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Simple models with both baryon and lepton number violation by two units
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We construct simple renormalizable extensions of the standard model where the leading baryon number
violating processes have AB = +AL = —2. These models contain additional scalars. The simplest models
contain a color singlet and a colored sextet. For such a baryon number violation to be observed in
experiments, the scalars cannot be much heavier than a few tera-electron-volts. We find that such models
are strongly constrained by LHC physics, LEP physics, and flavor physics.
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I. INTRODUCTION

If the observed baryon asymmetry of the universe arises
from physics below the Planck scale, then it signals new
physics that most likely fits into the current paradigm of
quantum field theory. Presuming that this is the case, it is
interesting to enumerate the possible (nonrenormalizable)
contact interactions that give rise to these processes and
construct renormalizable extensions of the standard model
that produce them. Lorentz invariance and hypercharge
invariance restrict standard model operators that change
baryon number, AB, and possibly lepton number, AL, to
have (AB — AL)/2 be an integer [1]. The simplest case is'
AB = AL = —1; for example, p — e*z°. In this case,
grand unified theories provide well-motivated renormaliz-
able models that realize this type of process. At lower
energies the effects are represented by dimension-six
operators suppressed by a mass scale A squared, and limits
from laboratory experiments searching for proton decay
imply that A > 10'® GeV.

Organizing by increasing mass dimension of the local
operators that give rise to the baryon number violating
processes, the next case is dimension-nine operators with
AB = -2, AL =0 or AB = —1, AL = =3. The first case
could produce, for example, neutron-antineutron oscilla-
tions. The current experiments limit the mass scale that
suppresses such operators at A > 500 TeV. All the

'In this paper we consider local operators without covariant
derivatives that are composed of only fermion fields. For
example, a case we are not considering is AB = —AL = —1
which occurs at dimension seven and involves a Higgs field or a
covariant derivative.
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simplest renormalizable models that give rise to these
processes have been constructed [2]. In both cases the
scale A is so high that there are no relevant constraints on
the new degrees of freedom and their couplings to quarks
from flavor physics and LHC experiments.

The next cases of interest are dimension-12 operators
which lead to AB = +AL = -2 processes or AB = —1,
AL = -5 processes. Renormalizable models with
AB = -1, AL = =5 processes involve leptoquarks, which
are strongly constrained by experimental limits from proton
decay. In this paper we focus on the first of these where
the leading local operators contain six quark fields and two
lepton fields. Dimensional :':uwﬂysis2 gives a rate, '~
Abep/ A, for such low-energy processes. Using Aqcp =
200 MeV for the nonperturbative strong interaction scale
and A = 3 TeV, this crude estimate of the lifetime for
AB = AL = -2 processes is 7 = 1/I" ~ 10** years. The
high power of the nonperturbative scale Agcp that 7
depends on suggests that model-dependent estimates of
the hadronic matrix elements relevant for AB = +AL =
—2 processes may have a high degree of uncertainty.

For processes with |AB| > 2 the scale of new physics
must be below the weak scale for such processes to be
observable in the laboratory. There will not be any
renormalizable models that are consistent with experiments
and give rise to such processes that are observable in the
laboratory. See Ref. [3] for a discussion on inclusive
nucleon decay searches.

In this paper, we enumerate the relevant dimension-12
AB = +AL = -2 operators by applying Hilbert series
techniques. Then we discuss simple renormalizable models
that give rise to some of these operators after integrating out
the heavy scalars. Earlier works along these lines occurred

“In this estimate we do not distinguish between Agcp and the
nucleon mass, My ~1 GeV.
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TABLE L.

Enumeration of dimension-12 operators with AB = AL = —2. The first column indicates the field content of the operator,

while the second column gives the output of the Hilbert series: the number of operators for a given field content. Here, ny and n;, are the
numbers of quark and lepton flavors, respectively. The third column gives the minimal number of terms that is required to write down an
operator basis for ny = n; = 3 (which can be calculated using group-theoretic methods [13,14]), and the last column lists the models
we consider which produce the given operator. By operator we mean gauge and Lorentz invariant contractions of the fields with the
flavor indices expanded, while a term is a collection of operators with the flavor indices unexpanded. Also, to simplify the notation we

have dropped the subscripts on the fermions.

Operator # operators # terms Model
udddddL'L" sinuny(ng + 1)[2(=1+ng) 4 n. (8 = 3ng + Tnp) 2

ddddQQLTLT 251196 4 3519 + nj (6 4 ng) + npng(6 + 1ng + ny(6 + 25n4))] 2

dddddQL" et spning(ng + D10+ ng(=3 + 5np)] 1

dddddde’ e sxzng(ng + Dng(ng + 1)[50 4+ 19ny + nj(5ng —2)] 1 11, VII, VIII
uuuuddee 3511516 + 31ng + 4ngy — nfy (74 10ng) + npng(10 + 13ng + Tng (2 + 5ng))] 4 VI
uuudddL L Fng(ng = D)ng[16 4+ 12ng + 1303 + nf (6 4 25n,)] 3 LV
uuuddQLe Hning[2 4 5ng + nh(4+25n0)] 4

uuudQQee sinngl=(ng + 1)(2 + ng(=1+5np)) + n, (=2 4 5ng + np (8 + 25n4))] 3 VI
uuddQQLL Snpnd[3 —ng 4+ npng(1+5n3)] 4 LV
uudQQQLe sning[—1+10n) 7

uuQQQQee B nny[T—ng + npng(1+5n3)] 3 IV, VI
udQQQQLL 5116 — 19ng — (6 + 5ng) + ny (=6 — Sng + ny (6 + 125ny))] 8 LV
uQQQQOQOLe sy [=2 = ng +np(2 +25n0)] 6

QQQQQQOLL  Lnynp[2+T5ng +2nf — njy(3 +4ng) +ny (16 = 12ng + Tng, + nd (12 + 49ny))] 11 I 1L V

in Refs. [4-7]. The simplest models, of which there are two,
add two new representations of scalars to the standard
model, where one of the scalars is a color sextet. For the
two simplest models we discuss the phenomenology in
detail. The models are strongly constrained by flavor
changing neutral current processes and—without making
some specific choices for the couplings of the new scalars
and assumptions about the right-handed quark mass eigen-
state fields—will not permit measurable baryon number
violation in the laboratory. Even when the models escape
constraints from flavor physics, there are still strong
constraints on the masses and couplings of the new scalars
from LHC and LEP physics. Given the large uncertainty in
our estimate of the hadronic matrix element, one of the
nonminimal models we consider may give an observable
rate for the process pp — putu"™ [at the nuclear
level (A,Z) > (A=2,Z-2)+pu"u'].

II. BARYON NUMBER VIOLATING OPERATORS

We are considering simple models where the leading bary-
on number violating processes have’ AB = +£AL = —2.The

*We define AB as the number of baryons in the final state
minus the number of baryons in the initial state. AL is defined
with the same sign convention.

corresponding effective operators have mass dimension 12.
Using Hilbert series techniques—which have been devel-
oped for the standard model [8§—12]—we can enumerate the
relevant operators. The Hilbert series method for operators
we consider is well explained in Ref. [9], including several
explicit examples. We use the standard model fermions
fields {Qy,ug,dg,L;,er}, which have the following
quantum numbers:

01 ~(3.2)y,
Ly~ (1’2)—1/2»

ug ~ (3, 1)2/3, dg ~ (3, 1)—1/3’
er~(1,1)_y, (1)

and the Hermitian conjugate fields; i.e., we do not include
right-handed neutrinos. In the description of the standard
model quantum numbers the first entry is the color repre-
sentation, the second is the weak SU(2) representation, and
the subscript is the hypercharge. The subscripts on the
fermions listed above indicate the representations of the
Lorentz group SU(2);, ® SU(2)g. The Hilbert series gives
the number of independent operators for a given field
content, taking into account redundancies coming from
field redefinitions and integration-by-parts relations. The
dimension-12 AB = £AL = -2 operators are listed in
Table I. For each operator in Table I we list the models
we consider in this paper which give rise to it. Reference [4]
constructed a complete operator basis with AB = AL = £2
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FIG. 1. Skeleton of the renormalizable interaction that leads to a dimension-12 operator with AB = +AL = -2 after integrating out

the scalar mediators. Here, ¢; (¢;) symbolizes a quark (lepton), X, is an SU(3) sextet scalar or triplet scalar, and X, is a color singlet

scalar with hypercharge +1 or +2.

for one generation of quarks and estimated some hadronic
matrix elements of these operators.

III. MINIMAL RENORMALIZABLE MODELS

We now discuss the simplest models that produce some
of the dimension-12 operators listed above, but do not
contribute to AB = —1 processes and AB = -2, AL =0
processes for generic values of the couplings. To be more
specific, we consider models with additional scalars. We
have not considered models with additional fermions or
gauge bosons; however, they are certainly more compli-
cated. By simplest we mean the lowest number of new
representations. We find that there are two minimal models,
each containing one color sextet scalar and one color
singlet scalar with nonzero hypercharge. The masses of
these colored scalars cannot be too small in order to be
consistent with constraints from the LHC. In Ref. [15],
four-jet events from gluon fusion were simulated. These
constraints are independent of the coupling to quarks. With
no observed deviation from the standard model result, the
masses of the new colored sextet scalars have to be

My 21 TeV. (2)

In all AB = 4+AL = -2 operators listed above, six
quarks and two leptons are involved. Figure 1 illustrates
the skeleton of the core renormalizable interaction that
leads to the AB = +=AL = —2 dimension-12 operator once
the scalar mediators are integrated out.

In the remainder of this section, we discuss the phe-
nomenology of the simplest models.

A. Model I

With scalars in the representations X; ~

(6.1)_,,; and
X, ~(1,1),, we have that

(11 ofp
=-9 (QLaeQLﬂ) /_92 (uRad;Qﬂ) xy

— (LY eL}) X + AX% X X1 Xoeop €y + Hec.,

(3)

where Greek letters are color indices, the superscripts
p.r, ..., on the fields are flavor quantum numbers, and
the quantities in round brackets are Lorentz singlets and
weak SU(2) singlets. Lorentz and fundamental weak
SU(2) indices are not displayed explicitly. The e tensor
contracting weak SU(2) indices is explicitly displayed;
however, we do not display the e tensor contracting Lorentz
indices. The couplings g; and g; are antisymmetric in the
flavor indices, while g, has no symmetry. We have not
displayed other new scalar interactions that conserve
baryon and lepton numbers. This model is identical to
Model 5 in Ref. [2].

Constraints on the coupling matrices ¢;, ¢, and g3
arise from limits on low-energy flavor changing proc-
esses, LEP data, and LHC data. For low-energy processes
that occur well below the masses of the new scalars they
can be integrated out giving rise to local four-fermion
operators. It is convenient, for comparison with existing
analysis of data, to express those operators in terms of
four-component fields. Using that notation, X, exchange
gives

@ (B GE"N :
R e [CACACTA AN
X5

where the round bracketed fermion bilinears are Lorentz
four-vectors. Similarly, X; exchange gives
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Although no tree-level flavor changing neutral currents are
produced by this Hamiltonian, meson-antimeson mixing is
present at one loop. For convenience, we focus on the ¢,
coupling matrix between the left-handed quarks and the X
scalar, and we try various choices for the coupling to get an
impression of the size of these constraints. We let only one
of the three couplings be nonzero. The constraints from
meson-antimeson mixing are [16]

x, 2 300[v2g""|> TeV
if 97" = g’8"167 or gi" =gP6"%57,  (6)

My, 2 100|V2g} [TeV if g" = gi?6'8™.  (7)

Rotation to the mass eigenstate basis will generate nonzero
entries in the coupling constant matrix, but this is a small
effect. For a sizable coupling constant g;, this would put
such strong constraints on the mass My that baryon
number violating processes certainly would not be observ-
able in the laboratory. We proceed by assuming that the g,
coupling is very small and can be neglected.

The coupling g, between the X, scalar and the right-
handed quarks can also lead to meson-antimeson mixing at
one loop. We avoid these experimental constraints by
assuming that the right-handed quarks are mass eigenstate
fields and that ¢)" = g}!'67's"™!. This assumption also
avoids other flavor constraints. A nontrivial Cabibbo-
Kobayashi-Maskawa (CKM) matrix is still allowed since
it arises from transforming the left-handed quark fields to
diagonalize the quark mass matrices. Although we have not
found any analysis of high-energy collider data con-
straining the color sextet scalar coupled to updg, other
studies in the literature constraining similar diquarks could
be employed to estimate the constraints in this scenario. For
instance, Ref. [17] uses LHC dijet data to constrain a
|

B D,.)/B 7 !
( tle = pbyve) [Briz ~ ””"”’)SM>2 — (1 48,)" ~1-5, <1.0018(14), (13)

Br(z — eb,v,)/Br(t — eb,v,)gm

(uia ulléﬂ) (Elz/ﬁd;?a)

(uﬁaui/}) (a;?//)’dZa) -

LﬁVﬂdLﬁ) + (ﬁﬁay"ufﬁ) (az/ﬁyﬂdZa)]

R/}Y/AdR/)') + (L_tZayﬂuI’;ﬁ)(El;ﬁyyd;?a)]

(dLauRa)(uLﬁdr ) (agauzﬁ)(uz/ﬁd;iaﬂ

(ﬁzlsad{a)(gl;?/ﬁuzﬁ) - (ﬁl’;adiﬁ)(gl;/}uzl)] (5)

|
diquark D ~ (3,1)_, /3 that interacts with the down-type
quarks through the following interaction Lagrangian:

Eg = —gDDZ((dR/}SRy)E(l/}y + H.C., (8)
leading to the following constraint:

lgp| £0.1 for Mp =1 TeV, 9)
where M, is the mass of the diquark. We use the bound in
Eq. (9) for [g}'].

Next, we focus on the lepton sector. There are very
strong constraints on charged lepton flavor violating
processes, e.g., 4 — ey. To avoid the stringent experimental
constraints in such processes we will assume
gy = gi36P18". Using the results from Ref. [18], where
in our case Br(X, — e¢"7,) ~50%, we find the following
lower bound on the mass of the singly charged scalar:

My, 2330 GeV. (10)

Strong constraints come from the tests of lepton flavor
universality. The coupling ¢i® enters in the squared
amplitude for the leptonic decay 7 — er, v, as follows:

|M(T_) eaeyr)lz = |M(T_) eDeVT)SM|2 X (1 +6er)27 (11)

with

ec = fl 26, <|A94x|> ’ (12)

where in Eq. (11) SM means standard model. The bounds
on lepton flavor universality sensitive to this specific
element of g5 are [19]
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<Br(r - eb,v,)/Br(t = ev,v;)sm
BI'(/J - eDeU/A)/Br(ﬂ - eDe”}t)SM

The strongest constraint is set by Eq. (13). At 2o,

M
93] 50.13(#3). (15)

The g§3 coupling also enters in the expression for the lepton
magnetic moments, leading to a weaker constraint than the
tests on lepton flavor universality do.

/1* ! "I
AB=AL=-2 __ _ pr p'v p'r
Heff - (

6 a2 19292 %
M M3,

Pdr

g:’aw(uR{a Rd'}

1
>2= (1+46,,)~1+36,, <1.0010(14). (14)

|

From this and the other experimental constraints dis-
cussed above, we will choose some allowed values of the
masses and coupling constants to estimate the size of
baryon number violating processes.

The dominant subprocess violating AB = AL = -2 in
this model is the dinucleon decay np — e*r. The effective
Hamiltonian that leads to this dinucleon decay is

"

) (i) (Uep, i) (LieLy )ere T (16)

where the brace brackets mean symmetrization of the color indices. The rate for the dinucleon decay in a nucleus can be
estimated from the cross section o(np — e*0) as follows [20]:

1

an = —/d3k1d3k2PN(k1)PN(kz)Urel(l — 7y - 772)6(”19 - e'D), (17)

(27)°p

where py = [ d*kpy(k)/+/(27)? is the average nuclear density, py ~ 0.25 fm™>, and ¥, and 7, are the nucleon velocities,
which we presume small. The lifetime of the dinucleon decay (1/I',,) is therefore estimated to be

m2 12 04
Typets ~ 320 g3 7132|272
PN

Using the following values for the couplings and masses
consistent with the experimental constraints, |gi!| = 0.1,
9| = 0.04, [A] =2, My, =1 TeV, My, = 350 GeV, the
estimate for the lifetime is

Tupoets ~ 3.9 X 10% years. (19)

The bound given by the Super-Kamiokande Collaboration
iS 7,5 > 2.6 X 10° years [21]. Even given the large
uncertainties in our estimate of the hadronic matrix
element, in this model it is unlikely that baryon number
violating processes will be observed in the laboratory.

|

HAflf?:—AL:—Z _ (
e - 6 2
MXl MX2

My M 0.1\6/0.01\2/ 1\2/M¢?M;
AQCD |92 | |93 | |/1| TeV

B. Model 11

In the second minimal renormalizable model, the new
scalars in the representations X; ~ (6,1),;; and X, ~
(1,1), only couple to right-handed fermions. The new
renormalizable interactions are

Ly = —er(dﬁad§ﬁ>x?ﬂ — g5 (eger)X,

+ X XY X X g €0y +He  (20)

The couplings g; and g, are symmetric in the flavor indices.
This model is identical to Model 8 in Ref. [2].

At low energies the effective Hamiltonian for baryon and
lepton number violating processes is

A,* /. " ! 7 1" " 7l
)gf’gf’gf 7 5 ()l (i ) (e el et (21)

RECRp

Exchanges of the X and X, scalars give local four-fermion interactions that conserve baryon and lepton numbers. In terms

of four-component fields, they are

(1) gfrgikp/’/ TP P ar’ r (2) gé”'gzp/"/ LAY r
Hyp = — oM (dar dRa)(dRﬁyﬂdRﬁ)’ Hy = — oM (ekr eR)(eRheR)- (22)
X, X,

015029-5
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Flavor changing effects are avoided by assuming that the
coupling constant matrices ¢g; and ¢, have only one
nonzero, diagonal entry and that the right-handed standard
model fields are mass eigenstates. As noted earlier, non-
trivial CKM and PontecorvoMakiNakagawaSakata (PMNS)
matrices are still allowed since they arise from transforming
the left-handed quark and lepton fields to diagonalize the
quark and lepton mass matrices.

For the colored scalar interaction with down-type quarks
we adopt gf" = g{'67'6"! as the only nonzero entry of the
matrix in flavor space. Again, although Model II contains a
color sextet, and not a color antitriplet, we use the cons-
traint on g, in Eq. (9) for |gi!].

Searches for doubly charged scalars generated by pair
production pp = y* — X,X; and photon fusion can set a
lower bound on the mass of the scalar X, that couples to the
leptons. In particular, the analysis by ATLAS [22] gives the
following bound on the mass of a doubly charged scalar
that only couples to right-handed charged leptons:

My, % 660 GeV, (23)

under the assumption that Br(X, — £7¢%) = 100%,
where £ = ¢ or u. In addition, there is a strong bound
from LEP II e e~ annihilation data [23],

M
gt < 0.18<i>. (24)

TeV

This experimental bound can be evaded by having a small
gi! coupling. We assume ¢b" = ¢5%6725"%, thus evading
experimental constraints from LEP and lepton flavor
violating decays. In this case, the low-energy baryon

21535 MZEMY
T~ o [} [0l A e ~ 79 %
Ny QCD

where a four-body massless phase space has been inserted
[26]. Taking the reasonable values for the couplings
|g3?| = 1, |4] = 2, and |g}'| = 0.1, and the lowest values
allowed for the scalar masses, My =1TeV and
My, = 660 GeV, we obtain the following estimate for
the lifetime:

Tpnontwtpu- ~ 3.7 % 10% years. (28)

No direct experimental searches for such dinucleon decays
have been performed. However, inclusive searches could
capture the relevant decays. Current limits from inclusive
nucleon decay searches are quite old, but could potentially
be improved to 7 = O(100) x 10*° years [3]. The use of
four-body phase space may underestimate the rate for
baryon number violating processes in this model since
the final state pions can be virtual and give rise to decays

number violating processes will have final state muons
(e.g., nn — xt 7t pp). The g3* coupling contributes to the
muon magnetic moment,

Aa,(X,) = M (@Y (25)

677:2 MX

2

The current discrepancy between the standard model
prediction and the experimental measurement of the muon
anomalous magnetic moment adds up to 3.3 times the
combined theoretical and experimental error. The new
interactions in this model cannot be the new physics that
explains this discrepancy because the contribution from the
doubly charged scalar to a, is negative. Therefore, we
assume that the standard model prediction will eventually
match the experimental measurement and impose that the
shift in @, induced by X, lies in the 26 window of the
experimental value a," = 11659209.1(5.4)(3.3) x 10717
[24,25]. The later imposes the following constraint on the
g3* and My, parameters,

M
2| <2.6( =22, 26
526 (1%) (26)

We combine the constraints discussed above to estimate
the lifetime for the AB = —AL = —2 processes consistent
with experimental constraints. The dominant subprocess
violating AB = —AL = -2 in this model is the dinucleon
decay nn — ntzTpuu. The dinucleon decay rate in a
nucleus can be computed from Eq. (17) with the cross
section o(nn — xtapu). The lifetime of the dinucleon
decay is therefore estimated to be

12 174
10%0 years x OLNO L \2(LN2 My My, , (27)
911/ \lgz?l) \IAl) \ Tev'e

I

such as (A,Z) - (A —2,Z +2) + pu. Despite this uncer-
tainty, our conclusion regarding the observability of baryon
number violating processes in the laboratory for this model
is similar to Model 1.

IV. NONMINIMAL RENORMALIZABLE MODELS

We now list some nonminimal renormalizable
models containing scalars. We allow for scalars in more
than two representations and require that the leading baryon
number violating processes have AB = +AL = -2 as
before.

A. Model III

In this model, we add scalars in the representa-
tions X; ~(6,3)_;,3 and X, ~ (1,1);. The new inter-
actions are

015029-6
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r r A r r
Ly = -4} (QIZO,WAQL/;)X?ﬂ — g5 (L7eLy)X,
+ AXSAXIBXITCX e ey BC + Hee.,  (29)

where we have three different X;’s which are needed
for the A interaction to be nonzero. We use capital Latin
letters for weak adjoint indices. The couplings g; and
g, are symmetric and antisymmetric in the flavor
indices, respectively. This model is identical to Model 6
in Ref. [2].

The discussion of the lepton sector of this model is the
same as in Model 1.

Neglecting weak symmetry breaking in the X; masses,
X, exchange gives

(1)— gpr 7 AP P Nr r
H ot 2M2 [(OLar QLa)(QLﬂVﬂQLﬂ)

+ (07,7 Q1) (01 57,010 (30)

The quark fields in Eq. (30) are not mass eigenstates. To
transform to mass eigenstate fields, we use

ul = UP9(u, L)uf, d? — UPd(d,L)d}. (31)
Flavor constraints on the scalar mass My and coupling g,
are very strong. We explore several possible choices for the
couplings in an attempt to minimize them.

The part of He}:f that gives rise to flavor changing neutral
currents expressed in terms of the mass eigenstate fields is

pr~xp'r
1 g g _p . r _p — r
AH! = ( W )[(uzawuﬁ,><uwmuw> (@) (0] )
LEN o o o
- () @t @) + @) @) (32)
1
Here ol ~ (LAY o
~pr tr 2MX1
g =gi'U(u.L)*?U(u,L)",
9 =g'U(d.L)*PU(d.L)". (33)  Experimentally, [Anmgo|/mg ~107'%. Clearly the con-

The mass eigenstate couplings " and §7" are also
symmetric in flavor. While it may be possible to choose
g1 and the rotation matrices so that both g; and g, are flavor
diagonal with only one nonzero entry, that seems very
contrived. A further constraint is that we do not want both
71! and g}! to be suppressed by small weak mixing angles
since that would suppress the rate for laboratory baryon
number violating processes.

To explore this further, let us imagine that the left-handed
up-type quark fields are actually mass eigenstate fields;
UP9(u, L) = 64. Then U(d, L) is the CKM matrix Vg
Flavor changing neutral currents can then be avoided in the
up-quark sector by assuming that the coupling constant g,
has only one nonzero, diagonal entry. Suppose we take
@ = g}'6r1s7'. To leading order in small mixing angles
the effective Hamiltonian for K — K meson mixing is

| 2

9" Psta 1 -
AHyg g~ — <| M 12) (drar"sra)(dipYusey)
Xy

+ (dpay*sep) (drpyusra) + Heel, (34)

where we are using the convention for the CKM matrix
used by the Particle Data Group [27]. This effective
Hamiltonian implies that

straint from K° — K° mixing on g|' and My, that follows
from Eq. (35) is too strong for Model III to give observable
baryon number violation in the laboratory.

If we take the left-handed down-type quarks to be
mass eigenstates, then the CKM matrix arises completely
from redefining the up-type quarks to diagonalize their
mass matrix. In that case with the assumption that
o = gl'or's"

2 2
Ay fmip ~ ('g'—z”) (36)
2

Experimentally, |Ampo|/mp~ 10715, Now constraints
from D° — D° mixing on g{' and My, prevent Model III
from giving rise to observable baryon number violation in
the laboratory.

In summary, our conclusion for Model III is that, without
some very contrived flavor dependence of the coupling
matrix ¢, limits on flavor changing neutral current
processes rule out this model giving rise to observable
baryon number violation in the laboratory.

B. Model IV

Next, we consider X; ~ (6, 3) 13 Xo~

(6, 1)_4/3, and
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r r A r
Ly =—g; (QZ(FTAQL/;)X?[; -9 (uRauR/i)Xaﬁ
Bp'A
— g7 (eheR)Xs + AXWAXPPAXT X es €y +Hee.
(37)
The couplings g, g,, and g3 are symmetric in the flavor
indices. Similar to Model III, this model is constrained by

meson-antimeson mixing, and thus is excluded from
|

Ly = —gf’(Qi’aefAQZﬂ)Xl’ﬁA -9 (QLaeQLﬂ) x5 -

+ /11X70/AX/13ﬂ BX}I/}, CX3€aﬂy€a’ﬂ’}/’€

+ /13X(1M/AXfﬁ/Ang/Xﬁa/j}'ea’ﬁ/V/ + H.c.

The coupling g, is symmetric and g, and g, are antisym-
metric in the flavor indices, while g; does not have any
symmetry. Note that this model reduces to Model III when
we remove X,, and it reduces to Model I when we remove
X, . The same experimental constraints apply as in Models I
and IIL

D. Model VI

The next model we consider
Xy~ (6.1)_, 3, and X5 ~ (1,1),,

is XI ~ (6’ 1)—4/3a

2 o
AB=AL=-2 __ pr_p P 'Y
Her - _<M§(1M§(7M§3>gl 9 9

We take the right-handed fermions to be mass eigenstate fields and, as discussed in the other models, make ¢

93 — lléplérl and gﬂ"
dominant subprocess pp — utu' is

Tpp—utu

941(”57301"‘;30,/)(“1’;{/;‘1;;/;'})(MZ{J, Ry})(eRe Jelre Y 4

m2
o~ 32— | g |2 gh 4| 622 2)A 2
PN

producing observable baryon number violating processes
in the laboratory.

C. Model V
Alternatively, X, ~(6.3)_,,3, X,~(6,1)_,5, and
X3~ (L1),,
pr(“Radr )X x5 - gy (L7eL})X;
+ XS XY XY Xseap ey
(38)

a a}
Loy = =g} ()XY = g4 (Qf 0} ) X5
- 93 (uRadr )Xgﬂ _94 (eReR)X3

+ AXT* Xgﬂ Xy Xse €apy T Hee. (39)

apy

The couplings g; and g, are symmetric in the flavor indices,
g» 1s antisymmetric, while g; has no symmetry.

The effective Hamiltonian for baryon and lepton number
violating processes is

L7

(40)

pro__ g115p15r1

g326P26™, with g, being small to satisfy LHC, LEP, and flavor constraints. The lifetime for the

My M5 My,

16
AQCD

2
~1.65x 103 years< 01 > <
|91 |

Using the following values for the couplings and masses,
l91'1=1g5'|=0.1, |gi*| =1, |4 = 2, My, = My, = 1 TeV,
and My, = 660 GeV, the lifetime is estimated to be

Tppoutut ~ 1.8 x 10% years. (42)
The limit from the Super-Kamiokande Collaboration is
Tppoptut > 44 x 103 years [28]. If our estimate of the
hadronic matrix element using naive dimensional analysis
underestimates its size by an order of magnitude, these

processes might eventually be observable in the laboratory.

4 g8 agd
) () () )
1931/ \lg3*l) \I4] TeV!0

(41)

[
E. Model VII

In this model we add scalars in the representations, X ~

Ly = _gfr(dlzadlreﬁ)xlyeaﬂy - gﬁ’(éﬁez’e)Xz
+ X 14X 15X, X356 + H.c. (43)

The coupling g, is antisymmetric in the flavor indices,
while the coupling g, is symmetric. Three different X,
scalars are required to have a nonzero A interaction (due to

015029-8
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the antisymmetric color structure). This is why the simplest
models do not include this model; it contains four addi-
tional scalar representations while the simplest models only
have two new scalar representations. This model is iden-
tical to Model 9 in Ref. [2]. The constraints on the
couplings and masses in this model are similar to the
constraints in Model II. This model has dimension five
|

operators that give rise to AB =1, AL = -1 proc-
esses [29].

F. Model VIII

£VIII = _g{)r(diad;?ﬂ)xlygaﬁy - ggr(dgad;’eﬂ)xgﬁ - gé)r(€§€;e)X3

X1 X pX 1, X e 4 2, X8 X XY X e €py + 2 X1aX 1, XP XS + Hec. (44)

The couplings g, and g5 are symmetric in the flavor indices,
and g, is antisymmetric. Models II and VII are subsets of
this model. This model also suffers from dimension
five operators that give rise to AB =1, AL = —1 proce-
sses [29].

V. VACUUM STRUCTURE AND AB= -2
PROCESSES

The vacuum structure of the model might lead to a
violation of the criteria we impose for the models we
consider. For example, we can add scalars in two different
representations: X; ~ (6,3)_, 3 and X, ~ (1,3),. The new
interactions are

r r A r r
Lix = =97 (QIZaGTAQLﬂ)X?ﬂ — ¢y (Lier"Ly)X5
+ AX?Q/AXlljﬁlBX;I}/Cxé)eaﬁrea’ﬁ’y’5<AB§C)D +He.,
(45)

where §4B5OP = §ABSCD 4 §BCHAD 1 sCASBD. The cou-
plings g; and g, are symmetric in the flavor indices. We
have not displayed other new scalar interactions that
conserve baryon and lepton numbers. This model is
identical to Model 7 in Ref. [2].

This model does not fulfill our criteria where the leading
baryon number violating processes have AB = +AL =
—2. The scalar X, will have a vacuum expectation value for
general values of the scalar mass parameter y, coming from
the trilinear term in the scalar potential

u(Het"H)X4* + H.c. (46)

This would lead to AB = —2, AL = 0 processes, which we
do not consider here. Although this model does not satisfy
our criteria, nevertheless, this model could still have
interesting phenomenology if u is small enough.

VI. CONCLUDING REMARKS

There is no evidence of baryon number violation from
laboratory experiments despite heroic efforts to observe it.

|

If one classifies the nonrenormalizable operators composed
of standard model fields that can give rise to such processes
in terms of the change in baryon number AB, then it is only
operators with |AB| < 2 that have a hope of being observed
in the laboratory and not be in conflict with data. The
reason for this is that models with |AB| > 3 must have new
degrees of freedom with masses below the weak scale for
such processes to be observable in the laboratory.

In this paper we constructed the simplest models that can
giverise to AB = £AL = —2 but do not, for generic values
of the couplings, give rise to AB = -2, AL =0, or AB =
—1 processes. Models with AB = -2, AL =0 have
previously been studied. We also discussed some non-
minimal models and enumerated the dimension-12 oper-
ators that can give rise to AB = +AL = —2 processes
using Hilbert series techniques.

We found that the simplest models are strongly con-
strained by LHC, LEP, and flavor physics. The model
which gives an estimated rate of dinucleon decay closest to
the experimental bound is Model VI. This model is non-
minimal because it contains scalars in three representations.

In the models we presented in this paper, lifetimes for the
AB = £AL = -2 processes are proportional to the twelfth
power of the colored scalar masses. Improvements in our
understanding of the compatibility of these models with
observable laboratory baryon number violation can be
made if LHC constraints are improved. Specifically, analy-
ses of three simplified models with colored sextets can be
made with the full available dataset. One has a new colored
sextet scalar X% with interaction Lagrange density,

‘Cint = _g(dRadRﬂ)Xaﬂ +H.c., (47)

where the charged scalar X only couples to the down quark
(i.e., not the strange or the bottom),

Line = —9(upauirs) X + Hec., (48)

where the charged scalar X only couples to the up quark
(i.e., not the charm or the top) and finally
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‘Cint = _g(uRadRﬂ)Xaﬁ + H.C., (49)

where again the charged scalar only couples to the first
generation quarks. Limits on the allowed two-dimensional
parameter space for the coupling constant g and mass My
would be very useful.

Given LHC, LEP, and flavor constraints our conclusions
about the potential observability of AB = AL = -2 pro-
cesses in the laboratory are rather pessimistic. However, one
of the nonminimal models we considered (Model VI) may
give an observable rate for the process pp—utu™ [at the
nuclear level (A,Z)—(A-2,Z-2)+utu™] if our naive

dimensional analysis underestimates the hadronic matrix
element relevant for this process by more than an order of
magnitude.
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