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We investigate scenarios with Oð1 TeVÞ scalar leptoquarks that act as portals between the Standard
Model and dark matter. We assume that dark matter is a scalar singlet Swhich couples to a scalar leptoquark
Δ and the Higgs boson via the terms in the scalar potential. In addition, the leptoquark is endowed with
Yukawa couplings to quarks and leptons that may address the anomalies in B meson decays. We consider
the SS annihilation cross sections to estimate the dark matter relic abundance and explore the interplay
between astrophysical, collider, and flavor physics bounds on such models. In the heavy dark matter
window, mS > mΔ, the leptoquark portal becomes the dominant mechanism to explain the dark matter
abundance. We find that the leptoquark Yukawa couplings, relevant for quark and lepton flavor physics, are
decoupled from the dark matter phenomenology. By focussing on a scenario with a single leptoquark state,
we find that relic density can only be explained when both Δ and S masses are lighter than Oð10 TeVÞ.
DOI: 10.1103/PhysRevD.104.015035

I. INTRODUCTION

Leptoquarks (LQs) are theoretically motivated hypo-
thetical bosonic degrees of freedom that couple at tree-level
to quark-lepton pairs [1,2]. They naturally appear in
theories unifying quarks and leptons [3,4] and composite
Higgs models [5,6], and they provide a viable mechanism
to explain neutrino masses [7,8]. Their interactions with
fermions also make them good candidates to address
phenomenological problems in quark-lepton transitions,
such as the discrepancies in B-meson decays observed at
LHCb and the B factories [9], or to address discrepancies in
chirality-suppressed observables, such as the anomalous
magnetic moment of leptons [10–12]. Whether these
particles exist near the TeV scale remains a question to
be answered by current and future experiments. In the

meantime, it is natural to ask if LQs could also be related to
other open questions in particle physics.
One of the most striking motivations for physics beyond

the Standard Model (SM) is the evidence for dark matter
(DM). Astrophysical and cosmological observations have
accumulated indisputable evidence at vastly different
length scales [13]. These observations infer the presence
of DM through its gravitational effects, but they tell us
nothing about its microscopic nature. There are constraints
from observations such as precise determination of its relic
density [14], strong bounds on its electromagnetic inter-
actions [15,16], and the fact that it must be stable on
cosmological timescales [17,18]. Nevertheless, these con-
straints still leave room for a plethora of particle candi-
dates [19].
An appealing scenario is the one where DM particles

interact with the visible world enough to achieve thermal
equilibrium in the early Universe. As the Universe expands
and cools down, interactions between DM particles become
less frequent. Thermal equilibrium is lost eventually, and
such a departure from equilibrium is the physical process
that sets the relic density. Remarkably, the resulting value
depends only on dark sector masses and couplings that we
can test in our experiments [20].
In this paper, we explore scalar LQs as mediators to the

dark sector and whether this type of portal could explain the
observed DM properties. We focus on scenarios where
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the DM particle is a scalar singlet that interacts with one of
the scalar LQs via quartic interactions in the scalar
potential. This scenario was the focus of Ref. [21]. We
perform a comprehensive analysis that extends previous
studies in several ways. We will consider the impact of all
scalar LQ representations and provide the most general
expressions for DM phenomenology. Moreover, we will
study the interplay between the DM relic abundance with
theoretical considerations of stability and perturbativity of
the scalar potential, with direct and indirect DM detection
constraints as well as with flavor physics bounds. In
particular, we will show that the LQ couplings needed to
explain the observed DM relic abundance have little impact
in flavor physics phenomenology. Furthermore, we will
argue that the LQ and DM masses in the viable models
must satisfy mΔ < mS < Oð10 TeVÞ in order to comply
with the constraints from the stability and perturbativity of
the scalar potential.
Several works have recently explored the possible

connection between LQs and the observed DM abundance.
Besides the possibility of scalar singlet DM considered in
this work, the DM particle can be a fermionic singlet with
gauge-invariant interactions with specific scalar and vector
LQ representations [22,23]. DM can also belong to higher-
dimensional electroweak multiplets which can couple to the
Pati-Salam vector LQ U1 ¼ ð3̄; 1; 2=3Þ [24], which was
proposed as a viable candidate to explain the so-called B-
physics anomalies [25–27]. The connection between DM
and the B anomalies has also been explored in the context
of composite vector LQ scenarios in Ref. [28].
Our setup and conventions are introduced in Sec. II. We

list the phenomenological constraints on our framework in
Sec. III. In particular, we compute the DM relic density, we
impose experimental bounds from DM direct and indirect
searches, and we consider constraints from collider physics.
We investigate a concrete scenario with DMmass above the
weak scale in Sec. IV. We discuss the possible connection
with flavour anomalies in Sec. V, and we conclude in
Sec. VI. Technical details are deferred to Appendixes.

II. RICHER SCALAR SECTOR: LQs AND DM

In this section, we present our framework. We write
down Yukawa interactions allowed by gauge invariance
for different LQ representations and scalar potential

interactions for the DM candidate. We adopt the notation
of Refs. [1,2] and specify LQ states by their SM quantum
numbers ðSUð3Þc; SUð2ÞL; YÞ.
We define the covariant derivative

Dμ ¼ ∂μ þ ig1YBμ þ ig2TkWk
μ þ ig3TAGA

μ ; ð1Þ

where Y is the hypercharge and TA and Tk are the relevant
SUð3Þc and SUð2ÞL generators, respectively. After the
electroweak symmetry breaking, we can write

Dμ ¼ ∂μ þ i
g2ffiffiffi
2

p ðTþWþ
μ þ T−W−

μ Þ

þ i
g2
cW

ðT3 −Qs2WÞZμ þ ieQAμ þ ig3TAGA
μ ; ð2Þ

where we identify the electric charge generator
Q ¼ Y þ T3, the weak isospin raising/lowering matrices
T� ¼ T1 � iT2, and the Weinberg angle θW (we write for
shortness sW ≡ sin θW and cW ≡ cos θW).

A. Yukawa interactions between LQs and SM fermions

Scalar LQs have Yukawa couplings with the SM quarks
and leptons. To describe the general features of LQ portals,
we provide the general and convenient parametrization

LYuk ¼
X
a;i;j

qi½yRijPR þ yLijPL�ljΔðaÞ þ H:c: ð3Þ

These interactions are understood to be written for fermion
mass eigenstates, and the Yukawa couplings yL and yR are
matrices in flavor space. The chiral projectors PL;R isolate
the corresponding chiralities of the fermion fields they act
on. In our notation, li stands either for a charged lepton or a
neutrino. On the contrary, qi can be either a quark or its
charge conjugate. Finally, the scalar field ΔðaÞ stands for a
specific component (a) of the LQ multiplet Δ.
We introduce concrete realizations for the interactions in

Eq. (3). Following Ref. [1], we introduce the fermion
number F defined as F ¼ 3Bþ L, with B and L the baryon
and lepton numbers, respectively. We assume there are no
fermionic SM singlets.
Two scalar LQs can couple to fermion currents not

carrying a net fermion number,

R2 ¼ ð3; 2; 7=6Þ∶ LR2
¼ −ðyLR2

Þ
ij
ūRi

RT
2 iτ2Lj þ ðyRR2

Þ
ij
Q̄iR2lRj

þ H:c:; ð4Þ

R̃2 ¼ ð3; 2; 1=6Þ∶ LR̃2
¼ −ðyL

R̃2
Þ
ij
d̄Ri

R̃T
2 iτ2Lj þ H:c: ð5Þ

Left-handed fermion doublets in the above expressions are defined asQi ¼ ½ðV†uLÞidLi�T and Li ¼ ½ðUνLÞilLi�T , where
V andU denote, respectively, the Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata matrices.
Since neutrino masses are irrelevant for the phenomenology we will discuss, we are free to set U ¼ 1. The Yukawa
interactions in Eqs. (4) and (5) conserve the fermion number F as LQs have F ¼ 0 in these cases. Baryon and lepton
numbers are conserved upon assigning them to the LQ field as well.

FRANCESCO D’ERAMO et al. PHYS. REV. D 104, 015035 (2021)

015035-2



Alternatively, one can consider LQ interactions with
fermion currents carrying a net jFj ¼ 2 fermion number

S1 ¼ ð3̄; 1; 1=3Þ∶LS1 ¼ ðyLS1ÞijQC
i iτ2S1Lj

þ ðyRS1ÞijuCRi
S1lRj

þ H:c:; ð6Þ

S3¼ð3̄;3;1=3Þ∶LS3 ¼ðyLS3ÞijQC
i iτ2ðτ⃗ · S⃗3ÞLjþH:c:; ð7Þ

S̃1 ¼ ð3̄; 1; 4=3Þ∶LS̃1
¼ ðyR

S̃1
Þ
ij
dCRi

S̃1lRj
þ H:c:; ð8Þ

where ΨC denotes a charge-conjugated fermion. These LQ
states are potentially dangerous because they could have
diquark couplings, which would trigger baryon and lepton
number violation [2,29]. Here and after, we assume that
these couplings are forbidden by a suitable symmetry that
guarantees proton stability.
Finally, we provide a prescription to connect the generic

couplings yLij and yRij defined by Eq. (3) onto ones of the
specific models listed in Eqs. (4)–(8). This matching is
given in Tables I and II for charged leptons and neutrinos,
respectively.

B. Higgs and LQ portals to dark matter

We extend the framework introduced above by adding
the DM candidate, a real scalar S not carrying any SM
gauge quantum numbers. Stability of S is ensured by a Z2

symmetry under which S → −S while other fields remain

unchanged. Interactions between dark and visible sectors,
at the renormalizable level, proceed via scalar potential
couplings. Here, we provide the phenomenological expres-
sions for these interactions, which can be viewed as a
generalization of the Higgs portal model [30–32].
The general Lagrangian for the scalar sector takes the

form

Lscalars ¼ ðDμHÞ†ðDμHÞ þ ðDμΔÞ†ðDμΔÞ

þ 1

2
ð∂μSÞð∂μSÞ − VðH;Δ; SÞ; ð9Þ

where H denotes the SM Higgs doublet field, and we
consider a single LQ multipletΔ. Besides the kinetic terms,
with covariant derivatives as given in Eq. (1), we have a
scalar potential that we parametrize as follows:

VðH;Δ; SÞ ¼ VSMðHÞ þ VBSMðH;Δ; SÞ: ð10Þ

The first contribution is the same one as in the SM
involving just the Higgs doublet

VSMðHÞ ¼ −μ2jHj2 þ λjHj4: ð11Þ

Here, we have μ2 > 0 in order to ensure the spontaneous
breaking of the electroweak symmetry. The Beyond the
Standard Model (BSM) scalar potential contains masses
and interactions of the new degrees of freedom,

TABLE I. Expressions for the coefficients yLij and yRij in Eq. (3) for each LQ state listed in Sec. II interacting with
charged leptons. V denotes the CKM matrix, and the scalar LQ states with F ¼ 0 are separated from the states with
jFj ¼ 2. See the text for details.

Charged leptons

Coupling q l R2 R̃2 S1 S3 S̃1

yLij ui lj −ðyLR2
Þij 0 ðV�yLS1Þij −ðV�yLS3Þij 0

di lj 0 −ðyL
R̃2
Þij 0 −

ffiffiffi
2

p ðyLS3Þij 0

yRij ui lj ðVyRR2
Þij 0 ðyRS1Þij 0 0

di lj ðyRR2
Þij 0 0 0 ðyR

S̃1
Þij

TABLE II. Expressions for the coefficients yLij and y
R
ij in Eq. (3) for each LQ state listed in Sec. II interacting with

neutrinos. See the caption of Table I.

Neutrinos

Coupling q l R2 R̃2 S1 S3 S̃1

yLij ui νj ðyLR2
Þij 0 0

ffiffiffi
2

p ðV�yLS3Þij 0

di νj 0 ðyL
R̃2
Þij −ðyLS1Þij −ðyLS3Þij 0

yRij ui νj 0 ðVyR
R̃2
Þij 0 0 0

di νj 0 ðyR
R̃2
Þij ðy0RS1Þij 0 0
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VBSMðH;Δ; SÞ ¼ m2
1jΔj2 þ

m2
2

2
S2 þ λ1

4
S4

þ λ2
4
jΔj4 þ λ3

2
S2jΔj2

þ λ4
2
S2jHj2 þ λ5

2
jΔj2jHj2; ð12Þ

where the free real parameters m1;2 and λi are always
allowed by the symmetries of the theory. For the case of LQ
weak doublets (i.e., for Δ ¼ R2 or R̃2), the additional term

VBSMðH;Δ; SÞ ⊃ λ6
2
ðH†ΔÞðΔ†HÞ ð13Þ

is allowed by electroweak gauge invariance. Once the SM
Higgs gets a vacuum expectation value (vev), this inter-
action induces a mass splitting among the SUð2Þ doublet
LQ states. This operator, also constrained by T parameter
[33], is not relevant for DM phenomenology. Moreover, if
more than one scalar LQ is introduced, other operators that
mix the different LQs via couplings to the SM Higgs are
also allowed [34]. These operators can be relevant to
generate neutrino masses [35] or to generate dipole
operators to accommodate the muon g − 2 anomaly [36].
Nonetheless, they do not play any relevant role in DM
phenomenology. For these reasons, we neglect these further
interactions in our study.
Not all couplings in the scalar potential in Eq. (12) have

the same impact on our analysis. The quartic couplings λ1;2,
which correspond to self-interactions of S and Δ, do not
play a considerable role in phenomenological analysis apart
from their impact on the stability of the potential. Focusing
on interactions that do impact DM phenomenology, we can
express the scalar potential after electroweak symmetry
breaking as follows:

VBSMðH;Δ; SÞ ⊃ m2
ΔjΔj2 þ

m2
S

2
S2 þ λ3

2
S2jΔj2

þ 1

4
ðλ4S2 þ λ5jΔj2Þð2vhþ h2Þ: ð14Þ

Here, h is the SM Higgs boson, and v ¼ ð ffiffiffi
2

p
GFÞ−1=2 is the

Higgs vev. DM phenomenology will change accordingly to
the values assumed for the quartic couplings λ3;4;5 and the
masses mS and mΔ.

C. Stability constraints

Here, we discuss the theoretical constraints on the
quartic couplings λi arising from the stability of the scalar
potential in Eq. (10). The quartic terms in Eqs. (11) and
(12) can be written as a quadratic form:

VλðH;Δ; SÞ

¼ ð jHj2 S2 jΔj2 Þ

0
B@

λ λ4=4 λ5=4

λ4=4 λ1=4 λ3=4

λ5=4 λ3=4 λ2=4

1
CA
0
B@

jHj2
S2

jΔj2

1
CA:

ð15Þ

The above expression has to be bounded from below for
large field values in any arbitrary direction. If we consider
going to infinity along the direction of a single field,
jHj2 → ∞, S2 → ∞, or jΔj2 → ∞, this results in necessary
conditions λ; λ1; λ2 > 0, respectively.
To find the sufficient conditions, we diagonalize the

n × n matrix appearing in Eq. (15) and require all its
eigenvalues x1;2;…;n to be positive. This quadratic form is
diagonalizable, and thus its characteristic polynomial pðxÞ
has n roots x1;…;n and n − 1 stationary points e1;…;n−1
which are ordered as

x1 ≤ e1 ≤ x2 ≤ … ≤ xn−1 ≤ en−1 ≤ xn: ð16Þ

If some of the roots are multiple, then the above inequalities
become equalities across the range spanned bymultiple roots
(e.g., for a double root x1 ¼ x2, we have x1 ¼ e1 ¼ x2).
We show in Fig. 1 the characteristic polynomial pðxÞ for

the case when all roots are positive. As we can see, the
requirement x1 ≥ 0 is fulfilled precisely when e1 ≥ 0 and
pð0Þ ≥ 0 since pðxÞ > 0 for large negative x. If we repeat
the above argument for e1 ≥ 0, it follows that p0ð0Þ ≤ 0 and
that the first stationary point of p0ðxÞ should be non-
negative. Iterating this argument to yet higher derivatives
yields the conditions1

pð0Þ ≥ 0; p0ð0Þ ≤ 0; p00ð0Þ ≥ 0; …;

…; pðnÞð0Þð−1Þn ≥ 0: ð17Þ

FIG. 1. Characteristic polynomial pðxÞ when all its roots are
positive.

1This is a special case of the so-called Descartes rule of signs.
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Thus, sufficient stability conditions can be expressed in
terms of λi. We find it convenient to define the parameters

x≡ λ4
2
ffiffiffiffiffiffiffi
λλ1

p ; y≡ λ5
2
ffiffiffiffiffiffiffi
λλ2

p ; z≡ λ3ffiffiffiffiffiffiffiffiffi
λ1λ2

p : ð18Þ

In addition to the already mentioned positivity of λ and λ1;2,
we derive the following sufficient stability conditions:

jxj; jyj; jzj < 1;

x2 þ y2 þ z2 − 2xyz < 1: ð19Þ

The inequalities (19) define a tetrahedronlike region in the
fx; y; zg space.
Are the above conditions also necessary? It turns out

that, since the potential matrix is multiplied by strictly
positive vectors from the left and right, the above condition
can be somewhat relaxed. We require that matrix V is
copositive definite, which by definition means that xTVx >
0 for any vector x from the first octant. Following Ref. [37],
in particular Eqs. (5) and (6) of that paper for particular case
of 3 × 3 matrices, we find slightly looser conditions
compared to (19):

x; y; z > −1;

x2 þ y2 þ z2 − 2xyz < 1 for xþ yþ z < −1: ð20Þ

Together with λ; λ1; λ2 > 0, these are necessary and suffi-
cient stability conditions. The most interesting among these
inequalities are the ones for λ3;4;5 since they are related to
the interactions between the scalar particles in our model.
In particular, we can derive the following necessary
conditions on λ3;4;5,

−3.5≲ λ3 ≲ 3.5;

−1.4≲ λ4 ≲ 3.5;

−1.4≲ λ5 ≲ 3.5; ð21Þ

where the leftmost bounds are realized when both λ1 and λ2
are set to the perturbativity limit λ1;2 ¼

ffiffiffiffiffiffi
4π

p
and inserted to

the stability lower bounds. The rightmost upper bounds
stem from the perturbativity requirement, whereas stability
considerations do not yield an upper bound on λ3;4;5.

III. HIGGS AND LEPTOQUARK
PORTALS PHENOMENOLOGY

In this section, we study the phenomenology of our
scalar leptoquark portal framework. DM phenomenology is
driven by the scalar potential interactions in Eq. (14), and
the scalar singlet S interacts with the visible world via the
Higgs portal (λ4 coupling) as well as through the LQ portal
(λ3 coupling). In this section, we compute the DM relic

density, we study constraints from direct and indirect
searches, and we account for collider bounds.

A. Relic density

The DM number density nS evolves according to the
Boltzmann equation [38,39]

dnS
dt

þ 3HnS ¼ −hσviðn2S − neq2S Þ: ð22Þ

Here, the Hubble parameter H ¼ 1
a
da
dt accounts for dilution

due to the expansion, and it is defined in terms of the
cosmological scale factor a and its derivative with respect to
the cosmic time t. The change in the number of S particles
due to collisions is accounted for by the term on right-hand
side, proportional to the thermally averaged annihilation
cross section times the Møller velocity hσvi. The inverse
process, where degrees of freedom from the thermal bath
annihilate to produce a pair of DM particles, is proportional
to the square of the DM equilibrium number density neqS .
When DM particles are in equilibrium in the early

Universe, their energies and momenta are distributed in
phase space accordingly. Thus, the kinematics of the initial
state for each DM annihilation is not fixed, and we need to
account for all possible options. This is the reason why we
have a thermal average in Eq. (22). There is a general
expression

hσviSS→ij ¼
1

8m4
STK

2
2½mS=T�

×
Z

∞

4m2
S

dsðs − 4m2
SÞ

ffiffiffi
s

p
σSS→ijðsÞK1

� ffiffiffi
s

p
T

�
;

ð23Þ

connecting the annihilation cross section as a function of the
Mandelstam variable s, which is nothing but the (square of
the) center-of-mass energy, and the thermally averaged cross
section. Here, T is the temperature of the primordial thermal
bath, andK1;2ðxÞ aremodifiedBessel functions of the second
kind. This expression is valid for a Maxwell-Boltzmann
statistics of initial-stateDMparticles, andwe can trust it since
quantum degeneracy effects give very small corrections in
the early Universe. To determine the relic density, we need to
compute expressions for all theDMannihilations allowed by
kinematics.
The phenomenologically relevant DM annihilation chan-

nels to visible final states are (i) SS → hh, (ii) SS → ΔΔ,
(iii) SS → VV (gauge bosons), and (iv) SS → ff (fer-
mions). We account for the leading contributions for each
channel, which can appear either at tree or one-loop level
and depend on the underlying parameters of the scalar
potential as well as leptoquark flavor parameters. These
expressions should be convoluted with the thermal distri-
butions at finite temperature T as prescribed by Eq. (23).
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We provide full derivations and complete expressions for
the annihilation cross section in Appendix A, and we
evaluate the DM relic density by following standard
techniques [38].
The leading annihilation channel, among the several

ones available, depends on what parameter space region we
focus on. For illustration, we consider two different bench-
marks where we fix the quartic couplings λ3;4;5. We neglect
for this discussion the LQ Yukawa couplings to SM
fermions; we comment their impact on DM phenomenol-
ogy in Sec. IV.

1. Higgs portal: λ3 = 0, λ4;5 = 1

The leading annihilation channels are driven by the λ4
quartic coupling with the SM Higgs field. The λ5 quartic
interaction between LQ and Higgs field plays only a
marginal role since it only contributes to the subdominant
channel SS → h → ΔΔ� proportionally to λ4λ5. We show
the thermally averaged annihilation cross sections as
functions of the DM mass mS for this scenario in Fig. 2.
For the purpose of illustration, the LQ state Δ is in the
R2 ¼ ð3; 2; 7=6Þ representation of the SM gauge group. We
provide three snapshots at three different temperatures

T=mS ∈ f1; 1=20; 1=50g; this is the relevant temperature
range for thermal freeze-out of cold relics. Annihilations
via s-channel Higgs exchange are by far dominant. The
dominant final states can be either ff̄ or V1V2 (with V1;2 a
SM electroweak gauge boson), depending on the mass of S,
whereas annihilations to LQs are subdominant since LQs
do not couple directly to DM in this scenario. For this
reason, LQ interactions only contribute indirectly to the
relic density via the modification of the hV1V2 couplings,
which are mostly relevant for mS values around the
electroweak scale. The thermally averaged cross sections
have a peak at the Higgs pole,mS ¼ mh=2, which becomes
wider but still dominant as the temperature T increases. We
comment about the (in)viability of this scenario to account
for the observed DM relic density in Sec. IV.

2. LQ portal: λ3 = 1, λ4;5 = 0

In this case, the situation is inverted since DM does not
couple at tree level to the Higgs boson whereas it has Oð1Þ
couplings with LQs. Once we set λ4 ¼ 0, this scenario is
actually completely blind to λ5 since it turns out that only a
combination of λ4λ5 enters the annihilation cross sections.
From Fig. 3, we see that the dominant annihilation channel
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FIG. 2. Thermally-averaged annihilation cross sections as functions of the DM mass mS for the Higgs portal benchmark (λ3 ¼ 0,
λ4;5 ¼ 1). We consider the three temperature values around the epoch of freeze-out: (i) T ¼ mS (left panel), (ii) T ¼ mS=20 (right panel),
and (iii) T ¼ mS=50 (bottom panel). For illustration, we choose the LQ state R2 ¼ ð3; 2; 7=6Þ with mass 1.5 TeV. However, the main
features remain similar when considering other LQ states.
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FIG. 3. Same as Fig. 2 but for the LQ portal benchmark (λ3 ¼ 1, λ4;5 ¼ 0).
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is to LQ final states, which become kinematically acces-
sible above the threshold mS > mΔ, via the λ3 quartic
interaction. For smaller values of mS, the dominant modes
are SS → V1V2 induced by LQ loops. Cross sections in
Fig. 3 are much smaller than the ones appearing in Fig. 2
since they are loop suppressed, except for the ΔΔ� channel,
and since they are not resonantly enhanced as in the case of
the Higgs portal regime. Here, the relevant parameter space
will appear at large DM masses where direct detection
constraints are less effective, as we discuss in Sec. IV.
The above discussion was based on the R2 representation

for the LQ state. Considering different representations
would only affect the annihilation channels into the gauge
bosons V1V2, since they depend on the SUð2ÞL and Uð1ÞY
quantum numbers of the LQs running in the loops, see e.g.,
Eq. (B7) in Appendix B, which amount to mild modifi-
cations of the annihilation cross section. On the other hand,
the ΔΔ� channel is enhanced for LQs with larger multi-
plicity 2T þ 1, but without changing the general features
described above.

B. Direct detection

DM effective interactions with nucleons N mediate
elastic scattering that can be searched for by direct
detection experiments. The effective operator relevant to
our analysis is

Leff
N ¼ CNS2N̄N; ð24Þ

where CN is a low-energy Wilson coefficient. From the
microscopic point of view, these interactions arise from
DM couplings to quarks and gluons. The corresponding
Lagrangian, defined at the scale μ ¼ Oð1 GeVÞ above
confinement, is [40]

Leff
QCD ¼

X
q¼u;d;s

CqS2q̄qþ CgS2
α2
12π

Ga
μνGμνa: ð25Þ

Only effective couplings to light quarks, Cq, appear in the
Lagrangian since heavy quarks (c, b, t) have been inte-
grated out. Their virtual effects provide further contribu-
tions, besides the ones due to new physics, to the effective
couplings to gluons Cg. We can match these effective
coefficients to quarks and gluons onto the nucleon effective
field theory [41]

CN ¼
X

q¼u;d;s

Cq

mq
mNfNTq − Cg

2

27
mNfNTG: ð26Þ

The quantities fNTq and fNTg are set by nucleonic matrix
elements. We use the following values: fpTu

¼ 0.023, fpTd
¼

0.032 and fpTs
¼ 0.020 for a proton and fnTu

¼ 0.017,
fnTd

¼ 0.041 and fnTs
¼ 0.020 for neutrons, with fp;nTG ¼

1 −
P

q¼u;d;s f
p;n
Tq [42]. This operator induces a spin-

independent scattering between the DM particle and the
target nucleus. We report the cross section for this scatter-
ing normalized per nucleon

σSI ¼
μ2p
πm2

S

�
ZCp þ ðA − ZÞCn

A

�
2

; ð27Þ

where Z and A are the atomic and mass numbers of the
nucleus and μp ¼ mpmS=ðmp þmSÞ is the reduced mass
for the DM-proton system.
The effective low-energy couplings for our LQ scenario

can be read from Eq. (B13),

Cq ¼
λ4mq

2m2
h

; ð28Þ

Cg ¼
λ3
8m2

Δ
ð2T þ 1Þ − λ4

2m2
h

�
nH þ λ5ð2T þ 1Þv2

16m2
Δ

�
; ð29Þ

where q ∈ fu; d; sg and nH ¼ 3 is the number of heavy
quarks (H). Contributions of order 1=mH in the heavy-
quark expansion have been neglected. These expressions
extend results already existing in the literature [21], and the
new contributions we compute give order-1 corrections to
the scattering cross section. In particular, the contribution
proportional to λ5 gives a small correction due to the
additional suppression factor v2=m2

Δ.
The current most stringent bounds on spin-independent

DM-nucleon cross section come from the XENON1T
experiment [43]. In Fig. 4, we show the constraints on
jλ3j (left panel) and jλ4j (right panel) as a function ofmS, for
a benchmark value mΔ ¼ 1.5 TeV. The most constrained
coupling turns out to be λ4, independently of the LQ mass,
and we find that the dominant contribution comes from the
Higgs gluonic penguins.

C. Indirect detection

DM annihilations produce final-state photons that are
searched for with gamma-ray telescopes. The Galactic
Center (GC) is a natural target, and it comes with pros
and cons. On one hand, it is not excessively far away, and
we do not lose too much flux. On the other hand, it is a very
active region, and astrophysical backgrounds are signifi-
cant and not completely understood. Dwarf spheroidal
satellite galaxies of the Milky Way are immune from this
issue since they are DM dominated and with considerably
fewer backgrounds. In our study, we consider bounds from
both of these sources. The strongest constraints for DM
masses around or below the weak scale come from the
Fermi Large Area Telescope (Fermi-LAT) [44–46].
Different instruments provide meaningful bounds on
TeV scale DM candidates: the High Energy Stereoscopic
System (HESS) observatory [47–49], the Very Energetic
Radiation Imaging Telescope Array System (VERITAS)
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[50], and the Major Atmospheric Gamma Imaging
Cherenkov Telescopes (MAGIC) [51]. For even larger
masses, bounds from the High Altitude Water Cherenkov
(HAWC)Observatory [52] are the most severe ones. Besides
imposing current experimental constraints, we also exploit
the discovery reach of the future Cherenkov TelescopeArray
(CTA) [53].
Experimental collaborations provide bounds on the

annihilation cross section as a function of the DM mass
for fixed SM final states. There are several annihilation
channels available in our framework, and we identify the
dominant ones for the two benchmarks introduced at the
beginning of this section: the Higgs portal and the LQ
portal. Higgs and weak gauge boson final states are the
dominant channels for the former case. Performing an
analysis by computing the gamma-ray spectrum from all
different final states is beyond the scope of our work, and
we provide conservative bounds by imposing the most
severe constraints among the ones for the final-state
particles; our indirect detection bounds are thus rather
conservative for this benchmark. For the LQ portal case, we
have two LQs in the final state that decay subsequently to
quarks and leptons; the DM annihilate to four final-state
SM particles [54]. We compute the expected photon
spectrum from annihilations to LQs, and we compare with
the experimental sensitivities of current and future experi-
ments. As we discuss in the next section, the region of our
interest is the one where the DM mass is above the weak
scale. We can establish the dominant annihilation channels
for our benchmarks by looking at the right panel of Figs. 2
and 3; DM particles are nonrelativistic today, and therefore
annihilations are correctly described by thermal averages at
low temperatures.

D. Collider constraints

We conclude this phenomenological section with a list of
collider constraints. Conventional mono-X searches for
DM do not provide the most stringent bounds from collider
physics for our framework. The scalar potential couplings
of the Higgs doublet H to S and Δ leave an imprint on
Higgs properties measured at the LHC. Thus, we consider
Higgs physics as well as direct searches for LQs.

1. Invisible Higgs decay

For a DM particle coupled to the Higgs boson, which is
light, mS < mh=2, an important constraint comes from the
upper bound on the branching fraction of Higgs decays into
invisible final states [55–60]. Within our framework, we
have the requirement

Γh→SS

ΓSM
h þ Γh→SS

< Brðh → inv:Þ; ð30Þ

where ΓSM
h ¼ 4.1 MeV [61]. The invisible partial decay

width results in

Γh→SS ¼
λ24v

2

32πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
S

m2
h

s
: ð31Þ

We impose the experimental bound Brðh → inv:Þ < 0.24
[62], and we find jλ4j ≲ 0.02 for mS values below 50 GeV.
The constraint is significantly relaxed when mS is just
below mh=2, according to phase space suppression in
Eq. (31). This constraint excludes the viability of the
low-mass DM since the annihilation cross section of SS,

FIG. 4. Parameter space regions excluded by XENON1T [43] in the plane mS vs jλ3j (left panel) and mS vs jλ4j (right panel). We fix
mΔ ¼ 1.5 TeV, and the other couplings are set to zero. Constraints on λ3 depend on the specific SUð2ÞL representation (singlet, doublet,
or triplet), while the ones on λ4 are, to first approximation, independent of LQ interactions. The coupling λ5 cannot affect direct detection
constraints (see the text).
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driven by the Higgs portal, λ4, is too small, which leads to
overabundance of S.

2. Higgs decay to leptons

The measurements of h → μþμ− and h → τþτ− provide
important constraints on the μt and τt leptoquark Yukawas
via the modification of the Higgs Yukawa in Eq. (A12).
Recently, the CMS Collaboration2 provided the best-fit
values of the signal strength parameters as [64]

μμþμ− ¼ σðpp → hÞBðh → μμÞ
½σðpp → hÞBðh → μμÞ�SM

¼ 1.19þ0.41
−0.39

þ0.17
−0.16 : ð32Þ

For the ττ channel, the CMS Collaboration also
provided [65]

μτþτ− ¼ σðpp → hÞBðh → ττÞ
½σðpp → hÞBðh → ττÞ�SM

¼ 0.85þ0.12
−0.11 : ð33Þ

Using these constraints and assuming that the modification
on the Higgs production due to LQs is negligible, we obtain
the following 1σ constraints from Eq. (A12) of Appendix A
on products of the LQ Yukawa couplings,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jytμL ytμR j

q
< 0.6 ×

�
mΔ

1 TeV

�
; ð34Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jytτLytτR j

q
< 2.3 ×

�
mΔ

1 TeV

�
: ð35Þ

3. Higgs production at the LHC

The production cross section of the Higgs boson at the
LHC via gg → h and its decay h → γγ are affected by the
virtual LQ loops, proportional to the λ5 coupling. In
the approximation where these are the dominant effects of
leptoquark loops, we can use the combined result of ATLAS
and CMS (Fig. 17 of Ref. [66]), which constrains the relative
SM coupling modifiers κg and κγ. Explicit expressions for
κg;γ are

κγ ¼ 1þ λ5v2

4m2
Δ
Ncð2T þ 1Þ½Y2 þ TðT þ 1Þ=3�

×
A0ðxΔÞ

A1ðxWÞ þ 4
3
A1=2ðxtÞ

; ð36Þ

κg ¼ 1þ λ5v2

4m2
Δ
ð2T þ 1Þ A0ðxΔÞ

A1=2ðxtÞ
; ð37Þ

where xi ¼ m2
h=ð4m2

i Þ, as in Eqs. (B17) and (B18) in
Appendix B.We find that the current experimental precision
on κg;γ − 1≲ 0.2 ≈ λ5v2=ð4m2

ΔÞ results in rather weak con-
straint λ5=ð4m2

ΔÞ≲ 3=TeV2.

4. LHC direct searches

LQs can be produced in pairs at the LHC via gluon
fusion and decay into quark-lepton pairs. Searches have
been performed at ATLAS and CMS for several possibil-
ities of final states; cf. e.g., Refs. [67–69] for a compilation
of the latest LHC bounds. For instance, for LQs decaying
into tμ final states, we find that the most stringent upper
limits on LQ masses are 1420(950) GeV for BðΔ → tμÞ ¼
1ð0.5Þ [70]. Similar or weaker limits are obtained for other
possible final states. In what follows, we will conserva-
tively take mΔ ≥ 1.5 TeV, allowing us to safely avoid
existing LHC direct-search limits.

IV. VIABLE SCENARIO WITH HEAVY
DARK MATTER

We assess the viability of possible DM scenarios by
combining the phenomenological constraints presented in
the previous section. For DM lighter than the weak scale,
severely constrained by XENON1T as illustrated in Fig. 4,
annihilations to SM fermions via the Higgs boson
exchanged in the s-channel are dominant. This case is
potentially interesting because LQ Yukawas, motivated by
discrepancies observed in B-meson decays (see, e.g.,
Refs. [68,71] and references therein) and in the anomalous
magnetic moment of the muon [36,72,73], could alter the
naive expectation for the annihilation rates. More precisely,
these LQ flavor effects would come into play via modi-
fication of the Higgs Yukawas contributing to SS → h� →
ll via a chiral enhancement of the amplitudes (∝ mt=ml)
which lifts up the cross section significantly compared to
the standard Higgs portal.
To show that the low-mass DM regime is not viable, we

take the LQ R2 ¼ ð3; 2; 7=6Þ as a benchmark since the
chiral enhancement of the leptonic amplitude is possible for
this model. If we set the LQ Yukawa couplings to zero, the
quartic λ4 controls annihilations to SM fermions in the low
DM mass region, as depicted in Fig. 2. This is also true if
we switch on the Yukawa couplings, with a chirally
enhanced contribution to the amplitude for annihilation
to lepton pairs lþl− proportional to ytlL y

tl
R [see Eq. (A12)

of Appendix A]. We look for the values of λ4 necessary to
explain the observed relic density for different values of
jytlL ytlR j within the perturbative regime, and we compare
them with bounds on λ4 stemming from the invisible Higgs
width in Eq. (30) and the XENON1T limits depicted in
Fig. 4. In the low DM mass region, there is no value of λ4

2See also the recent ATLAS results on the same observable,
μμþμ− ¼ 1.2� 0.6 [63].
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compatible with relic density and not excluded by the
constraints mentioned above. The couplings yLtly

R
tl provide

a non-neglibible decrease in the required value of λ4, but
their effect cannot bring λ4 to the Oð10−2Þ level, which is
needed.
To be compatiblewith the severe experimental constraints

at low DM mass, we consider values of mS above the
electroweak scale. LQ Yukawas are irrelevant in this DM
mass region since they do not impact the main annihilation
channels illustrated in Figs. 2 and 3, and annihilations are
controlledby the quartic couplingsλ3;4;5. Inwhat follows,we
explore in detail the viability of such a heavy DM scenario.
We now consider the singlet (S1, S̃1), doublet (R2, R̃2),

and triplet (S3) LQ states Δ with mass mΔ ¼ 1.5 TeV, in
agreement with the LHC direct limits from Sec. III D. The
leading impact of the LQ hypercharge (Y) is to modify the
subleading annihilation channel SS → ZZ, where its con-
tribution is suppressed by s4W [cf. Eq. (B10)]. For this
reason, we observe no noticeable effect of Y in Figs. 5 and
6. Furthermore, we neglect the LQ Yukawa couplings since
they have negligible impact on DM phenomenology in this
mass region. We show in Fig. 5 a slice of the parameter
space in the ðmS; λ4Þ plane by fixing the other couplings to
benchmark values, namely, λ5 ¼ 0 and λ3 ∈ f0; 0.3; 1g.
Blue lines correspond to the values of λ4 and mS needed to
explain the DM relic abundance. The excluded regions
stem from perturbativity constraints, Higgs observables,
and direct and indirect DM searches (depicted by the
shaded regions). For small values of the couplings λ3,
these scenarios resemble the usual Higgs portal scenario
[30–32], with the exception that LQs contribute to the DM
annihilation into SM gauge bosons via their virtual effects.
In this case, the dominant DM annihilation mechanism are
SS → VV, as one could already infer from Fig. 2. For larger

values of λ3, annihilations SS → ΔΔ� become largely
dominant, and the relic density depends to first approxi-
mation only on λ3, explaining the almost vertical lines in
the bottom plot of Fig. 5. As we can see from this figure, it
is possible to find a viable scenario for all benchmark
couplings if and only if mS ≳mΔ.
To further explore the regime where SS → ΔΔ� acts as

the main annihilation channel, we plot in Fig. 6 the allowed
DM parameters in the ðmS; λ3Þ plane by keeping λ5 ¼ 0 and
fixing this time λ4 ∈ f0; 0.05; 0.5g. For the pure LQ portal
(λ4 ¼ 0) shown in the left panel, we see that a coupling
λ3 ≳ 0.5 is needed to reproduce the DM relic abundance.
For larger values of λ4, both SS → ΔΔ� and SS → VV
annihilation channels become relevant, and smaller values
of λ3 are needed as a consequence. Direct detection
constraints are mostly sensitive to λ4 and practically
insensitive to λ3. There are two potential constraints on
the LQ portal coupling λ3: indirect detection and perturba-
tivity. The former is subdominant, as we quantify in the
next paragraph, and the only meaningful constraint on λ3
arises from the perturbative bounds.
We compute the gamma-ray spectrum produced by the

cascade annihilations, first with DM annihilating to LQ
final state SS → ΔΔ� and then subsequent LQ decays, and
we show our results in Fig. 7. We fix the annihilation cross
section to the thermal relic value, and we consider a dwarf
galaxy with a J factor equal to J ¼ 1019 GeV2 cm−5. The
dashed orange lines provide the photon flux for the
representative spectrum ðmS;mΔÞ ¼ ð5; 1.5Þ TeV and for
two possible LQ decays: third-generation fermions
(Δ → tτ) and lighter fermions (Δ → qe). The larger top
mass is responsible for a slight enhancement in the UV tail
of the spectrum. We report for comparison also weakly
interacting massive particle (WIMP) spectra for
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FIG. 5. The values of the Higgs portal coupling λ4 needed to explain the DM abundance are plotted in blue as a function of the DM
mass mS. Results for singlet (S1, S̃1), doublet (R2, R̃2), and triplet (S3) LQ states are shown, with mΔ ¼ 1.5 TeV. These results are
largely independent on the hypercharge of the LQ state, depending only on the SUð2ÞL representation. Excluded regions due to
Xenon1T and perturbativity are depicted by the gray-shaded areas. The blue-shaded regions are excluded by indirect constraints by
HESS [47] and FermiLAT [45]. Note that in the rightmost plot there are forbidden intervals ofmS, as there the annihilation cross section
is too large due to the large value of λ3.
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annihilations to bb̄ final state for different DM masses. The
only region where the LQ portal spectrum differs slightly
from the one induced by annihilations of a WIMP with the
same mass is in the UV tail. We show in the same figure the
sensitivity curves for different instruments, as collected in
Ref. [74]. The Fermi bounds for DM mass around the TeV
scale in the LQ portal benchmark are for all purposes the
same as the one for a WIMP with the same mass; thermal
relics are not excluded. For instruments reaching maximum

sensitivity around the TeV scale, the slight enhancement in
the UV tail could slightly affect the bounds for WIMPs, but
they should not spoil the picture completely; these instru-
ments are still quite far from the thermal relic line, and
therefore thermal relics are also not excluded by them. We
conclude that current indirect detection constraints are never
the most stringent ones for the LQ portal case. We also
compare the sensitivity of the future CTA telescope with the
signal predicted in our model.

FIG. 7. Flux of gamma rays from DM annihilations to LQs and subsequent LQ decays to SM particles (dashed orange lines). We
consider both LQ decays to third-generation fermions (tτ) as well as lighter fermions (qe). The annihilation cross section reproduces the
relic abundance via thermal freeze-out, and we consider a dwarf galaxy with the J factor provided in the legend. We report for
comparison also the expected spectrum for a WIMP candidate annihilating to bb̄ pair for different masses (dotted black lines). The
sensitivity lines for current (solid) and future (dashed) experiments are taken from Ref. [74].

FIG. 6. The values of the LQ-portal coupling λ3 needed to explain the DM abundance are plotted in blue as a function of the DMmass
mS. Results for singlet (S1, S̃1), doublet (R2, R̃2), and triplet (S3) LQ states are shown for mΔ ¼ 1.5 TeV. DM constraints turn out to be
largely independent on the hypercharge of the LQ state, depending only on the SUð2ÞL representation. Excluded regions due to
Xenon1Tand perturbativity are depicted by the gray-shaded areas. Note that below theΔΔ� threshold the value of λ3 becomes very large
in the first two plots, whereas in the last plot (λ4 ¼ 0.5), there is no solution below a certain mass mS close to the threshold since the
annihilation cross section is too large.

LEPTOQUARKS AND REAL SINGLETS: A RICHER SCALAR … PHYS. REV. D 104, 015035 (2021)

015035-11



We visualize the interplay among the different con-
straints in Fig. 8 where we fixmS to two benchmark values
in the TeV range, and we vary the LQ and Higgs portal
couplings λ3 and λ4. We notice that an improvement of the
direct-detection constraints by a factor of ≈4 is needed to
start probing λ3 in this range of DM masses. Moreover,

stability constraints [Eq. (20)] turn out to be meaningful for
negative values of λ4.
Finally, we explore the extent to which our conclusions

remain valid when the LQ mass is increased above our
benchmark valuemΔ ¼ 1.5 TeV. To this purpose, we focus
on the pure LQ portal, with λ4 set to zero. The values of λ3
needed to reproduce the relic density are then shown in
Fig. 9 in the planemΔ vsmS for singlet, doublet, and triplet
LQ states. The boundary of the allowed region is deter-
mined by the perturbativity constraints, which imply the
following upper limit on both the LQ and DM masses:

mΔ < mS < Oð10 TeVÞ: ð38Þ

The perturbativity contours for the doublet and triplet LQ
states are broader than the corresponding singlet contour.
This is a consequence of higher LQ multiplicity, which
increases the annihilation cross section and slightly relaxes
the upper limit Eq. (38). However, the main phenomeno-
logical features remain very similar for all scenarios.

V. IMPLICATIONS FOR FLAVOR ANOMALIES

In this section, we discuss the implications of the viable
DM scenarios outlined in Sec. IV to the discrepancies
observed in B-meson decays and the muon g − 2. Both
types of discrepancies suggest that LQs could exist at the
TeV scale with Oð1Þ Yukawa couplings to the SM
fermions. Therefore, it is a natural question if these
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FIG. 8. Constraints on the LQ-portal λ3 and the Higgs-portal λ4 couplings imposed by the relic abundance (reproduced exactly along
the blue line), direct detection due to Xenon 1T (exclusions with a dashed border) and the potential stability constraints (exclusion with a
dot-dashed border). Results for singlet (S1, S̃1), doublet (R2, R̃2), and triplet (S3) LQ states are shown, with two representative values of
mS above mΔ ¼ 1.5 TeV. DM constraints turn out to be largely independent on the hypercharge of the LQ state, depending only on the
SUð2ÞL representation.
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FIG. 9. Dependence of the required λ3 coupling on the LQ mass
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λ4 ¼ 0, imposed by the relic abundance. The contours show the
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Dashed and dotted contours denote the perturbative regions for
the cases of doublet and triplet LQ states, respectively.
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anomalies could be accommodated in a scenario that would
also explain the DM abundance via the mechanism dis-
cussed in Sec. IV.
To answer the question raised above, we will remind the

reader which scalar LQ states can successfully accommo-
date each of these anomalies, and we will derive the ranges
of massesmΔ that are compatible with them [75,76]. These
values will be compared to the upper limits onmΔ obtained
in Fig. 9 in order to provide a viable DM scenario. As
already anticipated in Sec. IV, the specific values of the LQ
Yukawas that are fixed at low energies have little impact on
the DM abundance, in such a way that the only common
parameter for flavor and DM phenomenology is indeed the
LQ mass, which is explored in the following:

(i) RKð�Þ : Several discrepancies in exclusive B-meson
decays based on the transition b → sll have been
recently observed by LHCb. Most importantly, the
lepton flavor universality (LFU) ratio [77]

R½1.1;6�
K

���
exp

¼ BðB → KμμÞ
BðB → KeeÞ

¼ 0.846þ0.042
−0.039

þ0.013
−0.012 ; ð39Þ

integrated in the dilepton invariant-mass bin
q2 ∈ ð1.1; 6Þ GeV2, turns out to be 3.1σ below
the precise SM prediction, RSM

K ¼ 1.00ð1Þ [78,79].
Deviations from the SM predictions have also been
observed in similar LFU tests with B → K�ll
decays [80]. The combination of these results with
the current experimental average of the Bs → μμ
branching fraction [81,82]

B̄ðBs → μμÞexp ¼ 2.85ð33Þ × 10−9; ð40Þ

which is also slightly below the clean SM prediction
B̄ðBs → μμÞSM ¼ 3.66ð14Þ × 10−9 [83], amounts to
a combined deviation of 4.6σ from the SM predic-
tions [69] (see also Refs. [84–86]).
The preferred scenario to explain these deviations

requires a purely left-handed operator,

Leff ⊃
Cμμ
L

v2
ðs̄LγμbLÞðμ̄LγμμLÞ þ H:c:; ð41Þ

with the effective coefficient Cμμ
L in the following

range [69]:

Cμμ
L ¼ ð4.1� 0.9Þ × 10−5: ð42Þ

Among the scalar LQs listed in Sec. II, only the
scalar triplet S3 ¼ ð3̄; 3; 1=3Þ can induce a nonzero
value of Cμμ

L at tree level [69,87],

Cμμ
L ¼ v2

m2
S3

ðyLS3ÞbμðyLS3Þ�sμ; ð43Þ

where we remind the reader that the Yukawas yLS3 are
defined in Eq. (7). By combining Eqs. (42) and (43),
it is straightforward to conclude that

ðyLS3ÞbμðyLS3Þ�sμ
m2

S3

≃
1

ð38 TeVÞ2 : ð44Þ

This constraint implies an upper bound on mS3
which is compatible with, but much less strict than,
the bound obtained in Fig. 9 from the requirement of
reproducing the correct DM relic density via the
mechanism discussed in this paper. The bound on
mS3 from relic density becomes significantly
stronger for small mass mS.

(ii) RDð�Þ : Several discrepancies from the SM predictions
have also been observed in LFU tests for the
transition b → clν,

RDð�Þ ¼ BðB → Dð�Þτν̄Þ
BðB → Dð�Þlν̄Þ ; ðl ¼ e; μÞ: ð45Þ

The current experimental averages of LHCb [88,89]
and the B-factories [90–94] measurements are [95]

Rexp
D ¼ 0.340� 0.030;

Rexp
D� ¼ 0.295� 0.013; ð46Þ

which turns out to be ≈1.3σ and ≈3.5σ above the
SM predictions,

RSM
D ¼ 0.299� 0.003;

RSM
D� ¼ 0.2484� 0.0013; ð47Þ

which are obtained by combining the latest lattice
QCD results for theB → Dð�Þ [96,97] form factors at
nonzero recoil with the B → Dð�Þlν̄ (l ¼ e, μ) differ-
ential decay rates measured experimentally; see
Refs. [97,98] and references therein.

The observed deviations in RDð�Þ can also be
interpreted by means of an effective field theory,

Leff ⊃ −2
ffiffiffi
2

p
GFVcb

X
a

gaOa þ H:c:; ð48Þ

where ga are effective couplings, defined at the
renormalization scale μ ¼ mb, and the relevant
effective operators are

OVL
¼ ðc̄LγμbLÞðl̄Lγ

μνLÞ; ð49Þ
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OSL ¼ ðc̄RbLÞðl̄RνLÞ; ð50Þ

OT ¼ ðc̄RσμνbLÞðl̄Rσ
μννLÞ; ð51Þ

as well asOVR
andOSR , which are obtained from the

ones above by flipping the chirality of the quark
fields. Differently from the previous case [see
Eq. (41)], there is more than one viable effective
scenario induced by LQs that can explain the
anomalies in RDð�Þ . The simplest viable scenario is
to consider once again a purely left-handed operator,

gVL
¼ 0.084ð20Þ; ð52Þ

where we have updated results from Ref. [69] by
considering the latest lattice QCD results for theB →
D� form factors [97]. Another option is to consider
the effective scenarios gS ¼ �4gT , at the matching
scale μ ¼ mΔ ≈ 1 TeV, which can also perfectly
describe current data [69]. These relations become
gSLðmbÞ ≈ −8.5gTðmbÞ and gSLðmbÞ ≈þ8.1gTðmbÞ
at μ ¼ mb, after accounting for the renormalization
group equation effects [99]. These scenarios can
provide a viable explanation for the b → cτν̄ anoma-
lies for real and purely imaginary couplings, respec-
tively [69] (see also Refs. [100,101]).
There are only two scalar LQs that can predict the

allowed values of effective couplings at low energies,
while being consistent with various flavor and LHC
constraints [69]. The first scenario that can be
matched to the viable effective scenarios described
above is S1 ¼ ð3̄; 1; 1=3Þ, which can predict nonzero
values for both gVL

and gSL ¼ −4gT via the products
of couplings yLS1y

L�
S1

and yLS1y
R�
S1
, respectively. The

needed couplings to explain the anomalies can then
be either

ðyLS1ÞbτðVyLS1Þ�cτ
m2

S1

≃þ 1

ð2.1 TeVÞ2 ð53Þ

or

ðyLS1ÞbτðyRS1Þ�cτ
m2

S1

≃ −
1

ð2 TeVÞ2 ; ð54Þ

which both require LQmassses in theOðTeVÞ range.
The second viable scenario is R2 ¼ ð3; 2; 7=6Þ,

which can explain current data, provided there is an
imaginary phase in the LQ Yukawas [69,100],

ðyLR2
ÞcτðyRR2

Þ�bτ
m2

R2

≃� i
ð1.1 TeVÞ2 ; ð55Þ

which is also in the OðTeVÞ range.
Therefore, by inspecting Eq. (53)–(55), we find

that the range of LQ masses needed to explain RDð�Þ

turns out to be very similar to the one needed to
explain the DM relic abundance; see Fig. 9. Note,
also, that these masses and LQ couplings are fully
consistent with high-pT constraints and with other
flavor constraints, as recently analyzed in Ref. [69].

(iii) ðg − 2Þμ: Lastly, we discuss the impact of scalar LQs
to the 4.2σ discrepancy observed between the exper-
imental determinations of aμ ¼ ðg − 2Þμ=2 [10,11]
and the SM prediction from the Muon g − 2 theory
initiative [12],

Δaμ ¼ aexpμ − aSMμ ¼ ð251� 59Þ × 10−11: ð56Þ

This discrepancy is comparable in size to the SM
electroweak contributions. Therefore, it is only pos-
sible to explain it through LQs contributions with
OðTeVÞ masses if a chirality-enhancement mecha-
nism takes place [102–105]. Such an enhancement
can be induced by LQs that couple simultaneously μL
and μR to a heavy fermion, which is typically the top
quark, producing an enhancement ∝ mt=mμ [72].3

There are only two LQ states that satisfy this criteria,
namely, S1 ¼ ð3̄; 1; 1=3Þ and R2 ¼ ð3; 2; 7=6Þ. The
needed couplings for S1 read

ðyLS1ÞtμðyRS1Þ�tμ
m2

S1

≃þ 1

ð32 TeVÞ2 ; ð57Þ

whereas for R2,

ðyLR2
ÞtμðyRR2

Þ�tμ
m2

R2

≃ −
1

ð37 TeVÞ2 ; ð58Þ

where, for simplicity, we have kept only the chirality-
enhanced contributions and set the LQ masses to
10 TeV in the logarithms. In this case, we find that
reproducing the observed DM relic density imposes a
much stricter constraint than themuon g − 2, which is
sensitive to very large LQmasses. Note, also, that the
constraints obtained in Eqs. (57) and (58) are much
stricter than the ones derived from other loop ob-
servables such as Z → μμ [107,108]. Finally, it is
worth stressing that, even though S1 and R2 are also
the scalar LQs needed to explain RDð�Þ , the simulta-
neous explanation of both anomalies is tightly

3Charm-quark loops are also sizably enhanced [106], but these
contributions are tightly constrained by pp → μμ at high-pT [69].
Bottom-quark loops are only possible via the mixing of two scalar
LQs [36].
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constrained by τ → μγ, which would also be chirality
enhanced for the needed pattern of Yukawas [109].

To summarize this discussion, DM phenomenology and
flavor physics are complementary probes of the LQ
parameters. DM constraints are practically insensitive to
the LQ Yukawas, but they can be used to fix the scalar
potential parameters mS, mΔ, and λ3;4;5, whereas flavor-
physics constraints, at tree level, are only sensitive to the
combinations of Yukawas jyijj=mΔ, where yij denotes a
generic LQ Yukawa with flavor indices i, j. For this reason,
the only connection between flavor and DM arises from the
LQ masses, which are bounded in both cases by perturba-
tivity constraints, as shown, e.g., in Eq. (38) for the quartic
couplings and discussed above for each of these anomalies.
By comparing these upper bounds with Eq. (38), we see
that the limit on mΔ derived from DM relic abundance is
more constraining than the ones derived from most flavor
anomalies, with the only exception of RDð�Þ , which is a tree-
level process in the SM. Therefore, if any of these
anomalies is confirmed in the future, one could easily
check from Eq. (38) if the LQ scenario favored from flavor
physics could be extended to accommodate DM via the
mechanism discussed in this paper.

VI. CONCLUSION

The origin of DM is a long-standing problem in physics
of fundamental interactions. The recently observed dis-
crepancies in the lepton flavor universality tests in Bmeson
decays suggest the existence of LQs. In this paper, we have
studied a possible connection between these two open
problems. We took a real scalar singlet field S as a DM
candidate and introduced a scalar LQ Δ with mass above
1 TeV and Oð1Þ Yukawa couplings to the SM fermions
which can resolve the flavor anomalies. The only renor-
malizable interactions of the DM field S with the visible
fields are the Higgs and LQ portal couplings present in the
scalar potential.
We have studied the role of the LQ in DM phenom-

enology, focusing in particular on the portal coupling
λ3jΔj2S2, mass mΔ, and Yukawa couplings. The latter
two parameters also play a central role in flavor anomalies.
First, we have introduced the most general scalar potential
for the scalar fields of our framework, and we have
carefully studied the scalar potential stability conditions
which yielded correlated upper bounds on the portal
couplings. For the LQ Yukawa sector, we stated explicitly
all possible representations along with their couplings to
the SM fermions. Assuming one scalar LQ is present, we
have calculated the DM annihilation rates that depend on
the scalar potential parameters and Yukawa couplings.
Expressions for cross sections for general LQ representa-
tion are provided in Appendix A. We feed the Boltzmann
equation for the S number density with these cross sections
and compute the relic density. Up-to-date constraints from
direct and indirect searches for DM are also derived, and

they place important upper bounds on the scalar potential
couplings. Collider constraints on S have been taken into
account, including the very stringent upper bound on Higgs
boson invisible width.
Two scalar potential couplings drive the DM phenom-

enology—the Higgs portal λ4jHj2S2 and the LQ portal
λ3jΔj2S2. It was found and shown in Fig. 5 that below the
threshold for annihilation into LQs, i.e.,mS < mΔ, the loop
effects of λ3 are loop suppressed and cannot compete with
the Higgs portal coupling λ4. On the other hand, we could
observe the impact of large LQ Yukawas boosting SS →
ll annihilation cross sections (l ¼ μ, τ). This effect is
potentially large at low DM mass where the ll channel
drives the total annihilation cross section, but the Higgs
invisible width is too strong a constraint in this mass region,
and the relic density comes out too small, despite Yukawa
enhancement. At higher mS, the Yukawa couplings do not
affect the S annihilation cross section significantly.
WhenmS > mΔ, the SS → ΔΔ� channel is open, and the

phenomenology depends on both Higgs and LQ portals. It
turns out that large LQ portal λ3 implies small Higgs portal
λ4 and vice versa. Although both scenarios are equally
viable, the Higgs portal regime is more prone to direct
detection constraints as well as to the stability constraints as
shown in Fig. 8. Further analysis of the pure LQ portal
regime with λ4 ¼ 0 reveals a wide parameter space of λ3
and mS > mΔ ≳ 1.5 TeV. Most importantly, the require-
ments of stability of the scalar potential and perturbativity
set limits both on mS and mΔ to lie below Oð10 TeVÞ, as
shown in Fig. 9.
In summary, flavor and DM aspects of the scalar singlet

and scalar LQ model are to a large degree decoupled when
mS is below the threshold for annihilation into LQs,
whereas above the threshold, we may enter the LQ portal
regime where both S andΔmasses are bounded from above
due to the pertubativity constraint. The obtained mass
bounds on the LQ are stricter than what would be inferred
from most flavor anomalies.
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APPENDIX A: DARK MATTER ANNIHILATION
CROSS SECTIONS

In this Appendix, we derive the most general expressions
for the DM annihilation cross section for each allowed
channel. For a given LQ state defined by the LQ hyper-
charge Y and weak isospin T, we express our results in
terms of the parameters defined in Sec. II,

fmS;mΔ; λi; yLij; y
R
ijg: ðA1Þ

1. SS → hh

Feynman diagrams for annihilation into Higgs boson
pairs are shown in Fig. 10. The couplings in (14) lead to the
differential cross section

�
dσ

d cos θ

�
SS→hh

¼ 1

2

jλ4j2
32πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

h=s
1 − 4m2

S=s

s ����1þ 3m2
h

s −m2
h þ imhΓh

þ λ4v2

t −m2
S
þ λ4v2

u −m2
S

����2; ðA2Þ

where the Mandelstam variables are bound to satisfy sþ tþ u ¼ 2ðm2
S þm2

hÞ, Γh is the total Higgs decay width, and the
angle θ is related to t via the relation

t ¼ m2
S þm2

h −
s
2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
S

s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

s

r
cos θ

!
: ðA3Þ

The overall combinatorial factor 1=2 accounts for two identical final-state particles. If we take the nonrelativistic limit
s → 4m2

S, which is the leading contribution to DM freeze-out, and we stay away from the Higgs resonance at mS ≃mh=2,
we find

ðσvÞSS→hh ¼
jλ4j2
16πm2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
h

m2
S

s ����1þ 6m2
S

m2
h − 4m2

S
−

λ4v2

m2
h − 2m2

S

����2: ðA4Þ

2. SS → ΔΔ�

Annihilations to scalar leptoquarks are tree-level processes with diagrams shown in Fig. 11. The total cross section for
this process reads

½σ�SS→ΔΔ� ¼ Ncð2T þ 1Þ
16πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Δ=s
1 − 4m2

S=s

s ����λ3 þ λ4λ5v2

s −m2
h þ imhΓh

����2; ðA5Þ

FIG. 10. Tree-level contributions to the process SS → hh.
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where Nc ¼ 3 denotes the number of colors and 2T þ 1
accounts for the LQ weak-isospin multiplicity, i.e., T ¼ 0
for a weak singlet, T ¼ 1=2 for a doublet, and T ¼ 1 for a
triplet LQ. Away from the Higgs pole and in the non-
relativistic limit, we have the expression

ðσvÞSS→ΔΔ� ¼ Ncð2T þ 1Þ
32πm2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
Δ

m2
S

s ����λ3 þ λ4λ5v2

4m2
S −m2

h

����2: ðA6Þ

Note that this is the only annihilation process that depends on λ5 coupling at tree level.

3. SS → V1V2

DM can also annihilate to SM gauge bosons, and these processes can proceed either via an s-channel Higgs-mediated
contribution followed by a tree- (loop-)mediated hV1V2 vertex for massive (massless) vector bosons or via direct loop
diagrams. The associated Feynman diagrams are depicted in Fig. 12. We parametrize the SS → V1V2 loop amplitude as

Aloop
V1V2

¼ −4ið1þ δV1V2
ÞDV1V2

½p1 · p2gμν − pν
1p

μ
2�ϵμ�V1

ðp1; AÞϵν�V2
ðp2; BÞTAB; ðA7Þ

whereDV1V2
ðsÞ are form factors and ϵμVðp; AÞ denotes the V-boson polarization with momentum p and index A. For gluons,

A ¼ 1;…; 8 and TAB ¼ δAB=2, while for the electroweak bosons, one should replace TAB by 1. The factor δV1V2
accounts

for identical particles in the final state, being δVV ¼ 1 for V ∈ fγ; g; Zg and δV1V2
¼ 0 otherwise. The above gauge-invariant

form is valid in the mV1;2
≪ mΔ limit,4 a good approximation supported by the lower bounds on mΔ determined by direct

searches for LQs at the LHC [68]. The general expressions we have obtained for DV1V2
are also reported in Appendix B 2.

By using the expressions defined above, we can express the cross section for SS → V1V2 in terms ofDV1V2
and of the Higgs

coupling to vector bosons. We start by considering the SS scattering into WW and ZZ. In this case, the Higgs-mediated
diagram in Fig. 12 appears already at tree level,

σSS→VV ¼ 1

4πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

V=s
1 − 4m2

S=s

s �
1

1þ δVV

λ24m
4
V

ðs −m2
hÞ2 þm2

hΓ2
h

�
2þ ðs − 2m2

VÞ2
4m4

V

�
þ 2ð1þ δVVÞjDSD

VV j2m4
V

�
2þ ðs − 2m2

VÞ2
m4

V

�

þ 12λ4Re

�
DSD

VVm
4
V

s −m2
h þ imhΓh

��
1 −

s
2m2

V

�	
; ðA8Þ

where V ¼ W, Z and δVV is such that δZZ ¼ 1 and δWþW− ¼ 0. The leptoquark-loop contributions DSD
VV can be found in

Appendix B 2. For the remaining annihilation channels, namely, SS → γγ, SS → gg, and SS → γZ, the Higgs-mediated
contribution appears only at one-loop level and is included in the definition of the DV1V2

form factors. We obtained

σSS→γγ ¼
1

π

sjDγγj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

S=s
p ; ðA9Þ

σSS→gg ¼
2

π

sjDggj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

S=s
p ; ðA10Þ

FIG. 11. Tree-level contributions to the process SS → ΔΔ�.

4In the effective theory limit,
ffiffiffi
s

p
; mV1;2

≪ mΔ, in such a way that the above amplitude corresponds to the effective Lagrangian
S2
P

ðXYÞ DðXYÞF
ðXYÞ
μν FðXYÞμν where ðXYÞ ¼ ðγγÞ; ðggÞ; ðγZÞ; ðZZÞ; ðWWÞ.
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σSS→γZ ¼ 1

2π

�
1 −

m2
Z

s

�
3 sjDγZj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2
S=s

p ; ðA11Þ

with explicit expressions for Dγγ, Dgg, and DγZ reported in
Appendix B 2.

4. SS → f f̄

Finally, we derive the expression for the DM annihilation
into fermions. Previous studies have only considered the
tree-level Higgs-mediated contributions for these processes

[21]. Loop-induced ones can also be relevant for f ¼ l due
to a chiral enhancement (∝ mq=ml) which overcomes the
suppression by the small lepton Yukawas of the tree-level
diagrams. The relevant diagrams for this process are
depicted in Fig. 13 and can proceed either via λ4S2jHj2
interaction followed by the hlþl− vertex (left panel) or via
λ3S2jΔj2 (right panel).
First, we discuss the contributions from the left diagram

in Fig. 13. These contributions amount to an effective
modification of Higgs Yukawa coupling,

½yeff �ll ¼
ffiffiffi
2

p
ml

v
þ 3v2

8π2m2
Δ
ytðy2t − λÞyRtlyL�tl log

mh

mΔ
;

ðA12Þ

where we have kept only the dominant contributions, which
arise from top-quark loops, in the leading logarithm
approximation. This contribution can be combined with
the LQ loops depicted in the right diagram of Fig. 13,
which also induce chirality-enhanced contributions, in such
a way that the total cross section reads

σSS→lþl− ¼ m2
l

8π

ð1 − 4m2
l=sÞ3=2

ð1 − 4m2
S=sÞ1=2

×

����� λ4
s −m2

h þ imhΓh

vℜ½yeff �llffiffiffi
2

p
ml

þ λ3
16π2m2

Δ

X
q

mq

ml
ℜðyLqlyR�qlÞGðy; xqÞ

����2

þ
���� λ4
s −m2

h þ imhΓh

vℑ½yeff �llffiffiffi
2

p
ml

þ λ3
16π2m2

Δ

X
q

mq

ml
ℑðyLqlyR�qlÞGðy; xqÞ

����2
�
; ðA13Þ

where we assume ml ≪
ffiffiffi
s

p
and ml ≪ mq, and we

separate the real and imaginary parts of the Yukawa
couplings which generate noninterfering scalar and pseu-
doscalar amplitudes, respectively. The loop function
Gðy; xqÞ, with y ¼ s=ð4m2

ΔÞ and xq ≡m2
q=m2

Δ, is

Gðy; xqÞ≡ C0ð0; 0; 4y; 1; xq; 1Þ; ðA14Þ

where C0 stands for the three-point Passarino-Veltman
function [110], with the same conventions as used in the

Package-X documentation [111]. Finally, note that in the
case of SS → qq̄ the loop contributions are expected to be
less important since the chirality factor would now be
ml=mq. Therefore, we approximate the cross section by its
the tree-level contribution via the Higgs portal

½σ�SS→qq̄ ¼
Ncm2

q

8π

ð1 − 4m2
q=sÞ3=2

ð1 − 4m2
S=sÞ1=2

���� λ4
s −m2

h þ imhΓh

����2:
ðA15Þ

FIG. 12. Tree- and one-loop diagrams for SS → V1V2 process, with V1;2 a SM gauge boson. The gray blob in the first diagram appears
at tree level for SS → WW and SS → ZZ, while the same coupling arises at one-loop level for SS → γγ and SS → γZ.

FIG. 13. Leading contributions to the process SS → lþl−. In
the first diagram, the gray blob also includes the LQ loop
modification of the hlþl− coupling. See the text for details.
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APPENDIX B: ONE-LOOP RESULTS

Within our framework, loop effects have a phenomeno-
logical relevance in several contexts. We collect in this
Appendix one-loop results.

1. LQ corrections to lepton Yukawa couplings

We begin with an estimate of the LQ contributions to the
Higgs Yukawa coupling to leptons at one loop. To this
purpose, we integrate out the LQs at tree level and
incorporate the leading-logarithm contribution from
electroweak running [102] to the operator

QeH
rs
¼ jHj2L̄rHes: ðB1Þ

The presence of this operator at the electroweak scale
breaks the SM linear relation between Higgs Yukawas and
lepton masses, thus inducing modification of the DM
annihilation cross sections. Potentially large contributions
with nonchiral couplings are only from R2 and S1 lep-
toquarks which generate at tree level a nonchiral operator,

Qlequ
srpt

¼ ðL̄j
perÞϵjkðQ̄k

sutÞ: ðB2Þ

Closing the heavy-quark loop and attaching to it Higgs
line(s) causes mixing into the QeH

rs
operator [112–114],

CeH
rs
ðμEWÞ ¼

12ytðy2t − λÞ
ð4πÞ2 log

μEW
Λ

Clequ
rs33
ðΛÞ; ðB3Þ

½Ys�rsðμEWÞ ¼ ½YSM
e �rsðμEWÞ −

6λytv2

ð4πÞ2 log
μEW
Λ

Clequ
sr33
ðΛÞ;

ðB4Þ

where μEW ≈mh denotes the electroweak scale, Λ ≈mΔ is
the matching scale where a LQ is integrated out, and we
have kept only the leading-logarithm contributions in this
expression. The dimension-6 operator misaligns the
Yukawa couplings relative to the lepton mass matrix
Ml, such that the Yukawa coupling reads, in the mass basis,

½yeff �ll ¼
ffiffiffi
2

p
ml

v
þ 3v2

4π2
ytðy2t − λÞ log μEW

Λ
Clequ

ll33
ðΛÞ: ðB5Þ

It is clear that only the dimension-6 operator contributes
to the effective Yukawa coupling modification, whereas the
dimension-4 Yukawa has been absorbed in the weak-to-
mass basis rotation matrices. We have neglected running of
the lepton masses below scale μEW. If the effective
coefficient Cle

qu
has an imaginary part, then we get also a

pseudoscalar-type Yukawa coupling l̄iγ5lh. There are two
nonchiral LQ models that contribute to the ClequðΛÞ
coefficients: R2, which is a F ¼ 0 LQ, and S1, with
jFj ¼ 2. Their tree-level matching relations are

CR2
lequ
prst
ðΛÞ ¼

yRuslry
L�
utlp

2m2
Δ

; CS1
lequ
prst
ðΛÞ ¼

yRutlry
L�
uslp

2m2
Δ

; ðB6Þ

where the matrices yLðRÞ are defined in Table I. Since we
consider only couplings to top quarks and leptons with
equal flavor, the only nontrivial flavor combination is
prst ¼ lltt in both cases. Inserting the above expressions
into yeff yields Eq. (A12). The nonlogarithmic contribu-
tions to this matching have been recently computed in
Refs. [108,115]; see also Ref. [116].

2. SS → V1V2 and h → V1V2 form factors

We provide the form factors DV1V2
ðsÞ that appear in the

DM annihilation cross sections reported in Appendix A.
The short-distance (SD) LQ loop contributions are repre-
sented by the last three diagrams in Fig. 12,

DSD
γγ ¼ αemλ3

32πm2
Δ
Ncð2Tþ1Þ

�
TðTþ1Þ

3
þY2

�
A0ðxΔÞ; ðB7Þ

DSD
gg ¼ α3λ3

32πm2
Δ
ð2T þ 1ÞA0ðxΔÞ; ðB8Þ

DSD
γZ ¼ αemλ3

16πsWcWm2
Δ
Ncð2T þ 1Þ

×

�
c2W

TðT þ 1Þ
3

− s2WY
2

�
A0ðxΔÞ; ðB9Þ

DSD
ZZ ¼ α2λ3

32πc2Wm
2
Δ
Ncð2T þ 1Þ

×

�
c4W

TðT þ 1Þ
3

þ Y2s4W

�
A0ðxΔÞ; ðB10Þ

DSD
WW ¼ α2λ3L2ðΔÞNc

16πm2
Δ

A0ðxΔÞ; ðB11Þ

where xΔ ≡ s=4m2
Δ. In these expressions, we have set the

final-state masses mV1;2
¼ 0 consistently with the gauge-

invariant expression (A7). The SUð2Þ Dynkin index L2ðΔÞ
is equal to 0,1/2,2 when weak isospin of Δ equals 0,1/2,1,
respectively. Another consistency check that we find valid
is equality DSD

γZ ¼ 2DSD
γγ in the limit sW → −1=

ffiffiffi
2

p
,

cW → 1=
ffiffiffi
2

p
, g2 → 0, and T3 → 0, where both Z and A

are massless and have identical term in the covariant
derivative (1).
For SS → ZZ and SS → WW, there is an additional s-

channel Higgs-mediated diagram which interferes with the
leptoquark loop contribution DSD

V1V2
, as explicitly shown in

Eq. (A8). For the form factors involving a massless boson,
we can absorb such s-channel Higgs contributions into
DV1V2

:
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Dγγ ¼ DSD
γγ −

λ4vghγγ
8ðs −m2

h þ imhΓhÞ
; ðB12Þ

Dgg ¼ DSD
gg −

λ4vghgg
8ðs −m2

h þ imhΓhÞ
; ðB13Þ

DγZ ¼ DSD
γZ −

λ4vghγZ
4ðs −m2

h þ imhΓhÞ
: ðB14Þ

The effective loop-induced couplings ghV1V2
of gauge bosons with the Higgs are defined in analogy with the form factors

(A7) of SS → V1V2:

A½hðsÞ → V1ðp1; AÞV2ðp2; BÞ�≡ ighV1V2
ðsÞð1þ δV1V2

Þðp1 · p2gμν − pν
1p

μ
2Þϵ�1μϵ�2νTAB: ðB15Þ

The above amplitude corresponds to effective Lagrangian LhV1V2
¼ −ð1=2ÞghV1V2

hV1μνV
μν
2 . The Higgs to diboson decay

widths are then

Γðh → γγÞ ¼ m3
hjghγγj2
16π

;

Γðh → ggÞ ¼ m3
hjghggj2
8π

;

Γðh → γZÞ ¼ m3
hð1 −m2

Z=m
2
hÞ3jghγZj2

32π
: ðB16Þ

Thewidth of h → γγ has a factor of 2 relative to h → γZ due to identical particles, whereas h → gg has additional factor of 2
that stems from the gluon octet sum,

P
A;BðδAB=2Þ2 ¼ ðN2

c − 1Þ=4. The couplings ghV1V2
in the SM have been computed in

Refs. [117–119] and consist of loop contributions dominantly from gauge bosons and top quark. The leptoquark
contributions are analogous to the diagrams of the SS → V1V2 process shown in the rightmost three diagrams in Fig. 12,
where we have to replace SSΔΔ� with the hΔΔ� vertex. This similarity between the two processes allows us to identify
ghV1V2

¼ − 2λ5v
λ3

DSD
V1V2

. The expressions for ghV1V2
are

ghγγ ¼ −
αem
4πv

�
A1ðxWÞ þ NcQ2

tA1=2ðxtÞ þ
λ5v2

4m2
Δ
Ncð2T þ 1Þ½Y2 þ TðT þ 1Þ=3�A0ðxΔÞ

�
; ðB17Þ

ghgg ¼ −
α3
4πv

�
A1=2ðxtÞ þ

λ5v2

4m2
Δ
ð2T þ 1ÞA0ðxΔÞ

�
; ðB18Þ

ghγZ ¼ αem
2πvsWcW

�
c2WB1ð1=xW; λWÞ þ 2NcQtðT3t − 2Qts2WÞB1=2ð1=xt; λtÞ

−
λ5v2

4m2
Δ
Ncð2T þ 1Þ

�
c2W

TðT þ 1Þ
3

− s2WY
2

�
A0ðxΔÞ

�
: ðB19Þ

where xi ¼ s=ð4m2
i Þ and λi ¼ ð4m2

i Þ=m2
Z, for i ∈ fW; t;Δg, and the loop-functions are reported in Appendix B 3. In these

expressions, we have neglected the subleading contributions from light fermion loops. In these expressions, we can further
simplify sums over the weak isospin states of Δ,

X
T3

Q2
T3

¼ ð2T þ 1Þ½Y2 þ TðT þ 1Þ=3�; ðB20Þ

and, similarly,
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X
T3

QT3
ðT3 −QT3

s2WÞ ¼ ð2T þ 1Þ
�
−Y2s2W þ TðT þ 1Þ

3
c2W

�
; ðB21Þ

X
T3

ðT3 −QT3
s2WÞ2 ¼ ð2T þ 1Þ

�
c4W

TðT þ 1Þ
3

þ Y2s4W

�
: ðB22Þ

3. Auxiliary functions

The loop functions of triangle diagrams with a massive scalar and two massless vectors attached are parametrized by

A0ðxÞ ¼ −ðx − fðxÞÞx−2; ðB23Þ

A1=2ðxÞ ¼ 2½xþ ðx − 1ÞfðxÞ�x−2; ðB24Þ

A1ðxÞ ¼ −½2x2 þ 3xþ 3ð2x − 1ÞfðxÞ�x−2; ðB25Þ

with

fðxÞ ¼
(
arcsin2

ffiffiffi
x

p
; x ≤ 1

− 1
4



log 1þ

ffiffiffiffiffiffiffiffiffi
1−x−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−x−1

p − iπ
�
2
; x > 1

; ðB26Þ

where the indices f0; 1=2; 1g denote contribution of scalar, fermion, or vector running in the loop, respectively. For the case
in which one of the external vectors is massive, the above functions generalize to

B0ðx; yÞ ¼ I1ðx; yÞ; ðB27Þ

B1=2ðx; yÞ ¼ I1ðx; yÞ − I2ðx; yÞ; ðB28Þ

B1ðx; yÞ ¼ 4ð3 − tan2 θWÞI2ðx; yÞ þ ½ð1þ 2x−1Þ tan2 θW − ð5þ 2x−1Þ�I1ðx; yÞ; ðB29Þ

with the auxiliary functions defined by

I1ðx; yÞ ¼
xy

2ðx − yÞ þ
x2y2

2ðx − yÞ2 ½fðx
−1Þ − fðy−1Þ� þ x2y

ðx − yÞ2 ½gðx
−1Þ − gðy−1Þ�; ðB30Þ

I2ðx; yÞ ¼ −
xy

2ðx − yÞ ½fðx
−1Þ − fðy−1Þ�; ðB31Þ

and

gðxÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−1 − 1

p
arcsin

ffiffiffi
x

p
; x ≥ 1ffiffiffiffiffiffiffiffiffi

1−x−1
p

2

�
log 1þ

ffiffiffiffiffiffiffiffiffi
1−x−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−x−1

p − iπ

�
2

; x < 1
: ðB32Þ

In the massless limit, the B functions reduce to A functions: B0ð1=x;∞Þ ¼ A0ðxÞ=2, B1=2ð1=x;∞Þ ¼ −A1=2ðxÞ=4.
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