratios of masses:

m,, +m,
6 7’
my

m,, —m,

1)

. (4.3)

If the four-fermion couplings are generated by the exchange of neutral spin-0 bosons, then they are related:

GssGpp = GspGps, and

s — _Re(GrrGsp)
|Gppl* + |Gsp|?

(4.4)

This fraction is extremized when |Gpp| = |Ggp| and Re(GppG5p) = £|Gpp||Gsp|, resulting in Apg = £1/2.

2. Vector and axial-vector interactions only

The well-studied case in which N interacts with the Standard Model only via mixing with light neutrinos falls into this
class, and we discuss it in turn. In the case where only these couplings are nonzero,

AVA) _

Re(Gyy Gy + GaaGyy)f+ + Re(GyyGhy — GaaGya)fo

B Gyy [P+ Gasl? + Gyal? + [Gav P f- + [IGyv? = |Gaal? = |Gyal? + |Gav]Flfo

with

fj: = 2[4T0 — (:|:2 + (72 + 52)T1
— (£0? + & + 2623\ T, + 46°3°T5),  (4.6)

fo=16(c*>—)T,. (4.7)
In the limit o — 1, when the decay N — v£;¢) is

barely kinematically accessible, this anisotropy parameter
becomes

A(VA) R Re(Gyy Gy — GaaGy,) (4.8)
B 3|Gyy|* + |G aal® + |Gyal® +3|Gav* '

which can be as large in magnitude as 1/2, corresponding
to maximal anisotropy.

Instead, in the limit where the final-state masses can be
ignored relative to the parent mass (if o, 5§ — 0),

AS]/BA) o Rze(GAAGVZA + GVV?AV) . (49)
3(IGvy|* + [Gaal” + [Gyal* + |Gavl?)
which can be as large in magnitude as 1/6.

The allowed values of Arg as a function of the mass
of N are depicted in Fig. 2. The left panel is for the
decay N — ve~e™ and the right panel is for N — vu~e™.
In both cases, at threshold (low my), Apg can take on
values between +1/2, while at large my, it is restricted
to lie between =+1/6, as described in the limiting
cases above.

Each panel of Fig. 2 also depicts Agg for the benchmark
model of decay through v — N mixing, with the matrix
element given in Eq. (3.19) and assuming that the N mixes
with only one flavor of SM neutrino, i.e., only one among
the three U,y # 0, kK = e, u, . For the et e~ final state (left
panel), mixing with v, results in contributions from both W
and Z exchange, while mixing with v, or v, receives a
contribution only from Z exchange. In the case of the e*u¥
final state (right panel), there is only the contribution from
W exchange.

B. Allowed asymmetry for Majorana
fermion decays

In this subsection, we revisit the results of Sec. II,
assisted by results in Appendices A and D, to determine
how large the forward-backward asymmetry can be for
Majorana fermions in other specific cases.

In Appendix D, in determining how different Lorentz-
invariant contributions C; lead to a forward-backward
asymmetry, we introduced Xgg, see Egs. (DS8), (DI11).
Agpg is directly proportional to Xgg, which can be
written as

—_

2

3
> > CDiT,.

m=0 i=7

(4.10)

The Di, coefficients, m = 0, ...3,i = 7,...12, are listed in
Table XI and _!2, C;Di, can be expressed as
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0.5
v, Mixing only
—==- U, mixing only
0.25 —
Ze g 7
<
Allowed range, general V/A interactions
—0.25 — . .
Dirac fermion V|
N — vete™
705 \\\\\\l 1 | S |
10°° 1072 1071
M N [Ge\/]

FIG. 2. Allowed range of the forward-backward asymmetry Agg

0.5
Ve, MiXing
0.25 -
:<_\ V
ZE o0
<t

—

—0.25 . .
Dirac fermion NV
N — vuFeT
705 | | L1 11 | | | | L1 11
107! 1 10

M N [Ge\/}

(shaded band) as a function of the DF HNL mass m in the decay

N — vete™ (left) or N — ve*uT (right), for general vector and axial-vector couplings for the neutrinos and charged leptons. The case of
decay through N mixing with a single flavor of SM neutrino is depicted by the black solid (U,y or U,y nonzero) and dashed (U,y
nonzero) lines. In the right-hand panel, the different cases overlap.

2C; +2(Cy + Cyp)

12
> D,
i=7

—5(C7 + Cy)
+6

Because this object is contracted with 7', to determine Agg,
then the forward-backward asymmetry is zero if each
element of >"!2, C;Di, is zero. Cancellation could occur
in the contraction between this object and 7,,; however,
if each element is zero, then this will guarantee Agg = 0
for all possible combinations of charged lepton and N
masses. First, let us focus on the case where the final-state
charged leptons are identical so 6 = 0 and the second line
in Eq. (4.11) vanishes. By inspection, we see that

12 C;Di, will vanish, for all o, if the following are all
true: C9 + C10 = O, C11 + C12 = 0, C7 = Cg = 0 ThlS set
of relations is realized—see Table VIII—when N is a
Majorana fermion decaying into identical final-state
charged leptons.

Another case of interest is when only neutral mediators
contribute to the decay of a Majorana fermion N, either
into identical or distinct final-state charged leptons. In
Table VII, we provide these results.'” In this case, we have

'"The identical final-state charged lepton case, 6 = 0, is given
in Table IX and follows the pattern above, generating zero
forward-backward asymmetry.

0*(Cy = C7) =4 (2+ 6%)(Co + Cy9) — 6(Cyy + C12)
—Z(Cy+ Cy9)

0
0

—2(Cy+ Cy) + (Cia = Cyy)
—2(1 +262)(Cy + Cyg) + 6(Cyy (o + ) = Cia(c = 5))

(4.11)

2772‘3(09 + Co)

I
C; = Cyg =0 and Cy + C;y = 0. However, in the case of
distinct charged-leptons in the final state, § # 0, and we
must keep both terms of Eq. (4.11). In this case, the
forward-backward asymmetry will be proportional to

Xg}lgvlo i C” (6+5)(65T2 - T] ) + C|2<5— 0)(05T2 + T1>
(4.12)

Several features here are of note. First, only C; and Cy,
contribute to the forward-backward asymmetry when N is a
Majorana fermion decaying via neutral mediators only.
These two coefficients require interference between Gy, of
the vector and axial-vector type with those of the scalar-
pseudoscalar or tensor types. In other words, if we only
have neutral mediators, multiple Lorentz representations
must appear in the decay matrix element, or mediators
of different spin (spin-1 and spin-0 or spin-2) must
contribute. Additionally, in Eq. (4.12), the factors multi-
plying Cy, and C,, are proportional to ¢ + 6 = 2m,,_/my
and 6 —o0 = —meﬂ/mN, so as my grows relative to the
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0.5 - -
. Majorana fermion V|
S/P/V/A/T :
Neutral mediators only
25 1 £ F
0.25 SR N — vu~e
Zz o}
< Allowed range
V/A/T
—0.25 |
—0.5 Il Il Il N ll Il Il Il | |
10! 1 10
My [GeV]
FIG. 3. Allowed range of decay anisotropy for the decay

N = vu~e™ or uute™ when N is a Majorana fermion. Here,
we consider decays induced by neutral mediators only and allow
for nonzero couplings of the scalar, pseudoscalar, vector, and
axial-vector variety (in green) or the vector, axial-vector, and
tensor variety (in blue). The purple region indicates the allowed
range when all types of couplings are allowed to be nonzero.

masses of the charged leptons into which it is decaying, the
forward-backward asymmetry shrinks.

In order to determine how large the forward-backward
asymmetry can be, we explore the case where a Majorana
fermion N decays into vu~e™ or vute~ via neutral
mediators. We consider several combinations of allowed
couplings, as labeled in Fig. 3. The largest asymmetry is
attained when all couplings (SPVAT) are allowed to be
nonzero, and for my just larger than m,, + m,.

V. DIRAC FERMION MIMICKING MAJORANA
FERMION DECAY DISTRIBUTIONS

As we have seen from the previous sections, with more
details given in Appendix A, generically DF have signifi-
cantly larger forward-backward anisotropies than MF.
Additionally, this anisotropy must be zero for MF for a
number of well-motivated model-dependent scenarios,
such as HNLs that decay via a single neutral mediator
only. Despite these generic differences, it is still possible, in
certain restricted cases, that both DF and MF hypotheses
are capable of explaining observations. We now address
the circumstances under which the DF hypothesis can
faithfully fake the MF one.

Instead of focusing only on the produced forward-
backward asymmetry, we consider the full matrix-
element-squared and, therefore, the fully differential partial
widths of the decays. If N is a MF, can the parameters Gy,
associated with a DF N conspire perversely such that this
decay is perfectly mimicked in all ways (i.e., the matrix-
elements-squared become identical)? For any single decay
channel, this is always possible, since if N is a MF, there
are additional restrictions on the form of the Lagrangian,
and the MF decay can be derived from the DF decay

with specific substitutions; see Eqgs. (A4)—(A8). Under
these substitutions, the coefficients of the different
Lorentz-Invariant contributions assuming N is a DF, given
in Table IV, align with those for a MF, given in Table VL.
Thus, if one can only observe a single decay channel of N
(e.g., N > v£5;¢}) and there is no information on, for
example, related final states (e.g., v£;¢) and the data are
consistent with the MF hypothesis, it is always possible to
find a DF scenario that is also consistent; a DF can always
fake a MF. The converse is not true; a generic DF cannot
always be faked by a MF. For example, there are many
cases in which all couplings for a MF will lead to no
asymmetry and a typical set of DF couplings leads to
nonzero asymmetry.

If multiple decay channels are experimentally acces-
sible, e.g., N = vu~eT, it becomes harder for the DF
hypothesis to fake the MF one. Regardless of couplings
and mixing, the ratio of rates for a MF to decay into these
two final states must be one (within statistical fluctua-
tions). For a DF, this ratio depends on both the relative
production rate of N and N (for instance, from positively
charged and negatively charged meson decays into the N
or N), as well as the parameters governing the decay of N
itself. Data that are consistent with the MF hypothesis
may only be faked by a DF if the production and decay
processes conspire. Something as straightforward as
altering production modes, by altering focusing or
changing beam energy, should be able to break any
degeneracy and distinguish these hypotheses. While it
is possible for these effects to conspire in the DF scenario
in a way that the relative rate of the two final-states is
unity, in general, considering both of these channels in
tandem should provide stronger evidence that N is a
Majorana fermion.

The situation is also different if one only sticks to
concrete models for the physics behind HNL production
and decay. As a specific example, consider the case where
the only interactions of N are through mixing with the light
neutrinos v, with mixing angles U,y so that all of N decays
are mediated by the SM weak interactions. For the same
lepton-flavor final state, the forward-backward asymmetry
is zero if N is a MF. Generically, a DF will have nonzero
forward-backward asymmetry, and thus, the two hypoth-
eses can be distinguished from Agg alone. In general, when
all U,y are relevant, the matrix-element-squared for the
decay of interest is
IM(N = vete )P = D IM(N > peter))?. (5.1

K=e.u,T

where each of the three processes on the right-hand side
will depend on an individual mixing angle |U,y|?. As these
mixings change, the allowed forward-backward asymmetry
of the ete™ final state can vary between the values
predicted by v, mixing alone and v, mixing; i.e., Apg
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can take any value between the solid and dashed black lines
of Fig. 2 (left). For my < 1.5 MeV, this range includes
zero, and thus, if the measurement in the decay N — ve™e™
is consistent with Agg = 0, it is not possible to determine if
N is a Majorana fermion or Dirac fermion. Furthermore,
the DF hypothesis will require specific arrangements of
|U,n|?>. Conversely, if my is sufficiently large (and we
restrict ourselves to this SM-like scenario), and Agg is
measured to be zero, the evidence is in favor of N being a
Majorana fermion.

We have implicitly assumed that (a) the N are produced
via some process from which they emerge 100% polarized,
and (b) we are operating in a setting in which (if N is a DF)
we only have N production and not N. If either of these
assumptions is violated, then the distinction between DF
and MF becomes more difficult. For instance, if N is a DF
and N and N are produced in equal abundance, their
contributions cancel any forward-backward asymmetry, a
signature indicative of a MF decay. In principle, as long as
the net polarization of the N is nonzero, and the Dirac N/N
production rates are not equal, the same mechanisms for
separating the MF and DF hypotheses we discussed
throughout this work are still accessible. However, the
reduced separation between the two hypotheses will mean
that larger statistical samples of N decays are required to
perform this distinction at a meaningful level. We will
analyze this situation in detail in Ref. [39].

dU(N = vt565)
dszdzumd COosS Hﬁ»dy”dgb a

dI'(N — yf;f;)
dz,pd7,,,d cos O,pdy spddp

dU(N — vE L))
dzppdz,,d cos0.dy spddp

dU(N = vt76)) N
dzspdz,,dcosOy,dyspdd 3

= N(pppu)(Pupn) + my(pys)].

N(pwp)[(Pppn) +my(p,s)],

= N(pppl/)KpmpN) - mN(pms)]’

VI. FULLY DIFFERENTIAL DISTRIBUTIONS AND
DISTINCTIONS BETWEEN INTERACTION
STRUCTURES

Different Lagrangians for the HNL decay lead to different
kinematics, and hence, measurements of the kinematic
distributions may allow one to distinguish one new-physics
scenario from all others. This may require a more detailed
analysis beyond the single differential distribution,
dl'/dcos0,,, which we have been concentrating on so
far. In this section, we investigate the ability of combinations
of doubly differential partial widths with respect to pairs of
kinematical variables to distinguish interaction structures. In
particular, we assume that the outgoing charged leptons are
nearly massless relative to the N; i.e., m,z < my. When
considering MF decays and how they might differ from
those of DF, we will make the further assumption that @ = f3;
i.e., the final-state charged leptons are identical.

A. Dirac fermion cases

Under the above assumptions, there are four distinct
“types” of decays for Dirac N that we will define: pure scalar
and pseudoscalar, pure vector and axial-vector (two types),
and pure tensor. For the vector and axial-vector types, we take
all Gy to be real and find the two generic cases to be (I)
Gyy =Gua =Gay =Gyy and () Gyy =—-Gyy =
—G,y = Gyy,. In each different case, the partial widths are

(DF, SP) (6.1a)

(DF., VAT) (6.10)

(DF, VATI) (6.1c)

2(pwp)(Pprn) +2(ppp)(Pwpn) = (Pppu)(Popy)]. (DET)  (6.1d)

The normalization factor is N = 6’/ (m%#?), z,0 = m%,/m%, and z,,, = m?,/m%. For general vector and axial-vector
interactions, we can have contributions from both “types,” and the associated differential distributions combine linearly. We have
chosen the coefficients of the spin-dependent terms to maximize the forward-backward asymmetry. Moving away from this
assumption will diminish the spin dependence and the resulting forward-backward asymmetry.

B. Majorana fermion cases

Fewer distinct cases arise for the MF case if we allow only two types of couplings at a time. The tensor case is identical to
that in Eq. (61.d), so we do not repeat it here. If we have scalar and pseudoscalar couplings, then the spin-dependent piece
necessarily vanishes. Finally, if we consider vector and axial-vector interactions, only one generic case exists, proportional
to the sum of the “VA I” and “VA II” cases in Eq. (6.1). The fully differential partial widths in the MF cases are
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FIG. 4. Distributions of four different types of DF N — v, f; decays, in the limit m,, ms << my. Each set contains, away from the
diagonal subpanels, two-dimensional distributions where the brighter (darker) colors correspond to larger (smaller) differential partial
widths. One-dimensional distributions (diagonal sub-panels, solid lines) correspond to the single-differential partial widths dI"/dx with
respect to each of the four kinematical variables x € {z,z, Z,m, COS Oz, Y4}, arbitrarily normalized. For each of the cases presented,
(see Eqgs. (6.1), the nonzero couplings are listed in each panel.

ar Figure 4 depicts the doubly differential distributions of
ﬁ =Np pP)(PuP). (MF. SP) (6.22) DF N decays for the four different types of decays. We

show the doubly differential distributions for each of the six
ar N pairs of final-state phase space parameters. Each two-
5 =5 [(Pup)(PppN) + (PpP) (PPN) dimensional panel has a color scale that is largest for light

2
colors and smallest for dark ones. We also show the singly
+my((Pupy)(p P s)=(p rP o) (Pm3))]- (MF,VA) differential partial widths along the diagonal for each of
(6.2b)  these, arbitrarily normalized.
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Same as Fig. 4, but for two different MF N-decay models. Left: scalar and pseudoscalar interactions only, such that

R5p = I5g = Rps = Ipp. Right: vector and axial-vector interactions only, such that Ry, = I, = Ry, = I3,

We note several distinct features in the four different sets
in Fig. 4. First, we see that in the one-dimensional
dl’/dcosO,, panels, the slope is largest for the scalar
and pseudoscalar case and zero for the tensor one—this
reflects the discussion in Sec. IV A: The allowed anisotropy
can be large (AT'/T = 1/2) for scalar and pseudoscalar
couplings. However, in the m,, mg << my limit, for vector
and axial-vector couplings, this anisotropy can only be as
large as +1/6. Different cases are also associated to
different distributions in the z,, vs z,,, panels in Fig. 4.
For these four different cases, these distributions are
qualitatively different. This implies that, with perfect
measurements of these two parameters for a large-statistics
sample, we could, in principle, distinguish between these
different models for the DF HNL decay.

Figure 5 depicts the same distributions for MF N decays.
Contrasting Figs. 5 and 4, as expected, the one-dimensional
distribution dI"/d cos 8,, is flat'' for Majorana fermion N
decays. However, there is some parent-spin dependence in
the y ., distribution in the vector and axial-vector case (right
set of panels of Fig. 5). This vanishes upon integrating
over yz, € [0, 2x].

For MF N decay, assuming vector and axial-vector
interactions, the z,, vs z,, panel takes on a different
appearance than the two options in the Dirac fermion N
case; it is a linear combination of the two Dirac fermion
options. Comparing the sets in Fig. 5 with those in Fig. 4,

""This result would hold even if we relaxed some of the
assumptions in choosing sets of couplings—as long as the two
final-state charged leptons are identical then dI'/d cos 6, is flat.

it appears that the cos 8., dependence offers the strongest
power to distinguish the MF and DF hypothesis using the
kinematics of the N three-body-decay.

VII. DISCUSSION AND CONCLUSIONS

The fact that neutrinos have mass implies the existence
of new particles or interactions beyond those that make up
the Standard Model of particle physics. Whatever these
might be, the neutrinos end up as either massive Dirac or
massive Majorana fermions. This distinction is fundamen-
tally linked to whether lepton-number symmetry is con-
served (Dirac) or violated (Majorana) in nature.

Considerable research has been dedicated to ways of
observing lepton-number violation in the laboratory in
order to shed light on this question. These searches operate
on the principle that if lepton-number violation is observed,
then the Majorana-fermion nature of neutrinos is con-
firmed. On the contrary, few strategies exist to confirm
whether neutrinos are Dirac fermions. Recently, the strat-
egy of observing distributions of two-body decays of
neutral fermions was highlighted as a means of confirming
the Dirac-fermion nature of neutrinos.

In this work, we expanded upon this idea by studying
three-body decays of Dirac and Majorana fermions in great
detail. We focused on the case where a heavy fermion,
such as a heavy neutral lepton (N) that mixes with the
light neutrinos, decays into a light neutrino and a pair of
charged leptons. We studied N-decays through generic
contact interactions, considering all possible combinations
of four-fermion interactions, defined in Eq. (3.1).
Furthermore, we considered final states containing both
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like-flavor and different-flavor charged leptons and detec-
tors that can and cannot distinguish the charge of the final-
state leptons. We determined several features that allow for
distinction between the three-body decays of Dirac and
Majorana fermions. Under the restriction of like-flavor
charged leptons or a charge-blind detector, we used CPT
arguments to show that Majorana-fermion decays exhibit
isotropy (leading to Apg =0) in the direction of the
outgoing neutrino (or equivalently, the outgoing charged-
lepton pair), whereas Dirac fermion decays can have large
anisotropies.

Going beyond studying forward-backward asymmetries,
we also explored the fully differential phase space of the
three-body decays. We demonstrated how to express the
fully differential partial width for N decaying in its rest
frame Eq. (4.1) in terms of 13 kinematic invariants
Egs. (3.12)—(3.17). In extensive appendices, we tabulate
the contributions of each kinematic invariant to the partial
width, under various assumptions for the Dirac or Majorana
nature of N, the flavor structure of the final state, and the
capabilities of the detector, as well as provide the technical
details of the calculations. These results allow us to confirm
the conclusions of the simple CPT arguments and to move
beyond the assumptions associated with them to study
more general cases. We also demonstrated how these full
distributions provide more leverage in distinguishing
between Dirac and Majorana fermion decays and also
can help to determine the structure of the interactions
mediating the decays.

As an example of the utility of the general results, we
showed that, for Dirac fermions, if only two types of
coupling are nonzero, anisotropy can occur for only scalar
and pseudoscalar couplings (|Apg| < 1/2) or only vector
and axial-vector couplings (|Agg| < 1/6 for heavy N and
|Apg| < 1/2 if final-state lepton masses cannot be ignored),
while all other combinations of pairs of couplings result in
Agpg = 0. The situation is more complicated if more than
two types of couplings are nonzero. The case of Majorana
fermions decaying to different-flavor charged leptons
through neutral mediators only requires at least three
different types of coupling to generate a forward-backward
asymmetry, and only with all couplings nonzero and N
light can the asymmetry be as large as for a Dirac fermion
with scalar and pseudoscalar couplings, as depicted Fig. 3.
This key distinction, that Majorana-fermion decays tend to
have zero forward-backward asymmetry in the direction of
the outgoing neutrino, means that it is often possible to
distinguish between the Majorana and Dirac fermion
hypotheses using kinematic distributions; see Figs. 4 and 5.

Throughout this work, we have restricted ourselves to
analytic calculations of these decays in the rest frame of the
decaying particle, speculating on differences between
distributions that can be leveraged once a heavy fermion
is hypothetically discovered. In our companion paper [39],
under preparation, we will take this framework and apply it

to several phenomenological cases of interest, determining
the required statistics to distinguish between different
model scenarios.

As we venture forward attempting to discover the nature
of the neutrinos, the question of lepton-number conserva-
tion is crucial. We demonstrated here that, in tandem with
other experimental searches for lepton-number violation,
the decays (specifically, three-body decays) of heavy
neutrinos are a new tool that might be leveraged to address
this fundamental puzzle.
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APPENDIX A: MATRIX-ELEMENTS-SQUARED
FOR HEAVY NEUTRAL LEPTON DECAYS

In Sec. III B, we introduced the set of 13 Lorentz
invariants K; for a convenient decomposition of the N
decay matrix-element-squared. In this language, |M|*> =
> CiK;, where C; are coefficients depending on the Gy,
and/or G, entering the matrix elements of interest. In this
appendix, we provide the full expressions for C; in different
scenarios, specifically

(1) Dirac fermion N with contributions from M. This

is given in Table IV.
(2) Dirac fermion N with contributions from M,. This
is given in Table V.
(3) Majorana fermion N with contributions from M,
and M,.
(a) Generic result with no mediator assumptions,
given in Table VI.
(b) Results assuming only neutral mediators con-
tribute, given in Table VII.
(4) Majorana fermion N with identical final-state
charged leptons, with contributions from M, M.,
¢, and M.
(a) Results obtained without mediator assumptions
provided in Table VIIL
(b) Subsequent results with only neutral mediators
are given in Table IX.

In order to simplify our results for the various Majorana

fermion calculations, we define some new parameters:

Glj\:/L =(Gy. £ GNL)a (A1)

Ry, =Re(Gy £ Gy, (A2)
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TABLE IV. Lorentz-invariant decomposition coefficients for a DF N decaying via the matrix element in Eq. (3.6).
The corresponding Lorentz-invariant quantities K; are given in Egs. (3.12)—(3.17), and the matrix-element-squared

can be expressed as in Eq. (3.18).

C; Dirac Fermion N
¢ 8(|Gpp|* + |Gsp|* = |Gps|* = |Gss|?) +16(|Gyy[* + |Gav[* = |Gyal* = |Gasl?)
G —96Re[(Gax — Gyy)Grr] — 16Re[G s Gpp + GayGps — GyaGp — Gyy Gl
G 96Re[(Gaa + Gyy)Grp] — 16Re[GuaGpp — GayGpg — GyaGyp + GyyGigl
Cy 16[|Gpa + Gyv|* + |Gya + Gav[*] + 128|Grr|* — 32Re[(Gss + Gpp)Giy]
Cs 16[|Gaa = Gyy[* + |Gva — Gay[’] + 128|Grr|* + 32Re[(Ggs + Gpp) Gy
Ce 8|Gppl* + |Gsp|* + |Gps|* + |Gss[*] = 64|Grr|*
o 16Re[GppGip + GssGpg)
Cy 16Re[G ppGip — GssGig| — 32Re[GanGiy — Gy Gyl
Gy 32Re[(Gyy + Gaa)(Gry + Gya)l — 32Re[(Gsp + Gps) Gy
Cio 32Re[(Gyy = Gaa)(Gly — Gyy)] + 32Re[(Gsp + Gps) Gy
Ci 16Re[GpGyp + GayGis — GyaGpp — GyyGig| — 32Re[(Gay — Gya )Gy
Ci 16Re[G s Gsp — GayGys — GyaGpp + GyyGps] — 32Re[(Gay + Gya)Girl
Ci3 =32myIm[(Gpp + Gss)Grr]

+16m,(Im[GppGyy + GpsGliy — GspGyy — GssGyy] — 2Im[(Gyy — Gaa)Gir))

+16m;(Im[—GppG) 4 + GpsGhy + GspGyy — GssGyyl + 2Im[(Gay + Gyy)Gir])

TABLE V. Identical to Table IV, but for a DF N, decaying via the matrix element in Eq. (3.7).
C; Dirac Fermion N
¢ 8(|Gppl* + [Gsp|* = |Gps|* = |Gss|*) + 16(|Gyy > + |Gav[* = |Gyal? = [Gaal?)
& 96Re[(G a4 + Gyy)Gir] — 16Re[GasGip + GAVGPS + GVAGSP + GVVGSS}
G —96Re[(Gys — Gyy)Gir] = 16Re[GupGpp — GayGpg + GyaGlsp — GyyGigl
Cy 16[|Gan = Gyy|* + |Gya = Gay "] +128|Grr[* + 32Re[(Gss + Gpp) Gy
Cs 16[|Gap + Gyy|> + |Gya + Gay|*] + 128]Grr|* — 32Re[(Gss + Gpp) Gy
Cs 8[|Gppl* + |Gsp|* + |Gps|* + |Gss[*] — 64Grr|?
G 16Re[GppGip + GssGps]
Cy 16Re[GppGyp — GssGhg| + 32Re[Gas Gy — Gyy Gyl
Co 32Re[(Gyy — Gaa)(Gyy — Giy)] + 32Re[(Gsp + Gps) Gyl
Cio —32Re((Gyy + GAA)(GVA + Giy)] = 32Re[(Gsp + Gps) Gy
Ci 16Re[G4,Gp + GAVGSS + GVAGPP + GVVGPS} + 32Re[(Gay + Gya) Gyl
Ci» 16R6[GAAGSP - GAVGSS + GyaGpp — vaG 5] + 32Re[(Gay — Gya)Giyl
Ci3 32mNIm[(GPP + Gss)Girl

+16m,(Im[GppGii s + GpsGiyy + GspGiyy + GGyl —

2Im[(Ga + Gyy)Gir))

+16m,(Im[=GppGiiy + GpsGiy — GspGyy + GssGyyl + 2Im[(Gyy — Gaa)Gir)

Iy, =Im(Gyy £ Gyy). (A3)
We find that the C; for a Majorana fermion only depends on
either Gy, or Gy, for any given combination of (NL).
Additionally, when we make further restrictions, such as
assuming the final-state charged leptons are identical, only
dependence on one of Ry, , Ry, Iy, I, appears for any
given (NL). We express our results in terms of G¥;, R,
and I3, for our Majorana fermion results in Tables VI
and VIIL

The results of the Majorana Fermion N decay calcu-
lations given in Tables VI and VIII can equivalently be

determined by using the results given for Dirac fermions
with specific substitutions. Specifically, the general
Majorana fermion N decay result (Table VI) is equivalent
to taking the Dirac fermion N result (Table IV) with the
following set of replacements:

Gss = Gss — Gss = Gy, Gsp = Ggp — Ggp = Gyp,
(A4)

Gps = Gps — Gps = Gpg,  Gpp = Gpp — Gpp = Gpp,
(A5)
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TABLE VI. Identical to Table IV, but for a MF N decaying via the matrix elements in Egs. (3.6) and (3.7).

C; Majorana Fermion N

C 8(IGppl* + Gspl* = Gps|* = |G5s ) + 16(IGyy | + |Gy l* = [GyAI* = 1Gaal?)

& —96Re[(Gy, — Gyy)(Grr)] = 16Re[G, (Gpp)* + Gy (Gps)" = Gy (Gip)™ = Gy (Gis)']
Cs 96Re[(G1s + GVy)(Grr)*] = 16Re[G, (Grp)* = Gy (Ghpg)" = Gy (Gsp)” + Gy (Gis)']
Cy 16[|Ga + Gyy* + Gy, + Gayl’] + 128]Gyr|* — 32Re[(G5s + Gpp) (Gir)']

Cs 16[|Gs = Giy[* + |GV, — Giy Pl + 128|Gy|* + 32Re[(G5s + Gpp)(Gir)']

Ce 8[Gppl* + 1Gspl® + |Gpsl* + |Gssl’] = 641Gy

C; 16Re[Gpp(Ggp)" + Gis(Gps)']

Cy 16Re[Gpp(Gsp)* — Gis(Gps)*| = 32Re[G, (Gya)* = Gyy(Gay)']

Co 32Re((Gyy + G ((Gay)* + (Gya)*)] — 32Re[(Gp + Gipg) (G7)']

Co 32Re[(G$V = Gi)((Gay) = (G%)*)] + 32Re[(Ggp + GI_DS)(G;T)*]

Ci 16Re[G,(G5p)* + Gy (Gsg)* — Gé;A(GI_’P)* - Gtv(G;s)*] — 32Re[(Gyy — GJ\;A)(GIJ:T)*]
Cia 16Re(G}1, (G5p)* = Gay(Gss)* = Gyu(Gpp)* + Gyy(Gpg)*] = 32Re[(Gyy + Gyy)(Grp)']
Ci3 =32myIm[(Gpp + GES)(G;T)*]

+16m,(Im[Gpp(Gyy)* + Gpg(Gay)* = Gsp(Gyy)* = Gig(Gyy)'] = 2Im((Gyy — G, )(G7p)'])
+16m/3(1m[_G1_’P(GXA)* + Gps(Gry)* + Gsp(GYp)" — Gs(Gy)*] 4 2Im[(G, + Gy ) (Gi7)*])

TABLE VII. Identical to Table VI, for the decays of a MF N, but now assuming only neutral mediators contribute
to the decay. Here, we have factored out a common m;‘ from each coefficient.

C; Majorana Fermion N, Neutral Mediators Only

¢ 32(g2p + 925) (19¢p1* = lgesl?) + 64(g2x + 92v) (19ev P = 19eal?)

G, 3849,7(9,aIlm(gza907) + gvRe(gevgir)) — 64(9uadup + Gusguv ) AM(Grpgis + 9rsGiy))
Cs 384g,7(=9,alm(gragsr) + gvRe(9rvgsr)) — 64(9,a90p + 9usguv)(Im(grpgps — 9rs9py))
Cy 64(974 + Gov)(|9evI? + 192 ?) + 512027 gor|* = 1289,7(g,pRe(9rpgsr) = 9ustM(grsgir))
Cs 64(g24 + 92v) ([9ev* + 192a1?) + 512021197 * + 1280,7 (gupRe(grpgir) — gusIm(grsgir))
Co 32(g2p + 92s)(92p* + 19es|?) — 256027 |97

C7 — Cg 0

Co =—=Cy 128(93/; + gﬁv)Re(gfvg?A) - 1289uT(—9usIm(9fP9}r) + guPRe(gfsg}r))

Ci 64(9ua9us = 9ur9uv )Re(Grpgin + 9es9iy) + 1289ur(g,vRe(geagir) + gualm(gevgrr))
Ciy 64(9,a9us — 9ur9uv)Re(GrpGin — 9esgpy) — 1289,7(9,vRe(9ragir) — Gualm(gevgsr))
Ci3 —=128myg,7(9,pIM(grpg;7) + gusRe(grsgi7))

—64ma(guagup + Gusguv )RE(Grpgia + GrsGiy) + 128magur(guaRe(gragir) — gvIm(gevgsr))
+64m4(g,a9.p + Gusuv )RE(GepGia — GrsGiy) + 128mpg,r(guaRe(gragir) + gvIm(gevgir))

TABLE VIII. Identical to Table VI, for a MF N, further assuming that the final-state charged leptons are identical.

C; Majorana Fermion N Decaying to Identical Final-State Charged Leptons
C 32((Ipp)* + (R5p)* = (Iss)? = (Rps)’] + 64[(Ryy ) + (I3y)* = (I34)* = (Ry,)°]
G 64[RpRY, — Iyplpp] + 384Ryy Ry

C3 C2

Cy 64[(Ryy)> + (I3y)? + (I34)* + (RV4)?] + 512(Ry7)?

Cs Cy

Ce 32((I5p)? + (R5p)? + (I55)* + (Rps)?] — 256(Ryr)

C; 0

o 0

Co 128(I3a L5y + RyaRyy = Ryr(Rpg + Ryp))

ClO _C9

Cn 64(Iyy 155 — RpsRyy + 2R7rRy )

C12 _Cll

Cis —128my (Iss + Ipp) Rz — 128m (I3 Rpg + IggRyy — 213, Ryy)
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TABLE IX. Identical to Table VIII, a MF N decaying to identical final-state charged leptons, but assuming only
neutral mediators contribute to the decay. We have factored out a common m(;“ from each coefficient.

C; Majorana Fermion N, Identical Final-State Charged Leptons, Neutral Mediators Only
o 128(9zp = 975)(g2p + Gs) +256(52y — 924) (v + 92a)

C =G 256(69¢v9uv9r — 9ra9ep(Guagop + Gusguv))

Cy = Cs 256((924 + 92v)(9a + Gov) + 847)

Ce 128((92p + 975)(gp + 92s) — 897)

C; =Cq 0

Co = =Cyo 512(9¢a9ev(G5y + Goa) + 9r(9epGus = Gesgup))

C=-Cp 256(9¢59¢v(9uadus = 9upGuv) + 29792 9uv)

Ci3 =512mygr(9ergup + 9rsgus)

+512my (297924904 = Ges9ev(GoaGup + GusGuv))

Gyy = Gyy + Gyy = Gy, Gay = Guy — Gay = Gy,

(A6)

Gya = Gya+Gya =Gy Gag = Gag — Gap = Gy,
(A7)

Grr = Grr + Grr = Gy (A8)

This demonstrates why, for each (NL), only one coupling
of the type Gy, appears in Table VL. In order to obtain the
results of Table VIII, when the final-state charged leptons
are identical, we may perform a set of substitutions on
Table VI. These are

Gys = 2U5s, Gsp = 2R5p,
Ghs = 2Rps, Gys = 2[5, (A9)
Gyy = 2R}y, Gay = 2Ly,
Gya = 2Ry, Gaa = 2034, (A10)
Gy — 2R (A11)

These results can be used to determine the Lorentz-
invariant coefficients for Dirac fermion N and N if the final-
state charged leptons are identical. These are not given in
any table due to their cumbersome forms. However, they
can be obtained by substitution on Tables IV and V,
respectively. The substitutions for Dirac fermion N are

Gy = Gy +unn Gy, (A12)
where 5y ; previously appeared in our definitions of M
and MY in Egs. (3.8) and (3.9)—a reminder that 77y = +1
for X=S5, V, A, T and ny = —1 for N = X. For Dirac
fermion N, the appropriate substitutions are

Gy = Gy +nynGiy, - (A13)

When we are considering Dirac fermion N or N decays of
the type N — v} £5, then the two decays (N and N) must
yield the same partial width at tree level. Under the
substitutions of Egs. (A12) and (A13), the coefficients C,
through C¢ (which contribute to the total width of the decay)
are not exactly identical; however, their differences cancel
out when considering the total width of N and N. Likewise,
the coefficients C; through C;3, which can provide an
overall forward-backward asymmetry, are related in a way
that the two distributions, N and N, necessarily have equal
and opposite forward-backward asymmetries.

Inspecting Table VIII, we see that certain C; are related;
e.g., C, = Cj3, and others are necessarily zero: C; = Cg = 0.
This, along with the relations Cyy = —Cy and C, = —Cyy,
leads to our result that, when decaying to identical final-state
charged leptons, Majorana fermions have zero forward-
backward asymmetry. In order to connect this relationship
of C; to a zero forward-backward asymmetry, we must
integrate the Lorentz invariants over a subset of phase
space—this integration is performed in Appendix D.

Before concluding this Appendix, we will focus on one
final subclass of models. This is when all mediators of N
and N decay are neutral (or at least, overwhelmingly
dominant in the decay width contributions). This allows
us to apply further restrictions to the coefficients Gy, and
Gy, and arrive at further simplifications to the C; obtained
in this Appendix.

1. Restrictions when mediators are neutral

In writing the matrix elements of Egs. (3.6) and (3.7), we
chose to express them as a four-fermion terms in the
“neutral” ordering, contracting the spinors of N and v and
the charged leptons with each other. Because we allowed
for a generic set of 'y and I';, this choice was generic, even
if the mediators are charged, due to Fierz rearrangement. If
the new mediators are all neutral, then this ordering is even
more well motivated, and any term in the matrixelement
Gy, can be thought of as coming from a product of two
fundamental couplings—one coupling of the new mediator
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with the Nv vertex and one with the charged lepton vertex.
We introduce a new notation here,

1
Gy — — NG (neutral mediators only), (Al4)

(

where m, is the mass scale of the new mediator(s), and g,
and g,; are dimensionless couplings.

In this case, the couplings Gy, and Gy, are related by
charge conjugation. Specifically,

- 1
GnL = v —5 9yn9eL- (A15)

)

As a consequence, many relations between various Gy,
and Gy, may be derived, e.g., |Gy, | = |Gy, |, among
others. These lead to significant simplification of the
coefficients we obtained in Table VI if N is a Majorana
fermion with decays mediated only by neutral mediators.
As a specific example, let us explore some terms that
appear in Cy and Cg of Table VI, including
O™ = 16Re[Gpp(Gip)* + Gis(Grg)']l. (A16)
Under the replacements of Egs. (Al4) and (AlS5), this
becomes

Maj..NMO * ko ok *
e — 16Re[(9,p97p + Gip9er) (GisIop — Gusip)
+ (9us9rs = 9559¢5)(GopGrs + Gup9is))s

(A17)

= 16Re[—4i|g.p|*Re(g,p)Im(g,s)
+ 4ilgs5|Im(g,5)Re(g,p)]. (A1B)
=0. (A19)

In replacements of this type, we also find that, because
Majorana fermion decays only depended on G%; , only the
real or imaginary part of each g,y survives for different N.
As we see in Eq. (A18), only the real (imaginary) part of
g.p (g,s) appears. We will take this dependence into
account in our results and perform some minor notational
substitutions, Re(g,p) = g,p, Im(g,5) = gys, €tc., to sim-
plify our results.

We provide the full results for Majorana fermion decays
assuming neutral mediators only in Table VII. Such a table
could also be derived for Dirac fermion N and N decays;
however, the results are still as complicated as in Tables [V
and V, so we omit them for brevity.

If we assume that only neutral mediators contribute to
N decay and that the final-state charged leptons are

identical, then further simplifications occur. We find
that only the real and imaginary parts of specific
g1 (like with the various g, above) survive and per-
form similar simplifying replacements. We find even
more cancellations, in this case, to the point that the
resulting C; are simpler and have even further restrictions:

C2 = C3, C4 = C5, C7 = Cg = 0, C9 = _CIO’ and
Ciy = —Cj,. The results in this case are presented in
Table IX.

APPENDIX B: SPIN-DEPENDENCE IN A
CHARGE-BLIND DETECTOR

Above, we calculated the matrix-elements-squared for
the decays of a Dirac fermion N for N — yf,jf/} and
74 jf/;, where we implicitly assumed that we were in
a situation in which the charge and particle identification of
the final-state charged leptons was possible. Let us now
imagine that we are in a scenario in which the particle
identity of the leptons is easy (for instance, discriminating
electrons from muons in a liquid or gaseous argon time
projection chamber), but measuring their charge is impos-
sible, or at least difficult (for instance, in a detector that is
not magnetized).

As an example, we focus on the case where N couples
only to the Standard Model muon-flavored lepton doublet.
In the typical scenario where the HNL interactions are
only via mixing with the light neutrinos, this implies that
U,y is the only nonzero mixing angle present. If N is a
Dirac fermion, then N (with lepton number 1) can only
decay to the final state vu~e™, but not the state vute™.
Likewise, its counterpart N (with lepton number —1) can
only decay to pute™, but not tu~e™. Given the above
calculations, it is possible that, even if N is a Majorana
fermion, that searches for the final state vy~e™ can be
anisotropic, since its contributions are only from a matrix
element that looks like M, from Eq. (3.6) and not those
like M, from Eq. (3.7).

However, if N is a Majorana fermion, it will decay into
the final states vu~e™ and vute™ with equal likelihood
(assuming CP invariance), and, if our detection technique
is insensitive to the differences (i.e., the charges) in these
final states, we must sum them incoherently before asking
whether the final resulting distribution is isotropic or not. In
general, given the above framework, the decays for a
Majorana fermion N into one specific-charge final state
are given by the matrix-element-squared |M, + M,|?,
whereas the decays into the opposite-charge final state
are given by the matrix-element-squared |M§ + MS|>.
Again, by assuming CP invariance, these must give the
same total rate.

If our detector is insensitive to the charge of the final-
state leptons (i.e., in a detector with no magnetic field),
then, before determining any observables regarding isot-
ropy, we must sum incoherently over these two final
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states, ' obtaining a decay distribution that will be propor-
tional to |M;+ M|+ |[M§+ M52, We find that,
regardless of the model assumptions made (neutral medi-
ators, etc.), when we perform this calculation in the most
general way possible and perform this incoherent sum, then
all of the coefficients of spin-dependent Lorentz invariants,
C;for7 < j < 13 vanish completely: If a detector is charge
blind and N is a Majorana fermion, all sensitivity to the
spin-dependence completely vanishes. This means that, in
this case, the decays N — v£;¢; can be treated as

(a) occurring with equal rate for the two final-state charges
and (b) isotropic in the rest frame of N.

APPENDIX C: LORENTZ INVARIANTS IN N
REST FRAME

Here, we express the 13 Lorentz invariant quantities K;
in terms of the phase space parameters m?, (the invariant
mass-squared of the charged lepton pair), m?,, (the invari-
ant mass-squared of the neutrino and the negatively
charged lepton), cosOy,, vz, and ¢. Figure 1 defines
the N rest-frame kinematics. Since the differential decay
width does not depend on the azimuthal angle ¢, for
concreteness, we fix ¢p = z/2 so the three-momentum of
the neutrino (and the sum of the charged lepton momenta,
Pee = P+ Pp) are in the y-z plane. In this case, the
neutrino and negatively charged lepton have, respectively,
four momenta,

p, =E, (1,0, —sin6z,, —cosb,,), (C1)

P =Ep. (C2)

pr =/ E% —m2,sinf,,, siny,,, (C3)
pm = —\/ E2, — m?%,(cos 6, sin0,,

+ sinf,,, cosyz, cosO,,), (C4)

L =1/ E2, —m?2(sind,,,cosy . sin@,, —cosb,,, cosb),
(C5)

with

3 (6)

2 2
_mﬁ—f—mbm—m
E, =

2mN

2Some care must be taken in this scenario. In our general
analyses, we considered contributions to the matrix element
squared for different Lorentz-invariant contributions of final-state
momentum four vectors. We labeled those four-vectors according
to which charge of lepton they correspond to, i.e., pj, (p5) for the
negatively (positively) charged lepton. Now, if charge is not
measurable, we need to label the final-state charged leptons
according to their flavor, e.g., p¢ and pj,. When this relabeling is
performed, the cancellations discussed here follow.

cosf, = P Dy = Em(mIZV - mg’f) - mN(mzzzm - m%n)
BB - mE )V

(€7)

The opening angle between the outgoing negatively
charged lepton and the neutrino 6,,, is determined entirely
by energetics. The positively charged lepton four
momentum is determined by conservation of energy and
momentum. Using these forms for the momenta, the spin-
independent K; are

1
K, = mmmp(pypN) = Emmmp(mlz\/ - m%’f)’ (C8)

1
K, = mmmN(pppu) = _mmmN(mlz\' + m%1 - mlzzm - m%f)’

2
(€9)
K; = mpmN(pmpv) = EmpmN(mzzxm - m%)v (ClO)
L, 2 2 2 2
K, = (pppN)(pmpv) = Z(mum - mm)(mN + m;, — mvm)v
(C11)
Ks = (pupn)(Ppry)
1
= Z (mgf + mzzzm - m%)(m%\/ + mizn - mzﬂf - m%m),
(C12)
L, 2 2 2 2
K¢ = (pppm)(prN) = 4 (my —mg,)(mz, —my, — mp)'
(C13)
The spin-dependent K; are
K; = mN(pppm)(pvs)
1
=1 (my, = m3,)(m3, — my —my)cos Oz, (Cl4)
Ky = mNmmmp(pus) - immmp(mlzv - m%f) cos Og,
(C15)
K9 = mN(pmpu)(pps)
= ? (m%m - m%z) <|ﬁm|(C05 Yee Sinbgpsind,,
m%, — m>
— c08 8y, c080,,) — ———%Ccos 9”> , (C16)
sz
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Kig=my(pppy)(Pms)
my

== 7( N A my, —mg, — m%f)|13n1|(005 Yee SinOzp $in0,,, — cos Oy c080,,), (C17)
Ky = my((pupn)(Pps) = (Pprn)(Pus))
> 2 2 —+ 5= my, — szm
= % (m% —m2,) {|pm| (coSy sy sinByp sinb,,, — cos Oy cos0,,,) — e mpzm:l” o cos 9,%] . (C18)
Ky = mp(<pupN)(pmS) - (pmpN>(pvs))
2 _ 0 _ 2
= % (m% —m2,) {—|f7m |(cosyse sinBy, sin@,,, — cos O, cos,,,) + %ﬂj\]m” cos Gﬁ] . (C19)
, 1 S
K3 = €pa/1nP§nPZPZIS" ) (my — méf)lP;n' SinOzy sinyzp SN0, (C20)
|
APPENDIX D: INTEGRATION OVER

INVARIANT MASSES _ My, 5 M =M (D2)

AND ANGULAR DEPENDENCE OF fom = m%’ T omy

DISTRIBUTION

In this Appendix, we demonstrate how the differential
partial width introduced in Eq. (4.1), a linear combination
of the K; explored in Appendix C, can be integrated with
respect to the invariant masses m2, and m?, (as well as
the unphysical angle ¢). This allows us to obtain the
differential partial width depending only on the angles
cos 6, and y,,, with which we can discuss the (an)isotropy
of N decay and the forward-backward asymmetry Agg for
this process.

It is useful to introduce dimensionless variables,

2

m m, +m
_ e — _m P
ey = —5 o=, (Dl)
mN "lN

The region of accessible phase space is the usual Dalitz
region [40], with 6% < zs¢ <1 and the minimum and
maximum of z,,, given by

. 1 5
o™ =2 <02 +&+272+2(1 - sz)>
4 Zer

¥ L= 2 \/(fo — ) (zp0 — 0%). (D3)

2fo

Upon integrating the differential distribution over z,,, and
¢, the distribution is linear in cosf,,. We express this
quantity using

dr m

3 6 13
=g (1= fo)z\/sz -0’ \/fo -5 o < C'Ii,+» C'Di,cos 9%)
d cos gffd}/fdeff 21377,'4 ’;) 44 ; ;

my (1= 240)* (200 — %) (207 — 6%)

+ N sin 9”

215”3

The C' are the coefficients for each Lorentz Invariant that
enter the matrix-element-squared, given in Tables [V-VIIL.
The spin-independent factors 7, and the spin-dependent
factors D!, are both functions of § and & only, and are given
in Tables X and XI. The C; only contribute to the total
width for the spin-independent factors I, for 1 < i < 6 and
to the forward-backward asymmetry for the spin-dependent

52

13
(C'klcosyse + Ciki siny ). (D4)
ry

=

|
factors D}, for 7 < i < 12. The k. ¢ terms appear propor-
tional to either sin@,,cosy,, or sinf,,siny,, and are
nonzero only for 9 <i < 13—their values are given in
Table XII.

Our next goal is to integrate Eq. (D4) over z,, in the
range [02,1]. We express this double-differential partial
with as
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TABLE X. Weights of the spin-independent Lorentz invariants for their contributions to the double-differential
partial width as written in Eq. (D4).

Lorentz Invariant I I I I

Ky =m,m,(p,py) 0 or - & 0 0

K, =m,, mN(ppp,,) 0 ) —06(0 + 6) 0

K3y = m,my(p,p,) 0 c—6 68(c —6) 0

Ky = (pppN)(pmpu) 2 L2-0*-&) L(6? + 6% - 26%6°) ~2528

Ks (PwpN)(Ppp2) Z L2 -6~ 6% L(6? + 87 —2625%) ~2528
= (PpPuw)(P.PN) 2 —(6? +6%) 0 0

TABLE XI. Weights of the spin-dependent Lorentz invariants for their contributions to the double-differential
partial width as written in Eq. (D4).

Lorentz Invariant Dj D D} Di
K7 = my(pppu)(pus) 2 —(0® +&) 0 0
Kg = mym,m,(p,s) 0 (6* — 6%) 0 0
Ko = my(pup.)(pps) 2 -2+ +8) —L(e® + 8 +26%6%) 2625
Ko =my(ppp,)(Pms) 2 —t(2+0*+ %) —t(c* 4+ 8* 4+ 26%8%) s
Ky =mu((popn)(Pps) — (Pprn)(Pus)) 0 —(o+9) o6(o +5) 0
Ky = my((pupn)(Pms) = (PmPn)(PuS)) 0 6-0 06(6 - o) 0
K3 = epmpmppmf’ 0 0 0 0

dr 2,3
dcosO,,dy s, 213 4 {Z C (Z[z ) +ZC1 (Z DﬁnTm> coseff}

m=0

m3, sin 0
o7 N3 5 f;ﬂ—3 Z (Ci% KC cosyyy + Cii KS sinyzz). (D5)

The quantities 7', (which depend solely on ¢ and &) contribute to the total width and forward-backward asymmetry of the
decay and are relatively complicated functions. We give those separately in Appendix E so as not to disrupt the discussion
here. The terms fc"c, ¢ Tesult from integrating the terms proportional to cosy,, and siny,, in Eq. (D4). These are

A (4 + 1606 + 126> + 36°) + 766(4 + 6) — 18*(4 + 6) — 358°
xlo —(4 + 160 + 126* + 36%) + 766(4 + 6) + 76*(4 + o) — 358°
'?lcl =(1-0)*x (6+6)((4+ 160 + 126% + 36%) = 16*(4 + 0)) , (D6)
~ 2 3 2
K2 (6—0)((4+ 160 + 120* + 30°) — 16*(4 + 0))
z13 2 ((4 4160 + 126> 4 36%) = 78*(4 + 0))
my

In order to simplify Eq. (D5), we define four quantities,

P X, =7o=) O, (DY)
Xr=Y ¢ (Z 1§,,Tm>, (D7) =9
i=1 m=0
X, = — CVS,, (D10)

Xep = Z Ci <Z DiT ) (D8) B

m=0 which allows us to write Eq. (D5) in a more compact form:
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TABLE XII. Terms «¢ and «{ that enter the differential partial
width with respect to cos 0,,, y.,, and z,, in Eq. (D4). All other
k& for the Lorentz Invariants K; not shown here are zero.

Lorentz Invariant x€

K5
Ko = my(pmp.)(Pps) 66 + Zsr 0
Ko =my(ppp,)(Pms) 08— 247 0
Ky =m,((popn)(Pps) = (Pppn)(pus))  (6+8)zer 0O
Ko =m,((pupn)(PmS) = (PmPn)(Pus)) (6= 0)zse 0
KIS = gpmlﬂpenp;pﬁsﬂ 0 %
dr L my [Xr + Xgp cos 0
— cos
d cos Hbﬂfd]/ff 4x 21171'3 r FB 4
+8in 074 (X., cOSyze + X, sinyzr)].
(D11)

We can integrate this over either y,, or cos6,,. Let us
integrate y,, first. We obtain

dar 1 mlsv XFB
== 1+—cosb,, |, D12
dcos@,, 22"73 F( + Xr C0s Ose (D12)
r
= 5 (1 + ZAFB COS 9/{). (D13)
By definition,
mISVXF
= I3 (D14)

Ty(o,0)
Ti(e.0) | 5 5
T2(6.5) =V1-06"V1-56
T5(0,0)

1
1
2

. Jo dcgsref, dcosOpp — [° dcgqreﬁdcoseff _ XpB
FB = =9 -
r 2X;
(D15)

If we had integrated Eq. (D11) over cos 8., instead, we
obtain

dr _ 1 my X —|—ﬂ(X cosysy + X sinyyp)
dy T ool | T ey Vee s, SIMYee) s
(D16)
r .
= Z(l +1cCoSYep +ngSiny ), (D17)
and, by definition,
”X(c,s).
Ncs) = ax, L. (D18)

APPENDIX E: REFERENCE INTEGRALS

As we found in Appendix D, determining the partial
width of a certain channel, or the forward-backward
asymmetry, requires integrating Eq. (D5) over z,.. This
amounts to determining the integrals,

o= /1 (1-2)Vz—0*Vz -8

m

dz,  (El)
2 Z

where 0 <62 <62 <1 and 6 > 0. The results for m =
0,...,3 are

195 (2= 0% = 8%)(8 = 802 — 85% + 156* — 22628 + 156*)
2 (8 4 100% + 108* — 36* + 26°5% — 35%)
—3(10+6% +46%)

(10+5+4)

— L (0% = )2(16 — 1607 — 168* + 50* + 65%8% + 55%)

o V-2 +V1=-8
(0]
£ Vot — 8%

oV1 =86 +6V1 -2
+ log
oV1 -8 -6V1-o?

£ (=807 — 85 + 40" — 85?5 + 48" — 6° + 6*6* + 675" - &°)
1(8+ 80> + 85 — 0* +206%8% — &%)

—(4+0>+8%)
0

o6
- ﬁ (6% + & + 406%6%)

L (=0 +26%8% — §* + 80*8* + 8625* + 85%5%)

When 6 = 0, corresponding to the case of identical flavor final-state leptons, these simplify to
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Ty(0.,0)
T,(c,0)
T5(0.,0)
T3(0,0)
795 (2—06%)(8 — 80% + 156%)
_ /o 31 (8 +100% — 36%)

—1(14+6%)
113+ 32)
<1+\/1—62)
+log| ———
o
—&0*(16 — 1667 — 165* + 506%)
1.2 8 —4 2+ 4
x g0 (8 =do"+07) . (E3)
1(84 80 + —0%)
—(4+0%)

Figure 6 displays T, (o, 8) as a function of ¢ for m = 0,
1, 2, 3 for two choices of parameters. In solid lines, we plot

106
— T
10* — T
—_— T
10? — T
<1
£
5102
10~
107°

10°8

FIG. 6. Dependence of the four different 7', (s, §) as a function
of ¢ for two different choices of §: Solid lines display 6 = 0, and
dashed lines display 6/0 = (m, —m,)/(m, 4+ m,) ~ 0.990.

0 =0 (corresponding to the results with identical
final-state charged leptons). In dashed lines, we assume
6/o = (m, —m,)/(m, +m,) ~0.990, which would cor-
respond to decays of the type N — vu~e™.
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