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Nonzero neutrino masses imply the existence of degrees of freedom and interactions beyond those in the
Standard Model. A powerful indicator of what these might be is the nature of the massive neutrinos: Dirac
fermions versus Majorana fermions. While addressing the nature of neutrinos is often associated with
searches for lepton-number violation, there are several other features that distinguish Majorana from Dirac
fermions. Here, we compute in great detail the kinematics of the daughters of the decays into charged-
leptons and neutrinos of hypothetical heavy neutral leptons at rest. We allow for the decay to be mediated
by the most general four-fermion interaction Lagrangian. We demonstrate, for example, that when the
daughter charged-leptons have the same flavor or the detector is insensitive to their charges, polarized
Majorana-fermion decays have zero forward-backward asymmetry in the direction of the outgoing neutrino
(relative to the parent spin), whereas Dirac-fermion decays can have large asymmetries. Going beyond
studying forward-backward asymmetries, we also explore the fully differential width of the three-body
decays. It contains a wealth of information not only about the nature of the new fermions but also the nature
of the interactions behind their decays.
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I. INTRODUCTION

Massive fermions with no conserved quantum numbers
can be either Majorana fermions or Dirac fermions. At
present, there are no identified fundamental Majorana
fermions in nature. A few decades ago, this statement
was neither especially meaningful nor surprising. All
known fundamental fermions are charged under unbroken
gauge symmetries [e.g., the electromagnetic Uð1Þ], except
for neutrinos, which, until the end of the 20th century,
could be considered exactly massless. With the discovery
of nonzero neutrino masses, research into mechanisms to
test the hypothesis that neutrinos are Majorana fermions
has grown in volume and impact.1

Nonzero neutrino masses also imply the existence of
new degrees of freedom. Currently, their nature and
properties are very poorly constrained. The new degrees
of freedom associated to nonzero neutrino masses could
be bosons or fermions, charged or neutral, very heavy or
very light. One popular scenario postulates the existence
of new massive Majorana fermions that mix with the
Standard Model neutrinos. In the event of the discovery of
a new neutral lepton—a heavy neutrino or, as is more
common in the literature, a heavy neutral lepton (HNL)—
identifying its nature—Majorana fermion (MF) or Dirac
fermion (DF)—will become an urgent question for par-
ticle physics. HNLs, independent from their possible
connection to the observed neutrino masses, are also a
candidate for the dark matter and remain an ingredient of
potential solutions to the so-called short-baseline anoma-
lies. HNLs are the subject of experimental searches at all
mass scales [1–7].
A very promising way to determine the nature of the

neutrinos, including HNLs, is to test the hypothesis that
global lepton number is conserved in nature. On one hand,
if lepton number is a symmetry of nature, massive neutrinos
must be Dirac fermions since neutrinos are nontrivially
charged under lepton number in such a way that the
neutrino state and the antineutrino state are distinguishable.
On the other hand, if lepton number is violated (by two
units), then neutrinos are Majorana fermions. The deepest
probes for the violation of lepton number are searches
for the neutrinoless double-beta decay of various nuclei.
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1Concurrently, the evidence for dark matter has also grown
very significant over the last decade. The hypothesis that dark
matter is a new fundamental particle is very attractive and under
intense experimental and theoretical scrutiny. Should this hy-
pothesis be verified, and should the dark matter particle turn out
to be a heavy, neutral fermion, determining its nature will also
become an urgent question for particle physics.
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These are the subject of intense experimental research (see
[8] for a recent review).
There are ways to distinguish Majorana from Dirac

fermions that do not directly involve searches for the
violation of some symmetry. Majorana fermions are their
own antiparticles, while Dirac fermions are not. Hence,
processes where Dirac and Majorana fermions are created
or destroyed are distinct, and their measurable properties—
differential cross sections and decay rates—are, in princi-
ple, recognizably different. There are several identified
examples of this, including (i) different velocity depend-
ence (near threshold) for fermion–antifermion annihilation,
a fact that has important consequences for dark matter
phenomenology, (ii) the decay of a Majorana fermion into
two self-conjugate final-state particles is, at leading order,
isotropic in the rest frame of the parent independent from
the physics responsible for the decay [9,10], (iii) the rate of
cosmic-background neutrino captured on tritium is twice as
large if the neutrinos are Majorana fermions relative to
Dirac fermions [11], (iv) Majorana fermions have zero
electromagnetic moments (transition moments, however,
are allowed), (v) there are large differences in the rates and
kinematics of neutral-current decays of atoms, very low-
energy electron-photon scattering [12], etc.
Here, we explore in detail the differential decay rate of

polarized Majorana and Dirac fermions and how these
compare to one another. As is the case of two-body decays,
the allowed kinematical distributions of the daughter
particles in three-body decays are more constrained if
the parent particle is a Majorana fermion. This means that,
in principle, there are circumstances under which, if the
parent particle is a Dirac fermion, one can rule out
the “wrong” hypothesis—Majorana fermion in this case.
The converse is not true unless one has independent infor-
mation on the physics responsible for the three-body decay.
We cast our discussion in the context of HNLs and

explore their decays into standard model charged-leptons
and neutrinos; nonetheless, many of the results discussed
here should apply much more broadly. We consider that the
decay is mediated by the most general four-fermion
effective Lagrangian, and hence, our results are not con-
strained by the idiosyncrasies of the Standard Model weak
interactions.
In Sec. II, we present arguments based upon the CPT

properties of the final states to show that if the HNL is a
Majorana fermion in certain classes of decays, there is no
forward-backward asymmetry of the charged-lepton-pair
(dilepton) system relative to the spin of the HNL. In
Sec. III, we discuss the most general possible matrix
element for the decay of a polarized HNL, for both a
Dirac or Majorana fermion. In Sec. IV, we discuss the size
of potential kinematic features in HNL three-body decays
for various well-motivated choices of couplings. Much of
the technical details of the calculations are relegated to
Appendices A–E. In Sec. V, we discuss circumstances

under which it is possible for observations to be consistent
with both the MF and DF hypotheses. In Sec. VI, we extend
our discussion beyond the forward-backward asymmetry of
the dilepton system to include the full differential distri-
butions and discuss how analyzing these distributions
allows for further separation of the Dirac and Majorana
hypotheses, as well as allowing for distinction between
certain coupling structures. We conclude in Sec. VII.

II. FORWARD-BACKWARD SYMMETRY OF
FERMION DECAYS FROM CPT

References [9,10] demonstrated that the two-body decay
of a polarized Majorana fermion N into a light Majorana
neutrino ν and a self-conjugate boson X0 is isotropic; i.e.,
the differential partial width dΓ=dΩ is constant. On the
contrary, two-body decays of a Dirac fermion N may have
strong cos θX dependence, where θX is the direction of the
outgoing X0 relative to the spin of N in the rest frame of the
decaying N.
General two-body decays N → νX0, when N is 100%

polarized, can be expressed, in the N rest frame, as

dΓðN → νX0Þ
d cos θX

¼ Γ
2
ð1þ 2AFB cos θXÞ; ð2:1Þ

where the forward-backward asymmetry AFB is defined as

AFB ≡
R
1
0

dΓ
d cos θX

d cos θX −
R
0
−1

dΓ
d cos θX

d cos θXR
1
0

dΓ
d cos θX

d cos θX þ R 0−1 dΓ
d cos θX

d cos θX
: ð2:2Þ

Assuming only CPT-invariance, Refs. [9,10] demonstrated
that, when X is a self-conjugate boson, at leading order,2

AFB is zero when N is a Majorana fermion. Indeed, the
decays of Majorana N are isotropic in terms of the direction
of the outgoing X (or equivalently, the direction of the
outgoing neutrino).
Extending the results of Refs. [9,10] to three-body

decays of MF and DF requires additional considerations
because the final-state phase space now depends on five
kinematic variables.3 However, if it is possible to interpret
two of the three final-state particles as a “system” X0 (as
above) with definite CPT properties, we can, based on
these CPT properties, make connections between the two-
body and three-body decays.
For clarity, we will focus on the decay ofN into a neutrino

ν and two charged leptons l−
α and lþ

β , α; β ¼ e, μ, τ. When
applying CPT arguments, we consider two separate cases—
one in which the final-state charged leptons have identical
flavor (α ¼ β) and one in which their flavors are distinct, but
whatever detector is measuring these final-state particles

2The result is exact if CP symmetry is strictly conserved.
3We define this phase space in Sec. IV and discuss it further in

Appendix C.
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cannot determine the charge of the individual particles on an
event-by-event basis. For both of these situations, we will be
considering the charged lepton system lþ

α l−
β as a single

system, which we refer to as X0 with a (variable) invariant
mass m2

ll. This will allow us to express the decay
N → νlþ

α l−
β as a pseudo-two-body decay N → νX0.

In order to consider the final-state particles l−
αl

þ
β as a

system X0, we must integrate over the kinematical quantities
in the three-body phase space that contain internal informa-
tion regarding the individual four-momenta of l−

α and lþ
β .

Thus, the CPT arguments will not be able to determine
whether the decays N → νl−

αl
þ
β are (an)isotropic, but they

will allow us to determine that theMF decays are isotropic in
terms of the direction of the system X0.

A. Same flavor final-state charged leptons

In the case of same flavor final-state leptons, we define
X0 ≡ lþ

α l−
α , and X0 is self-conjugate. Additionally, we

define λν and λX to be the spin projection of the outgoing
neutrino and X0 along their respective directions of motion
and λ≡ λν − λX. Here, and throughout, we assume that the
operators generating the decay of N are of the four-fermion
type, i.e., N can be thought of as a pointlike particle
decaying through a contact interaction. Unless otherwise
noted, we are in the reference frame where N is at rest and,
in these calculations, we assume N and ν are Majorana
fermions and that N is polarized in the spin-up direction,
denoted by “↑”. Defining Γλ¼þ1=2 and Γλ¼−1=2 to be the
corresponding partial widths for decays with λ ¼ þ1=2
and λ ¼ −1=2, respectively, we may express the decay
N → νX0 as

dΓðN → νX0Þ
d cos θX

¼ 1

2
Γλ¼þ1=2ð1þ cos θXÞ

þ 1

2
Γλ¼−1=2ð1 − cos θXÞ: ð2:3Þ

If we define the momenta of ν and X0 to be q⃗ and −q⃗,
respectively, we can express the leading-order transition-
amplitude-squared for the spin-up decay as

jAj2 ¼ jhνðq⃗; λνÞX0ð−q⃗; λXÞjHjNð↑Þij2; ð2:4Þ

where H is the interaction Hamiltonian governing this
decay. If we apply CPT to jAj2, defining the operator ξ as
the action of CPT, and if we assume that the Hamiltonian is
CPT-invariant, we obtain

jAj2 ¼ jhξHξ−1ξNð↑Þjξνðq⃗; λνÞX0ð−q⃗; λXÞij2; ð2:5Þ

¼ jhνðq⃗;−λνÞX0ð−q⃗;−λXÞjHjNð↓Þij2; ð2:6Þ

¼ jhνð−q⃗;−λνÞX0ðq⃗;−λXÞjHjNð↑Þij2; ð2:7Þ

where the last line is obtained by rotation of the system by
an angle π about an axis perpendicular to both the N spin
direction and q⃗. Summing expressions (2.4) and (2.7) over
the helicities for which λν − λX ≡ λ ¼ þ1=2, and compar-
ing (2.4) to (2.7), we see that Γλ¼þ1=2 ¼ Γλ¼−1=2. From
Eq. (2.3), dΓ=d cos θX ¼ Γ=2, a constant, and this implies
the X0 direction distribution is isotropic.

B. Charge-blind detector

Here, we define X0 ≡ lþ
α l−

β (α ≠ β) and note that now,

X0 ≠ X0: It is not a self-conjugate state. However, we
assume that our detector is charge blind and cannot
distinguish between these two states, and so the object
we are interested in is the sum of two differential partial

widths N → νX0 and N → νX0. The differential width for
N → νX0 follows the same form as Eq. (2.3), while the

decay N → νX0 takes the form,

dΓðN → νX0Þ
d cos θX

¼ 1

2
Γ̄λ¼þ1=2ð1þ cos θXÞ

þ 1

2
Γ̄λ¼−1=2ð1 − cos θXÞ; ð2:8Þ

where Γ̄λ¼�1=2 refers to the partial widths of these decays
for λ ¼ �1=2. Using the same CPT application as above,
we can now relate the decays by

jAj2 ¼ jhνðq⃗; λνÞX0ð−q⃗; λXÞjHjNð↑Þij2; ð2:9Þ

¼ jhξHξ−1ξNð↑Þjξνðq⃗; λνÞX0ð−q⃗; λXÞij2; ð2:10Þ

¼ jhνðq⃗;−λνÞX0ð−q⃗;−λXÞjHjNð↓Þij2; ð2:11Þ

¼ jhνð−q⃗;−λνÞX0ðq⃗;−λXÞjHjNð↑Þij2: ð2:12Þ

Again, the last line is obtained by a π-rotation around
an axis perpendicular to the decay plane. Here, because X0 is
no longer self-conjugate, we cannot relate Γλ¼þ1=2 to
Γλ¼−1=2. Instead, we obtain (after summing over the unob-
served λν and λX) Γλ¼þ1=2¼ Γ̄λ¼−1=2 and Γλ¼−1=2¼ Γ̄λ¼1=2.
Then, the object we wish to calculate is

dΓ
d cos θX

≡ dΓðN → νX0Þ
d cos θX

þ dΓðN → νX0Þ
d cos θX

; ð2:13Þ

¼1

2
Γλ¼þ1=2ð1þcosθXÞþ

1

2
Γλ¼−1=2ð1−cosθXÞ

þ1

2
Γλ¼þ1=2ð1−cosθXÞþ

1

2
Γλ¼−1=2ð1þcosθXÞ;

ð2:14Þ

¼ Γλ¼þ1=2 þ Γλ¼−1=2: ð2:15Þ
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Again, we see a flat distribution with respect to cos θX—this
will yield zero forward-backward asymmetry.

III. GENERAL AMPLITUDES FOR HEAVY
NEUTRINO DECAY

We now consider the entire three-body phase space of
MF and DF decays. Many studies of heavy neutral leptons
and their decays exist in the literature [13–38], but the focus
of these is usually on the scenario in which the new
fermion’s only interactions with the Standard Model (SM)
are via mixing with the light, SM neutrinos. This predicts
that its decays are mediated by the SM W and Z bosons,
and the interaction structure of the decays is known.
Here, we define a general framework for describing the

decays of MF and DF in a way that is mostly independent
from the nature of the new-physics interactions. We focus
on the scenario where the new particle decays to a SM
neutrino and a pair of charged leptons. However, this
framework can apply for decays into three light neutrinos or
other combinations of three final-state fermions, with
appropriate substitutions. The only assumption required
for our framework to hold is that the particle(s) mediating
the MF or DF decay are massive enough to be integrated
out, yielding a dimension-six four-fermion contact
interaction.
We consider the following most-general four-fermion

interaction Lagrangian,

−Lint ¼
X
N;L;αβ

ðGαβ
NL½ν̄ΓNN�½l̄αΓLlβ�

þ Ḡαβ
NL½N̄ΓNν�½l̄αΓLlβ�Þ þ H:c; ð3:1Þ

where the gamma matrices ΓN and ΓL are defined to
include all possible interactions in this four-fermion struc-
ture, and the indices αβ ¼ ee; μμ; ττ; eμ; eτ; μτ.4 In prac-
tice, however, due to the available production mechanisms,
we will mostly ignore τ-lepton final-states. In what follows,
we will often be restricting to a particular choice of lepton
flavors and will suppress the αβ indices for notational
convenience.
We express the gamma matrices in terms of their Lorentz

representation,

ΓN;ΓL ∈
�
1; γ5; γμ; γμγ5; σμν ≡ i

2
½γμ; γν�

�
; ð3:2Þ

and we will use the subscripts “SPVAT” to refer to scalar,
pseudoscalar, vector, axial-vector, and tensor representa-
tions, respectively. Lorentz invariance means that there are
only nine possible interaction structures, and we allow for
interference among the different terms in our calculations.

The effective Lagrangian of Eq. (3.1) is Uð1ÞEM gauge
invariant but not SUð2ÞL ×Uð1ÞY invariant. It can, of
course, be expressed as the low-energy limit of an
SUð2ÞL ×Uð1ÞY gauge-invariant effective Lagrangian.
Equation (3.1) is valid if the HNL and the neutrino are

both DFs or MFs. In the MF-case, however, the ν and N
are four-component Majorana fields. Under these condi-
tions, the fermion bilinears ν̄ΓNN and N̄ΓNν are related:
ν̄ΓNN ¼ ζNN̄ΓNν, where ζN ¼ þ1 for N ¼ S, P, A and
ζN ¼ −1 for N ¼ V, T. Hence, if N is a MF, the
independent couplings5 are Gαβ

NL − ζNḠ
αβ
NL. For pragmatic

reasons, we use the couplings defined in Eq. (3.1) to
describe both MF and DF neutral leptons.
While Eq. (3.1) is identical for DFs and MFs, the rest of

the Lagrangian is not. Ignoring light neutrino masses, the
bilinear mass part of the Lagrangian is

Lmass ¼
1

2
mNN̄cN ð3:3Þ

for Majorana fermions and

Lmass ¼ mNN̄N ð3:4Þ

for Dirac fermions. The number of degrees of freedom is
different for MF (two) and DF (four) HNLs. The most
general Lagrangian that contains four HNL degrees of
freedom contains Eq. (3.4) and m0N̄cðaþ bγ5ÞN (these
contain both “left-left” and “right-right”Majorana masses).
For m0 ≠ 0, the Lagrangian describes, generically, two MF
HNLs. The DF choice m0 ¼ 0 is protected by a Uð1Þ
lepton-number symmetry. Here, we only consider the one-
Majorana-fermion case—Eq. (3.3)—or the one-Dirac-
fermion case—Eq. (3.4).
While we keep the ordering of the fermion fields in

Eq. (3.1) in the “neutral-current” ordering, this parametri-
zation is general. Since ΓN and ΓL span a complete basis,
this allows for any type of ultraviolet completion with a
charged and/or neutral force-carrier(s) mediating the N
decay. Depending on the UV completion, not all the
couplings presented in (3.1) will be independent, and
several can contribute to the same physical process. For
instance, a DF that undergoes the decay N → νlþ

α l−
α will

receive contributions from both Gαα
NL and ðḠαα

NLÞ�. As we
discuss below, instead of focusing on the terms in the
Lagrangian, it is more convenient to structure the calcu-
lation in terms of the possible matrix elements associated to
N decay.
Throughout, we will concentrate on a few examples,

including the special cases already highlighted: α ¼ β and

4Gαβ; Ḡαβ; Gβα; Ḡβα are coefficients to only two independent
interactions in the MF case.

5The relative minus sign comes from the fact that, when
considering matrix elements of spinors instead of fields in a
Lagrangian, the ζN flips sign. For example, ν̄N ¼ N̄ν, but
ūνuN ¼ −v̄Nvν, which will enter our calculations of decay widths.
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experimental setups that cannot distinguish lþ from l−.
We will also discuss what happens when the N decay is
mediated by SM interactions. In this case, the effective
Lagrangian for both Majorana and Dirac N is

−Lint ¼ 2
ffiffiffi
2

p
GF½ν̄γμPLN�½l̄αγ

μðgαβL PL þ gαβR PRÞlβ� þ H:c;

ð3:5Þ

where PL;R ¼ ð1 ∓ γ5Þ=2. gL and gR depend on the
coupling between N and the W and Z bosons and the
light neutrinos. gαβR ∝ δαβ, while the value of gαβL , and
whether it vanishes when α ≠ β, depends on the existence
of a coupling between N, the W boson, and lα.
If we further assume that all of these couplings are

generated byN mixing with one light neutrino, e.g., νμ with
a mixing angleUμN , then the couplings may be determined:
We give them in Table I.

A. Matrix elements

We first consider the decay amplitude M1 of a spin-
polarized DF N into a light neutrino DF ν and two charged
leptons l−

α and lþ
β . The matrix element can be written as

M1 ¼ GNL½ūνΓNPSuN �½ūαΓLvβ�; ð3:6Þ

where PS ≡ 1
2
ð1þ γ5=sÞ is a spin-projection operator.6

Above, and henceforth, we suppress the lepton flavor
indices on GNL. In M1, there are nine independent
complex GNL, i.e., 18 free parameters, dictating this decay.
If M1 describes the matrix element for the decay

N → νl−
αl

þ
β , we may write a related matrix element that

describes the decay (if N is a DF) N̄ → ν̄l−
αl

þ
β ,

M2 ¼ ḠNL½v̄NPSΓNvν�½ūαΓLvβ�: ð3:7Þ

The matrix element M2 is related to M1 by charge
conjugating the N=ν portion of the corresponding
Feynman diagram, while the charged lepton piece remains
untouched. GNL and ḠNL can be completely unrelated:

If N is a DF with “muon lepton number,” then the decays of
N will always produce a μ−, and the decays of N̄ will
always produce a μþ. If we are interested in final states with
μþe−, then M1 will not contribute to any decay, while
M2 will.7

The Hermitian conjugate of the Lagrangian that leads
to the decays to the l−

αl
þ
β final state will contribute to the

charge-conjugated final state (lþ
α l−

β ). Specifically, cou-
plings proportional to G�

NL will contribute to N̄ decay, and
couplings proportional to Ḡ�

NL will contribute to N decay.
In the case where α ≠ β, but we have a charge-blind
detector (one that can distinguish muons from electrons,
but not μ− from μþ or e− from eþ), we must consider all of
these contributions summed incoherently.
When writing Eqs. (3.6) and (3.7) in terms of four-

spinors, we have adopted the canonical matrix element
expression assuming thatN and ν are Dirac fermions. In the
case that N and ν are Majorana fermions, however, both
M1 andM2 contribute to the decay N → νl−

αl
þ
β . This can

be seen at the level of the Lagrangian where Gαβ
NL and Ḡαβ

NL
both allow Majorana fermion N to decay to the same final
state. Furthermore, the matrix elements forM1 andM2 are
proportional up to an overall sign that depends on the
gamma-matrix structure. In the standard literature, e.g.,
Refs. [13,14,27], Majorana fermion decay distributions
and rates are calculated by taking the (noninterfering)
matrix-elements-squared from Eqs. (3.6) and (3.7). This is
valid in these works, when chiral projection operators
PL and PR are acting on all spinors associated with ν,
causing any interference between these amplitudes to
vanish (in the limit where the mass of ν is zero). When
we allow for more generic GNL and ḠNL however,
interference can occur.

1. Restrictions if α= β

The Hermitian conjugate of the Lagrangian that gen-
erates matrix elements M1 and M2 generates two new

TABLE I. Couplings gL and gR that enter the Lagrangian in Eq. (3.5) and matrix elements in Eq. (3.20), assuming
that N only mixes with νμ with mixing angle UμN . Here, s2w ¼ 0.223 is the (sine-squared of the) Weinberg angle.

Scenario Example Process gL gR

Distinct Final-State Charged Leptons N → νeμ
−eþ jUμN j 0

Identical Final-State Charged Leptons N → νμe−eþ − 1
2
jUμN jð1 − 2s2wÞ jUμN js2w

N → νμμ
−μþ 1

2
jUμN jð1þ 2s2wÞ jUμN js2w

6Here, sμ is the spin of N, defined such that s2 ¼ −1 and
ðpN · sÞ ¼ 0. Its spatial component points in the direction of the
(assumed-to-be-polarized) N’s spin.

7The ordering of spinors in the charged lepton leg in Eq. (3.7)
is the same as in Eq. (3.6)—the outgoing negatively charged
lepton is labeled “α,” and the positively charged one is labeled
“β”. We will be interested in the decays of Dirac fermion N, N̄,
and Majorana fermion N when comparing identical final states,
such as N → νμ−eþ and N̄ → ν̄μ−eþ, so the ordering of these
labels is important.
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matrix elements, related to M1 and M2 by charge
conjugation, which we refer to as Mc

1 and Mc
2. These are

Mc
1 ¼ ηNηLG�

NL½v̄NPSΓNvν�½ūβΓLvα�; ð3:8Þ

Mc
2 ¼ ηNηLḠ�

NL½ūνΓNPSuN �½ūβΓLvα�: ð3:9Þ

The prefactors ηN and ηL take into account the properties of
the Lorentz structures ΓN and ΓL under conjugation, with
ηX ¼ þ1 for X ¼ S, V, A, T and −1 for X ¼ P. If the final-
state charged-leptons are identical, α ¼ β, and these new
matrix elements contribute to the same process as M1;2. If
N is a DF, the decays of N must be calculated using the
(interfering) sum of M1 and Mc

2: The decay rate of N is
proportional to jM1 þMc

2j2, and the decay rate of N̄
is ∝ jM2 þMc

1j2.

2. Majorana fermion N with α= β

If the two charged fermions are of the same flavor, then
all four matrix elements contribute, and the decay rate of N
is ∝ jM1 þM2 þMc

1 þMc
2j2. Furthermore, the differ-

ent ordering of spinors in each matrix element leads to
various cancellations when the sum is performed for a
Majorana fermion N decaying into a neutrino and identical
final-state charged leptons. We denote the four possible
combinations of couplings as

R�
NL ¼ ReðGNL � ḠNLÞ; I�NL ¼ ImðGNL � ḠNLÞ: ð3:10Þ

The nine combinations that appear in the expression for the
matrix element squared are I−SS, R

−
SP, R

−
PS, I

−
PP, R

þ
VV , R

þ
VA,

I−AV , I
−
AA, R

þ
TT . The final expressions for the matrix element

in this case are given in Table VIII, in Appendix A.

3. Restrictions if all new mediators are neutral

A well-motivated model is where the new-physics
particles that mediate the N decay are neutral.8 Since we
focus on mN ≤ OðGeVÞ, which can be probed in fixed-
target environments, strong constraints on new, charged
mediators below the electroweak scale exist, and charged
mediators with masses above the electroweak scale would
likely provide small contributions to decays of this type
relative to either those from the SM electroweak bosons or a
new, light, neutral mediator.
Integrating out the neutral mediators present in a UV

completion of this type induces relationships between the
Lagrangian couplings in Eq. (3.1) and consequently,
between the parameters in matrix elements. For example,

jGNLj ¼ jḠNLj and
GNL

Ḡ�
NL

¼ ηNηL
GN0L

Ḡ�
N0L

; ð3:11Þ

where, in the second relationship,N0 is the “other” Γmatrix
with which ΓN can interfere; e.g., if N ¼ V, then N0 ¼ A,
etc. We provide further details about what occurs under this
neutral mediator assumption in Appendix A 1.

B. Lorentz invariants

When calculating the matrix-elements-squared, we find
it useful to express our results as a linear combination of
thirteen different9 Lorentz-invariant quantities, which we
label as Kj (j ¼ 1; 2;…13). The subscript “m” refers to the
negatively charged lepton l−

α and “p” to the positively
charged lepton lþ

β . Likewise, mm (mp) is the mass of the
negatively (positively) charged lepton. Six of these
Lorentz-invariant quantities are N-spin independent,

K1 ¼ mmmpðpνpNÞ; K2 ¼ mmmNðpppνÞ;
K3 ¼ mpmNðpmpνÞ; ð3:12Þ

K4 ¼ ðpppNÞðpmpνÞ; K5 ¼ ðpmpNÞðpppνÞ;
K6 ¼ ðpppmÞðpνpNÞ: ð3:13Þ

The remaining seven are N-spin dependent,

K7¼mNðpppmÞðpνsÞ; K8¼mNmmmpðpνsÞ; ð3:14Þ

K9 ¼ mNðpmpνÞðppsÞ; K10 ¼ mNðpppνÞðpmsÞ;
ð3:15Þ

K11 ¼ mm½ðpνpNÞðppsÞ − ðpppNÞðpνsÞ�;
K12 ¼ mp½ðpνpNÞðpmsÞ − ðpmpNÞðpνsÞ�; ð3:16Þ

K13 ¼ ερσληp
ρ
mpσ

ppλ
νsη: ð3:17Þ

Note that except for K13, all have mass dimension four.
This choice of Lorentz-invariants is not unique, but it does
have the benefit that the Ki have simple properties under
integration over subsets of the full phase space, as we
discuss in Appendix C.
Given this set of Lorentz-invariants, any matrix element

squared describing N decay can be expressed as

jMðN → νl−
αl

þ
β Þj2 ¼

X13
j¼1

CjKj: ð3:18Þ

In Appendix A, we provide the Cj for Dirac fermion
and Majorana fermion N decays of the type N → νl−

αl
þ
β .8An example of this case is where a new Z0 boson, heavier

than N, is included to induce decays like N → νeþe− via an off-
shell Z0. 9We discard terms proportional to mν.
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We also analyze a few specific examples: when the physics
mediating these decays is of the neutral-current variety and
when the final-state charged leptons are identical (α ¼ β).
In Eq. (3.5), we introduced the Lagrangian of interest

when the decays of N are mediated by SM interactions. In
this case,

M1 ¼ 2
ffiffiffi
2

p
GF½ūνγμPLPSuN �½ūαγμðgLPL þ gRPRÞvβ�;

ð3:19Þ
M2 ¼ 2

ffiffiffi
2

p
GF½v̄NPSγ

μPLvν�½ūαγμðg0LPL þ g0RPRÞvβ�:
ð3:20Þ

The couplings g0ðL;RÞ are, in principle, related to gðL;RÞ (see,
for instance, Table I). If the final-state charged leptons are
of the same flavor, then gðL;RÞ ¼ g0ðL;RÞ. If the final-state

charged leptons are distinct, then only a charged-current
diagram with aW boson contributes, and gR ¼ g0R ¼ 0. The
matrix elements in Eqs. (3.19) and (3.20) can be mapped
onto the language of Eqs. (3.6) and (3.7), using

GVV ¼ −GAV ¼ GFðgL þ gRÞ=
ffiffiffi
2

p
; ð3:21Þ

GVA ¼ −GAA ¼ GFðgR − gLÞ=
ffiffiffi
2

p
; ð3:22Þ

ḠVV ¼ −ḠAV ¼ GFðg0L þ g0RÞ=
ffiffiffi
2

p
; ð3:23Þ

ḠVA ¼ −ḠAA ¼ GFðg0R − g0LÞ=
ffiffiffi
2

p
: ð3:24Þ

For concreteness, we explore the scenario in which
the decays of N all arise due to N mixing with νμ, via a
“mixing angle”UμN . Two specific considerations are worth
exploring—whether the final-state charged leptons are
identical or not.
In Table II, we explore the case where they are not

identical, with final-states being μ−eþ or μþe−. If N only
mixes with νμ and lepton number is conserved, then a Dirac
fermion N can only decay into μ−eþ and a Dirac fermion N̄
into μþe−. In these cases, gL; g0L → jUμN j and gR; g0R → 0,
as demonstrated in Table I. The only Lorentz invariants that
appear in these cases are K4, K5, K9, and K10.

If the final-state charged leptons are identical, we find it
simpler to provide results of Ci in terms of gL and gR and
present them in Table III. The primed couplings are
identical to the unprimed ones and are determined by
the mixing UμN along with SM couplings given in Table I.
The difference between gL for eþe− and μþμ− final states
comes from the fact that, for the μþμ− final state, the
W-boson diagram interferes with the Z-boson one, whereas
for eþe−, only the Z contributes. For Majorana fermion N
decays, there are relationships among the Ci, such as
C4 ¼ C5, C8 ¼ 0, and C9 ¼ −C10. These are directly
related to the resulting lack of forward-backward asym-
metry of Majorana fermion N decays.

IV. ANISOTROPY OF DIRAC AND MAJORANA
FERMION DECAYS

We now wish to make connection with the kinematic
observables that have the potential to distinguish between
the MF and DF hypotheses. We restrict our discussion to
the N rest frame; recasting the discussion to the laboratory
frame is possible but often very cumbersome, especially
since we are interested in three-body decays. If N pro-
duction is through meson decay at rest (e.g., πþ → μþN), it
is simple to reconstruct the N rest frame, and the results
discussed here are readily applicable.
We will discuss the hypotheses that both the HNL and

the light neutrino are either MF or DF, and assume the HNL
is 100% polarized unless otherwise noted.

TABLE II. Lorentz-invariant contributions Ci for decays into final states, including μ−eþ (left) and μþe− (right)
under our benchmark model, where decays are generated by mixing between N and νμ with mixing angle UμN . All
other Ci are zero, and a common G2

F is factored out of each Ci.

Final-state μ−eþ Final-state μþe−

Ci Dirac N Dirac N̄ Majorana N Dirac N Dirac N̄ Majorana N

C4 64jUμN j2 0 64jUμN j2 0 0 0
C5 0 0 0 0 64jUμN j2 64jUμN j2

C9 −64jUμN j2 0 −64jUμN j2 0 0 0
C10 0 0 0 0 64jUμN j2 64jUμN j2

TABLE III. Ci for simple benchmark model of N decay into
identical final-state charged-lepton states N → νlþ

α l−
α , through

N − νμ mixing [see Eqs. (3.19) and (3.20)]. All other Ci are zero,
and a common G2

F is factored out of each Ci. Here, gL ¼
jUμN jδμα − 1

2
jUμN jð1 − 2s2wÞ and gR ¼ jUμN js2w.

Ci Dirac N Dirac N̄ Majorana N

C1 64gLgR 64gLgR 128gLgR
C4 64g2L 64g2R 64ðg2L þ g2RÞ
C5 64g2R 64g2L 64ðg2L þ g2RÞ
C8 −64gLgR 64gLgR 0
C9 −64g2L 64g2R 64ðg2R − g2LÞ
C10 −64g2R 64g2L −64ðg2R − g2LÞ
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In the N rest frame, the momentum vectors of the three
decay products are coplanar, and we parametrize their
energies usingm2

ll, the invariantmass squared of the charged
lepton system, and m2

νm, the invariant mass squared of the
neutrino and the negatively charged lepton l−

α . The orienta-
tion of the plane relative to the N spin direction ŝ, which we
take to be aligned with the z axis, is defined by three angles:
cos θll, the (cosine of the) angle between theN spin direction
ŝ and the direction of the outgoing charged-lepton pair,
p⃗ll ≡ p⃗α þ p⃗β, γll, a rotation angle about p⃗ll, defined such
that γll ¼ 0 corresponds to the vector normal to the decay
plane being perpendicular to the z axis, and an azimuthal
angle ϕ, which corresponds to rotations of the entire system
about the spin direction ŝ. Figure 1 displays the coordinate
system we adopt throughout this work.
Using this choice of phase-space variables, the fully

differential partial width for the N decay is

dΓðN → νl−
αl

þ
β Þ

dm2
lld cos θlldm

2
νmdγlldϕ

¼ 1

ð2πÞ5
1

64m3
N
jMj2

¼ 1

ð2πÞ5
1

64m3
N

X13
j¼1

CjKj:

ð4:1Þ
The expressions for Ki in terms of the lab-frame phase
space variables are given in Appendix C.
In order to determine the “geometric” properties of the

decay, including the forward-backward asymmetry and the
dependency of the differential width on γll, we integrate
over the nonangular variables m2

ll and m2
νm (a reminder

that ϕ can be trivially integrated for all cases of interest).
This procedure is detailed in Appendix D. The forward-
backward asymmetry AFB is defined in Eq. (2.2) and can be
computed exactly, further integrating the differential width
over γll, for all of the decay models defined earlier. In
Sec. IV B and in Appendix D, we discuss the forward-
backward asymmetry for certain test cases and explicitly
confirm the results discussed in Sec. II. Namely, we verify
that, if N is a MF,

(i) AFB ¼ 0 if the final-state charged leptons are iden-
tical, α ¼ β.

(ii) AFB ¼ 0 if the experiment detecting the final-state
particles is charge blind and cannot distinguish
between the final states l−

αl
þ
β and lþ

α l−
β .

Previous results in the literature, such as Ref. [13,27],
concluded that Majorana fermion N decays can have
anisotropy (even in some of the cases listed above) because
the decay distributions were analyzed in terms of the

outgoing direction of a single charged lepton, as opposed
to the charged lepton pair.

A. Allowed asymmetry for Dirac fermion decays

While there are general circumstances where the decay
of a MF N is guaranteed to be forward-backward sym-
metric, the decay of a DF N can be highly anisotropic. We
discuss this in more detail in this subsection, concentrating
on AFB.
AFB ≠ 0 requires the presence of at least two types of

couplings. If only two types of couplings are nonzero,
anisotropy can occur for scalar and pseudoscalar only or
vector and axial-vector only. All other pairwise combina-
tions result in zero AFB. These two combinations of
operators would arise if N was coupled to the SM through
exchange of either a spin-0 boson or a spin-1 boson with
generic couplings to the SM fermions.

1. Scalar and pseudoscalar interactions only

The forward-backward asymmetry with only scalar and
pseudoscalar interactions is

AFB
ðSPÞ ¼ ReðGPPG�

SP þ GSSG�
PSÞT0 − ½δ2ReðGPPG�

SPÞ þ σ2ReðGSSG�
PSÞ�T1

½jGSSj2 þ jGSPj2 þ jGPSj2 þ jGPPj2�T0 − ½δ2ðjGPPj2 þ jGSPj2Þ þ σ2ðjGSSj2 þ jGPSj2Þ�T1

: ð4:2Þ

FIG. 1. Kinematics of the decay N → νðpνÞ þ l−
α ðpmÞ þ

lþ
β ðppÞ in the rest frame of the decaying parent particle N.

Black, solid arrows represent the three-momenta of the three
final-state particles, and the red arrow is the sum of the two
charged-lepton three-momenta, p⃗ll ¼ p⃗m þ p⃗p. The three an-
gles involved in the kinematics are as follows: 1) θll, the angle
between the spin direction of N (which defines the ẑ direction)
and p⃗ll—in the diagram. We label π − θll for convenience.
2) γll, the angle that defines the orientation of the plane defined
by p⃗p and p⃗m relative to p⃗ll. 3) ϕ, the azimuthal angle of p⃗ll.
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Here T0;1, computed in Appendix E, are dimensionless functions of the particle masses, while σ, δ are ratios of masses:

σ ≡mm þmp

mN
; δ≡mm −mp

mN
: ð4:3Þ

If the four-fermion couplings are generated by the exchange of neutral spin-0 bosons, then they are related:
GSSGPP ¼ GSPGPS, and

AðSPÞ
FB ¼ ReðGPPG�

SPÞ
jGPPj2 þ jGSPj2

: ð4:4Þ

This fraction is extremized when jGPPj ¼ jGSPj and ReðGPPG�
SPÞ ¼ �jGPPjjGSPj, resulting in AFB ¼ �1=2.

2. Vector and axial-vector interactions only

The well-studied case in which N interacts with the Standard Model only via mixing with light neutrinos falls into this
class, and we discuss it in turn. In the case where only these couplings are nonzero,

AðVAÞ
FB ¼ ReðGVVG�

AV þ GAAG�
VAÞfþ þ ReðGVVG�

AV − GAAG�
VAÞf0

½jGVV j2 þ jGAAj2 þ jGVAj2 þ jGAV j2�f− þ ½jGVV j2 − jGAAj2 − jGVAj2 þ jGAV j2�f0
; ð4:5Þ

with

f� ¼ 2½4T0 − ð�2þ σ2 þ δ2ÞT1

− ð�σ2 � δ2 þ 2σ2δ2ÞT2 � 4σ2δ2T3�; ð4:6Þ

f0 ¼ 6ðσ2 − δ2ÞT1: ð4:7Þ

In the limit σ → 1, when the decay N → νl−
αl

þ
β is

barely kinematically accessible, this anisotropy parameter
becomes

AðVAÞ
FB →

ReðGVVG�
AV −GAAG�

VAÞ
3jGVV j2 þ jGAAj2 þ jGVAj2 þ 3jGAV j2

; ð4:8Þ

which can be as large in magnitude as 1=2, corresponding
to maximal anisotropy.
Instead, in the limit where the final-state masses can be

ignored relative to the parent mass (if σ, δ → 0),

AðVAÞ
FB → −

ReðGAAG�
VA þGVVG�

AVÞ
3ðjGVV j2 þ jGAAj2 þ jGVAj2 þ jGAV j2Þ

; ð4:9Þ

which can be as large in magnitude as 1=6.
The allowed values of AFB as a function of the mass

of N are depicted in Fig. 2. The left panel is for the
decay N → νe−eþ and the right panel is for N → νμ−eþ.
In both cases, at threshold (low mN), AFB can take on
values between �1=2, while at large mN , it is restricted
to lie between �1=6, as described in the limiting
cases above.

Each panel of Fig. 2 also depicts AFB for the benchmark
model of decay through ν − N mixing, with the matrix
element given in Eq. (3.19) and assuming that the N mixes
with only one flavor of SM neutrino, i.e., only one among
the three UκN ≠ 0, κ ¼ e, μ, τ. For the eþe− final state (left
panel), mixing with νe results in contributions from bothW
and Z exchange, while mixing with νμ or ντ receives a
contribution only from Z exchange. In the case of the e�μ∓
final state (right panel), there is only the contribution from
W exchange.

B. Allowed asymmetry for Majorana
fermion decays

In this subsection, we revisit the results of Sec. II,
assisted by results in Appendices A and D, to determine
how large the forward-backward asymmetry can be for
Majorana fermions in other specific cases.
In Appendix D, in determining how different Lorentz-

invariant contributions Ci lead to a forward-backward
asymmetry, we introduced XFB, see Eqs. (D8), (D11).
AFB is directly proportional to XFB, which can be
written as

X3
m¼0

X12
i¼7

CiDi
mTm: ð4:10Þ

The Di
m coefficients, m ¼ 0;…3, i ¼ 7;…12, are listed in

Table XI and
P

12
i¼7 CiDi

m can be expressed as
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X12
i¼7

CiDi
m ¼

0
BBB@

2C7 þ 2
3
ðC9 þ C10Þ

σ2ðC8 − C7Þ − 1
6
ð2þ σ2ÞðC9 þ C10Þ − σðC11 þ C12Þ
− σ2

6
ðC9 þ C10Þ

0

1
CCCA

þ δ

0
BBB@

0

−δðC7 þ C8Þ − δ
6
ðC9 þ C10Þ þ ðC12 − C11Þ

− δ
6
ð1þ 2σ2ÞðC9 þ C10Þ þ σðC11ðσ þ δÞ − C12ðσ − δÞÞ

2σ2δ
3

ðC9 þ C10Þ

1
CCCA: ð4:11Þ

Because this object is contracted with Tm to determine AFB,
then the forward-backward asymmetry is zero if each
element of

P
12
i¼7 CiDi

m is zero. Cancellation could occur
in the contraction between this object and Tm; however,
if each element is zero, then this will guarantee AFB ¼ 0
for all possible combinations of charged lepton and N
masses. First, let us focus on the case where the final-state
charged leptons are identical so δ ¼ 0 and the second line
in Eq. (4.11) vanishes. By inspection, we see thatP

12
i¼7 CiDi

m will vanish, for all σ, if the following are all
true: C9 þ C10 ¼ 0, C11 þ C12 ¼ 0, C7 ¼ C8 ¼ 0. This set
of relations is realized—see Table VIII—when N is a
Majorana fermion decaying into identical final-state
charged leptons.
Another case of interest is when only neutral mediators

contribute to the decay of a Majorana fermion N, either
into identical or distinct final-state charged leptons. In
Table VII, we provide these results.10 In this case, we have

C7 ¼ C8 ¼ 0 and C9 þ C10 ¼ 0. However, in the case of
distinct charged-leptons in the final state, δ ≠ 0, and we
must keep both terms of Eq. (4.11). In this case, the
forward-backward asymmetry will be proportional to

XNMO
FB →C11ðσþ δÞðσδT2−T1ÞþC12ðδ− σÞðσδT2þT1Þ:

ð4:12Þ

Several features here are of note. First, only C11 and C12

contribute to the forward-backward asymmetry whenN is a
Majorana fermion decaying via neutral mediators only.
These two coefficients require interference betweenGNL of
the vector and axial-vector type with those of the scalar-
pseudoscalar or tensor types. In other words, if we only
have neutral mediators, multiple Lorentz representations
must appear in the decay matrix element, or mediators
of different spin (spin-1 and spin-0 or spin-2) must
contribute. Additionally, in Eq. (4.12), the factors multi-
plying C11 and C12 are proportional to σ þ δ ¼ 2mlα

=mN

and δ − σ ¼ −2mlβ=mN , so as mN grows relative to the

FIG. 2. Allowed range of the forward-backward asymmetry AFB (shaded band) as a function of the DF HNL mass mN in the decay
N → νeþe− (left) orN → νe�μ∓ (right), for general vector and axial-vector couplings for the neutrinos and charged leptons. The case of
decay through N mixing with a single flavor of SM neutrino is depicted by the black solid (UμN or UτN nonzero) and dashed (UeN

nonzero) lines. In the right-hand panel, the different cases overlap.

10The identical final-state charged lepton case, δ ¼ 0, is given
in Table IX and follows the pattern above, generating zero
forward-backward asymmetry.
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masses of the charged leptons into which it is decaying, the
forward-backward asymmetry shrinks.
In order to determine how large the forward-backward

asymmetry can be, we explore the case where a Majorana
fermion N decays into νμ−eþ or νμþe− via neutral
mediators. We consider several combinations of allowed
couplings, as labeled in Fig. 3. The largest asymmetry is
attained when all couplings (SPVAT) are allowed to be
nonzero, and for mN just larger than mμ þme.

V. DIRAC FERMION MIMICKING MAJORANA
FERMION DECAY DISTRIBUTIONS

As we have seen from the previous sections, with more
details given in Appendix A, generically DF have signifi-
cantly larger forward-backward anisotropies than MF.
Additionally, this anisotropy must be zero for MF for a
number of well-motivated model-dependent scenarios,
such as HNLs that decay via a single neutral mediator
only. Despite these generic differences, it is still possible, in
certain restricted cases, that both DF and MF hypotheses
are capable of explaining observations. We now address
the circumstances under which the DF hypothesis can
faithfully fake the MF one.
Instead of focusing only on the produced forward-

backward asymmetry, we consider the full matrix-
element-squared and, therefore, the fully differential partial
widths of the decays. If N is a MF, can the parameters GNL
associated with a DF N conspire perversely such that this
decay is perfectly mimicked in all ways (i.e., the matrix-
elements-squared become identical)? For any single decay
channel, this is always possible, since if N is a MF, there
are additional restrictions on the form of the Lagrangian,
and the MF decay can be derived from the DF decay

with specific substitutions; see Eqs. (A4)–(A8). Under
these substitutions, the coefficients of the different
Lorentz-Invariant contributions assuming N is a DF, given
in Table IV, align with those for a MF, given in Table VI.
Thus, if one can only observe a single decay channel of N
(e.g., N → νl−

αl
þ
β ) and there is no information on, for

example, related final states (e.g., νl−
βl

þ
α ) and the data are

consistent with the MF hypothesis, it is always possible to
find a DF scenario that is also consistent; a DF can always
fake a MF. The converse is not true; a generic DF cannot
always be faked by a MF. For example, there are many
cases in which all couplings for a MF will lead to no
asymmetry and a typical set of DF couplings leads to
nonzero asymmetry.
If multiple decay channels are experimentally acces-

sible, e.g., N → νμ�e∓, it becomes harder for the DF
hypothesis to fake the MF one. Regardless of couplings
and mixing, the ratio of rates for a MF to decay into these
two final states must be one (within statistical fluctua-
tions). For a DF, this ratio depends on both the relative
production rate of N and N̄ (for instance, from positively
charged and negatively charged meson decays into the N
or N̄), as well as the parameters governing the decay of N
itself. Data that are consistent with the MF hypothesis
may only be faked by a DF if the production and decay
processes conspire. Something as straightforward as
altering production modes, by altering focusing or
changing beam energy, should be able to break any
degeneracy and distinguish these hypotheses. While it
is possible for these effects to conspire in the DF scenario
in a way that the relative rate of the two final-states is
unity, in general, considering both of these channels in
tandem should provide stronger evidence that N is a
Majorana fermion.
The situation is also different if one only sticks to

concrete models for the physics behind HNL production
and decay. As a specific example, consider the case where
the only interactions of N are through mixing with the light
neutrinos νκ with mixing anglesUκN so that all of N decays
are mediated by the SM weak interactions. For the same
lepton-flavor final state, the forward-backward asymmetry
is zero if N is a MF. Generically, a DF will have nonzero
forward-backward asymmetry, and thus, the two hypoth-
eses can be distinguished from AFB alone. In general, when
all UκN are relevant, the matrix-element-squared for the
decay of interest is

jMðN → νeþe−Þj2 ¼
X

κ¼e;μ;τ

jMðN → νκeþe−Þj2; ð5:1Þ

where each of the three processes on the right-hand side
will depend on an individual mixing angle jUκN j2. As these
mixings change, the allowed forward-backward asymmetry
of the eþe− final state can vary between the values
predicted by νe mixing alone and νμ;τ mixing; i.e., AFB

FIG. 3. Allowed range of decay anisotropy for the decay
N → νμ−eþ or νμþe− when N is a Majorana fermion. Here,
we consider decays induced by neutral mediators only and allow
for nonzero couplings of the scalar, pseudoscalar, vector, and
axial-vector variety (in green) or the vector, axial-vector, and
tensor variety (in blue). The purple region indicates the allowed
range when all types of couplings are allowed to be nonzero.
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can take any value between the solid and dashed black lines
of Fig. 2 (left). For mN ≲ 1.5 MeV, this range includes
zero, and thus, if the measurement in the decayN → νeþe−
is consistent with AFB ¼ 0, it is not possible to determine if
N is a Majorana fermion or Dirac fermion. Furthermore,
the DF hypothesis will require specific arrangements of
jUκN j2. Conversely, if mN is sufficiently large (and we
restrict ourselves to this SM-like scenario), and AFB is
measured to be zero, the evidence is in favor of N being a
Majorana fermion.
We have implicitly assumed that (a) the N are produced

via some process from which they emerge 100% polarized,
and (b) we are operating in a setting in which (if N is a DF)
we only have N production and not N̄. If either of these
assumptions is violated, then the distinction between DF
and MF becomes more difficult. For instance, if N is a DF
and N and N̄ are produced in equal abundance, their
contributions cancel any forward-backward asymmetry, a
signature indicative of a MF decay. In principle, as long as
the net polarization of the N is nonzero, and the Dirac N=N̄
production rates are not equal, the same mechanisms for
separating the MF and DF hypotheses we discussed
throughout this work are still accessible. However, the
reduced separation between the two hypotheses will mean
that larger statistical samples of N decays are required to
perform this distinction at a meaningful level. We will
analyze this situation in detail in Ref. [39].

VI. FULLY DIFFERENTIAL DISTRIBUTIONS AND
DISTINCTIONS BETWEEN INTERACTION

STRUCTURES

Different Lagrangians for the HNL decay lead to different
kinematics, and hence, measurements of the kinematic
distributions may allow one to distinguish one new-physics
scenario from all others. This may require a more detailed
analysis beyond the single differential distribution,
dΓ=d cos θll, which we have been concentrating on so
far. In this section, we investigate the ability of combinations
of doubly differential partial widths with respect to pairs of
kinematical variables to distinguish interaction structures. In
particular, we assume that the outgoing charged leptons are
nearly massless relative to the N; i.e., mα;β ≪ mN . When
considering MF decays and how they might differ from
those of DF, wewill make the further assumption that α ¼ β;
i.e., the final-state charged leptons are identical.

A. Dirac fermion cases

Under the above assumptions, there are four distinct
“types” of decays for DiracN that we will define: pure scalar
and pseudoscalar, pure vector and axial-vector (two types),
and pure tensor. For thevector and axial-vector types, we take
all GNL to be real and find the two generic cases to be (I)
GVV ¼ GAA ¼ GAV ¼ GVA and (II) GVV ¼ −GAA ¼
−GAV ¼ GVA. In each different case, the partial widths are

dΓðN → νl−
αl

þ
β Þ

dzlldzνmd cos θlldγlldϕ
¼ N ðpppmÞ½ðpνpNÞ þmNðpνsÞ�; ðDF; SPÞ ð6:1aÞ

dΓðN → νl−
αl

þ
β Þ

dzlldzνmd cos θlldγlldϕ
¼ N ðpmpνÞ½ðpppNÞ þmNðppsÞ�; ðDF;VA IÞ ð6:1bÞ

dΓðN → νl−
αl

þ
β Þ

dzlldzνmd cos θlldγlldϕ
¼ N ðpppνÞ½ðpmpNÞ −mNðpmsÞ�; ðDF;VA IIÞ ð6:1cÞ

dΓðN → νl−
αl

þ
β Þ

dzlldzνmd cos θlldγlldϕ
¼ N

3
½2ðpmpνÞðpppNÞ þ 2ðpppνÞðpmpNÞ − ðpppmÞðpνpNÞ�: ðDF;TÞ ð6:1dÞ

The normalization factor is N ¼ 6Γ=ðm4
Nπ

2Þ, zll ¼ m2
ll=m

2
N , and zνm ¼ m2

νm=m2
N . For general vector and axial-vector

interactions,we can have contributions fromboth “types,” and the associated differential distributions combine linearly.Wehave
chosen the coefficients of the spin-dependent terms to maximize the forward-backward asymmetry. Moving away from this
assumption will diminish the spin dependence and the resulting forward-backward asymmetry.

B. Majorana fermion cases

Fewer distinct cases arise for the MF case if we allow only two types of couplings at a time. The tensor case is identical to
that in Eq. (61.d), so we do not repeat it here. If we have scalar and pseudoscalar couplings, then the spin-dependent piece
necessarily vanishes. Finally, if we consider vector and axial-vector interactions, only one generic case exists, proportional
to the sum of the “VA I” and “VA II” cases in Eq. (6.1). The fully differential partial widths in the MF cases are
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dΓ
dϑ⃗

¼ N ðpppmÞðpνpNÞ; ðMF; SPÞ ð6:2aÞ

dΓ
dϑ⃗

¼N
2
½ðpmpνÞðpppNÞ þ ðpppνÞðpmpNÞ

þmNððpmpνÞðppsÞ− ðpppνÞðpmsÞÞ�: ðMF;VAÞ
ð6:2bÞ

Figure 4 depicts the doubly differential distributions of
DF N decays for the four different types of decays. We
show the doubly differential distributions for each of the six
pairs of final-state phase space parameters. Each two-
dimensional panel has a color scale that is largest for light
colors and smallest for dark ones. We also show the singly
differential partial widths along the diagonal for each of
these, arbitrarily normalized.

FIG. 4. Distributions of four different types of DF N → νl−
αl

þ
β decays, in the limit mα; mβ ≪ mN . Each set contains, away from the

diagonal subpanels, two-dimensional distributions where the brighter (darker) colors correspond to larger (smaller) differential partial
widths. One-dimensional distributions (diagonal sub-panels, solid lines) correspond to the single-differential partial widths dΓ=dx with
respect to each of the four kinematical variables x ∈ fzll; zνm; cos θll; γllg, arbitrarily normalized. For each of the cases presented,
(see Eqs. (6.1), the nonzero couplings are listed in each panel.
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We note several distinct features in the four different sets
in Fig. 4. First, we see that in the one-dimensional
dΓ=d cos θll panels, the slope is largest for the scalar
and pseudoscalar case and zero for the tensor one—this
reflects the discussion in Sec. IVA: The allowed anisotropy
can be large (ΔΓ=Γ ¼ 1=2) for scalar and pseudoscalar
couplings. However, in the mα, mβ ≪ mN limit, for vector
and axial-vector couplings, this anisotropy can only be as
large as �1=6. Different cases are also associated to
different distributions in the zll vs zνm panels in Fig. 4.
For these four different cases, these distributions are
qualitatively different. This implies that, with perfect
measurements of these two parameters for a large-statistics
sample, we could, in principle, distinguish between these
different models for the DF HNL decay.
Figure 5 depicts the same distributions for MF N decays.

Contrasting Figs. 5 and 4, as expected, the one-dimensional
distribution dΓ=d cos θll is flat11 for Majorana fermion N
decays. However, there is some parent-spin dependence in
the γll distribution in the vector and axial-vector case (right
set of panels of Fig. 5). This vanishes upon integrating
over γll ∈ ½0; 2π�.
For MF N decay, assuming vector and axial-vector

interactions, the zll vs zνm panel takes on a different
appearance than the two options in the Dirac fermion N
case; it is a linear combination of the two Dirac fermion
options. Comparing the sets in Fig. 5 with those in Fig. 4,

it appears that the cos θll dependence offers the strongest
power to distinguish the MF and DF hypothesis using the
kinematics of the N three-body-decay.

VII. DISCUSSION AND CONCLUSIONS

The fact that neutrinos have mass implies the existence
of new particles or interactions beyond those that make up
the Standard Model of particle physics. Whatever these
might be, the neutrinos end up as either massive Dirac or
massive Majorana fermions. This distinction is fundamen-
tally linked to whether lepton-number symmetry is con-
served (Dirac) or violated (Majorana) in nature.
Considerable research has been dedicated to ways of

observing lepton-number violation in the laboratory in
order to shed light on this question. These searches operate
on the principle that if lepton-number violation is observed,
then the Majorana-fermion nature of neutrinos is con-
firmed. On the contrary, few strategies exist to confirm
whether neutrinos are Dirac fermions. Recently, the strat-
egy of observing distributions of two-body decays of
neutral fermions was highlighted as a means of confirming
the Dirac-fermion nature of neutrinos.
In this work, we expanded upon this idea by studying

three-body decays of Dirac and Majorana fermions in great
detail. We focused on the case where a heavy fermion,
such as a heavy neutral lepton (N) that mixes with the
light neutrinos, decays into a light neutrino and a pair of
charged leptons. We studied N-decays through generic
contact interactions, considering all possible combinations
of four-fermion interactions, defined in Eq. (3.1).
Furthermore, we considered final states containing both

FIG. 5. Same as Fig. 4, but for two different MF N-decay models. Left: scalar and pseudoscalar interactions only, such that
R−
SP ¼ I−SS ¼ R−

PS ¼ I−PP. Right: vector and axial-vector interactions only, such that Rþ
VV ¼ I−AA ¼ Rþ

VA ¼ I−AV .

11This result would hold even if we relaxed some of the
assumptions in choosing sets of couplings—as long as the two
final-state charged leptons are identical then dΓ=d cos θll is flat.
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like-flavor and different-flavor charged leptons and detec-
tors that can and cannot distinguish the charge of the final-
state leptons. We determined several features that allow for
distinction between the three-body decays of Dirac and
Majorana fermions. Under the restriction of like-flavor
charged leptons or a charge-blind detector, we used CPT
arguments to show that Majorana-fermion decays exhibit
isotropy (leading to AFB ¼ 0) in the direction of the
outgoing neutrino (or equivalently, the outgoing charged-
lepton pair), whereas Dirac fermion decays can have large
anisotropies.
Going beyond studying forward-backward asymmetries,

we also explored the fully differential phase space of the
three-body decays. We demonstrated how to express the
fully differential partial width for N decaying in its rest
frame Eq. (4.1) in terms of 13 kinematic invariants
Eqs. (3.12)–(3.17). In extensive appendices, we tabulate
the contributions of each kinematic invariant to the partial
width, under various assumptions for the Dirac or Majorana
nature of N, the flavor structure of the final state, and the
capabilities of the detector, as well as provide the technical
details of the calculations. These results allow us to confirm
the conclusions of the simple CPT arguments and to move
beyond the assumptions associated with them to study
more general cases. We also demonstrated how these full
distributions provide more leverage in distinguishing
between Dirac and Majorana fermion decays and also
can help to determine the structure of the interactions
mediating the decays.
As an example of the utility of the general results, we

showed that, for Dirac fermions, if only two types of
coupling are nonzero, anisotropy can occur for only scalar
and pseudoscalar couplings (jAFBj ≤ 1=2) or only vector
and axial-vector couplings (jAFBj ≤ 1=6 for heavy N and
jAFBj ≤ 1=2 if final-state lepton masses cannot be ignored),
while all other combinations of pairs of couplings result in
AFB ¼ 0. The situation is more complicated if more than
two types of couplings are nonzero. The case of Majorana
fermions decaying to different-flavor charged leptons
through neutral mediators only requires at least three
different types of coupling to generate a forward-backward
asymmetry, and only with all couplings nonzero and N
light can the asymmetry be as large as for a Dirac fermion
with scalar and pseudoscalar couplings, as depicted Fig. 3.
This key distinction, that Majorana-fermion decays tend to
have zero forward-backward asymmetry in the direction of
the outgoing neutrino, means that it is often possible to
distinguish between the Majorana and Dirac fermion
hypotheses using kinematic distributions; see Figs. 4 and 5.
Throughout this work, we have restricted ourselves to

analytic calculations of these decays in the rest frame of the
decaying particle, speculating on differences between
distributions that can be leveraged once a heavy fermion
is hypothetically discovered. In our companion paper [39],
under preparation, we will take this framework and apply it

to several phenomenological cases of interest, determining
the required statistics to distinguish between different
model scenarios.
As we venture forward attempting to discover the nature

of the neutrinos, the question of lepton-number conserva-
tion is crucial. We demonstrated here that, in tandem with
other experimental searches for lepton-number violation,
the decays (specifically, three-body decays) of heavy
neutrinos are a new tool that might be leveraged to address
this fundamental puzzle.
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APPENDIX A: MATRIX-ELEMENTS-SQUARED
FOR HEAVY NEUTRAL LEPTON DECAYS

In Sec. III B, we introduced the set of 13 Lorentz
invariants Ki for a convenient decomposition of the N
decay matrix-element-squared. In this language, jMj2 ¼P

i CiKi, where Ci are coefficients depending on the GNL

and/or ḠNL entering the matrix elements of interest. In this
appendix, we provide the full expressions forCi in different
scenarios, specifically
(1) Dirac fermion N with contributions from M1. This

is given in Table IV.
(2) Dirac fermion N̄ with contributions from M2. This

is given in Table V.
(3) Majorana fermion N with contributions from M1

and M2.
(a) Generic result with no mediator assumptions,

given in Table VI.
(b) Results assuming only neutral mediators con-

tribute, given in Table VII.
(4) Majorana fermion N with identical final-state

charged leptons, with contributions from M1, M2,
Mc

1, and Mc
2.

(a) Results obtained without mediator assumptions
provided in Table VIII.

(b) Subsequent results with only neutral mediators
are given in Table IX.

In order to simplify our results for the various Majorana
fermion calculations, we define some new parameters:

G�
NL ≡ ðGNL � ḠNLÞ; ðA1Þ

R�
NL ≡ ReðGNL � ḠNLÞ; ðA2Þ
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I�NL ≡ ImðGNL � ḠNLÞ: ðA3Þ

We find that the Ci for a Majorana fermion only depends on
either Gþ

NL or G−
NL for any given combination of ðNLÞ.

Additionally, when we make further restrictions, such as
assuming the final-state charged leptons are identical, only
dependence on one of Rþ

NL, R
−
NL, I

þ
NL, I

−
NL appears for any

given ðNLÞ. We express our results in terms of G�
NL, R

�
NL,

and I�NL for our Majorana fermion results in Tables VI
and VIII.
The results of the Majorana Fermion N decay calcu-

lations given in Tables VI and VIII can equivalently be

determined by using the results given for Dirac fermions
with specific substitutions. Specifically, the general
Majorana fermion N decay result (Table VI) is equivalent
to taking the Dirac fermion N result (Table IV) with the
following set of replacements:

GSS → GSS − ḠSS ¼ G−
SS; GSP → GSP − ḠSP ¼ G−

SP;

ðA4Þ

GPS → GPS − ḠPS ¼ G−
PS; GPP → GPP − ḠPP ¼ G−

PP;

ðA5Þ

TABLE V. Identical to Table IV, but for a DF N̄, decaying via the matrix element in Eq. (3.7).

Ci Dirac Fermion N̄

C1 8ðjḠPPj2 þ jḠSPj2 − jḠPSj2 − jḠSSj2Þ þ 16ðjḠVV j2 þ jḠAV j2 − jḠVAj2 − jḠAAj2Þ
C2 96Re½ðḠAA þ ḠVVÞḠ�

TT � − 16Re½ḠAAḠ�
PP þ ḠAVḠ�

PS þ ḠVAḠ�
SP þ ḠVVḠ�

SS�
C3 −96Re½ðḠAA − ḠVVÞḠ�

TT � − 16Re½ḠAAḠ�
PP − ḠAVḠ�

PS þ ḠVAḠ�
SP − ḠVVḠ�

SS�
C4 16½jḠAA − ḠVV j2 þ jḠVA − ḠAV j2� þ 128jḠTT j2 þ 32Re½ðḠSS þ ḠPPÞḠ�

TT �
C5 16½jḠAA þ ḠVV j2 þ jḠVA þ ḠAV j2� þ 128jḠTT j2 − 32Re½ðḠSS þ ḠPPÞḠ�

TT �
C6 8½jḠPPj2 þ jḠSPj2 þ jḠPSj2 þ jḠSSj2� − 64jḠTT j2
C7 16Re½ḠPPḠ�

SP þ ḠSSḠ�
PS�

C8 16Re½ḠPPḠ�
SP − ḠSSḠ�

PS� þ 32Re½ḠAAḠ�
VA − ḠVVḠ�

AV �
C9 32Re½ðḠVV − ḠAAÞðḠ�

VA − Ḡ�
AVÞ� þ 32Re½ðḠSP þ ḠPSÞḠ�

TT �
C10 −32Re½ðḠVV þ ḠAAÞðḠ�

VA þ Ḡ�
AVÞ� − 32Re½ðḠSP þ ḠPSÞḠ�

TT �
C11 16Re½ḠAAḠ�

SP þ ḠAVḠ�
SS þ ḠVAḠ�

PP þ ḠVVḠ�
PS� þ 32Re½ðḠAV þ ḠVAÞḠ�

TT �
C12 16Re½ḠAAḠ�

SP − ḠAVḠ�
SS þ ḠVAḠ�

PP − ḠVVḠ�
PS� þ 32Re½ðḠAV − ḠVAÞḠ�

TT �
C13 32mNIm½ðḠPP þ ḠSSÞḠ�

TT �
þ16mαðIm½ḠPPḠ�

AA þ ḠPSḠ�
AV þ ḠSPḠ�

VA þ ḠSSḠ�
VV � − 2Im½ðḠAA þ ḠVVÞḠ�

TT �Þ
þ16mβðIm½−ḠPPḠ�

AA þ ḠPSḠ�
AV − ḠSPḠ�

VA þ ḠSSḠ�
VV � þ 2Im½ðḠVV − ḠAAÞḠ�

TT �Þ

TABLE IV. Lorentz-invariant decomposition coefficients for a DF N decaying via the matrix element in Eq. (3.6).
The corresponding Lorentz-invariant quantities Ki are given in Eqs. (3.12)–(3.17), and the matrix-element-squared
can be expressed as in Eq. (3.18).

Ci Dirac Fermion N

C1 8ðjGPPj2 þ jGSPj2 − jGPSj2 − jGSSj2Þ þ 16ðjGVV j2 þ jGAV j2 − jGVAj2 − jGAAj2Þ
C2 −96Re½ðGAA − GVVÞG�

TT � − 16Re½GAAG�
PP þ GAVG�

PS − GVAG�
SP − GVVG�

SS�
C3 96Re½ðGAA þGVVÞG�

TT � − 16Re½GAAG�
PP − GAVG�

PS − GVAG�
SP þ GVVG�

SS�
C4 16½jGAA þGVV j2 þ jGVA þGAV j2� þ 128jGTT j2 − 32Re½ðGSS þGPPÞG�

TT �
C5 16½jGAA − GVV j2 þ jGVA − GAV j2� þ 128jGTT j2 þ 32Re½ðGSS þ GPPÞG�

TT �
C6 8½jGPPj2 þ jGSPj2 þ jGPSj2 þ jGSSj2� − 64jGTT j2
C7 16Re½GPPG�

SP þ GSSG�
PS�

C8 16Re½GPPG�
SP − GSSG�

PS� − 32Re½GAAG�
VA − GVVG�

AV �
C9 32Re½ðGVV þGAAÞðG�

AV þG�
VAÞ� − 32Re½ðGSP þ GPSÞG�

TT �
C10 32Re½ðGVV − GAAÞðG�

AV − G�
VAÞ� þ 32Re½ðGSP þ GPSÞG�

TT �
C11 16Re½GAAG�

SP þ GAVG�
SS − GVAG�

PP − GVVG�
PS� − 32Re½ðGAV − GVAÞG�

TT �
C12 16Re½GAAG�

SP −GAVG�
SS − GVAG�

PP þGVVG�
PS� − 32Re½ðGAV þ GVAÞG�

TT �
C13 −32mNIm½ðGPP þ GSSÞG�

TT �
þ16mαðIm½GPPG�

AA þ GPSG�
AV − GSPG�

VA − GSSG�
VV � − 2Im½ðGVV − GAAÞG�

TT �Þ
þ16mβðIm½−GPPG�

AA þ GPSG�
AV þ GSPG�

VA − GSSG�
VV � þ 2Im½ðGAA þ GVVÞG�

TT �Þ
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TABLE VI. Identical to Table IV, but for a MF N decaying via the matrix elements in Eqs. (3.6) and (3.7).

Ci Majorana Fermion N

C1 8ðjG−
PPj2 þ jG−

SPj2 − jG−
PSj2 − jG−

SSj2Þ þ 16ðjGþ
VV j2 þ jG−

AV j2 − jGþ
VAj2 − jG−

AAj2Þ
C2 −96Re½ðG−

AA − Gþ
VVÞðGþ

TTÞ�� − 16Re½G−
AAðG−

PPÞ� þ G−
AVðG−

PSÞ� − Gþ
VAðG−

SPÞ� − Gþ
VVðG−

SSÞ��
C3 96Re½ðG−

AA þ Gþ
VVÞðGþ

TTÞ�� − 16Re½G−
AAðG−

PPÞ� − G−
AVðG−

PSÞ� − Gþ
VAðG−

SPÞ� þ Gþ
VVðG−

SSÞ��
C4 16½jG−

AA þ Gþ
VV j2 þ jGþ

VA þ G−
AV j2� þ 128jGþ

TT j2 − 32Re½ðG−
SS þ G−

PPÞðGþ
TTÞ��

C5 16½jG−
AA − Gþ

VV j2 þ jGþ
VA − G−

AV j2� þ 128jGþ
TT j2 þ 32Re½ðG−

SS þ G−
PPÞðGþ

TTÞ��
C6 8½jG−

PPj2 þ jG−
SPj2 þ jG−

PSj2 þ jG−
SSj2� − 64jGþ

TT j2

C7 16Re½G−
PPðG−

SPÞ� þ G−
SSðG−

PSÞ��
C8 16Re½G−

PPðG−
SPÞ� − G−

SSðG−
PSÞ�� − 32Re½G−

AAðGþ
VAÞ� −Gþ

VVðG−
AVÞ��

C9 32Re½ðGþ
VV þ G−

AAÞððG−
AVÞ� þ ðGþ

VAÞ�Þ� − 32Re½ðG−
SP þ G−

PSÞðGþ
TTÞ��

C10 32Re½ðGþ
VV − G−

AAÞððG−
AVÞ� − ðGþ

VAÞ�Þ� þ 32Re½ðG−
SP þ G−

PSÞðGþ
TTÞ��

C11 16Re½G−
AAðG−

SPÞ� þG−
AVðG−

SSÞ� − Gþ
VAðG−

PPÞ� −Gþ
VVðG−

PSÞ�� − 32Re½ðG−
AV − Gþ

VAÞðGþ
TTÞ��

C12 16Re½G−
AAðG−

SPÞ� − G−
AVðG−

SSÞ� −Gþ
VAðG−

PPÞ� þ Gþ
VVðG−

PSÞ�� − 32Re½ðG−
AV þ Gþ

VAÞðGþ
TTÞ��

C13 −32mNIm½ðG−
PP þ G−

SSÞðGþ
TTÞ��

þ16mαðIm½G−
PPðG−

AAÞ� þG−
PSðG−

AVÞ� −G−
SPðGþ

VAÞ� −G−
SSðGþ

VVÞ�� − 2Im½ðGþ
VV − G−

AAÞðGþ
TTÞ��Þ

þ16mβðIm½−G−
PPðG−

AAÞ� þG−
PSðG−

AVÞ� þG−
SPðGþ

VAÞ� − G−
SSðGþ

VVÞ�� þ 2Im½ðG−
AA þ Gþ

VVÞðGþ
TTÞ��Þ

TABLE VII. Identical to Table VI, for the decays of a MF N, but now assuming only neutral mediators contribute
to the decay. Here, we have factored out a common m−4

ϕ from each coefficient.

Ci Majorana Fermion N, Neutral Mediators Only

C1 32ðg2νP þ g2νSÞðjglPj2 − jglSj2Þ þ 64ðg2νA þ g2νVÞðjglV j2 − jglAj2Þ
C2 384gνTðgνAImðglAg�lTÞ þ gνVReðglVg�lTÞÞ − 64ðgνAgνP þ gνSgνVÞðImðglPg�lA þ glSg�lVÞÞ
C3 384gνTð−gνAImðglAg�lTÞ þ gνVReðglVg�lTÞÞ − 64ðgνAgνP þ gνSgνVÞðImðglPg�lA − glSg�lVÞÞ
C4 64ðg2νA þ g2νVÞðjglV j2 þ jglAj2Þ þ 512g2νT jglT j2 − 128gνTðgνPReðglPg�lTÞ − gνSImðglSg�lTÞÞ
C5 64ðg2νA þ g2νVÞðjglV j2 þ jglAj2Þ þ 512g2νT jglT j2 þ 128gνTðgνPReðglPg�lTÞ − gνSImðglSg�lTÞÞ
C6 32ðg2νP þ g2νSÞðjglPj2 þ jglSj2Þ − 256g2νT jglT j2

C7 ¼ C8 0
C9 ¼ −C10 128ðg2νA þ g2νVÞReðglVg�lAÞ − 128gνTð−gνSImðglPg�lTÞ þ gνPReðglSg�lTÞÞ
C11 64ðgνAgνS − gνPgνVÞReðglPg�lA þ glSg�lVÞ þ 128gνTðgνVReðglAg�lTÞ þ gνAImðglVg�lTÞÞ
C12 64ðgνAgνS − gνPgνVÞReðglPg�lA − glSg�lVÞ − 128gνTðgνVReðglAg�lTÞ − gνAImðglVg�lTÞÞ
C13 −128mNgνTðgνPImðglPg�lTÞ þ gνSReðglSg�lTÞÞ

−64mαðgνAgνP þ gνSgνVÞReðglPg�lA þ glSg�lVÞ þ 128mαgνTðgνAReðglAg�lTÞ − gνV ImðglVg�lTÞÞ
þ64mβðgνAgνP þ gνSgνVÞReðglPg�lA − glSg�lVÞ þ 128mβgνTðgνAReðglAg�lTÞ þ gνVImðglVg�lTÞÞ

TABLE VIII. Identical to Table VI, for a MF N, further assuming that the final-state charged leptons are identical.

Ci Majorana Fermion N Decaying to Identical Final-State Charged Leptons

C1 32½ðI−PPÞ2 þ ðR−
SPÞ2 − ðI−SSÞ2 − ðR−

PSÞ2� þ 64½ðRþ
VVÞ2 þ ðI−AVÞ2 − ðI−AAÞ2 − ðRþ

VAÞ2�
C2 64½R−

SPR
þ
VA − I−AAI

−
PP� þ 384Rþ

VVR
þ
TT

C3 C2

C4 64½ðRþ
VVÞ2 þ ðI−AVÞ2 þ ðI−AAÞ2 þ ðRþ

VAÞ2� þ 512ðRþ
TTÞ2

C5 C4

C6 32½ðI−PPÞ2 þ ðR−
SPÞ2 þ ðI−SSÞ2 þ ðR−

PSÞ2� − 256ðRþ
TTÞ2

C7 0
C8 0
C9 128ðI−AAI−AV þ Rþ

VAR
þ
VV − Rþ

TTðR−
PS þ R−

SPÞÞ
C10 −C9

C11 64ðI−AVI−SS − R−
PSR

þ
VV þ 2Rþ

TTR
þ
VAÞ

C12 −C11

C13 −128mNðI−SS þ I−PPÞRþ
TT − 128mlðI−AVR−

PS þ I−SSR
þ
VV − 2I−AAR

þ
TTÞ
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GVV → GVV þ ḠVV ¼ Gþ
VV; GAV → GAV − ḠAV ¼ G−

AV;

ðA6Þ

GVA → GVA þ ḠVA ¼ Gþ
VA; GAA → GAA − ḠAA ¼ G−

AA;

ðA7Þ

GTT → GTT þ ḠTT ¼ Gþ
TT: ðA8Þ

This demonstrates why, for each ðNLÞ, only one coupling
of the type G�

NL appears in Table VI. In order to obtain the
results of Table VIII, when the final-state charged leptons
are identical, we may perform a set of substitutions on
Table VI. These are

G−
SS → 2I−SS; G−

SP → 2R−
SP;

G−
PS → 2R−

PS; G−
SS → 2I−SS; ðA9Þ

Gþ
VV → 2Rþ

VV; G−
AV → 2I−AV;

Gþ
VA → 2Rþ

VA; G−
AA → 2I−AA; ðA10Þ

Gþ
TT → 2Rþ

TT: ðA11Þ

These results can be used to determine the Lorentz-
invariant coefficients for Dirac fermionN and N̄ if the final-
state charged leptons are identical. These are not given in
any table due to their cumbersome forms. However, they
can be obtained by substitution on Tables IV and V,
respectively. The substitutions for Dirac fermion N are

GNL → GNL þ ηNηLḠ�
NL; ðA12Þ

where ηN;L previously appeared in our definitions of Mc
1

and Mc
2 in Eqs. (3.8) and (3.9)—a reminder that ηX ¼ þ1

for X ¼ S, V, A, T and ηX ¼ −1 for N ¼ X. For Dirac
fermion N̄, the appropriate substitutions are

ḠNL → ḠNL þ ηNηLG�
NL: ðA13Þ

When we are considering Dirac fermion N or N̄ decays of
the type N → νlþ

α l−
α , then the two decays (N and N̄) must

yield the same partial width at tree level. Under the
substitutions of Eqs. (A12) and (A13), the coefficients C1

through C6 (which contribute to the total width of the decay)
are not exactly identical; however, their differences cancel
out when considering the total width of N and N̄. Likewise,
the coefficients C7 through C13, which can provide an
overall forward-backward asymmetry, are related in a way
that the two distributions, N and N̄, necessarily have equal
and opposite forward-backward asymmetries.
Inspecting Table VIII, we see that certain Ci are related;

e.g.,C2 ¼ C3, and others are necessarily zero:C7 ¼ C8 ¼ 0.
This, along with the relations C10 ¼ −C9 and C12 ¼ −C11,
leads to our result that, when decaying to identical final-state
charged leptons, Majorana fermions have zero forward-
backward asymmetry. In order to connect this relationship
of Ci to a zero forward-backward asymmetry, we must
integrate the Lorentz invariants over a subset of phase
space—this integration is performed in Appendix D.
Before concluding this Appendix, we will focus on one

final subclass of models. This is when all mediators of N
and N̄ decay are neutral (or at least, overwhelmingly
dominant in the decay width contributions). This allows
us to apply further restrictions to the coefficients GNL and
ḠNL and arrive at further simplifications to the Ci obtained
in this Appendix.

1. Restrictions when mediators are neutral

In writing the matrix elements of Eqs. (3.6) and (3.7), we
chose to express them as a four-fermion terms in the
“neutral” ordering, contracting the spinors of N and ν and
the charged leptons with each other. Because we allowed
for a generic set of ΓN and ΓL, this choice was generic, even
if the mediators are charged, due to Fierz rearrangement. If
the new mediators are all neutral, then this ordering is even
more well motivated, and any term in the matrixelement
GNL can be thought of as coming from a product of two
fundamental couplings—one coupling of the new mediator

TABLE IX. Identical to Table VIII, a MF N decaying to identical final-state charged leptons, but assuming only
neutral mediators contribute to the decay. We have factored out a common m−4

ϕ from each coefficient.

Ci Majorana Fermion N, Identical Final-State Charged Leptons, Neutral Mediators Only

C1 128ðg2lP − g2lSÞðg2νP þ g2νSÞ þ 256ðg2lV − g2lAÞðg2νV þ g2νAÞ
C2 ¼ C3 256ð6glVgνVgT − glAglPðgνAgνP þ gνSgνVÞÞ
C4 ¼ C5 256ððg2lA þ g2lVÞðg2νA þ g2νVÞ þ 8g2TÞ
C6 128ððg2lP þ g2lSÞðg2νP þ g2νSÞ − 8g2TÞ
C7 ¼ C8 0
C9 ¼ −C10 512ðglAglVðg2νV þ g2νAÞ þ gTðglPgνS − glSgνPÞÞ
C11 ¼ −C12 256ðglSglVðgνAgνS − gνPgνVÞ þ 2gTglAgνVÞ
C13 −512mNgTðglPgνP þ glSgνSÞ

þ512mlð2gTglAgνA − glSglVðgνAgνP þ gνSgνVÞÞ
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with the Nν vertex and one with the charged lepton vertex.
We introduce a new notation here,

GNL →
1

m2
ϕ

gνNglL ðneutral mediators onlyÞ; ðA14Þ

where mϕ is the mass scale of the new mediator(s), and gνN
and glL are dimensionless couplings.
In this case, the couplings GNL and ḠNL are related by

charge conjugation. Specifically,

ḠNL → ηN
1

m2
ϕ

g�νNglL: ðA15Þ

As a consequence, many relations between various GNL

and ḠN0L0 may be derived, e.g., jGNLj ¼ jḠNLj, among
others. These lead to significant simplification of the
coefficients we obtained in Table VI if N is a Majorana
fermion with decays mediated only by neutral mediators.
As a specific example, let us explore some terms that

appear in C7 and C8 of Table VI, including

CMaj:
7 ¼ 16Re½G−

PPðG−
SPÞ� þG−

SSðG−
PSÞ��: ðA16Þ

Under the replacements of Eqs. (A14) and (A15), this
becomes

CMaj:;NMO
7 → 16Re½ðgνPglP þ g�νPglPÞðg�νSg�lP − gνSg�lPÞ

þ ðgνSglS − g�νSglSÞðg�νPg�lS þ gνPg�lSÞ�;
ðA17Þ

¼ 16Re½−4ijglPj2ReðgνPÞImðgνSÞ
þ 4ijglSj2ImðgνSÞReðgνPÞ�; ðA18Þ

¼ 0: ðA19Þ

In replacements of this type, we also find that, because
Majorana fermion decays only depended on G�

NL, only the
real or imaginary part of each gνN survives for different N.
As we see in Eq. (A18), only the real (imaginary) part of
gνP (gνS) appears. We will take this dependence into
account in our results and perform some minor notational
substitutions, ReðgνPÞ → gνP, ImðgνSÞ → gνS, etc., to sim-
plify our results.
We provide the full results for Majorana fermion decays

assuming neutral mediators only in Table VII. Such a table
could also be derived for Dirac fermion N and N̄ decays;
however, the results are still as complicated as in Tables IV
and V, so we omit them for brevity.
If we assume that only neutral mediators contribute to

N decay and that the final-state charged leptons are

identical, then further simplifications occur. We find
that only the real and imaginary parts of specific
glL (like with the various gνN above) survive and per-
form similar simplifying replacements. We find even
more cancellations, in this case, to the point that the
resulting Ci are simpler and have even further restrictions:
C2 ¼ C3, C4 ¼ C5, C7 ¼ C8 ¼ 0, C9 ¼ −C10, and
C11 ¼ −C12. The results in this case are presented in
Table IX.

APPENDIX B: SPIN-DEPENDENCE IN A
CHARGE-BLIND DETECTOR

Above, we calculated the matrix-elements-squared for
the decays of a Dirac fermion N for N → νlþ

α l−
β and

N̄ → ν̄lþ
α l−

β , where we implicitly assumed that we were in
a situation in which the charge and particle identification of
the final-state charged leptons was possible. Let us now
imagine that we are in a scenario in which the particle
identity of the leptons is easy (for instance, discriminating
electrons from muons in a liquid or gaseous argon time
projection chamber), but measuring their charge is impos-
sible, or at least difficult (for instance, in a detector that is
not magnetized).
As an example, we focus on the case where N couples

only to the Standard Model muon-flavored lepton doublet.
In the typical scenario where the HNL interactions are
only via mixing with the light neutrinos, this implies that
UμN is the only nonzero mixing angle present. If N is a
Dirac fermion, then N (with lepton number 1) can only
decay to the final state νμ−eþ, but not the state νμþe−.
Likewise, its counterpart N̄ (with lepton number −1) can
only decay to ν̄μþe−, but not ν̄μ−eþ. Given the above
calculations, it is possible that, even if N is a Majorana
fermion, that searches for the final state νμ−eþ can be
anisotropic, since its contributions are only from a matrix
element that looks like M1 from Eq. (3.6) and not those
like M2 from Eq. (3.7).
However, if N is a Majorana fermion, it will decay into

the final states νμ−eþ and νμþe− with equal likelihood
(assuming CP invariance), and, if our detection technique
is insensitive to the differences (i.e., the charges) in these
final states, we must sum them incoherently before asking
whether the final resulting distribution is isotropic or not. In
general, given the above framework, the decays for a
Majorana fermion N into one specific-charge final state
are given by the matrix-element-squared jM1 þM2j2,
whereas the decays into the opposite-charge final state
are given by the matrix-element-squared jMc

1 þMc
2j2.

Again, by assuming CP invariance, these must give the
same total rate.
If our detector is insensitive to the charge of the final-

state leptons (i.e., in a detector with no magnetic field),
then, before determining any observables regarding isot-
ropy, we must sum incoherently over these two final
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states,12 obtaining a decay distribution that will be propor-
tional to jM1 þM2j2 þ jMc

1 þMc
2j2. We find that,

regardless of the model assumptions made (neutral medi-
ators, etc.), when we perform this calculation in the most
general way possible and perform this incoherent sum, then
all of the coefficients of spin-dependent Lorentz invariants,
Cj for 7 ≤ j ≤ 13 vanish completely: If a detector is charge
blind and N is a Majorana fermion, all sensitivity to the
spin-dependence completely vanishes. This means that, in
this case, the decays N → νl�

α l
∓
β can be treated as

(a) occurring with equal rate for the two final-state charges
and (b) isotropic in the rest frame of N.

APPENDIX C: LORENTZ INVARIANTS IN N
REST FRAME

Here, we express the 13 Lorentz invariant quantities Ki

in terms of the phase space parameters m2
ll (the invariant

mass-squared of the charged lepton pair), m2
νm (the invari-

ant mass-squared of the neutrino and the negatively
charged lepton), cos θll, γll, and ϕ. Figure 1 defines
the N rest-frame kinematics. Since the differential decay
width does not depend on the azimuthal angle ϕ, for
concreteness, we fix ϕ ¼ π=2 so the three-momentum of
the neutrino (and the sum of the charged lepton momenta,
pll ¼ pα þ pβ) are in the y-z plane. In this case, the
neutrino and negatively charged lepton have, respectively,
four momenta,

pν ¼ Eνð1; 0;− sin θll;− cos θllÞ; ðC1Þ
p0
m ¼ Em; ðC2Þ

px
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
m −m2

m

q
sin θmν sin γll; ðC3Þ

py
m ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
m −m2

m

q
ðcos θmν sin θll

þ sin θmν cos γll cos θllÞ; ðC4Þ

pz
m¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
m−m2

m

q
ðsinθmν cosγll sinθll−cosθmν cosθllÞ;

ðC5Þ

with

Em ¼ m2
ll þm2

νm −m2
p

2mN
; ðC6Þ

cos θmν ≡ p⃗m · p⃗ν

jp⃗mjjp⃗νj
¼ Emðm2

N −m2
llÞ −mNðm2

νm −m2
mÞ

ðm2
N −m2

llÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
m −m2

m

p :

ðC7Þ

The opening angle between the outgoing negatively
charged lepton and the neutrino θmν is determined entirely
by energetics. The positively charged lepton four
momentum is determined by conservation of energy and
momentum. Using these forms for the momenta, the spin-
independent Ki are

K1 ¼ mmmpðpνpNÞ ¼
1

2
mmmpðm2

N −m2
llÞ; ðC8Þ

K2 ¼ mmmNðpppνÞ ¼
1

2
mmmNðm2

N þm2
m −m2

νm −m2
llÞ;
ðC9Þ

K3 ¼ mpmNðpmpνÞ ¼
1

2
mpmNðm2

νm −m2
mÞ; ðC10Þ

K4 ¼ ðpppNÞðpmpνÞ ¼
1

4
ðm2

νm −m2
mÞðm2

N þm2
p −m2

νmÞ;
ðC11Þ

K5 ¼ ðpmpNÞðpppνÞ

¼ 1

4
ðm2

ll þm2
νm −m2

pÞðm2
N þm2

m −m2
ll −m2

νmÞ;
ðC12Þ

K6 ¼ ðpppmÞðpνpNÞ ¼
1

4
ðm2

N −m2
llÞðm2

ll −m2
m −m2

pÞ:
ðC13Þ

The spin-dependent Ki are

K7 ¼ mNðpppmÞðpνsÞ

¼ 1

4
ðm2

N −m2
llÞðm2

ll −m2
p −m2

mÞ cos θll; ðC14Þ

K8 ¼ mNmmmpðpνsÞ ¼
1

2
mmmpðm2

N −m2
llÞ cos θll;

ðC15Þ

K9 ¼ mNðpmpνÞðppsÞ

¼ mN

2
ðm2

νm −m2
mÞ
�
jp⃗mjðcos γll sin θll sin θmν

− cos θll cos θmνÞ −
m2

N −m2
ll

2mN
cos θll

�
; ðC16Þ

12Some care must be taken in this scenario. In our general
analyses, we considered contributions to the matrix element
squared for different Lorentz-invariant contributions of final-state
momentum four vectors. We labeled those four-vectors according
to which charge of lepton they correspond to, i.e., pσ

m (pσ
p) for the

negatively (positively) charged lepton. Now, if charge is not
measurable, we need to label the final-state charged leptons
according to their flavor, e.g., pσ

e and pσ
μ. When this relabeling is

performed, the cancellations discussed here follow.
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K10 ¼ mNðpppνÞðpmsÞ
¼ −

mN

2
ðm2

N þm2
m −m2

νm −m2
llÞjp⃗mjðcos γll sin θll sin θmν − cos θll cos θmνÞ; ðC17Þ

K11 ¼ mmððpνpNÞðppsÞ − ðpppNÞðpνsÞÞ

¼ mm

2
ðm2

N −m2
llÞ
�
jp⃗mjðcos γll sin θll sin θmν − cos θll cos θmνÞ −

2m2
N þm2

p −m2
ll −m2

νm

2mN
cos θll

�
; ðC18Þ

K12 ¼ mpððpνpNÞðpmsÞ − ðpmpNÞðpνsÞÞ

¼ mp

2
ðm2

N −m2
llÞ
�
−jp⃗mjðcos γll sin θll sin θmν − cos θll cos θmνÞ þ

m2
p −m2

νm −m2
ll

2mN
cos θll

�
; ðC19Þ

K13 ¼ ερσληp
ρ
mpσ

ppλ
νsη ¼

1

2
ðm2

N −m2
llÞjp⃗mj sin θll sin γll sin θmν: ðC20Þ

APPENDIX D: INTEGRATION OVER
INVARIANT MASSES

AND ANGULAR DEPENDENCE OF
DISTRIBUTION

In this Appendix, we demonstrate how the differential
partial width introduced in Eq. (4.1), a linear combination
of the Ki explored in Appendix C, can be integrated with
respect to the invariant masses m2

ll and m2
νm (as well as

the unphysical angle ϕ). This allows us to obtain the
differential partial width depending only on the angles
cos θll and γll, with which we can discuss the (an)isotropy
of N decay and the forward-backward asymmetry AFB for
this process.
It is useful to introduce dimensionless variables,

zll ≡m2
ll

m2
N
; σ ≡mm þmp

mN
; ðD1Þ

zνm ≡m2
νm

m2
N
; δ≡mm −mp

mN
: ðD2Þ

The region of accessible phase space is the usual Dalitz
region [40], with σ2 ≤ zll ≤ 1 and the minimum and
maximum of zνm given by

zmin :=max :
νm ¼ 1

4

�
σ2 þ δ2 þ 2

σδ

zll
þ 2ð1 − zllÞ

�

∓ 1 − zll
2zll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzll − δ2Þðzll − σ2Þ

q
: ðD3Þ

Upon integrating the differential distribution over zνm and
ϕ, the distribution is linear in cos θll. We express this
quantity using

dΓ
d cos θlldγlldzll

¼ m5
N

213π4
ð1 − zllÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zll − σ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zll − δ2

q X3
m¼0

z−mll

�X6
i¼1

CiIim þ
X13
i¼7

CiDi
m cos θll

�

þ m5
N

215π3
sin θll

ð1 − zllÞ2ðzll − σ2Þðzll − δ2Þ
z5=2ll

X13
i¼9

ðCiκiC cos γll þ CiκiS sin γllÞ: ðD4Þ

The Ci are the coefficients for each Lorentz Invariant that
enter the matrix-element-squared, given in Tables IV–VIII.
The spin-independent factors Iim and the spin-dependent
factorsDi

m are both functions of δ and σ only, and are given
in Tables X and XI. The Ci only contribute to the total
width for the spin-independent factors Iim for 1 ≤ i ≤ 6 and
to the forward-backward asymmetry for the spin-dependent

factors Di
m for 7 ≤ i ≤ 12. The κiC;S terms appear propor-

tional to either sin θll cos γll or sin θll sin γll and are
nonzero only for 9 ≤ i ≤ 13—their values are given in
Table XII.
Our next goal is to integrate Eq. (D4) over zll in the

range ½σ2; 1�. We express this double-differential partial
with as
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dΓ
d cos θlldγll

¼ m5
N

213π4

�X6
i¼1

Ci

�X3
m¼0

IimTm

�
þ
X12
i¼7

Ci

�X3
m¼0

Di
mTm

�
cos θll

�

þ m5
N sin θll

213 · 3 · 5 · 7π3
X13
i¼9

ðCiκ̃iC cos γll þ Ciκ̃iS sin γllÞ: ðD5Þ

The quantities Tm (which depend solely on σ and δ) contribute to the total width and forward-backward asymmetry of the
decay and are relatively complicated functions. We give those separately in Appendix E so as not to disrupt the discussion
here. The terms κ̃iC;S result from integrating the terms proportional to cos γll and sin γll in Eq. (D4). These are

0
BBBBBB@

κ̃9C
κ̃10C
κ̃11C
κ̃12C
κ̃13S

1
CCCCCCA

¼ ð1 − σÞ4 ×

0
BBBBBB@

ð4þ 16σ þ 12σ2 þ 3σ3Þ þ 7δσð4þ σÞ − 7δ2ð4þ σÞ − 35δ3

−ð4þ 16σ þ 12σ2 þ 3σ3Þ þ 7δσð4þ σÞ þ 7δ2ð4þ σÞ − 35δ3

ðσ þ δÞðð4þ 16σ þ 12σ2 þ 3σ3Þ − 7δ2ð4þ σÞÞ
ðδ − σÞðð4þ 16σ þ 12σ2 þ 3σ3Þ − 7δ2ð4þ σÞÞ

2
mN

ðð4þ 16σ þ 12σ2 þ 3σ3Þ − 7δ2ð4þ σÞÞ

1
CCCCCCA
: ðD6Þ

In order to simplify Eq. (D5), we define four quantities,

XΓ ¼
X6
i¼1

Ci

�X3
m¼0

IimTm

�
; ðD7Þ

XFB ¼
X12
i¼7

Ci

�X3
m¼0

Di
mTm

�
; ðD8Þ

Xcγ ¼
π

105

X12
i¼9

Ciκ̃Ci ; ðD9Þ

Xsγ ¼
π

105
C13κ̃S13; ðD10Þ

which allows us to write Eq. (D5) in a more compact form:

TABLE X. Weights of the spin-independent Lorentz invariants for their contributions to the double-differential
partial width as written in Eq. (D4).

Lorentz Invariant Ii0 Ii1 Ii2 Ii3

K1 ¼ mmmpðpνpNÞ 0 σ2 − δ2 0 0
K2 ¼ mmmNðpppνÞ 0 σ þ δ −σδðσ þ δÞ 0
K3 ¼ mpmNðpmpνÞ 0 σ − δ σδðσ − δÞ 0
K4 ¼ ðpppNÞðpmpνÞ 2

3
1
6
ð2 − σ2 − δ2Þ 1

6
ðσ2 þ δ2 − 2σ2δ2Þ − 2

3
σ2δ2

K5 ¼ ðpmpNÞðpppνÞ 2
3

1
6
ð2 − σ2 − δ2Þ 1

6
ðσ2 þ δ2 − 2σ2δ2Þ − 2

3
σ2δ2

K6 ¼ ðpppmÞðpνpNÞ 2 −ðσ2 þ δ2Þ 0 0

TABLE XI. Weights of the spin-dependent Lorentz invariants for their contributions to the double-differential
partial width as written in Eq. (D4).

Lorentz Invariant Di
0 Di

1 Di
2 Di

3

K7 ¼ mNðpppmÞðpνsÞ 2 −ðσ2 þ δ2Þ 0 0
K8 ¼ mNmmmpðpνsÞ 0 ðσ2 − δ2Þ 0 0
K9 ¼ mNðpmpνÞðppsÞ 2

3
− 1

6
ð2þ σ2 þ δ2Þ − 1

6
ðσ2 þ δ2 þ 2σ2δ2Þ 2

3
σ2δ2

K10 ¼ mNðpppνÞðpmsÞ 2
3

− 1
6
ð2þ σ2 þ δ2Þ − 1

6
ðσ2 þ δ2 þ 2σ2δ2Þ 2

3
σ2δ2

K11 ¼ mmððpνpNÞðppsÞ − ðpppNÞðpνsÞÞ 0 −ðσ þ δÞ σδðσ þ δÞ 0
K12 ¼ mpððpνpNÞðpmsÞ − ðpmpNÞðpνsÞÞ 0 δ − σ σδðδ − σÞ 0
K13 ¼ ερσληp

ρ
mpσ

ppλ
νsη 0 0 0 0
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dΓ
d cos θlldγll

¼ 1

4π

m5
N

211π3
½XΓ þ XFB cos θll

þ sin θllðXcγ cos γll þ Xsγ sin γllÞ�:
ðD11Þ

We can integrate this over either γll or cos θll. Let us
integrate γll first. We obtain

dΓ
d cos θll

¼ 1

2

m5
N

211π3
XΓ

�
1þ XFB

XΓ
cos θll

�
; ðD12Þ

¼ Γ
2
ð1þ 2AFB cos θllÞ: ðD13Þ

By definition,

Γ ¼ m5
NXΓ

211π3
; ðD14Þ

AFB ≡
R
1
0

dΓ
d cos θll

d cos θll −
R
0
−1

dΓ
d cos θll

d cos θll
Γ

¼ XFB

2XΓ
:

ðD15Þ

If we had integrated Eq. (D11) over cos θll instead, we
obtain

dΓ
dγll

¼ 1

2π

m5
N

211π3

�
XΓ þ

π

4
ðXcγ cos γll þ Xsγ sin γllÞ

�
;

ðD16Þ

¼ Γ
2π

ð1þ ηC cos γll þ ηS sin γllÞ; ðD17Þ

and, by definition,

ηðC;SÞ ¼
πXðc;sÞγ
4XΓ

: ðD18Þ

APPENDIX E: REFERENCE INTEGRALS

As we found in Appendix D, determining the partial
width of a certain channel, or the forward-backward
asymmetry, requires integrating Eq. (D5) over zll. This
amounts to determining the integrals,

Tm ≡
Z

1

σ2

ð1 − zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
z − σ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
z − δ2

p

zm
dz; ðE1Þ

where 0 ≤ δ2 ≤ σ2 ≤ 1 and σ ≥ 0. The results for m ¼
0;…; 3 are

0
BBB@

T0ðσ; δÞ
T1ðσ; δÞ
T2ðσ; δÞ
T3ðσ; δÞ

1
CCCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
0
BBBBB@

1
192

ð2 − σ2 − δ2Þð8 − 8σ2 − 8δ2 þ 15σ4 − 22σ2δ2 þ 15δ4Þ
1
24
ð8þ 10σ2 þ 10δ2 − 3σ4 þ 2σ2δ2 − 3δ4Þ

− 1
4
ð10þ σ2 þ δ2Þ

1
4
ð10þ 1

σ2
þ 1

δ2
Þ

1
CCCCCA

þ log

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − δ2

p
!
0
BBBBB@

− 1
64
ðσ2 − δ2Þ2ð16 − 16σ2 − 16δ2 þ 5σ4 þ 6σ2δ2 þ 5δ4Þ

1
8
ð−8σ2 − 8δ2 þ 4σ4 − 8σ2δ2 þ 4δ4 − σ6 þ σ4δ2 þ σ2δ4 − δ6Þ

1
4
ð8þ 8σ2 þ 8δ2 − σ4 þ 2σ2δ2 − δ4Þ

−ð4þ σ2 þ δ2Þ

1
CCCCCA

þ log

 
σ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
þ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

σ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
− δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
!
0
BBBBB@

0

σδ

− 1
2σδ ðσ2 þ δ2 þ 4σ2δ2Þ

1
8σ3δ3

ð−σ4 þ 2σ2δ2 − δ4 þ 8σ4δ2 þ 8σ2δ4 þ 8σ4δ4Þ

1
CCCCCA: ðE2Þ

When δ ¼ 0, corresponding to the case of identical flavor final-state leptons, these simplify to

TABLE XII. Terms κCi and κSi that enter the differential partial
width with respect to cos θll, γll, and zll in Eq. (D4). All other
κC;Si for the Lorentz Invariants Ki not shown here are zero.

Lorentz Invariant κCi κSi

K9 ¼ mNðpmpνÞðppsÞ σδþ zll 0
K10 ¼ mNðpppνÞðpmsÞ σδ − zll 0
K11 ¼ mmððpνpNÞðppsÞ − ðpppNÞðpνsÞÞ ðσ þ δÞzll 0
K12 ¼ mpððpνpNÞðpmsÞ − ðpmpNÞðpνsÞÞ ðδ − σÞzll 0
K13 ¼ ερσληp

ρ
mpσ

ppλ
νsη 0 2zll

mN
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0
BBB@

T0ðσ; 0Þ
T1ðσ; 0Þ
T2ðσ; 0Þ
T3ðσ; 0Þ

1
CCCA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
0
BBBBB@

1
192

ð2 − σ2Þð8 − 8σ2 þ 15σ4Þ
1
24
ð8þ 10σ2 − 3σ4Þ
− 1

4
ð14þ σ2Þ

1
3
ð13þ 2

σ2
Þ

1
CCCCCA

þ log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

σ

�

×

0
BBBBB@

− 1
64
σ4ð16 − 16σ2 − 16δ2 þ 5σ4Þ
− 1

8
σ2ð8 − 4σ2 þ σ4Þ

1
4
ð8þ 8σ2 þ −σ4Þ

−ð4þ σ2Þ

1
CCCCCA: ðE3Þ

Figure 6 displays Tmðσ; δÞ as a function of σ for m ¼ 0,
1, 2, 3 for two choices of parameters. In solid lines, we plot

δ ¼ 0 (corresponding to the results with identical
final-state charged leptons). In dashed lines, we assume
δ=σ ¼ ðmμ −meÞ=ðmμ þmeÞ ≈ 0.990, which would cor-
respond to decays of the type N → νμ−eþ.
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