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We construct simple renormalizable extensions of the standard model where the leading baryon number
violating processes have ΔB ¼ �ΔL ¼ −2. These models contain additional scalars. The simplest models
contain a color singlet and a colored sextet. For such a baryon number violation to be observed in
experiments, the scalars cannot be much heavier than a few tera-electron-volts. We find that such models
are strongly constrained by LHC physics, LEP physics, and flavor physics.
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I. INTRODUCTION

If the observed baryon asymmetry of the universe arises
from physics below the Planck scale, then it signals new
physics that most likely fits into the current paradigm of
quantum field theory. Presuming that this is the case, it is
interesting to enumerate the possible (nonrenormalizable)
contact interactions that give rise to these processes and
construct renormalizable extensions of the standard model
that produce them. Lorentz invariance and hypercharge
invariance restrict standard model operators that change
baryon number, ΔB, and possibly lepton number, ΔL, to
have ðΔB − ΔLÞ=2 be an integer [1]. The simplest case is1

ΔB ¼ ΔL ¼ −1; for example, p → eþπ0. In this case,
grand unified theories provide well-motivated renormaliz-
able models that realize this type of process. At lower
energies the effects are represented by dimension-six
operators suppressed by a mass scale Λ squared, and limits
from laboratory experiments searching for proton decay
imply that Λ > 1016 GeV.
Organizing by increasing mass dimension of the local

operators that give rise to the baryon number violating
processes, the next case is dimension-nine operators with
ΔB ¼ −2, ΔL ¼ 0 or ΔB ¼ −1, ΔL ¼ −3. The first case
could produce, for example, neutron-antineutron oscilla-
tions. The current experiments limit the mass scale that
suppresses such operators at Λ > 500 TeV. All the

simplest renormalizable models that give rise to these
processes have been constructed [2]. In both cases the
scale Λ is so high that there are no relevant constraints on
the new degrees of freedom and their couplings to quarks
from flavor physics and LHC experiments.
The next cases of interest are dimension-12 operators

which lead to ΔB ¼ �ΔL ¼ −2 processes or ΔB ¼ −1,
ΔL ¼ −5 processes. Renormalizable models with
ΔB ¼ −1, ΔL ¼ −5 processes involve leptoquarks, which
are strongly constrained by experimental limits from proton
decay. In this paper we focus on the first of these where
the leading local operators contain six quark fields and two
lepton fields. Dimensional analysis2 gives a rate, Γ∼
Λ17
QCD=Λ16, for such low-energy processes. Using ΛQCD ¼

200 MeV for the nonperturbative strong interaction scale
and Λ ¼ 3 TeV, this crude estimate of the lifetime for
ΔB ¼ �ΔL ¼ −2 processes is τ ¼ 1=Γ ∼ 1034 years. The
high power of the nonperturbative scale ΛQCD that τ
depends on suggests that model-dependent estimates of
the hadronic matrix elements relevant for ΔB ¼ �ΔL ¼
−2 processes may have a high degree of uncertainty.
For processes with jΔBj > 2 the scale of new physics

must be below the weak scale for such processes to be
observable in the laboratory. There will not be any
renormalizable models that are consistent with experiments
and give rise to such processes that are observable in the
laboratory. See Ref. [3] for a discussion on inclusive
nucleon decay searches.
In this paper, we enumerate the relevant dimension-12

ΔB ¼ �ΔL ¼ −2 operators by applying Hilbert series
techniques. Then we discuss simple renormalizable models
that give rise to some of these operators after integrating out
the heavy scalars. Earlier works along these lines occurredPublished by the American Physical Society under the terms of
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1In this paper we consider local operators without covariant
derivatives that are composed of only fermion fields. For
example, a case we are not considering is ΔB ¼ −ΔL ¼ −1
which occurs at dimension seven and involves a Higgs field or a
covariant derivative.

2In this estimate we do not distinguish between ΛQCD and the
nucleon mass, MN ≃ 1 GeV.
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in Refs. [4–7]. The simplest models, of which there are two,
add two new representations of scalars to the standard
model, where one of the scalars is a color sextet. For the
two simplest models we discuss the phenomenology in
detail. The models are strongly constrained by flavor
changing neutral current processes and—without making
some specific choices for the couplings of the new scalars
and assumptions about the right-handed quark mass eigen-
state fields—will not permit measurable baryon number
violation in the laboratory. Even when the models escape
constraints from flavor physics, there are still strong
constraints on the masses and couplings of the new scalars
from LHC and LEP physics. Given the large uncertainty in
our estimate of the hadronic matrix element, one of the
nonminimal models we consider may give an observable
rate for the process pp → μþμþ [at the nuclear
level ðA; ZÞ → ðA − 2; Z − 2Þ þ μþμþ].

II. BARYON NUMBER VIOLATING OPERATORS

We are considering simple models where the leading bary-
onnumber violating processes have3ΔB ¼ �ΔL ¼ −2. The

corresponding effective operators have mass dimension 12.
Using Hilbert series techniques—which have been devel-
oped for the standard model [8–12]—we can enumerate the
relevant operators. The Hilbert series method for operators
we consider is well explained in Ref. [9], including several
explicit examples. We use the standard model fermions
fields fQL; uR; dR; LL; eRg, which have the following
quantum numbers:

QL ∼ ð3; 2Þ1=6; uR ∼ ð3; 1Þ2=3; dR ∼ ð3; 1Þ−1=3;
LL ∼ ð1; 2Þ−1=2; eR ∼ ð1; 1Þ−1; ð1Þ
and the Hermitian conjugate fields; i.e., we do not include
right-handed neutrinos. In the description of the standard
model quantum numbers the first entry is the color repre-
sentation, the second is the weak SUð2Þ representation, and
the subscript is the hypercharge. The subscripts on the
fermions listed above indicate the representations of the
Lorentz group SUð2ÞL ⊗ SUð2ÞR. The Hilbert series gives
the number of independent operators for a given field
content, taking into account redundancies coming from
field redefinitions and integration-by-parts relations. The
dimension-12 ΔB ¼ �ΔL ¼ −2 operators are listed in
Table I. For each operator in Table I we list the models
we consider in this paper which give rise to it. Reference [4]
constructed a complete operator basis withΔB ¼ ΔL ¼ �2

TABLE I. Enumeration of dimension-12 operators withΔB ¼ �ΔL ¼ −2. The first column indicates the field content of the operator,
while the second column gives the output of the Hilbert series: the number of operators for a given field content. Here, nQ and nL are the
numbers of quark and lepton flavors, respectively. The third column gives the minimal number of terms that is required to write down an
operator basis for nQ ¼ nL ¼ 3 (which can be calculated using group-theoretic methods [13,14]), and the last column lists the models
we consider which produce the given operator. By operator we mean gauge and Lorentz invariant contractions of the fields with the
flavor indices expanded, while a term is a collection of operators with the flavor indices unexpanded. Also, to simplify the notation we
have dropped the subscripts on the fermions.

Operator # operators # terms Model

udddddL†L† 1
24
nLn3QðnQ þ 1Þ½2ð−1þ n2QÞ þ nLð8 − 3nQ þ 7n2QÞ� 2 � � �

ddddQQL†L† 1
48
nLn2Q½6þ 35nQ þ n2Qð6þ nQÞ þ nLnQð6þ 11nQ þ n2Qð6þ 25nQÞÞ� 2 � � �

dddddQL†e† 1
24
n2Ln

3
QðnQ þ 1Þ½10þ nQð−3þ 5nQÞ� 1 � � �

dddddde†e† 1
288

nLðnL þ 1Þn2QðnQ þ 1Þ½50þ 19nQ þ n2Qð5nQ − 2Þ� 1 II, VII, VIII

uuuuddee 1
48
nLn2Q½6þ 31nQ þ 4n2Q − n3Qð7þ 10nQÞ þ nLnQð10þ 13nQ þ 7n2Qð2þ 5nQÞÞ� 4 VI

uuudddLL 1
72
nLðnL − 1Þn2Q½16þ 12nQ þ 13n2Q þ n3Qð6þ 25nQÞ� 3 I, V

uuuddQLe 1
12
n2Ln

3
Q½2þ 5nQ þ n2Qð4þ 25nQÞ� 4 � � �

uuudQQee 1
24
nLn3Q½−ðnQ þ 1Þð2þ nQð−1þ 5nQÞÞ þ nLð−2þ 5nQ þ n2Qð8þ 25nQÞÞ� 3 VI

uuddQQLL 1
2
nLn3Q½3 − n2Q þ nLnQð1þ 5n2QÞ� 4 I, V

uudQQQLe 1
3
n2Ln

4
Q½−1þ 10n2Q� 7 � � �

uuQQQQee 1
12
nLn3Q½7 − n2Q þ nLnQð1þ 5n2QÞ� 3 IV, VI

udQQQQLL 1
48
nLn3Q½6 − 19nQ − n2Qð6þ 5nQÞ þ nLð−6 − 5nQ þ n2Qð6þ 125nQÞÞ� 8 I, V

uQQQQQLe 1
24
n2Ln

3
Q½−2 − nQ þ n2Qð2þ 25nQÞ� 6 � � �

QQQQQQLL 1
72
nLn2Q½2þ 75nQ þ 2n2Q − n3Qð3þ 4nQÞ þ nLð16 − 12nQ þ 7n2Q þ n3Qð12þ 49nQÞÞ� 11 I, III, V

3We define ΔB as the number of baryons in the final state
minus the number of baryons in the initial state. ΔL is defined
with the same sign convention.
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for one generation of quarks and estimated some hadronic
matrix elements of these operators.

III. MINIMAL RENORMALIZABLE MODELS

We now discuss the simplest models that produce some
of the dimension-12 operators listed above, but do not
contribute to ΔB ¼ −1 processes and ΔB ¼ −2, ΔL ¼ 0

processes for generic values of the couplings. To be more
specific, we consider models with additional scalars. We
have not considered models with additional fermions or
gauge bosons; however, they are certainly more compli-
cated. By simplest we mean the lowest number of new
representations. We find that there are two minimal models,
each containing one color sextet scalar and one color
singlet scalar with nonzero hypercharge. The masses of
these colored scalars cannot be too small in order to be
consistent with constraints from the LHC. In Ref. [15],
four-jet events from gluon fusion were simulated. These
constraints are independent of the coupling to quarks. With
no observed deviation from the standard model result, the
masses of the new colored sextet scalars have to be

MX1
≳ 1 TeV: ð2Þ

In all ΔB ¼ �ΔL ¼ −2 operators listed above, six
quarks and two leptons are involved. Figure 1 illustrates
the skeleton of the core renormalizable interaction that
leads to the ΔB ¼ �ΔL ¼ −2 dimension-12 operator once
the scalar mediators are integrated out.
In the remainder of this section, we discuss the phe-

nomenology of the simplest models.

A. Model I

With scalars in the representations X1 ∼ ð6̄; 1Þ−1=3 and
X2 ∼ ð1; 1Þ1, we have that

LI ¼ −gpr1 ðQp
LαϵQ

r
LβÞXαβ

1 − gpr2 ðupRαdrRβÞXαβ
1

− gpr3 ðLp
LϵL

r
LÞX2 þ λXαα0

1 Xββ0
1 Xγγ0

1 X2ϵαβγϵα0β0γ0 þ H:c:;

ð3Þ

where Greek letters are color indices, the superscripts
p; r;…, on the fields are flavor quantum numbers, and
the quantities in round brackets are Lorentz singlets and
weak SUð2Þ singlets. Lorentz and fundamental weak
SUð2Þ indices are not displayed explicitly. The ϵ tensor
contracting weak SUð2Þ indices is explicitly displayed;
however, we do not display the ϵ tensor contracting Lorentz
indices. The couplings g1 and g3 are antisymmetric in the
flavor indices, while g2 has no symmetry. We have not
displayed other new scalar interactions that conserve
baryon and lepton numbers. This model is identical to
Model 5 in Ref. [2].
Constraints on the coupling matrices g1, g2, and g3

arise from limits on low-energy flavor changing proc-
esses, LEP data, and LHC data. For low-energy processes
that occur well below the masses of the new scalars they
can be integrated out giving rise to local four-fermion
operators. It is convenient, for comparison with existing
analysis of data, to express those operators in terms of
four-component fields. Using that notation, X2 exchange
gives

Hð2Þ
eff ¼ 2

�
gpr3 g�p

0r0
3

M2
X2

�
ðν̄p0

L γ
μepLÞðēr0LγμνrLÞ; ð4Þ

where the round bracketed fermion bilinears are Lorentz
four-vectors. Similarly, X1 exchange gives

FIG. 1. Skeleton of the renormalizable interaction that leads to a dimension-12 operator with ΔB ¼ �ΔL ¼ −2 after integrating out
the scalar mediators. Here, qi (li) symbolizes a quark (lepton), X1 is an SUð3Þ sextet scalar or triplet scalar, and X2 is a color singlet
scalar with hypercharge �1 or �2.

SIMPLE MODELS WITH BOTH BARYON AND LEPTON NUMBER … PHYS. REV. D 104, 015029 (2021)

015029-3



Hð1Þ
eff ¼ −

�
gpr1 g�p

0r0
1

M2
X1

�
½ðūp0

Lαγ
μupLαÞðd̄r0LβγμdrLβÞ þ ðūp0

Lαγ
μupLβÞðd̄r

0
Lβγμd

r
LαÞ�

−
�
gpr2 g�p

0r0
2

4M2
X1

�
½ðūp0

Rαγ
μupRαÞðd̄r0RβγμdrRβÞ þ ðūp0

Rαγ
μupRβÞðd̄r

0
Rβγμd

r
RαÞ�

þ
�
gpr2 g�p

0r0
1

M2
X1

�
½ðūp0

Lαu
p
RαÞðd̄r0LβdrRβÞ þ ðūp0

Lαu
p
RβÞðd̄r

0
Lβd

r
RαÞ − ðd̄p0

Lαu
p
RαÞðūr0LβdrRβÞ − ðd̄p0

Lαu
p
RβÞðūr

0
Lβd

r
RαÞ�

þ
�
gpr1 g�p

0r0
2

M2
X1

�
½ðūp0

Rαu
p
LαÞðd̄r0RβdrLβÞ þ ðūp0

Rαu
p
LβÞðd̄r

0
Rβd

r
LαÞ − ðūp0

Rαd
p
LαÞðd̄r0RβurLβÞ − ðūp0

Rαd
p
LβÞðd̄r

0
Rβu

r
LαÞ�: ð5Þ

Although no tree-level flavor changing neutral currents are
produced by this Hamiltonian, meson-antimeson mixing is
present at one loop. For convenience, we focus on the g1
coupling matrix between the left-handed quarks and the X1

scalar, and we try various choices for the coupling to get an
impression of the size of these constraints. We let only one
of the three couplings be nonzero. The constraints from
meson-antimeson mixing are [16]

MX1
≳ 300j

ffiffiffi
2

p
gpr1 j2 TeV

if gpr1 ¼ g131 δp1δr3 or gpr1 ¼ g231 δp2δr3; ð6Þ

MX1
≳ 100j

ffiffiffi
2

p
gpr1 jTeV if gpr1 ¼ g121 δp1δr2: ð7Þ

Rotation to the mass eigenstate basis will generate nonzero
entries in the coupling constant matrix, but this is a small
effect. For a sizable coupling constant g1, this would put
such strong constraints on the mass MX1

that baryon
number violating processes certainly would not be observ-
able in the laboratory. We proceed by assuming that the g1
coupling is very small and can be neglected.
The coupling g2 between the X1 scalar and the right-

handed quarks can also lead to meson-antimeson mixing at
one loop. We avoid these experimental constraints by
assuming that the right-handed quarks are mass eigenstate
fields and that gpr2 ¼ g112 δp1δr1. This assumption also
avoids other flavor constraints. A nontrivial Cabibbo-
Kobayashi-Maskawa (CKM) matrix is still allowed since
it arises from transforming the left-handed quark fields to
diagonalize the quark mass matrices. Although we have not
found any analysis of high-energy collider data con-
straining the color sextet scalar coupled to uRdR, other
studies in the literature constraining similar diquarks could
be employed to estimate the constraints in this scenario. For
instance, Ref. [17] uses LHC dijet data to constrain a

diquark D ∼ ð3̄; 1Þ−2=3 that interacts with the down-type
quarks through the following interaction Lagrangian:

L3̄ ¼ −gDD
†
αðdRβsRγÞϵαβγ þ H:c:; ð8Þ

leading to the following constraint:

jgDj ≲ 0.1 for MD ¼ 1 TeV; ð9Þ

where MD is the mass of the diquark. We use the bound in
Eq. (9) for jg112 j.
Next, we focus on the lepton sector. There are very

strong constraints on charged lepton flavor violating
processes, e.g., μ → eγ. To avoid the stringent experimental
constraints in such processes we will assume
gpr3 ¼ g133 δp1δr3. Using the results from Ref. [18], where
in our case BrðX2 → eþν̄τÞ ∼ 50%, we find the following
lower bound on the mass of the singly charged scalar:

MX2
≳ 330 GeV: ð10Þ

Strong constraints come from the tests of lepton flavor
universality. The coupling g133 enters in the squared
amplitude for the leptonic decay τ → eν̄eντ as follows:

jMðτ→eν̄eντÞj2¼jMðτ→eν̄eντÞSMj2×ð1þδeτÞ2; ð11Þ

with

δeτ ¼
1ffiffiffi
2

p
GF

�jg133 j
MX2

�
2

; ð12Þ

where in Eq. (11) SM means standard model. The bounds
on lepton flavor universality sensitive to this specific
element of g3 are [19]

�
Brðτ → μν̄μντÞ=Brðτ → μν̄μντÞSM
Brðτ → eν̄eντÞ=Brðτ → eν̄eντÞSM

�1
2 ¼ ð1þ δeτÞ−1 ≃ 1 − δeτ ≤ 1.0018ð14Þ; ð13Þ
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�
Brðτ → eν̄eντÞ=Brðτ → eν̄eντÞSM
Brðμ → eν̄eνμÞ=Brðμ → eν̄eνμÞSM

�1
2 ¼ ð1þ δeτÞ ≃ 1þ δeτ ≤ 1.0010ð14Þ: ð14Þ

The strongest constraint is set by Eq. (13). At 2σ,

jg133 j ≲ 0.13
�
MX2

TeV

�
: ð15Þ

The g133 coupling also enters in the expression for the lepton
magnetic moments, leading to a weaker constraint than the
tests on lepton flavor universality do.

From this and the other experimental constraints dis-
cussed above, we will choose some allowed values of the
masses and coupling constants to estimate the size of
baryon number violating processes.
The dominant subprocess violating ΔB ¼ ΔL ¼ −2 in

this model is the dinucleon decay np → eþν̄. The effective
Hamiltonian that leads to this dinucleon decay is

HΔB¼ΔL¼−2
eff ¼ −

�
λ�

M6
X1
M2

X2

�
gpr2 gp

0r0
2 gp

00r00
2 gst3 ðupRfαdrRα0gÞðup

0
Rfβd

r0
Rβ0gÞðup

00
Rfγd

r00
Rγ0gÞðLs

LϵL
t
LÞϵαβγϵα0β0γ0 ; ð16Þ

where the brace brackets mean symmetrization of the color indices. The rate for the dinucleon decay in a nucleus can be
estimated from the cross section σðnp → eþν̄Þ as follows [20]:

Γnp ¼ 1

ð2πÞ3ρN

Z
d3k1d3k2ρNðk1ÞρNðk2Þvrelð1 − v⃗1 · v⃗2Þσðnp → eþν̄Þ; ð17Þ

where ρN ¼ R
d3kρNðkÞ=

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
is the average nuclear density, ρN ∼ 0.25 fm−3, and v⃗1 and v⃗2 are the nucleon velocities,

which we presume small. The lifetime of the dinucleon decay (1=Γnp) is therefore estimated to be

τnp→eþν̄ ∼ 32π
m2

N

ρN
jg112 j−6jg133 j−2jλj−2M

12
X1
M4

X2

Λ16
QCD

∼ 1.65 × 1042 years
�
0.1
jg112 j

�
6
�
0.01
jg133 j

�
2
�
1

jλj
�

2
�
M12

X1
M4

X2

TeV16

�
: ð18Þ

Using the following values for the couplings and masses
consistent with the experimental constraints, jg112 j ¼ 0.1,
jg133 j ¼ 0.04, jλj ¼ 2, MX1

¼ 1 TeV, MX2
¼ 350 GeV, the

estimate for the lifetime is

τnp→eþν̄ ∼ 3.9 × 1038 years: ð19Þ

The bound given by the Super-Kamiokande Collaboration
is τnp→eþν̄ > 2.6 × 1032 years [21]. Even given the large
uncertainties in our estimate of the hadronic matrix
element, in this model it is unlikely that baryon number
violating processes will be observed in the laboratory.

B. Model II

In the second minimal renormalizable model, the new
scalars in the representations X1 ∼ ð6̄; 1Þ2=3 and X2 ∼
ð1; 1Þ2 only couple to right-handed fermions. The new
renormalizable interactions are

LII ¼ −gpr1 ðdpRαdrRβÞXαβ
1 − gpr2 ðepRerRÞX2

þ λXαα0
1 Xββ0

1 Xγγ0
1 X†

2ϵαβγϵα0β0γ0 þ H:c: ð20Þ

The couplings g1 and g2 are symmetric in the flavor indices.
This model is identical to Model 8 in Ref. [2].
At low energies the effective Hamiltonian for baryon and

lepton number violating processes is

HΔB¼−ΔL¼−2
eff ¼ −

�
λ�

M6
X1
M2

X2

�
gpr1 gp

0r0
1 gp

00r00
1 g�st2 ðdpRαdrRα0 Þðdp

0
Rβd

r0
Rβ0 Þðdp

00
Rγd

r00
Rγ0 Þðe†sR e†tR Þϵαβγϵα

0β0γ0 : ð21Þ

Exchanges of the X1 and X2 scalars give local four-fermion interactions that conserve baryon and lepton numbers. In terms
of four-component fields, they are

Hð1Þ
eff ¼ −

�
gpr1 g�p

0r0
1

2M2
X1

�
ðd̄p0

Rαγ
μdpRαÞðd̄r0RβγμdrRβÞ; Hð2Þ

eff ¼ −
�
gpr2 g�p

0r0
2

2M2
X2

�
ðēp0

R γ
μepRÞðēr0RγμerRÞ: ð22Þ
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Flavor changing effects are avoided by assuming that the
coupling constant matrices g1 and g2 have only one
nonzero, diagonal entry and that the right-handed standard
model fields are mass eigenstates. As noted earlier, non-
trivial CKM and PontecorvoMakiNakagawaSakata (PMNS)
matrices are still allowed since they arise from transforming
the left-handed quark and lepton fields to diagonalize the
quark and lepton mass matrices.
For the colored scalar interaction with down-type quarks

we adopt gpr1 ¼ g111 δp1δr1 as the only nonzero entry of the
matrix in flavor space. Again, although Model II contains a
color sextet, and not a color antitriplet, we use the cons-
traint on gD in Eq. (9) for jg111 j.
Searches for doubly charged scalars generated by pair

production pp → γ� → X2X�
2 and photon fusion can set a

lower bound on the mass of the scalar X2 that couples to the
leptons. In particular, the analysis by ATLAS [22] gives the
following bound on the mass of a doubly charged scalar
that only couples to right-handed charged leptons:

MX2
≳ 660 GeV; ð23Þ

under the assumption that BrðX2 → lþlþÞ ¼ 100%,
where l ¼ e or μ. In addition, there is a strong bound
from LEP II eþe− annihilation data [23],

jg112 j ≲ 0.18

�
MX2

TeV

�
: ð24Þ

This experimental bound can be evaded by having a small
g112 coupling. We assume gpr2 ¼ g222 δp2δr2, thus evading
experimental constraints from LEP and lepton flavor
violating decays. In this case, the low-energy baryon

number violating processes will have final state muons
(e.g., nn → πþπþμμ). The g222 coupling contributes to the
muon magnetic moment,

ΔaμðX2Þ ≃ −
m2

μ

6π2

�jg222 j
MX2

�
2

: ð25Þ

The current discrepancy between the standard model
prediction and the experimental measurement of the muon
anomalous magnetic moment adds up to 3.3 times the
combined theoretical and experimental error. The new
interactions in this model cannot be the new physics that
explains this discrepancy because the contribution from the
doubly charged scalar to aμ is negative. Therefore, we
assume that the standard model prediction will eventually
match the experimental measurement and impose that the
shift in aμ induced by X2 lies in the 2σ window of the
experimental value aexpμ ¼ 11659209.1ð5.4Þð3.3Þ × 10−10

[24,25]. The later imposes the following constraint on the
g222 and MX2

parameters,

jg222 j ≲ 2.6

�
MX2

TeV

�
: ð26Þ

We combine the constraints discussed above to estimate
the lifetime for the ΔB ¼ −ΔL ¼ −2 processes consistent
with experimental constraints. The dominant subprocess
violating ΔB ¼ −ΔL ¼ −2 in this model is the dinucleon
decay nn → πþπþμμ. The dinucleon decay rate in a
nucleus can be computed from Eq. (17) with the cross
section σðnn → πþπþμμÞ. The lifetime of the dinucleon
decay is therefore estimated to be

τnn ∼
2153π5

ρNm2
N
jg111 j−6jg222 j−2jλj−2M

12
X1
M4

X2

Λ12
QCD

∼ 7.9 × 1040 years ×

�
0.1
jg111 j

�
6
�

1

jg222 j
�

2
�
1

jλj
�

2
�
M12

X1
M4

X2

TeV16

�
; ð27Þ

where a four-body massless phase space has been inserted
[26]. Taking the reasonable values for the couplings
jg222 j ¼ 1, jλj ¼ 2, and jg111 j ¼ 0.1, and the lowest values
allowed for the scalar masses, MX1

¼ 1 TeV and
MX2

¼ 660 GeV, we obtain the following estimate for
the lifetime:

τnn→πþπþμ−μ− ∼ 3.7 × 1039 years: ð28Þ

No direct experimental searches for such dinucleon decays
have been performed. However, inclusive searches could
capture the relevant decays. Current limits from inclusive
nucleon decay searches are quite old, but could potentially
be improved to τ ¼ Oð100Þ × 1030 years [3]. The use of
four-body phase space may underestimate the rate for
baryon number violating processes in this model since
the final state pions can be virtual and give rise to decays

such as ðA; ZÞ → ðA − 2; Z þ 2Þ þ μμ. Despite this uncer-
tainty, our conclusion regarding the observability of baryon
number violating processes in the laboratory for this model
is similar to Model I.

IV. NONMINIMAL RENORMALIZABLE MODELS

We now list some nonminimal renormalizable
models containing scalars. We allow for scalars in more
than two representations and require that the leading baryon
number violating processes have ΔB ¼ �ΔL ¼ −2 as
before.

A. Model III

In this model, we add scalars in the representa-
tions X1 ∼ ð6̄; 3Þ−1=3 and X2 ∼ ð1; 1Þ1. The new inter-
actions are
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LIII ¼ −gpr1 ðQp
Lαϵτ

AQr
LβÞXαβA

1 − gpr2 ðLp
LϵL

r
LÞX2

þ λXαα0A
1 Xββ0B

1 Xγγ0C
1 X2ϵαβγϵα0β0γ0ϵ

ABC þ H:c:; ð29Þ

where we have three different X1’s which are needed
for the λ interaction to be nonzero. We use capital Latin
letters for weak adjoint indices. The couplings g1 and
g2 are symmetric and antisymmetric in the flavor
indices, respectively. This model is identical to Model 6
in Ref. [2].
The discussion of the lepton sector of this model is the

same as in Model I.
Neglecting weak symmetry breaking in the X1 masses,

X1 exchange gives

Hð1Þ
eff ¼ −

�
gpr1 g�p

0r0
1

2M2
X1

�
½ðQ̄p0

Lαγ
μQp

LαÞðQ̄r0
LβγμQ

r
LβÞ

þ ðQ̄p0
Lαγ

μQp
LβÞðQ̄r0

LβγμQ
r
LαÞ�: ð30Þ

The quark fields in Eq. (30) are not mass eigenstates. To
transform to mass eigenstate fields, we use

upL → Upqðu; LÞuqL; dpL → Upqðd; LÞdqL: ð31Þ

Flavor constraints on the scalar mass MX1
and coupling g1

are very strong. We explore several possible choices for the
couplings in an attempt to minimize them.
The part ofHð1Þ

eff that gives rise to flavor changing neutral
currents expressed in terms of the mass eigenstate fields is

ΔHð1Þ
eff ¼ −

�
g̃pr1 g̃�p

0r0
1

2M2
X1

�
½ðūp0

Lαγ
μupLαÞðūr0LβγμurLβÞ þ ðūp0

Lαγ
μupLβÞðūr

0
Lβγμu

r
LαÞ�

−
�
ĝpr1 ĝ�p

0r0
1

2M2
X1

�
½ðd̄p0

Lαγ
μdpLαÞðd̄r0LβγμdrLβÞ þ ðd̄p0

Lαγ
μdpLβÞðd̄r

0
Lβγμd

r
LαÞ�: ð32Þ

Here,

g̃pr1 ¼ gst1 Uðu; LÞspUðu; LÞtr;
ĝpr1 ¼ gst1 Uðd; LÞspUðd; LÞtr: ð33Þ

The mass eigenstate couplings g̃pr1 and ĝpr1 are also
symmetric in flavor. While it may be possible to choose
g1 and the rotation matrices so that both g̃1 and ĝ1 are flavor
diagonal with only one nonzero entry, that seems very
contrived. A further constraint is that we do not want both
g̃111 and ĝ111 to be suppressed by small weak mixing angles
since that would suppress the rate for laboratory baryon
number violating processes.
To explore this further, let us imagine that the left-handed

up-type quark fields are actually mass eigenstate fields;
Upqðu; LÞ ¼ δpq. Then Uðd; LÞ is the CKM matrix VCKM.
Flavor changing neutral currents can then be avoided in the
up-quark sector by assuming that the coupling constant g1
has only one nonzero, diagonal entry. Suppose we take
gpq1 ¼ g111 δp1δq1. To leading order in small mixing angles
the effective Hamiltonian for K − K̄ meson mixing is

ΔHK-K̄ ≃ −
�jg111 j2s212

2M2
X1

�
½ðd̄LaγμsLaÞðd̄LbγμsLbÞ

þ ðd̄LaγμsLbÞðd̄LbγμsLaÞ þ H:c:�; ð34Þ

where we are using the convention for the CKM matrix
used by the Particle Data Group [27]. This effective
Hamiltonian implies that

jΔmK0 j=mK ∼
�jg111 j2s212f2K

2M2
X1

�
: ð35Þ

Experimentally, jΔmK0 j=mK ∼ 10−14. Clearly the con-
straint from K0 − K̄0 mixing on g111 and MX1

that follows
from Eq. (35) is too strong for Model III to give observable
baryon number violation in the laboratory.
If we take the left-handed down-type quarks to be

mass eigenstates, then the CKM matrix arises completely
from redefining the up-type quarks to diagonalize their
mass matrix. In that case with the assumption that
gpr1 ¼ g111 δp1δr1

jΔmD0 j=mD ∼
�jg111 j2s212f2D

2M2
X1

�
: ð36Þ

Experimentally, jΔmD0 j=mD ∼ 10−15. Now constraints
from D0 − D̄0 mixing on g111 and MX1

prevent Model III
from giving rise to observable baryon number violation in
the laboratory.
In summary, our conclusion for Model III is that, without

some very contrived flavor dependence of the coupling
matrix gpq1 , limits on flavor changing neutral current
processes rule out this model giving rise to observable
baryon number violation in the laboratory.

B. Model IV

Next, we consider X1 ∼ ð6̄; 3Þ−1=3, X2 ∼ ð6̄; 1Þ−4=3, and
X3 ∼ ð1; 1Þ2:
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LIV ¼ −gpr1 ðQp
Lαϵτ

AQr
LβÞXαβA

1 − gpr2 ðupRαurRβÞXαβ
2

− gpr3 ðepRerRÞX3 þ λXαα0A
1 Xββ0A

1 Xγγ0
2 X3ϵαβγϵα0β0γ0 þH:c:

ð37Þ

The couplings g1, g2, and g3 are symmetric in the flavor
indices. Similar to Model III, this model is constrained by
meson-antimeson mixing, and thus is excluded from

producing observable baryon number violating processes
in the laboratory.

C. Model V

Alternatively, X1 ∼ ð6̄; 3Þ−1=3, X2 ∼ ð6̄; 1Þ−1=3, and
X3 ∼ ð1; 1Þ1,

LV ¼ −gpr1 ðQp
Lαϵτ

AQr
LβÞXαβA

1 − gpr2 ðQp
LαϵQ

r
LβÞXαβ

2 − gpr3 ðupRαdrRβÞXαβ
2 − gpr4 ðLp

LϵL
r
LÞX3

þ λ1Xαα0A
1 Xββ0B

1 Xγγ0C
1 X3ϵαβγϵα0β0γ0ϵ

ABD þ λ2Xαα0
2 Xββ0

2 Xγγ0
2 X3ϵαβγϵα0β0γ0

þ λ3Xαα0A
1 Xββ0A

1 Xγγ0
2 X3ϵαβγϵα0β0γ0 þ H:c: ð38Þ

The coupling g1 is symmetric and g2 and g4 are antisym-
metric in the flavor indices, while g3 does not have any
symmetry. Note that this model reduces to Model III when
we remove X2, and it reduces to Model I when we remove
X1. The same experimental constraints apply as in Models I
and III.

D. Model VI

The next model we consider is X1 ∼ ð6̄; 1Þ−4=3,
X2 ∼ ð6̄; 1Þ−1=3, and X3 ∼ ð1; 1Þ2,

LVI ¼ −gpr1 ðupRαurRβÞXαβ
1 − gpr2 ðQp

LαϵQ
r
LβÞXαβ

2

− gpr3 ðupRαdrRβÞXαβ
2 − gpr4 ðepRerRÞX3

þ λXαα0
1 Xββ0

2 Xγγ0
2 X3ϵαβγϵα0β0γ0 þ H:c: ð39Þ

The couplings g1 and g4 are symmetric in the flavor indices,
g2 is antisymmetric, while g3 has no symmetry.
The effective Hamiltonian for baryon and lepton number

violating processes is

HΔB¼ΔL¼−2
eff ¼ −

�
λ�

M2
X1
M4

X2
M2

X3

�
gpr1 gp

0r0
3 gp

00r00
3 gst4 ðupRαurRα0 Þðup

0
Rfβd

r0
Rβ0gÞðup

00
Rfγd

r00
Rγ0gÞðesRetRÞϵαβγϵα

0β0γ0 þ � � � : ð40Þ

We take the right-handed fermions to be mass eigenstate fields and, as discussed in the other models, make gpr1 ¼ g111 δp1δr1,
gpr3 ¼ g113 δp1δr1, and gpr4 ¼ g224 δp2δr2, with g2 being small to satisfy LHC, LEP, and flavor constraints. The lifetime for the
dominant subprocess pp → μþμþ is

τpp→μþμþ ∼ 32π
m2

N

ρN
jg111 j−2jg113 j−4jg224 j−2jλj−2M

4
X1
M8

X2
M4

X3

Λ16
QCD

∼ 1.65 × 1038 years

�
0.1
jg111 j

�
2
�
0.1
jg113 j

�
4
�

1

jg224 j
�

2
�
1

jλj
�

2
�
M4

X1
M8

X2
M4

X3

TeV16

�
: ð41Þ

Using the following values for the couplings and masses,
jg111 j¼jg113 j¼0.1, jg224 j¼1, jλj ¼ 2, MX1

¼ MX2
¼ 1 TeV,

and MX3
¼ 660 GeV, the lifetime is estimated to be

τpp→μþμþ ∼ 7.8 × 1036 years: ð42Þ

The limit from the Super-Kamiokande Collaboration is
τpp→μþμþ > 4.4 × 1033 years [28]. If our estimate of the
hadronic matrix element using naive dimensional analysis
underestimates its size by an order of magnitude, these
processes might eventually be observable in the laboratory.

E. Model VII

In this model we add scalars in the representations, X1 ∼
ð3; 1Þ2=3 and X2 ∼ ð1; 1Þ2,

LVII ¼ −gpr1 ðdpRαdrRβÞX1γϵ
αβγ − gpr2 ðepRerRÞX2

þ λX1αX1βX1γX
†
2ϵ

αβγ þ H:c: ð43Þ

The coupling g1 is antisymmetric in the flavor indices,
while the coupling g2 is symmetric. Three different X1

scalars are required to have a nonzero λ interaction (due to
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the antisymmetric color structure). This is why the simplest
models do not include this model; it contains four addi-
tional scalar representations while the simplest models only
have two new scalar representations. This model is iden-
tical to Model 9 in Ref. [2]. The constraints on the
couplings and masses in this model are similar to the
constraints in Model II. This model has dimension five

operators that give rise to ΔB ¼ 1, ΔL ¼ −1 proc-
esses [29].

F. Model VIII

Last, X1 ∼ ð3; 1Þ2=3, X2 ∼ ð6̄; 1Þ2=3, and X3 ∼ ð1; 1Þ2,

LVIII ¼ −gpr1 ðdpRαdrRβÞX1γϵ
αβγ − gpr2 ðdpRαdrRβÞXαβ

2 − gpr3 ðepRerRÞX3

þ λ1X1αX1βX1γX
†
3ϵ

αβγ þ λ2Xαα0
2 Xββ0

2 Xγγ0
2 X†

3ϵαβγϵα0β0γ0 þ λ3X1αX1βX
αβ
2 X†

3 þ H:c: ð44Þ

The couplings g2 and g3 are symmetric in the flavor indices,
and g1 is antisymmetric. Models II and VII are subsets of
this model. This model also suffers from dimension
five operators that give rise to ΔB ¼ 1, ΔL ¼ −1 proce-
sses [29].

V. VACUUM STRUCTURE AND ΔB = − 2
PROCESSES

The vacuum structure of the model might lead to a
violation of the criteria we impose for the models we
consider. For example, we can add scalars in two different
representations: X1 ∼ ð6̄; 3Þ−1=3 and X2 ∼ ð1; 3Þ1. The new
interactions are

LIX ¼ −gpr1 ðQp
Lαϵτ

AQr
LβÞXαβA

1 − gpr2 ðLp
Lϵτ

ALr
LÞXA

2

þ λXαα0A
1 Xββ0B

1 Xγγ0C
1 XD

2 ϵαβγϵα0β0γ0δ
ðABδCÞD þ H:c:;

ð45Þ

where δðABδCÞD ¼ δABδCD þ δBCδAD þ δCAδBD. The cou-
plings g1 and g2 are symmetric in the flavor indices. We
have not displayed other new scalar interactions that
conserve baryon and lepton numbers. This model is
identical to Model 7 in Ref. [2].
This model does not fulfill our criteria where the leading

baryon number violating processes have ΔB ¼ �ΔL ¼
−2. The scalar X2 will have a vacuum expectation value for
general values of the scalar mass parameter μ, coming from
the trilinear term in the scalar potential

μðHϵτAHÞXA�
2 þ H:c: ð46Þ

This would lead to ΔB ¼ −2, ΔL ¼ 0 processes, which we
do not consider here. Although this model does not satisfy
our criteria, nevertheless, this model could still have
interesting phenomenology if μ is small enough.

VI. CONCLUDING REMARKS

There is no evidence of baryon number violation from
laboratory experiments despite heroic efforts to observe it.

If one classifies the nonrenormalizable operators composed
of standard model fields that can give rise to such processes
in terms of the change in baryon number ΔB, then it is only
operators with jΔBj ≤ 2 that have a hope of being observed
in the laboratory and not be in conflict with data. The
reason for this is that models with jΔBj ≥ 3 must have new
degrees of freedom with masses below the weak scale for
such processes to be observable in the laboratory.
In this paper we constructed the simplest models that can

give rise toΔB ¼ �ΔL ¼ −2 but do not, for generic values
of the couplings, give rise to ΔB ¼ −2, ΔL ¼ 0, or ΔB ¼
−1 processes. Models with ΔB ¼ −2, ΔL ¼ 0 have
previously been studied. We also discussed some non-
minimal models and enumerated the dimension-12 oper-
ators that can give rise to ΔB ¼ �ΔL ¼ −2 processes
using Hilbert series techniques.
We found that the simplest models are strongly con-

strained by LHC, LEP, and flavor physics. The model
which gives an estimated rate of dinucleon decay closest to
the experimental bound is Model VI. This model is non-
minimal because it contains scalars in three representations.
In the models we presented in this paper, lifetimes for the

ΔB ¼ �ΔL ¼ −2 processes are proportional to the twelfth
power of the colored scalar masses. Improvements in our
understanding of the compatibility of these models with
observable laboratory baryon number violation can be
made if LHC constraints are improved. Specifically, analy-
ses of three simplified models with colored sextets can be
made with the full available dataset. One has a new colored
sextet scalar Xαβ with interaction Lagrange density,

Lint ¼ −gðdRαdRβÞXαβ þ H:c:; ð47Þ

where the charged scalar X only couples to the down quark
(i.e., not the strange or the bottom),

Lint ¼ −gðuRαuRβÞXαβ þ H:c:; ð48Þ

where the charged scalar X only couples to the up quark
(i.e., not the charm or the top) and finally
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Lint ¼ −gðuRαdRβÞXαβ þ H:c:; ð49Þ

where again the charged scalar only couples to the first
generation quarks. Limits on the allowed two-dimensional
parameter space for the coupling constant g and mass MX
would be very useful.
Given LHC, LEP, and flavor constraints our conclusions

about the potential observability of ΔB ¼ �ΔL ¼ −2 pro-
cesses in the laboratory are rather pessimistic. However, one
of the nonminimal models we considered (Model VI) may
give an observable rate for the process pp→μþμþ [at the
nuclear level ðA;ZÞ→ðA−2;Z−2Þþμþμþ] if our naive

dimensional analysis underestimates the hadronic matrix
element relevant for this process by more than an order of
magnitude.
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