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We present a complete list of the dimension-eight operator basis in the standard model effective field
theory using group theoretic techniques in a systematic and automated way. We adopt a new form of
operators in terms of the irreducible representations of the Lorentz group and identify the Lorentz structures
as states in a SU(N) group. In this way, redundancy from equations of motion is absent and that from
integration by part is treated using the fact that the independent Lorentz basis forms an invariant subspace
of the SU(N) group. We also decompose operators into the ones with definite permutation symmetries
among flavor indices to deal with subtlety from repeated fields. For the first time to our knowledge, we
provide the explicit form of independent flavor-specified operators in a systematic way. Our algorithm can
easily be applied to higher-dimensional standard model effective field theory and other effective field

theories, making these studies more approachable.
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I. INTRODUCTION

The standard model (SM) of particle physics is a great
triumph of modern physics. It has successfully explained
almost all experimental results and predicted a wide variety
of phenomena with unprecedented accuracy. Despite its
great success, however, the SM fails to account for some
basic properties of our universe, e.g., neutrino masses,
matter-antimatter asymmetry, and the existence of dark
matter. This has motivated both the theorists and the
experimentalists to make a dedicated effort to search for
pieces of evidence of new physics (NP) beyond the SM.
Until now, direct searches have not yielded anything of
significance, which already pushed the NP scale to be
above the tera-electron-volt (TeV) scale. Therefore, it is
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highly motivated to study NP phenomena involving only
the SM particles within the framework of effective theories.

Effective field theory (EFT) provides a systematical
framework for parametrizing various NP based on only the
field content, the Lorentz invariance, and the gauge sym-
metries in the SM. The Lagrangian of such an EFT contains
not only the renormalized SM Lagrangian but also all the
higher-dimensional invariant operators, which parametrize
all the possible deviations from the SM. Assuming that NP
appears at the scale A above the electroweak scale,' the
general Lagrangian can be parametrized as

1) d—4

d>4

which describes the standard model effective field theory
(SMEFT), with C; identified as the Wilson coefficients. The
only possible dimension-five (d = 5) operator is the famous
Weinberg operator [1], with lepton number violation
encoded. The dimension-six operators were first listed in
Ref. [2], and a subtle problem arises due to redundancies

'New physics could also exist below the electroweak scale, but
such a scenario is not considered here.
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among the operators. It is often convenient to obtain a
complete set of independent operators, namely the non-
redundant operator basis. This task is highly nontrivial
because different structured operators may be related by
the equation of motion (EOM), integration by parts (IBP), and
Fierz identities. These redundancies could be avoided by
imposing the EOMs and IBPs explicitly, the independent
dimension-six operators in the Warsaw basis [3] were con-
structed based on this principle, and the complete renorm-
alization group equations are written in Refs. [4-6]. In
Ref. [7,8] the complete set of dimension-seven operators
has been obtained. Recently the Hilbert series method [9-11]
has been applied to enumerate the SMEFT operators up to
dimension 15 [12-15], but it is only designed to count
the number of independent operators in each dimension.
Besides, a few other papers [ 16—19] also developed programs
to count the number of operators in alternative ways. Although
partial lists of the dimension-8 (dim-8) and higher-dimensional
operators have been obtained [20-24], writing down a
complete set of the nonredundant operators explicitly at
dimension eight and higher is still a challenging task.

Our goal in this paper is to find a complete set of
dimension-eight operators in the SMEFT framework. For a
physical process, if the leading NP contribution directly
comes from the dimension-eight operators, or if the
contribution from the dimension-six operators is subdomi-
nant or highly constrained, the dimension-eight operators
should be seriously considered, even though their Wilson
coefficients are suppressed by a higher inverse power of the
NP scale. The first example is the neutral triple gauge boson
couplings (n'TGC) ZZV and ZyV, for which no dimension-
six operator contributes and thus dimension-eight operators
dominate [22,25]. Furthermore, in the dimension-six oper-
ator basis, the Wilson coefficient for the quartic gauge
boson coupling (QGC) is related to the one in the triple
gauge boson coupling (TGC), while at dimension eight
there is no such correlation in the Wilson coefficients [26].
Similar is true for various Higgs gauge boson couplings.
For the four-fermion interactions, let us take the nonstand-
ard neutrino interaction (NSI) as an example. At the
dimension-six level, new physics which induces the neutral
current NSI also induces an operator involving the charged
current NSI, which has been tightly constrained by experi-
ments. Thus we expect the dimension-eight operators could
dominate the neutral current NSI processes [27]. The
presence of the electric dipole moment (EDM) which
can also be generated by the dimension-eight operators
directly indicates the existence of the CP violation in the
UV theory, and in some cases dimension-eight operators
can be the leading order contribution as its counterpart at
the dimension-six operator vanishes. The dimension-eight
operators also generate new kinds of four-fermion inter-
actions with quite different Lorentz structures. Overall, the
dimension-eight operator basis deserves a detailed study
with all the nonredundant operators written explicitly.

The main difficulty of listing the independent operators
arises from how to effectively eliminate the redundancies
among operators with derivatives. Operators with deriva-
tives often involve two types of redundancies: (1) operators
differing by the classical EOM are related to each other
through field redefinitions; (2) operators differing by a total
derivative are equivalent in perturbative calculations, the
so-called IBP. At lower dimensions where limited operators
with derivatives are present, the EOM and IBP relations
could be imposed explicitly to eliminate all the redundan-
cies, as was done when the dim-6 and dim-7 operators were
written down [3,7]. The on-shell amplitude method [28-32]
has been applied to the dimension-six SMEFT [29-31]
which solves the EOM redundancy but still needs to impose
conditions to treat the IBP redundancy. Nevertheless, at
dimension eight or higher, the number of such operators
increases tremendously, which makes the task very tedious
and prone to error. The Hilbert series method, applied to the
SMEFT, deals with these redundancies via decomposing
the field derivatives into irreducible representations of the
Lorentz group and removing all the descendants while
keeping the primaries in each irreducible representation of
the conform group. In spite of its efficiency at counting, this
method does not help us write down the operator basis
explicitly. One step forward along this line is Ref. [33], in
which independent Lorentz structures were constructed as
“harmonics” on the sphere of momentum conservation that
is exempt from the IBP redundancy, but the issue of
identical particles, namely the repeated field problem for
operators, was not taken into account. Reference [16]
generates an overcomplete list of operators at first, and
then reduces it to an independent basis by putting all the
redundant relations into a matrix, which has also been
applied [24] to write down the partial list of the dimension-
eight operators involving only the bosonic fields.

Another difficulty is how to obtain independent flavor
structures when repeated fields are present. In the literature
[3,18,34], the concept of Lagrangian terms is ambiguous,
and it is usually subtle to talk about their flavor structures.
In particular, the Q3L type operators were pointed out to
have only one independent term [3,35] instead of two terms
shown in the older literature [1], while for both of them,
extra efforts are needed to provide independent flavor-
specified operators. It is especially confusing when more
than one term has to be written down, when the dependence
among their flavor-specified operators is even more
obscure. Later when the dimension-seven operators were
listed, this issue of flavor structure was completely ignored
in Ref. [7] but later addressed in Ref. [36] by imposing
several flavor relations explicitly with a tedious procedure.
Reference [18] provides a systematic way to deal with
flavor structures with repeated fields, in which permutation
symmetries of all the factor structures [Lorentz, SU(3),
SU(2)] in the operator are combined via inner product
decomposition into irreducible representations of the flavor
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tensors. Again, this was only for counting, and thus did
not work out any of the symmetrized factor structures
explicitly.

In this work, we provide a new and systematic method to
list all the independent operators by using group theoretic
techniques, which solves the two main difficulties men-
tioned above. Inspired by the correspondence between
operators and on-shell amplitudes [28-32] and the
SU(N) transformation of on-shell amplitudes [33,37],
we start by adopting a new form of operators constructed
from building blocks, fields with or without derivatives, in
the irreducible representations (irreps) of the Lorentz
group, for which the EOM redundancy is absent. The
Lorentz structure of operators is then identified as states
that transform linearly under the SU(N) group and form a
large interclass space, in which total derivatives form an
invariant subspace of the SU(N). Group theory indicates
that the nonredundant Lorentz structures with respect to the
IBP should also form an invariant space consisting of irrep
spaces, and a basis for them is easily found by translating
the semistandard Young tableau (SSYT) of these irreps. In
addition, we develop a procedure to list all classes of
Lorentz structures at a given dimension, and for each of
them we can directly obtain the corresponding irrep of the
SU(N) and the labels to be filled in, which is sufficient for
enumerating all the SSYTs and Lorentz structures. Since
we directly obtain an independent basis of Lorentz struc-
tures in the process, we never need to actually use the EOM
and IBP relations as in other literature, and the correctness
of our result is theoretically guaranteed.

For the sake of generality, we treat the gauge group
structures systematically which, as far as we know, was not
presented yet before. Gauge symmetry demands singlet
combinations of fields with various representations,
described by tensor product decomposition. To construct
these singlets explicitly, we turn all the constituting fields
into forms with only fundamental indices, and adopt the
Littlewood-Richardson rules to merge their Young dia-
grams into a singlet Young diagram, during which we keep
their fundamental indices in the diagram as labels. What we
finally get is a singlet Young tableau, each column
representing a Levi-Civita tensor in the group structure
that contracts with the indices inside the column. In this
way, we get an independent basis of group structures
consisting of Levi-Civita’s.

Having obtained the complete basis of Lorentz and
gauge group structures, it is easy to combine them into a
basis of operators with only free flavor indices. However, as
mentioned above, permutation symmetries among repeated
fields induce symmetries of the flavor indices, which we
shall resolve by constructing the factor structures with
definite permutation symmetries and combining them via
inner product decomposition. According to the plethysm
technique, operators with definite permutation symmetry of
flavor indices can be systematically addressed by obtaining

definite Lorentz and gauge group permutation symmetries
of the same set of repeated fields. To obtain the sym-
metrized Lorentz and gauge group structures, we introduce
the basis symmetrizer in the minimal left ideal of the
symmetric group algebra, which, applied to the factor
structures, generates a basis transforming as irrep of the
symmetric group. Using these bases, we obtain the flavor-
independent operators at dimension-eight that constitute
our main result.

The paper is organized as follows. In Sec. II, we
introduce notations for fields and operators used in our
paper and define the terminologies for operators at different
levels. In Sec. III, we first discuss the problem of repeated
fields and show in Sec. IIT A that solving this problem
leads to the demand of finding symmetrized Lorentz and
gauge group bases. Then we explain our algorithm to
obtain these symmetrized bases in details in Secs. III B and
[IC for the Lorentz and gauge groups, respectively. In
Sec. I D we show how to obtain the operators with
definite permutation symmetries of flavor indices from
ingredients discussed above via inner product decom-
position of the symmetric group. In Sec. IV, we exhibit
a table showing numbers of operators for each subclass in
terms of the fermion flavor number, and we list the
complete set of dim-8 SMEFT operators organized by
the number of fermions. Our conclusion is presented in
Sec. V. In Appendix A, we list useful identities and
examples of format conversions between Lorentz repre-
sentations, both for fermions and gauge bosons, which are
used in presenting our results. In Appendix B, we introduce
some basics of symmetric groups S,, and a few group
theory tools we used in the paper, including the basis
symmetrizer b* and the projection operator involved in the
inner product decomposition.

II. STANDARD MODEL EFFECTIVE
FIELD THEORY

A. SM fields: Building block, and notation

The Lagrangian of SMEFT should be invariant under the
Lorentz group and the SM gauge group. We start by
defining the building blocks of the effective operators:
fields and their covariant derivatives. The building blocks
are characterized by their representations under the Lorentz
group SL(2,C) =SU(2),; x SU(2), and the SM gauge
groups SU(3)q x SU(2)y, x U(1)y. The representation
under Lorentz symmetry is given by (j;, j,), the quantum
numbers of the SU(2), and SU(2), components of the
Lorentz group SL(2,C). We adopt the following notations
on the field constituents:

(i) Since all the SM fermions are chiral-like, we use the
two-component Weyl spinor notation, which trans-
forms as irreps of the Lorentz group

vl €(0,1/2),

va € (1/2.0). (2.1)
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TABLE I. The field content of the standard model, along with
their representations under the Lorentz and gauge symmetries.
The representation under the Lorentz group is denoted by (j;, j, ),
while the helicity of the field is given by & = j, — j;. The number
of fermion flavors is denoted as n s, which is three in the standard
model. All of the fields are accompanied with their Hermitian
conjugates that are omitted: (FLa,;)T = Fygj for gauge bosons,
(wa)" = (y"), for fermions, and H' for the Higgs, which are
under the conjugate representations of all the groups.

Fields SU(2), x SU(2), h SU(3). SU(2)y U(1), Flavor
Gl 1, 0 -1 8 1 0 1
W[{a/)’ (1, 0) -1 1 3 0 1
By (1, 0) -1 1 1 0 1
Lgi 3.0 -1/2 1 2 -1/2 ny
eca 2.0 -1/2 1 1 1 ng
Qaai (%,0) _1/2 3 2 1/6 ng
U 3.0 -1/2 3 1 -2/3
di. (.0 -1/2 3 1 /3 ny
H; (0,0) 0 1 2 12 1

where the indices @ and & denote the fundamental
representation of SU(2),, and SU(2),, respectively.
We further adopt the all-left chirality convention for
the fermions: Q and L are the left-handed compo-
nents of the quark and lepton doublet fields, and uc,
dc, and ec are the left-handed components of the
anti-up, anti-down, and anti-electron fields. The
transformation to the four-component Dirac spinor
notation is given in Appendix A 1.
(i) We use the following notation for the SM Higgs
doublet:
€ (0,0), H'' € (0,0), (2.2)
where the index i denotes the (anti)fundamental
representation of SU(2)y,. We avoid using the
notation A = eH', as it is essentially the same as
H' but with the original SU(2),, antifundamental
indices lowered to the fundamental one by the €
tensor. In our final results all the gauge group indices
are left explicit; consequently whenever there is a A
present in other literature, it translates into €;; H in
our notation.

where £ is the helicity of the massless particle annihilated
by the field and r = |h| + np is half the total number of
spinor indices in this building block. One could verify the

(iii) We use the chiral basis of the gauge boson Fy g =
L(F £ iF) because they transform under irreps of
the Lorentz group, which is important for us to study
the constraints on the Lorentz structures. They
transform to the normal gauge field strength as

F Lap — 2F ﬂu"’;;; ( )

F Gﬂl/

Frap = =5 Fuiy € (0.1). (2.3)

The spinor indices of F /g are symmetric in order to
form (1, 0) or (0, 1) representations, as can be proved
by the property of ¢/, defined in Appendix A 1.

The field constituents without derivatives are given in
Table 1. As shown in Table I, the indices for the (anti)
fundamental representation of SU(2),, SU(2),. SU(3)c.
and SU(2),, are denoted by {a.p.y.6}, {&p.7.6},
{a,b,c,d}, and {i, j, k, I}, respectively. We use subscripts
to indicate the fundamental representation and superscripts
to indicate the antifundamental representation. The indices
for the adjoint representation of SU(3). and SU(2),, are
denoted by {A,B,C,D} and {I,J, K, L}, respectively. In
case flavor indices are needed, we use {p,r,s,t}. In the
final result, the spinor indices are left implicit.

Not only the SM fields but also the fields with covariant
derivatives are the building blocks, although the cova-
riant derivative itself is not. In our notation, the covariant
derivatives only act on the nearest field on the right, and the
gauge group indices on that field should be understood as
the indices of the whole, for example, DQ,,; = (DQ,) ;-
Regarding the Lorentz index on D, we also adopt the
SL(2,C) notation for convenience,

Doy = Do, € (1/2,1)2), (2.4)

with the ordinary covariant derivative D, defined by

D, =, —ig,GATA — igW'" — ig QyB,, (2.5)
with the SU(3) and SU(2) generators T4 and z“ as well as
the U(1), charge Qy determined by the fields it acts on.
Thus covariant derivatives of a field D"»®, in which &

denotes the SM field, could be expressed in general as

--D Al (:+h)¢a(r+h+l)ma(r—h), h < O,

(2.6)
. Da(r—h)d(r—h) ¢d(r—h+l)“_d(r+h), h > O,

number of Lorentz indices is correct for any @, for example,
the r = 5/2 building block of field Q, which has helicity
h = —1/2, is given by
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(D%Qui) a0 aa®i0a® = Dy g Dy Quogi-  (2.7)
With these building blocks, operators are simply con-
structed as combinations of building blocks that form the
singlet representation, under all of the Lorentz group and
gauge groups. In general, when the constituents of the
|

Lorentz

N
o1 — rlg i) |15 T[or i)

i=1

0 .
= Tégu}é Téu}zMg]f,{h}’

where the invariant tensors Tsysz, T'suz, and T e, form
polynomial rings generated by the following corresponding
ingredients:

SU(3) fABC’ dABC’ 5AB, (lA)z’ €abes eabc’
SU(2): e’JK,élj,(Tl){,eij,eij,
Lorentz: ¢35, "

—uaa Laff =
aﬁa &/}, ad’g , €7, € .

(2.9)

In the second line, we collapse TI91 with the building

Lorentz

blocks to a formal Lorentz singlet M}Q n which we will

often refer to as a Lorentz structure, with free flavor and
gauge group indices that are specified after fixing the
constituting fields.”

The dimension of ® can be derived as

dim(®) = Z(ri — [h;| + dim(®;)) = N +r,

i=1

(2.10)

where N is the particle number, r = 3, r; turns out to be
the mass dimension of the on-shell amplitude generated
by ©.

In Sec. III we will put additional constraints on the form
of building blocks, Eq. (2.8), and our master formula of
operator basis Eq. (3.80) will be constructed as particular
nonredundant combinations of them.

B. Invariants at different levels: Class, type, term,
and operator

The above subsection defines the building blocks that we
use in constructing invariants, i.e., operators; for the sake of
clarity, we specify the terminologies used in the rest of the
paper that describe the invariants at different levels. For

“We would like to point out here that formally each field in our
notation has a flavor index, even for gauge bosons and the Higgs
which can take only one possible value. The reason will be clear
in Sec. IITA.

operator are fixed, the indices of the Lorentz and gauge
groups are also fixed, and then the simplest way to
assemble these constituents into a singlet is to contract
all the indices with invariant tensors for each group. In this
way we obtain a basis of operators that are direct products
of three-factor structures:

i}
(151)-~-(1§r7h)&(,1) e
{gh.{n}

(2.8)

|
practical purposes, we group the effective operators into
several levels of clusters defined as below:

(1) The biggest cluster is called a class, which involves
operators with the same kinds of fields in terms of
spin, and the same number of derivatives, denoted
as F'ry"v g+ D", One could be more accurate by
setting the definite number of left/right-handed
fermions and gauge bosons, so that we get sub-
classes such as

Fi ey e FR D™

One could come up with any combinations of n; at
this level and rule out the ones that are not able
to form Lorentz invariants later, but we propose
criteria for selecting the Lorentz invariant sub-
classes, which makes the program more effective
at higher dimensions.

(i1) In a (sub)class, we further group together operators
with the same constituting fields, selected by the
requirement of conservation laws: the combination
of fields should be able to form a singlet of any
symmetric groups (besides the Lorentz group) the
theory has. This level of cluster is called a type,
denoted by a sequence of fields and derivatives. An
example of the type is

Q*ulLH'D, (2.11)
which corresponds to n_;, =3,n9 = 1,ny, =1,
np = 1. Note that Lorentz structures may not be
fixed at this level, especially at higher dimensions,
when a type could contain quite a number of
independent ones. At this level, though, we could
identify the groups of repeated fields in a type,
which put constraints on the form of independent
operators within a type.

(iii) At this level, we define the (Lagrangian) ferms that
have different interpretations from the other liter-
ature, e.g., [18]. We define a term as an operator with
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free flavor indices that transform as an irreducible
tensor of the auxiliary flavor symmetry group
SU(ns) for each set of repeated fields with n
number of flavors. We occasionally refer to the
irreducible tensor nature of terms as the flavor
symmetry of the operator. An example of a term
for the type in Eq. (2.11) is

Qrrst — jeabegik ( (Lpi Qi ( Qrajaﬂ uj:"‘ )

+ (LpiQraj(stko-ﬂqu“‘))DﬂHTk‘ (212)
One can verify that ©7' is symmetric under the
exchange of r, s flavor indices of two Q’s, which
indicates ©F"' is an irreducible tensor represented
by [[IJunder SU(n;) group for Q’s. This definition
of the term renders enumerating independent flavor-
specified operators defined below trivial by finding
all the SSYTs of the corresponding Young diagram
of irrep of SU(ny). We shall explicitly illustrate this
point and describe the algorithm to obtain a com-
plete set of terms up to any dimensions in detail in
Sec. IIT A.

(iv) Finally, the flavor-specified operators are defined as
independent flavor assignments in a term. The
corresponding example gives

O = jetbee ((L;Q1p(Q1aj0"ul)

+ (L1iQ1aj(lekff”u:;lr))DyHTk- (2.13)

ITII. OPERATOR BASIS FOR LORENTZ AND
GAUGE SYMMETRIES

A. Motivation and mathematical preparation

In this subsection, we first explain why we need definite
permutation symmetries of the Lorentz and gauge group
structures for the term we defined in Sec. II B as well as
how they are related to the permutation symmetry of the
flavor indices, and then we give a gentle introduction to
mathematical tools used in generating symmetrized
Lorentz and gauge group structures.

1. Why permutation symmetry

Given a type of the operator, one can enumerate all the
independent ways to construct a singlet under both Lorentz
and gauge symmetries with flavor indices unspecified.
Fixing the flavor indices of such a Lorentz and gauge
singlet completely determines the form of a flavor-specified
operator. If there are no repeated fields, then different
choices of flavor for each field correspond to different
operators. However, the presence of repeated fields

complicates the game. To demonstrate the problem let us
take a look at the dim-5 Weinberg operator in the SMEFT:

U211} = givighhgma 1 /2 H; H;
17727

ay,ip oyl

(3.1)

where «a;, are spinor indices, i;, and j,, are SU(2)y
indices, and ®/1/211} hag the same notation defined in
Eq. (2.8) with ®;’s specified to LLHH. We have also
grouped the flavor indices of each set of repeated fields
together where the flavor indices for H have already been
set to 1 as we only have one Higgs in the SM. In the
following, we shall drop the flavor indices of H when their
absences do not obscure our explanation. One can verify that
®/1/2 = ®/2/1 which we will prove later, is a result of the
antisymmetric nature of the Lorentz and gauge structures;
therefore the number of independent operators are 1 (1 +-
1)/2 if we have ns flavors of L. Generally, to count and
enumerate independent operators with flavor indices speci-
fied, one can view ®1/1} as a tensor of the SU(n ) group and
decompose it into different irreps of the SU(n,) group; then
the independent operators are given by setting the flavor
indices according to all the SSYTs of the corresponding irrep
with numbers in the tableaux weakly increased in each row
and strictly increased in each column. Following the example
above, ®1/2 in Eq. (3.1) is symmetric under the exchange of
f1 and f»,, and hence it is represented by the Young tableau:
Flrd. If ng = 2, then there are three semistandard Young
tableaux: [11], [1]2], and [2]2], which correspond to indepen-
dent operators ®'!, ®'2, and @%2. All the other choices of f;
and f, can be expressed by the linear combination of these
three using Fock’s conditions [38], and in this example, we
simply have ©?! = @'2.

The LLHH example above seems to be too trivial as it is
easy to find out the symmetric properties among the flavor
indices f; and f,. However, the situation becomes com-
plicated when the number of repeated fields in a set goes
up. The simplest nontrivial example is Q°L in the dim-6
SMEFT. In the Warsaw basis [3] it is expressed as

eteeser (g Ca (g Cl) (32)
where ¢ and [ are four component SU(2), quark and
lepton doublets of which the relation to our two-component
notations are shown in Appendix A 1; a, b, ¢ are SU(3).
indices; i, j, k, m are SU(2)y, indices; and p, r, s, t are
flavor indices of fermions, respectively. From Eq. (3.2), it is
very hard to tell the independent components of the flavor-
specified operators. However, we separate this operator
into three terms in our notation, and each term is an irrep
of SU (7’1 f)’
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9[{1%]7‘51:} - Eabc [61]elk(Lpistk)(Qrantcl) - EZkejl(LpiQraj)(stthcl)] 3 (33)

t
i . O = et [(elert — ) (LyiQuon) (Qraj@uct) + (€17 + €M) (LyiQuas) (Qun@ict)] ,  (3.4)
@i{zﬁ,rﬂ} = Gabc [(Eikfjl + eilﬁjk)(Lpistk)(Qrantcl) + (filfjk - eijekl)(LpiQraj)(stthcl)] s (35)

where the subscripts of ® are partitions of the integer 3 that

have a one-to-one correspondence with the Young diagrams

(YD) on the left of each equation. From the above notation, we can immediately write down the independent combinatorial

choices of r, s, t by enumerating the SSYTs of each irrep:

12},
L[] [2]2][1]2][1]3][2][3][1]2][1]3]
l’i 7& 72 7& 7; 7& 727

[lafuffafaf2f[afu]s)[1]2]2}[1]2]3],

[11313}[2[2]2}[2]2]3}[2[3]3}[3]3]3)

and then each Young tableau can pair with three choices of
lepton flavor p = 1, 2, 3 resulting in totally 3 x (1 + 8 +
10) independent operators. In addition to the benefits
discussed above, we would like to point out that our
definition of term, combined with the algorithm obtaining
a complete set of independent terms described below, will
automatically avoid the redundancy that needs to be
resolved by obscure relations between different terms with
flavor indices permuted. For example, QL was initially
written as two independent terms in Ref. [3] and was
corrected to only one in the form of Eq. (3.2) later. We will
not proceed with this example further in this subsection as it
involves technical details discussed in Sec. III D, which
may blur the big picture we would like to convey. Therefore
we shall continue with the LL HH example below and show
the roadmap constructing these SU(ny) irreps.

The above discussion demonstrates the desire to obtain
OV« as an irrep of SU(ny), where {f;} are the flavor
indices of a set of repeated fields. Because of the Schur-
Weyl duality and also pointed out in Ref. [18], if one can

{fi}
Oux

the symmetric group S,, (m is the number of the repeated
fields) in terms of permuting subscripts k, then any one of

{fi}
the ®(M)

independent components obtained by the hook content

construct a set of tensor that transform as an irrep 4 of

is the irrep of SU(n;) with the number of

[
formula S(4, ;) [18]. A is a partition of the integer m that
can be written in the form of the subscripts in Eqgs. (3.3)-
(3.5) serving as a character of irreps of §,,. x goes from 1 to

L % by definition

d, labeling basis vectors in the irrep A. G(L’;

satisfies the following relation:

{frtiy}
(4.x)

_Nel
=200 D (e
-

o @‘{f/;}

(A)E(E‘)

(3.6)

for # € §,,, where the action zo on tensors is defined
according to the first line and D*(x),, is the matrix
representation of the S,, group for irrep A. In the presence
of multiple sets of repeated fields, one can generalize @/+}
into ®@/k-Pu-} as irreps of the groups:

SU=SU(n;) @ SU(n7) ® - - -,

=Sy @S, @, (3.7)

where n}, n]%, ...,and m,, m,, ..., are numbers of flavor and
fields for different sets of repeated fields, respectively. An
immediate conclusion that can be drawn from the above

discussion is that the operators involving repeated fields
with only one flavor such as gauge bosons or Higgs must be
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in a totally symmetric representation, which is simply a
result of

Y A # [m], (3.8)
where [m] is the totally symmetric irrep.

Now we are going to show that permuting flavor indices
of a given set of repeated fields in a term is equivalent to
permuting the corresponding indices related to the gauge
and Lorentz structures. In general, a term of a given type

can be formally expressed as a linear combination of a set
of factorizable ®’s according to Eq. (2.8) as

{9 F{ o 3 (3.9)
where Té‘{g'“}, Té{’ﬁ“'} are the same T'sys, T'su, in Eq. (2.8)
with the indices of each set of repeated fields grouped
together; the same argument applies for the correspondence

{fk
between /\/l }{h 0 here and M{g} n in Eq. (2.8).
Concretely, 1n the LLHH example we have
Tsus = 1,
{iviz.jija} i1ji 12/2
Ty = ¢'tig
eIy g f f
M{llllzzjllz} e La: ’IL”‘Z ZZH‘ H

For a given type, we call in the rest of our paper a complete

set of independent 7% T and Mg Y ey 3
the Lorentz and gauge basis from which a term is
constructed. It is enough to show the permutation relations
between flavor and combined gauge and Lorentz structures
hold for these factorizable bases, and the same is true for a
general term. A permutation of the flavor indices of the first

set of repeated fields in @+ can be expressed as

T{gk }T{hk“u}M{fn(k)

{froe}
@,k_/ Su2 (g0 Y B}

permute flavor

{95+l a3y AS w0}
=Tsus " Tsyy T M

(AT S U
s h
= (o T{ ) (mo T ) (= M}f;j )
permute gauge permute Lorentz

(3.10)

where 7o T again only permutes the gauge indices of the
first set of the repeated fields; (zoM) is equal to the
permutation of all the subscripts of the Lorentz indices and
the associated derivatives of the first set of repeated fields
while leaving the gauge and flavor indices unchanged. We
demonstrate that the second to the third line in Eq. (3.10)
does hold for M and (7oM) defined above with the
LLHH example in Eq. (3.1) with 7 = (12),

{faf1,11} Oqaszz

{i2i1,5172} ai,is az uH Hj,
_ f f:
€ Ly, i Loy i i Hio

Q2,01 Qi

_ {f1f2,11}
= 7 M{ili27j1j2}’

(3.11)

where we have used the Grassmann nature of the lep-
ton field.

So far, it is obvious from Eq. (3.10) that those of gauge
and Lorentz indices determine the permutation property of

. . . A Ao A3
flavor indices. Hence, if a set of Mj', T3, and Ty,

transform according to irreps 4, , 3 of S, for the certain set
of repeated fields, then the direct product space spanned by

A
= MXI] TSU’;XZTS}UZ.X3|xi G 1, ...,dﬂi},
(3.12)

{6(21,xl),(/lz,xz),(/13,x3)

with d;. the dimension of irreps 4;, can be decomposed into
invariant subspaces that form different irreps of A. The inner
product decomposition ; @ 4, @ 43 = Y _,,, ;4 tells that
the multiplicity of the invariant subspace of irrep 4 s r;. For
the LLHH example we discussed above, one can find that

g” }1{1]}m y = Mgk k}"l{lj];n} = M[lz] forms a total symmetric

representation of S, of two lepton fields, the same is for the

SU(3), gauge group factor T[SZI]Bl = 1. The permuted
SUQ2)w

gauge group factor Téuz »ind _ giiighia seems
not equal to the unpermuted one. However, this is just a
2]

result of the simplification of the symmetric one TSU2] =
(e/1€"7 + ehi1eP)2) /2 when contracting with H; H; ) s

it also forms a totally symmetric representation of S,. One
can find from the inner product decomposition 2] ® [2] ©®
[2] = [2] that the only resulting irrep is the symmetric one
[2], and indeed the ©/1/2 is totally symmetric under
permutation of the flavor indices. In general, this decom-
position is more complicated and contains the irreps with
dimensions larger than one. We will present a nontrivial
example Q*LW/ in Sec. III D and refer to Appendix B 2 for
more general cases. Although we only consider the
permutation symmetry for a single set of repeated fields
in Egs. (3.10) and (3.12), it is straightforward to generalize
it to multiple sets of repeated fields under the product group
S as the permutations acting on different sets of repeated
fields simply commute with each other.

Up to now, we have changed the problem of finding a

term @{/c+} as irreps of SU into finding a series of ®§fk) 2

as irreps of S, and then further into finding the correspond-
ing Tézljg"xz___, T';"[’Jg"x%“, and /\/li‘,‘jj', as irreps of S. Before

This is also an example discussed in Eq. (3.8) that the
repeated fields of one flavor must form a total symmetric
representation under permutation. As the Lorentz structure of

H? is trivial, therefore Té’{é U} must be symmetric under f,, h,.
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we delve into the details of obtaining all the independent
symmetrized group factors and Lorentz structures, we first
digress to introduce the mathematical tools used in the rest
of the section.

2. Group algebra and left ideal

As mentioned above, in this section, we explain the key
mathematical tools to obtain the Lorentz and gauge
structure in different irreps 4 of the symmetric group
associated with the repeated fields. We introduce the idea
of group algebra and the method using them to generate a
series of symmetrized functions transforming as an irrep of
the S,, group under permutations defined in (3.6) from an
asymmetrized one. The first concept is the group algebra
space S,, of S,,, which is defined as a set consisting of
formal linear combinations of the group elements in the
group S, [39],

Sy {rlr = Zriﬂi forr; € C,7; €S,,}.

i

(3.13)

The addition and multiplication rules of the elements in the
group algebra are

cir+cyg= Zﬂi(ﬁri +¢yq') forr,q€S,,.c1.c, €C,
i
(3.14)

(3.15)

r- q—quJﬂ 77.'

where the matrix Ak with only one nonzero element

E ﬂkAk rir,

i,j,k

defined by 7; - 7; = Z X I'L'kA is the regular representation
of the group. Obv10us1y, a hnear vector space structure is
contained in the group algebra. In this sense, the group
algebra elements have a dual role of vectors and linear
operators.

It is well known that the S‘m [38,39] can be decomposed
into invariant subspaces transforming as irrep A of the Sm
expanded by a set of group algebra elements b% = >, i,
such that

m- b= (3.16)

Zb@;x

where the indices x, y go from 1 to d; and the dimension of
irrep A, D4, (n;) is the same one in Eq. (3.6), the matrix
representation of A [39]. The invariant subspaces expanded
by b’ are actually a minimal left ideal £, of S,, such that

r-beLl;, Vres,,

bel, (3.17)

Alternatively, one can view the group algebra elements
as symmetrizers that act on a function generating another

one by permuting the arguments. It can be shown in
Appendix B 1 that a series of new functions FA({p;})
generated by applying b?% to a function F({p;}) defined by

Fi({pi}) = bio F({pi})

(Zc ) o F({p)

= A F{paw}) (3.18)
transform as an irrep of A under the permutation
zio Fi({pi}) = Fi({Prw})
(3.19)

= ZFﬁ({pk})Dix(ﬂi)-

The function here has general meanings: in the LLHH
example above, the function can be referred to the gauge
group tensor T¢%"/? with arguments i,/ or the
Lorentz structure /\/l M(ay, a) with the arguments a 5.

In addition, we would like to mention that our con-
vention for b% follows Chapter 6 of the textbook in [38],
where b’} is proportional to the Young symmetrizer of the
normal Young tableau of 4, i.e., the Young tableau with the
numbers 1 to n appearing in order from left to right and

from the top row to the bottom row. For example, b[lz’l] is

proportional to the Young symmetrizer of , which is

equal to the multiplication of s#, the sum over all possible
horizontal permutations, and a*, the sum over all possible
vertical permutations weighted by their signatures, +1 for

even and odd permutations, respectively. For , we have

s2U = E+ (12), (3.20)
a[z'l] = E— <13), (321)
b[12,1] o y |::| — 8[271] . a[2’1] (322)
+(12) = (13) = (132). (3.23)

2.1]

When we apply b, on a tensor 7", we will associate the
tensor indices r, s, t to the numbers 1,2,3 (not to confuse
with flavors), and then formally we have

rls rst 12 123
[ = [
— 123 L 213 _ 321 _ 312 (3.24)

Trst + Tsrt _ Ttsr _ Ttrs.
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The resulting symmetrized tensor is symmetric for the
permutation of labels r, s as they appear in the same row in
the Young tableau, which is a general property of the Young
symmetrizers.

B. Lorentz basis: SU(N) x § irreps

To obtain an independent set of Lorentz structures, in
literature such as the Warsaw basis [3], one usually writes
down all the possible Lorentz invariant combinations
of the building blocks, and then removes all the redun-
dancies by imposing the following relations among oper-
ators repeatedly:

(a) Fierzidentity. As explained in Appendix A 1, for Weyl
spinors, the Fierz identities can be expressed as

gﬂyo’;da;’}b = 2456, (3.25)
aﬁ57 + eﬁy(sa +€ya5ﬂ — 0
€05 + €5, —Q—e},aé =0. (3.26)

For the first identity, we choose to replace the left-hand
side whenever it appears in the operator by the right-
hand side. As our building blocks do not contain any
Lorentz indices u, v, etc., there would be no chance to
use the o matrices in 77 yrene, Thus we are left with
only the € tensors for both dotted and undotted spinor
indices in the Lorentz invariant tensor. The other two
identities, also known as the Schouten identities, will
be tackled later.

(b) [D,.D,] = —iF,,. We also choose to replace the left-
hand side whenever it appears in the operator by the
right-hand side. Note that the replacement changes the
type of operator, and thus it should not be counted in
the original type as an independent operator. Effec-
tively, we treat [D,,D,] as zero while counting
operators of a given type.

(c) Equation of motion. Classically there are the EOM
relations for each kind of fields

D*¢+J, =0,
D,F* +J4 = 0.

iPy +J,, =0,
(3.27)

For quantum fields, these are not rigorous operator
equations. Nevertheless, operators differing by EOM
are related with each other by field redefinitions and
are hence physically equivalent. To remove this
redundancy of field redefinition, we choose to replace
the first term (the kinetic term) whenever it appears in
the operator by the source term Jg. Again, because the
type is changed during the replacement, we effectively
treat the kinetic terms as zero while counting operators
of a given type. This choice guarantees that the

operator basis we find has nonvanishing on-shell
amplitudes, which also form an amplitude basis.
(d) Integration by part. In perturbative quantum field
theory, we have
XD,Y ~-D,XY. (3.28)
In other words, operators are equivalent modulo total
derivatives. From the on-shell point of view, it is
equivalent to the momentum conservation law. This
may be the most subtle one, because it is the way people
eliminate this redundancy while counting that prevents
the listing of the independent operator basis. In this
section, we develop a new method to deal with IBP.
We aim at a systematic treatment of all of these redun-
dancies before we write down operators, so that we do not
need to examine them in an overcomplete list. Section 111 B
1 tackles the redundancies (b), (c), and the first half of (a),
while Sec. III B 2 deals with the Schouten identities and the
IBP. Finally in Sec. III B 3, we symmetrize the Lorentz
structures over repeated fields for a specific type and obtain
the Lorentz basis.

1. Lorentz invariance: Enumerating the classes

We start by further analyzing the building block defined
in Eq. (2.6) and reduce them to irreps of the Lorentz group.
By applying the following relations:

DiuiD s = DDyl %y = =DPegpey+5 Dy D)oyt
Dy = DﬂgfaaWﬁ] =—€u3(PV) 4>
DiwiFupy = DuF o0l 00 = 2DV F 050", (3.29)
where D> = D*D,, and
0 Dyo
P=rbe= (Dﬂ{rﬂﬁﬁ 0 )

we note that any pair of antisymmetric spinor indices in a
building block would lead to factors that vanish according
to the redundancies (b) or (c). As a consequence, we are left
with building blocks in which all spinor indices, dotted or
undotted, are totally symmetric, respectively. After raising
the dotted indices, we could express the remaining building
blocks as

ety

r— (@Va®...
(D ‘h@)(Z<1>Z<z,,a<

= (D)t e (120 TR
2 2

(3.30)

where, without ambiguity, we abbreviate the totally sym-
metric indices (indicated by the parentheses) by an index
with a power. Now the remaining building block trans-
forms as irreps under the Lorentz group as shown above.
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We would like to emphasize here that, with the above
construction we throw away all the possible kinetic terms
that may be replaced with EOMs in our building blocks,
and our algorithm enumerates the complete and indepen-
dent operators basis type by type at a fixed dimension, once
operator bases for all the types for a fixed dimension are
found, our goal is completed; thus the interchange between
types and different dimensions due to EOMSs never plays a
role in our method.

With this notation, together with our treatment of the
redundancy (a) using Eq. (3.25), we arrive at a general form
of Lorentz structure modulo (b) and (c) redundancies as

e ot \cp

i=1

2

rl+h,

M (ea a] ®n [M}Nﬂ.ﬁ ’

(3.31)

where N is the number of building blocks in the operator,
corresponding to the number of particles in the on-shell
amplitude it generates. Here we recognize the epsilon
tensors introduced is the Lorentz invariant tensor 77 et
in Eq. (2.6), in which Eq. (3.26) guarantees that only the
epsilon tensors appear. The power of the epsilon tensors

|

n+n= E ri=r,
i

np =Y (ri=|hil)=2n+h="> |h| =2 —h = |h;| < min(2n,27).

should be understood as a product of epsilons with possibly
different spinor indices, which are only distinguished by
the building block Eq. (3.30) they come from. Such
operators with certain N and the numbers of epsilons
(n, ) form a basis of the linear space [M] , 5, Which still
have redundancy from the Schouten identity and the IBP.

To solve the IBP problem, we decompose the space as
Milnwi = [Alyni ® [Bly .z Where the subspace [B]y , 5
contains all the Lorentz structures with total derivatives.
For any Lorentz structure M € [M] we have

M=My+ Mg, MyuelA, MzelB]. (3.32)
If this decomposition is possible, the subspace [A] would
be the space of the nonredundant Lorentz structures,
because for any two Lorentz structures in [A], their
difference is also in [A] and cannot be a total derivative.
We will achieve this decomposition in the next subsection.

Before that, we would like to show how Lorentz
invariance constrains the classes appearing at a certain
dimension. We derive some nontrivial constraints among
the parameters in Eq. (3.31). The contractions of spinor

indices lead to the following relations:

(3.33)

(3.34)

Here we find another interpretation of r as the total number of €’s. The second line gives one constraint on the number of
derivatives necessary for an operator with given helicity combination /;, that the number must equal 2 — ", | ;| mod 2 and
is bounded by twice the minimum of n and 7i. Another constraint is already shown in [40] and comes from the following fact

indicated by r > |Al:

1
n>r —h; >-2h;, Vi:>§Z(r,-—hi) =n>-2 minh;,

i>ri+h >2h, Vi=— Zr—i—h

from which we deduce

np = Zr—h

i h;<0

nD:ZrJrh

i h;>0

In sum, we arrive at the complete constraint on np:

min(2n, 271) > np > max

i > 2max h;, (3.35)
22|h | > —4minh; —
h;<0
= 2lh;| > 4max h; = Y 2|k, (3.36)
h;>0
;|, mod 2
—4minh,~ - 2 hi
221k (3.37)
4maxh,~— 22|hl|
h;>0
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TABLE II. All the subclasses of Lorentz structures at dimension eight.

N (n,7) Subclasses
4 4,0 F{ +H.c.
(3.1 Fiyw'™D + H.c. w*D? + He. FLy*¢pD?> +H.c. F}¢*D? + H.c.
(2,2) F}F} FLI:’RI//I//TD w2 D? Fry?¢D? + H.c.
FLFr$*D? yy' ¢*D? ¢*D*
5 (3,0 Fiy* +H.c. Fﬁw?d) +H.c. F}¢* + Hec.
2,1 Fry*y'? + He. Fy™¢ + He. wwigpD 4+ Hee. FLyyw'¢*D + He.
w2’ D?* +H.c. FL¢*D? + H.c.
6 (2,0 w*¢® +H.c. FLI/(2¢3 +Hec. Fip* + Hee.
(LD yry 2 g? wy' $*D ¢°D?
7 (1,0 w2’ +He.
8 (0,0) *

The minimum is a correction to the constraint shown
in [40].

In light of the above relations, we can enumerate the
classes of Lorentz structures for a given dimension after the
following steps:

(i) From Egs. (2.10) and (3.33), we getd = n + 71 + N.
We start by iterating N from 3* to d, while for each N
we could iterate n, 7 under the constraint n + i =
d—N.

(ii) Given the tuple (N,n, ), we iterate ny from 0 to
min(2n, 21) according to Eq. (3.37). Provided the
number of derivatives np, we have the following
relations implied by Eq. (3.34):

2n_y +n_y, = Zlhi| —h=2n-np,

2ny +nyy =Y |l +h=20i—np.

1

(3.38)

(iii) Then we find all tuples n; = (n_y,n_y 5, ng, ny 2,11 )
that satisfy Eq. (3.38) and >, n; = N, making sure
that np, satisfies the minimum given in Eq. (3.37) at
the meantime. In this way, we find all the combi-
nations of (n;, np) that could form Lorentz invariant
structures, each of which determines a subclass of
operators.

At dimension eight, we list all the subclasses in Table I’

*N =3 is a special case when there is the so-called special
kinematics that renders n = 0 or 7 = 0. Particularly it implies that
np =0 when N = 3. For example, we have D, ¢ D"p, 3 =
(192 D* s — ¢ D*pagps — D> prp3) which is redundant due
to EOM of ¢; in our treatment.

SWe only list classes with n > 71, while all the classes with
n < i are Hermitian conjugates of some classes listed here
(denoted as +H.c.).

2. Lorentz structures as SU(N) states

Back to the problem of finding the subspace [A] from M
as proposed after Eq. (3.32), we first claim property of its
elements in the format of Eq. (3.31) that such a Lorentz
structure is completely determined by the epsilon tensors,
because the numbers of «; and @; on these tensors fix all the
parameters of the building blocks D’~I"i®,. For example,
given e*1%e"%¢, ., We obtain

3040

a1a3 A3,
€ € 6(13(14

= M = ey, (11 ), (W2) oy (DW3) 3 ()™
(3.39)

Those who are familiar with spinor helicity variables
should recognize that these epsilons are nothing but the
spinor brackets %% ~ (ij), €4 ~[i 1.5 Therefore our
claim here is exactly the amplitude-operator correspon-
dence [29,41]. In this subsection, unless stated otherwise,
we claim that a product of epsilons refers to the Lorentz
structure determined by it, and a linear combination of
them refers to the linear combination of the corresponding
Lorentz structures. It gives us a hint on how to identify [B],
the subspace of Lorentz structures with total derivatives.
First, a derivative on field @; has a pair of indices (a;, &;),
which must also be found in the epsilons. Hence there has
to be a factor of "%, in the epsilons. Therefore, a total
derivative is thus represented by a factor of ", e%%¢
which is the character of Lorentz structures in [B].
To identify the complement space [.A], we use a trick: by
introducing an SU(N') group for which Lorentz structures

a0y

®Recall the r is the number of €’s, which corresponds to the
number of spinor brackets in the on-shell amplitude, or in other
words, the mass dimension of the amplitude. It matches with the
discovery in Eq. (2.10).
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M € [M] transform linearly, and both [M] and [B] are
invariant spaces, [A] must also be an invariant space that
consists of whole representation spaces. This group is
defined by the following transformations of the epsilons:

~ E T ky Tl
6('1,-&]- - u iu| jedkr}ll'
k.l

€% — E U};U{e”k‘”,
Tl

(3.40)

In other words, the undotted spinor index a; with subscript i
running from 1 to N transforms as 2 x N of the SL(2, C) x
SU(N) group, while the dotted index ¢; transforms as
2 x N. Obviously, the transformation does not change the
tuple (N, n, i7), which means that [M] is invariant. It is also
easy to prove the invariance of 3],

a;a; J 77t n Ay, =
E €, E Unld k E € €, -
i

m,n i

(3.41)

Now the task is converted to finding irreducible represen-
tation spaces of SU(N) in [M]y ,; and classifying them

|
, |
6® :H®H: @ @ ’

We can use the Schouten identity to eliminate representa-
tions with more than two rows, either dotted or undotted,

]

~ e(xiajeak.al + Eakaieajal + e(lj(xke(lioq — 07

i
M
Lk
(3.44)

and hence we are left with only the first term in the decom-
position Eq. (3.43). Similarly if we multiply more epsilons
of the same kind, we should be left with only the following

YDs:
(B E
N __ | . .

IIS
HE
T

— = H - H
' (3.45)

This reflects the fact that the spinor indices take only two
values, forbidding antisymmetry over more than two of
them. The independent basis of the representation space is
given by the SSYTs, where labels filled in the YD are

into [A] and [B]. Specifically, because of Eq. (3.40), it
amounts to the decomposition of the tensor representations
formed by products of the epsilons.

In terms of SU(N) YD in which a box represents
fundamental representation, ¢ and & form irreducible

representations H: [1?] and E: [1V=2], respectively,
due to the antisymmetry of their indices. Given specific
labels i, j for the epsilons, they are states in these

representation spaces, indicated by the Young tableau.
For example, when N =5, we have

‘
Q203 N , go’ng — 7524513(50-‘1&3 ~ 7. (342)

where £ is the Levi-Civita tensor of SU(N).

Then we use the Littlewood-Richardson (LR) rules [38]
to decompose their products. First, we examine the tensor
power of each type of the epsilons. Since

< He[- @@E.

(3.43)

increasing down the columns and nondecreasing along the
rows. Fock’s conditions [38] for such YDs are nothing but
the Schouten identities. Therefore, choosing the SSYT
basis automatically eliminates the redundancy from the
Schouten identity. For example,’

1]2 _ o [1]3 1]2
413 - 214 + 314
6a1a460¢2a3 — _6a102€o¢30¢4 +€a1a3€aza47

PP Psgthan = 00 tithas UV hsathas.
(3.46)

"Note that it seems as if we did not perform the row
symmetrization for the Young tableau, which was done in
Ref. [33]. It is due to our different treatments of the action of
permutations on the SU(N) tensors: in Ref. [33] the action of
permutation, say (12), means permuting the specific labels 1 and
2, while we treat the action of (12) as permuting the first and
second indices in the tensor. While the two treatments give
different sets of Lorentz structures, both of them are the
independent basis of the same space. In our treatment, the Young
tableau would have indicated the column antisymmetry rather
than the row symmetry of the resulting tensor. That is why we
only need to translate each column to an ¢ tensor to generate this
desired feature. The same translation of the Young tableau is used
in the next subsection regarding gauge group tensors.
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The two terms on the right-hand side corresponding to the SSYTs are our standard basis, and the left-hand side
corresponding to the non-SSYT can be expressed by the standard basis via the Schouten identity.

Finally we use the LR rule to obtain the tensor product of these two YDs. Using the LR rules we place boxes from [n?]
into the YD [#"~?]

Z@B HnH z& -

n

where the first term describes the case when all the boxes are put to the right of the original [V 2] boxes and the terms in - - -
are cases when boxes are put under the original YD. Following the correspondence Eq. (3.42), whenever a box [ 7 | from [n?]
is placed under a column in [ZV=2], the resulting column with N — 1 rows represent a tensor,

kyse.ky_o i a;a; : 1 — (SN SN 'L a0
g EXrkv-2hy 2Eq o, €M + (antisym overk, ..., ky_n,i) = E ERrre N2 g o €, (3.48)
1l y

which contains a factor of total derivative as discussed previously. According to Eq. (3.41), the whole representation space
is contained in the subspace B of [M]y ;. It rules out all but the first term in Eq. (3.47); thus we conclude that the
remaining YD, which we define as the primary YD, is the only irrep contained in [.A4], namely

n
—

(3.49)

The primary YD [A]y , ; is exactly the space of Lorentz structures without any of the redundancies listed at the beginning of
this section. Our next task is to obtain a complete basis of this space, which is again the SSYTs. Fock’s conditions between
non-SSYT and the SSYT basis are equivalent to the Schouten identity or the IBP. An example of Fock’s condition reflecting
the IBP is

2|1 114 1]2 1]3

315 = |2]5 + 1315 - 12]5] ,

4] 3] 4] 4] 150
_6d1d56a]a5 — 60.(4@56(14@5 +6d2d56a2(¥5 _i_edga.56(13@57 ( . )

D, p1¢20304 D 5 = ¢10203D,, 04 D* 5 +P1D,p20304 D P55 +d1d2 D p3da DH s>

I

where D?¢s is understood to be eliminated by the EOM.  according to Eq. (3.38), we can easily find the [A] that
As shown by Table II, [M] usually contains more than  the class is included, in which the labels in it come from
one class of operators, and so does [A]. The full set of its  either €%% or Ei"'fké(;,l_(-,k. The number of the former, € with
SSYT basis includes a lot of nonphysical fillings that  jpdex a;, equals the number of « indices in the building
involve fields with large helicities (gravitino, graviton, and  block i, which is r; — h; according to Eq. (3.31), while the
even higher). Thus it would be wise to single out a subset of  pumber of the latter, the same as the number of & without

them as the Lorentz structures for a given class. By index ;, equals 7 — (r; + h;). Together with Eq. (3.38),
obtaining the tuple (N,n,7) from the helicities and n,  we get
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L 1
#i=n—2h; = EnD —I—};VM - 2h;,

(3.51)

which surprisingly does not depend on r; and are hence
completely and uniquely determined by the class informa-
tion ({h;},np).

Our strategy is now clear: for each subclass, we find the YD
of Eq. (3.49) determined by Eq. (3.38), and use Eq. (3.51) to
deduce the tuple of labels {1*!, ..., N*V} to fill in the YD;
the SSYTs obtained this way8 correspond to the complete
and independent basis of Lorentz structures. As an example,
consider the class of operators yyyy ' D at dimension seven,
with h; ={-1/2,-1/2,-1/2,1/2} and np = 1. With
Eqgs. (3.38) and (3.51) we have #1 =#2 =#3 =2,#4 =0
and n = 2,7 = 1. The only SSYT is given by

1]1]2
21313

(oS Ne)

~ 51234 0420(37

(3.52)

€azay € €

which leads to the Lorentz structure Eq. (3.39). It means that
Eq. (3.39) is the only independent Lorentz structure of this
class, which sounds counterintuitive. Indeed, in [42] the
authors pointed out several redundancies of the dim-7
operators listed in [43] and found the correct independent
operator basis. One of the redundancies was about this
particular class of operators, for which they explicitly apply
|

the identity relations (a)—(d) shown at the beginning of this
section to prove the redundancies. With our strategy, the
redundancy relations, such as Eqgs. (35)-(37) in [42], are
nothing but Fock’s conditions between the Young tableau,
which is automatically tackled by choosing the SSYT.
Another example where a class contains several indepen-
dent Lorentz structures is Fyy*, which has #1 = 2,#2 =
#3 =#4 =#5 =1 and n = 3,7 = 0. The YD has the same
shape as the above example, but they indicate different
representation spaces due to their different (N, n, 7). The
SSYT basis of Lorentz structures for this class is given by

11112 11113 1{1]4
31415 21415 21315

0¢1013€(¥1(N4Ea2065 a1a2€011(1460¢3a5 Ol1012€(¥10¢3€a4(¥5

€ € €

FPyysathapthsy  FYPoatdvagsy  FyPvoatss]vs,-
(3.53)

To count the number of the basis for a given class, we can
treat the YD of Eq. (3.49) as a product of YDs with the same
labels, since the latter is determined by the class information
#i: they have to be totally symmetric one-row YD [#i]. For
the case of Eq. (3.52), we have [#1] = [#2] = [#3] = | |
(label 4 does not contribute), and hence we examine the
decomposition of their product

(T =TT T x1+

[ ‘><2+ | ‘><3—|— x 1

(3.54)

+ x 1+

X 2+ x 1

and find only one target YD [-}-]-]in it, which means only one SSYT with a certain filling exists. Similarly, for the case of

Eq. (3.53) we have

(e[ =TT TTTx1+

[ 1] ‘><4+ | ‘><6+ x 3

[ ] (3.55)

+ X 6+ X 8+

X 24— x 44 X 3,

where the multiplicity of the target YD HEB precisely

reproduces the number of SSYT we listed in Eq. (3.53).
In summary, by identifying Lorentz structures as states
in the SU(N) representation space [Al]y , ;» not only can

¥Note that in [33] the complete basis is given by the so-called
reduced SSYTs, which eliminates the overcounting of classes
while enumerating the SSYTs. But since we start from a certain
class, we do not suffer from the overcounting of classes. Thus the
condition of SSYT is sufficient.

|
we quickly count the number of independent basis but
also we can write them down by a translation from the
SSYTs. This makes our approach superior to the com-
petitors and allows us to achieve a systematic way to list
the operators in generic effective field theories.

3. Permutation: Counting and listing
the Lorentz basis

The Lorentz structures we obtained as SSYTs in the
above subsection did not take into account the permutation
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symmetries of possible repeated fields when we specify the
type. For the purpose of counting, we adopt the technique
of plethysm. Since the repeated fields with the same
helicities must have an equal number of labels to be filled
into the YD, instead of taking a direct product of the [#i] as
in Eq. (3.54), we take the plethysm with particular
permutation symmetry. In particular, for any YD )) we have

Yo =3 d,Y®a

Am

(3.56)

where d, is the dimension of the S, irrep A. In the example
of Egs. (3.52) and (3.54), suppose the three y’s are repeated
fields as in the type of operator Q°H eI:D, where the three
Q’s could have permutation symmetries [3], [2, 1], and [1%],
for which we derive the plethysm

(D@8 =TT+ + 1

Mo 1] =HIH+ ‘+H}j, (3.57)

N =+

These are nothing but classifications of the result in
Eq. (3.54). Note that d|p ;) = 2, so the YDs in the second
line should be counted twice while matching with
Eq. (3.54). Among the results, we find the target YD,
namely HEH, which only appears in [13] symmetry. The
permutation symmetry A obtained here, which in general
should include all sets of repeated fields A = [[¢ Ao, is
|

[T le@O®B) e[ =[]+

[TT, 9.

slightly different from that of the Lorentz structure M
itself, which we defined in Sec. IIT A as A,. There are two
sources of differences:

(1) A characterizes the permutation symmetry of labels
filled in the YD, which are indices of the combina-
tion of the Lorentz structure and 7 factors of £ from
the Hodge duals of the &’s. As & is totally anti-
symmetric for any subset of labels, each £ contrib-
utes total antisymmetry [1™] to the ith repeated
fields.

(i) The SSYT does not know about spin statistics;
hence the permutation symmetry of fermionic re-
peated fields has not taken into account their Grass-
mann feature, which should have contributed an
extra [1™].

The property of inner product 1 © [1"] = A7, V Am then
suggests that the final permutation symmetry of the Lorentz
structure is given by

A= H AL x Hﬂq,,ﬁ is even,
fermion boson

M= [] 4 x J]4%.7 is odd. (3.58)
fermion boson

Take the example in Eq. (3.52) where the only Lorentz
structure has the permutation symmetry 4 = [1°] as shown
in Eq. (3.57), the type of operators Q3He£D has 71 =1,
and the repeated field Q is a fermion, which means
Ay = A = [1%]. As for the case in Eq. (3.53), we take the
type W Q3L as an example which has repeated field Q, and
we compute the plethysm

[ ] [ ]
Loy + +

s
[]
[IJ®QJ®BJD®[1:LJ+Lux2+HB}+X2+Jx3+@§+ +Eﬁ’65%

[Tle@oel)elJ=1 +HO1 +

X 2+

It indicates that the three SSYTs obtained in Eq. (3.53) are grouped into [3]7 = [1%] and [2, 1]” = [2, 1] representation

spaces.

In order to construct the bases of these representation spaces as combinations of the original SSYT states M, we apply
the projectors b introduced in Sec. III A2 to all of the SSYTs,

S
M =DM,

x=1,...d, (3.60)

where the difference between the symmetries 4 — A; should be noticed. Each of the projections either forms a
representation space of symmetry [4,] according to Eq. (3.19),
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ro M}, = ZM*] D(x T €S, (3.61)

)x’

or vanishes by the projection. For the example (3.53) where we got three independent Lorentz structures for the type
W Q3L, which we denote as M_; 53, respectively, we obtain

3 3 3 3 1
M =M = My = M = S (M + Mo+ M),

W[ —

1
./\/l;[cz'l] = M[ZI = M[2 - {§<M1 + My = 2Mj3),= (M| —2M, +M3)} ,

X

M = {0,0}; (3.62)
hence we get the symmetrized Lorentz structures as ./\/l[lp] and M&z’l],x =1, 2. Note that b)[cz’l] acting on M and M;
produce the same representation space. In general, when there are multiple numbers of the same representation space [4,],
picking out linearly independent spaces from the nonvanishing projections of b% is nontrivial, which is why we use Fock’s
conditions to convert the symmetrized Lorentz structures to combinations of the original basis M. Generically we obtain

11 — Z’CM M., (3.63)
where the coefficient matrix K%~ has rank” A4, Now we can select N1 number of rows from K4~ as & = &, ..., &,
which provide an independent set of the [4;]-symmetry Lorentz basis as M2 In the above example, we have

Ex
11 1 1 _2 o _2 1
3 3 3 3 3 3 3 33
1 _ L 1 1 21,1 212
K= 1L Kelt=10 o0 o0 [, Kei2=10 o0 o0 [, (3.64)
11 1 1 12 1 2 _1
3 3 3 3 303 33 3

A= 1. In that there are no
multiplicities of the representation spaces, we are allowed
to omit the subscript & as in Eq. (3.62).

which have ranks NG = A/121

C. Gauge basis: Littlewood-Richardson rule

After obtaining the symmetrized Lorentz structures M?%,
we are now ready to find a set of symmetrized gauge group
factors T¢;5 , and T&, , in Eq. (2.8): the procedure is similar
to finding the symmetrized Lorentz structures discussed
above. We shall find all the independent group factors T';
first, and then symmetrize them by applying b%’s discussed in
Sec. Il A 2 to the gauge group indices of the repeated fields:

In principle, one can obtain all the independent T; by
recursively using Clebsch-Gordan coefficients (CGCs) of the
corresponding gauge group; however, this method cannot
give nice forms of group factors expressed in terms of

9Actually, the linear dependence among the rows of the matrix
KM+ should not depend on x, just as the projector b’ either
projects out a full representation space, nonvanishing for all x, or
annihilate a Lorentz structure, vanishing for all x. Therefore, the
rank A4 is also independent of x.

|
invariants using Levi-Civita tensors. Here we postulate a way
to express all 7 in terms of Levi-Civita tensors of the SU(N)
group provided that each field is expressed in a tensor of
fundamental indices only. The algorithm is to use the LR rule
repeatedly but with indices associated with the correspond-
ing irreps filled in during the construction of a singlet YD.
From this procedure, one can obtain different singlet Young
tableaux with N rows as different ways to constructa SU(N)
singlet. Each Young tableau then translates into a 7, as a
product of e tensors with the indices setting to the corre-
sponding indices in each column in a consistent manner. We
illustrate the procedure by constructing the SU(2)y, group
factor of the operator Q3L W, . Suppose the SU(2)y, indices
for three Q’s and L are j, k, [, and i, respectively, while that
for Wy is I. The first step is to convert all the nonfundamental
indices into fundamental ones. The only field that needs this
preprocessing in our case is W/, and we convert it by
contracting with (z')}, e,,,,, which leads to

XMy

= WIL (71);11 €xmy»

where the summation over the repeated indices is implied.
Next, we are going to form the Young tableaux with indices
J.k, 1, i,my, m, according to the LR rule. There are three
different T'gyy, ¢’s which correspond to three different paths to
construct 3 x 2 YDs. We illustrate them in the following:

WL mm, (3.66)
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Q%% QL ir M Q*rwn, (3.67) D 1] [ 7 7o [
1 117
(3.70)
]
1] where the first line tells the order of the fields in forming the
(3.68)  singlet YDs. We follow the above paths to fill each box with
the corresponding indices of the field and translate them into
products of €’s:
| 1]
oY ma PR f e e [whe: [ [0 fufnd
(3.69) (3.71)
|
k l i ; mijm ' iy
A L e B L0 [T g ., 02
(3 1 |Mmy|mso
= i) L LTl o] bl [T o ey, a7
1] l [ jmajmo
Jll ‘ Jll ‘ i ‘ Jgllla = (ikemigima — (3.74)
k| k k majmy |
With this set of Tgy,s we can project out the corres- 3] — and 3.75
ponding T, , by using the symmetrizers b%. To find out LeB=L11] (3.73)
which A the three Q’s can take, we first need to enumerate
all the SU(2)y, irreps constructed by Q’s that can form a |
singlet with the rest of the fields L and W. In this example L®2,1] = (3.76)

both the quadruplet and the doublet are capable. Next, one
can pick out the A that after taking plethysm with the
SU(2),y irrep of Q’s are able to produce the quadrupletand ~ From the above equation, we find that [3] and [2,1] are the
doublet: possible choices, and we have

|

1. ..
T[SSI]JZ,I = b[13] oTsuyr1 = 3 [e/iekmelm> + (perm i, j, k)]
1
=Tsu21 — 3 (Tsuaz + Tsuas), (3.77)

T[Szﬁlz]l _ b[lz.l] oTsuay = l [ejmlekielmz + elighmiglmy _ gjma gkmy gli _ €jml€km2€li}
N ) 3

2 1

=3 Tsyon — 3 Tsua s, (3.78)
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2.1 2.1
T[suz],z = b[z Lo Tsu,1 =

1T +2T
34su22 T3 hsu23

From the first to the second lines in the above equations,
we have used the Schouten identity and the fact that any
terms proportional to €™ can be dropped as Wy, ,,, is a
symmetric tensor. In addition, one can verify that the

B3]

projection of by’ on Tgyp, or Tsyy3 gives a null space

while that of b)[cz’l] ’s generates the same space as the one we
generate above from Eq. (3.78) to Eq. (3.79).

Readers can follow this method to derive the SU(3).
group factor for this type of operator, which is quite trivial
yielding T[S][l_l = ¢%¢ given that the indices of three Q’s
are a, b, c. It is obvious that this group factor is in the [1°]
representation of Sj.

The above construction can be generalized to operator
types with more than one set of repeated fields. The
projection operations for different sets of repeated fields
simply commute with each other. Therefore one can
obtain a set of symmetrized group factors transforming

as irreps of the direct product symmetric group S defined in
Sec. IIT A.

D. Flavor basis: Inner product decomposition

The above two subsections describe the systematic ways
to generate the Lorentz structures and the group factors as
irreps of S. Now we are at the stage to show how to use
these ingredients to construct operators with certain flavor
permutation symmetry. Still, we shall take the Q3LW/ as
|

SUB)e  SU2)w

Lorentz

GDjj@@

o[T1Je - -

© | (O]

One can observe that the first three combinations of the
permutation symmetries are trivial as the decomposition
only results in a single irrep of S;, so we only show the

- [€jm1€km2€ll + ejlekmzelml _ ejmzektelml _ €jm1€kl€lm2}

(3.79)

an example to demonstrate the procedure of the inner
product decomposition of a single symmetric group S5, and
the generalization to arbitrary sets of repeated fields will be
manifest.

We use the projection operator defined in Theorem 4.2 in

Ref. [39] to obtain the generalized CGCs ng")‘j)‘";‘(ﬁz‘XZ)‘%’x3)
of the symmetric group with the definition

§ /11 X1 )>(A2:%2).(23,x3) )
C M ® TSU3 X ® TSUZ X3

X1,X2,X3

(3.80)

where O, ) ; is the xth basis vector in the jth (label of
multiplicity) irrep A4 from the decomposition, which is
essentially a linear combination of various factorizable
terms defined in Eq. (2.8). The details of using a projection
operator to extract CGCs are given in Appendix B 2, and
here we directly provide the relevant CGCs of S5 for our
example Q3LW, . As we have obtained in the above two
sections, the permutation symmetries of the Lorentz struc-
ture can be [13] or [2, 1], those of the SU(2)y, group factor
can be [3] or [2, 1], while the SU(3). group factor only
takes [1°]. Therefore there are four possibilities to form
direct product representations, of which the inner product
decompositions are

Flavor

(3.81)

] = ix[Te1x @w@-

detail for the last one in the following. The relevant CGCs
for the last decomposition are summarized in Table III.
Since in our case, the multiplicities of each irrep is 1, the
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last indices of the subscripts of C are all 1. Also as
discussed in Ref. [18], for irreps with dimension larger
than 1, we only need to choose one of the basis vectors
from the decomposed invariant space as others generate
the same flavor space. Here we always select the first
vector in our basis, and this is why the third subscript
indices of C is always 1. In principle it is equivalent to
select any one of the basis vectors; the reason we choose

|

2 13]

the first one in our convention is that it is equal to the
Young symmetrizer of the normal Young tableau of the
corresponding YD discussed in Sec. III A 2, which helps us
simplify our forms of operators in Sec. IV. We shall come
back to this point later in Sec. IVA.

Therefore we obtain three terms from the last line
of Eq. (3.81):

rs 2.1 2.1 2.1 2.1 QIR 2.1] 2.1 2.1
®p[3]ll §T[SU3,1(T[SU2],1M[1 - T[suz].zM[z ) +§T[SU]3,1(T[SU21M2 + T[suz],zMg . (3.82)
rs L e 2.1 2,1 2.1 2.1 2.1 2.1
Gf[z,;].l),l = gT[SU]3,1(T[SU2],1M[1 ! + T[suz].zM[z ] SU2] 2M[ ]) (3.83)
rs 13 2.1] [2.1] 2,1 2,1
65[135,1),1 :ET[SU]&,I( [suzzM T[SUZ],IM[2 ]), (3.84)

where r, s, t, and p are the flavor indices of Q’s and L, respectively. As each factor is rather lengthy, we only show the full

prst

(L)1 here:

expression of ®

prst o l
®([13],1),1 12

abc( ) WL;w{(zejk [ml _eﬂ kml)[(L 0 stk)(Qrantcl)

(LpiG”DQraj)(stthcl)]

_(2€jl€km] - ejkelml ) [(LpiUﬂDQshk) (Qijtcl) + 2(L]7ialeraj) (sth thl)]}

i . .
= _4€abc< ) WL;w[ejm]€kl(Lpi6MDstk)(Qrantcl) + ejlekm] (Lpialeraj)(stthcl)]’

where the Schouten identity has been used in the last line.

One can verify that @’7[”5 | is indeed totally antisymmetric

about indices r, s, t as it should be.

TABLE III. The relevant CGCs of S3 inner product decom-

position.

Flavor sym Relevant CGCs

Djj ng]ll] 3 (P10, (12,1].1) _%
CEE]II];I) (IPL.1).(12.1].2) =1
ng]ll]fl) ((RIN(ERIRY =1
ng]ll]fl) (IPL.1).(12.1].2) %
CEEH}; ((RIX(ERIRY —1

N ey
-y
e g

@ C(ﬁ }] DL _
Cgm] )-([F1.1).(12.1].2) —1
C(ﬁ%]f) 1 [13] D.(12.11.1) — -1

@027 0.(2.12) _
Cp. =0

(3.85)

So far, we have demonstrated the whole process to obtain
a term with a concrete example Q° LW, . We summarize our
algorithm to find a complete set of independent terms for a
given dimension in a flow chart in Fig. 1 and realize
automated treatment in a Mathematica code.

Given adimension, one can enumerate the operator classes
that determine the number of fields of each spin and the
number of the derivative. Further, by finding the correspond-
ing SSYTs, one can obtain the Lorentz structure candidates
without EOM and IBP redundancy. All of these above the
first dash-dotted line in the figure are model independent,
which can be applied to any Lorentz invariant EFTs.

After specifying the UV model, one can determine the
types of operators for each class and, indeed, determine the
independent Lorentz and gauge structures M,’s and T’s.
Afterward, taking into account the information of repeated
fields from the specific type, one can symmetrize the M’s
and T’s to obtain a set of Lorentz and gauge group basis
that transform as irreps of S. Finally, by putting these
ingredients together to form the Lorentz and gauge singlets
that transform as direct product representations of S, and
using inner product decomposition to decompose them
back into the irreps of S, one obtains several irrep spaces,
each corresponding to an independent term with a definite
flavor permutation symmetry. The symmetrization and the
inner product decomposition below the second dash-dotted
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Flow chart for finding all the independent terms at a given dimension. The content above the first dash-dotted line is model

independent and can be applied to any EFT. The content below the second dash-dotted line is our main contribution to this work. We

automatize the whole procedure in a Mathematica code.

line are our unique contributions that are not present in the
literature yet.

IV. LISTS OF OPERATOR BASIS

A. Preview of the result

In this section, we list all the dimension-eight terms of
operators, grouped by the classes of Lorentz structures. In
Table IV we show the statistics of all the SMEFT
dimension-eight results organized by subclasses, with links
referring to the corresponding lists of operators in the
following subsections. The subclasses with nontrivial
polynomials of n, the fermion flavor number, as the total
number of operators are those for which we need to take
care of the repeated field issues. The statistics for the B
violation (AB = =£1) are listed with underlines, while the
lepton number violation is not shown because B — L is
conserved at dimension eight.

For readers’ convenience, we further perform several
notation changes and simplifications on the basis of the
terms directly produced by our algorithm:

(i) In the Lorentz structures, we convert the derivatives
and the gauge bosons to the form with Lorentz
indices u,v,p,.... This is done by grouping the
spinor contractions into chains that start and end at
fermions, and traces that start and end at the same F
or D. On the one hand, we reduce the ¢ products in
the chains to the three basic bilinear forms yy,
woty", and wo*y and their conjugates, where all
spinor indices are suppressed and vy, y are both left-
handed Weyl spinors as in our convention for the
fermion fields. On the other hand, all the traces are

reduced to products of ¢"*, ¢*¥, and ¢**"1. Relevant
formulas are listed in Appendix A 1.

(il)) We are using two-component spinors for all the
fermion fields as they are the most natural way to
deal with chiral fermions. Conversion rules to four-
component spinor notation are provided in Appen-
dix A 1. Because of the way we deal with the Fierz
identity Eq. (3.25), the Lorentz structures we exhibit
do not contain any vector, axial, or tensor couplings
for four-fermion interactions. Readers could use
Fierz identities also presented in Appendix A 1 to
convert the operators to any forms they like. Exam-
ples are also provided beside the lists in Sec. IV D.

(iii) We also convert the chiral basis of gauge bosons
Fy g to the Hermitian fields F, F by using the
formula in Appendix A 2. After this is done, some
of the types, even from different subclasses, merge
into one.

(iv) The following common notations are adopted to
reduce some of our terms:

xpry —pixy =xD'yY. D¢ =00,
HY'H,= (H'H),  HY()/H; = (H7'H),

Fl P = (F Fy) " 2 P,

(4.1)
(v) The most subtle simplification is tr?/ing to super-
ficially reduce the length of terms'° in order to

"“In this paragraph, term without quotes only indicates a
monomial in a polynomial expression rather than a level of
operators in our construction.
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TABLE IV. Complete statistics of dimension-eight operators in the SMEFT, while the numbers with underlines are for the B-violating
operators. N in the leftmost column shows the number of particles. (n, /i) are the numbers of € and € in the Lorentz structure, which
determines the primary YD [.A] the subclasses belong to. Note that our definition of “term” is different from the other literature, and the
numbers are larger than those in, for instance, [18] because they did an extra step of merging before the counting. However, the number
of operators is exactly the same as in [15,18]. The links in the rightmost column refer to the list(s) of the terms in given subclasses.
N type,./\f term» and N, operator ShOW the number of types, terms, and Hermitian operators, respectively (independent conjugates are
counted).

N (n, ) Subclasses N iype N erm N operator Equations
4 40 F* 4+ He. 14 26 26 (4.19)
3.1 Fiyw'D +Hec. 22 22 22n% (4.50)
w*D? + H.c. 4+4 18414 12n}+n}(5n; 1) (4.74), (4.77), (4.79)
FLy*¢D? + H.c. 16 32 3212 (4.43)
F?¢*D? + H.c. 8 12 12 (4.14)
(2,2) FszR 14 17 17 (4.19)
F Fryw'D 27 35 35n2 (4.49), (4.50)
w2 D? 1744 5448 %n_)%(75n} + 11)+6n_‘)‘, (4.73), (4.78)-(4.80)
Fry?¢pD? + H.c. 16 16 16n; (4.43)
F Frg*D? 5 6 6 (4.14)
T2 D3 2
wy'?D 7 16 160 (4.31), (4.32)
¢*D* 1 3 3 (4.8)
5 (3,0 Fy* +H.c. 12410 66+54 42n‘}-+2n§-(9n.f +1) (4.85), (4.87), (4.88), (4.90)
Fy?¢p + H.c. 32 60 60n; (4.46), (4.47)
F}¢* + H.c. 6 6 6 (4.16)
Q1) Fyly?+He o 84424 172432 203 (590} — 2)+24n} (4.83)~(4.84), (4.87)—(4.91)
Fay’¢ + Hec. 32 36 36n7 (4.46), (4.47)
wwipD + H.c. 32+14 180456 n;.(135nf - 1)+n}(29nf +3) (4.65), (4.68)—(4.71)
FLyw'$*D + Hee. 38 92 9213 (4.39), (4.40)
w2’ D* +H.c. 6 36 36n7 (4.28)
F ¢*D* +H.c. 4 6 6 (4.10)
6 (2,0 w*e? + H.c. 1244 48+18 5(5n“} + n})—i—% (Snj‘r + nJ%) (4.54), (4.58), (4.61), (4.63)
FLy?¢® + He. 16 22 22n} (4.36)
Fi¢* +H.c. 8 10 10 4.12)
(1,1) w2y i2g? 23410 57414 p(42n} +np+2)+303(Bnp — 1) (4.53), (4.54), (4.58)-(4.62)
F 4 2
wy' $*D 7 13 130 (4.24), (4.25)
¢°D? 1 2 2 4.8)
245 2
7 (1,0) w2¢® + He. 6 6 6n’ @21
8 (0,0) @° 1 1 1 4.8)
Total 48 471470 10704196 993(ny = 1), 44807 (ns = 3)
present them in the paper better. Take Eq. (3.85) as guess that by performing total antisymmetrization
an example, where two terms exist after expansion. on one of the terms over r, s, ¢ should reproduce
The two terms together guarantee the total antisym- st such as
. prs et (rr.r
metry of the Q flavors r, s, ¢ in 8([13] AL It is fair to
|
TS . j e ( v
Oy ~ Y [ iete e (7)) Wi (QraiQuat) (Lyic™ Q). (42)
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where the Young symmetrizer specified by the Young tableaux , equivalent to the projector b;

) s explained in Sec. IIT A

2, acts on the flavor indices r, s, ¢, so that the permutation symmetry over these indices are guaranteed by the property of the
projector Eq. (3.16) to Eq. (3.19). An example of the nontrivial symmetrizer for the mixed symmetry is

y ] @..4,7'st,.4. — @...,7'515,..4 + @...,srt,... _

@...,t’r's,.“ _ (__)...,tsr,...7 (43)

where ... represents the possible presence of flavor indices of other sets of repeated fields. For terms involving more than
one set of repeated fields, the symmetrizer is specified by several Young tableaux, for example,

Y [, 58] (LyiLyy) (LYLTF) HY Hy, = (LpiLyj + Lyj L) (LYLT + LYELTY) HY H,.

Back to the example of Eq. (3.85), where only one [1°]
operator exists for the type W Q3L, there is no doubt that
Eq. (4.2) can reproduce it up to an overall constant factor. In
this way, we reduce the length of our terms with the definite
flavor symmetry and hide the complexity into the corre-
sponding Young symmetrizer leaving rather simple forms
exhibited in the following sections. The case becomes more
complicated when a certain type containing more than one
copy of irrep of the same flavor symmetry A. In these cases a
dedicated “desymmetrization” procedure [44] is performed
to find out the monomials such that after acting on the
corresponding Young symmetrizer they are symmetrized to
independent terms. Moreover, if several irreducible flavor
tensors can be written as different Young symmetrizers
acting on the same term, these tensors can be merged into
one tensor with reducible flavor symmetry, which is how
term was used in [18]. The Q3L operator at dimension six is
one of such examples, which is why there is only one term
for it in the Warsaw basis [3]. However, the principle for the
merging does not exist so far, the number of such a term is
an ambiguous quantity as discussed in [18]. We emphasize
that our term defined in Sec. IIB does not have such
ambiguity, and we prefer not to do the merging but instead
shorten our notation with the trick of the Young symmetr-
izer mentioned above.

(vi) Finally, instead of listing subclasses sorted by the
tuple (N, n, 1), we list chirality-blind classes sorted
by the number of fermions to fit the needs of
phenomenologists. Within a class, operators are
listed as either “complex” types or “real” types.
We refer to a type of operators whose conjugates are

|

$1 (D)5 (Dpa)sips.
$192(D3)5(Dba)bseps.
¢1¢2¢3 (D¢4)Z(D¢5)g¢6v

while those for the subclass ¢*D* are given as

$1 (D) ip3pa(Dbs)sips.
$102(D$3) s (Dbs)sips.
$102003(Dba) b5 (Debs ).

(4.4)

of different types as a complex type, and a self-
conjugate type as a real type. Since we do not
present conjugates of the complex types, operators
of these types should be counted twice in the sense
of Hermitian degrees of freedom. For the real types,
although the operators presented may not be Her-
mitian on their own, their conjugates must be
combinations of operators in the same type and
should not be counted separately, so these operators
are only counted as 1 Hermitian degree of freedom.
The numbers presented in Table I'V are all counted in
this manner. We have also listed the B-violating
operators separately in Sec. IV D.

B. Classes involving bosons only

In the following sections, we list our operators in terms
of subclasses, ordered by the number of fermions and
gauge bosons. The subclasses shown here are summarized
in Table II, while those not showing up are redundant
according to our treatments of various redundancy relations
listed at the beginning of Sec. III B.

Class ¢®"»D">: Operators with only scalars. The
subclasses available in Table II are np =0, 2, 4. The
Lorentz structure of the all-scalar subclass ¢8 is trivial,
shown as

$rrdsdabsdodrs. (4.5)
For the subclass ¢°D?, all the Lorentz structures are given
by the algorithm in Sec. III B 2 as follows:

$1 (D) ipsadhs(Debs ).
$102(D3)iepachs(Debs ).
$102003¢4(Dps)§(Debs ).
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WD) LD B (DD D). $1a(D3s) (D) (4.7)

Plugging fields from Table I to these Lorentz structures, making sure that the total hypercharge is zero, we get the
following three types of operators, and by going through our algorithm, we obtain six terms in all as a nonredundant basis:

OH4H'\'4 (HTH)4,

o2 \(HHPO(H'H), (H'H)|H'D,HP,

O, |(HH)OX(H'H), |H'D,D,HP, (H'D,H)'0(HD'H). (4.8)

The superscripts of the O’s label the terms in the particular type, in the order of left to right and top to bottom. The first
operator modifies the shape of the Higgs potential, and the rest could renormalize the Higgs field and thus modify the Higgs
couplings uniformly.

Class F¢%~"»D"»: Operators with one gauge boson and arbitrary scalars. According to Table II, only one subclass
F1.¢*D? survives our criteria, which contains the following three independent Lorentz structures:

FLi ¢ (D3) o (D) s, FLi% ¢ (D$3) 504 (Dps )5 FLi2p3(Debs) uie(Dps) - (4.9)

Together with their Hermitian conjugates, they combine into the form with F, F, that become real in this notation. In the
SMEFT, we have the following real types:

W' (H'H)(D,H'<'D,H), W*(H'H)(D,H'7'D,H),

O a2 :
WHHED wiw(D HTD,H)(H'<'H), W'(D,H'D,H)(H'<'H),
O;lezHTzDﬂBﬂV(HTH)(D H'D,H), B’“’(HTH)(DﬂHTDDH). (4.10)

Class F*>¢*"» D" Operators with two gauge bosons and arbitrary scalars. Table II contains two subclasses of this form,
with n, = 0, 2. The only Lorentz structure in the subclass F2¢* is

FLlaﬂFL2aﬂ¢3¢4¢5¢6' (411)

In the SMEFT we get the following types under this subclass:

O, L|GH(HTH)?,  (GAGM)(HTH)?,
o) w! W/ (H T H)(H'T'H),  W*(H'H)?,
WA W WR (H T HY(HT Y H),  (W'W!(HTH)?,

OB’H2H52|BZ(HTH) (BB)(H'H)?,
O02) B, W (HYTH)(H'H), B, W™ (H'e H)(H'H). (4.12)

When all the Higgs bosons are put to their vacuum expectation values (VEVs), the operators normalize the kinetic terms of
gauge bosons and thus modify the corresponding gauge couplings uniformly.
On the other hand, there are three independent Lorentz structures in the subclass F2¢>D?:

Fui®Fuod (D3)sa(Dga)ts  FLi®Frags(Dgs)(Dea)t,  FLi®ho(D?h3) s Fith- (4.13)

Again, combined with their Hermitian conjugates, we obtain the following real types:
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o\~3

G*HH' DZ|Gz(DﬂH D,H), (G*G*)(D*H'D,H), G*",G**(D,H'D,H),

W2(D'H'D,H), icKW!u, WD, H'tK D H),
O el (WIWH)(D*HID,H), i’ SW! WD, H"<*D,H),

wir ,Wi*4(D,H'D,H), ie"¥W!*,W/"*(D,H'¥D,H).
o\ |B*(D'H'D,H), (BB)(D*H'D,H), B*,B*(D,H'D,H),

B*HH'D?
(BW!)(D*H'e'D,H),  (BW')(D'H'</D,H),
o) | B, WD, H ' D,H), B, W"(D,H"'D,H), (4.14)

B¥",W"*(D,H'<'D,H), B%,W"*(D,H''D,H),

where brackets for the indices are shorthand notations for (anti)symmetrization F e /1F;]/1 =F¥ ,1FM F ,1Fﬂ * and

F <,” 5 Dk = = F\,F* + F*,Fy". * The operators of these types contribute to the neutral triple gauge boson couplings, which
do not appear at lower dimensions [22].

Class F3¢*: Operators with triple gauge bosons. Note that the operators of class F>D? are absent due to our treatment
about EOM. The only Lorentz structure in the subclass F3¢? is

FLi® Frod Fuap, atbs. (4.15)

Note that the types BEHH', BG’HH', B>WHH", and G>WHH" cannot exist, even though they are able to form Lorentz
invariant gauge singlets. The reason is that the only Lorentz structure shown above is totally antisymmetric for the three
gauge bosons. In case no antisymmetric structures from the gauge group sectors, such as the structure constants, are
available, the operators must vanish due to the commuting nature of any repeated gauge bosons in it. The nonvanishing
types, which all involve totally antisymmetric structure constants, are shown below

G3HH |fABCGA GBﬂ GCblHTH fABCGA GB/l GCIMHTH

Oi}[ﬂHHT ‘SIJKWI W],u WKulHTH €”KW[/“,WJM AWK”LHTH,
ol [eVEB, Wi, WAHTKH, VKB, WK WY HTTKH, (4.16)

These operators contribute to the anomalous triple gauge boson couplings.
Class F*: Operators with four gauge bosons. There is one Lorentz structure of subclass F7 F3 and three Lorentz
structures of subclass FY,

FL1aﬂFL2a/;FR3&,3FR4dﬂ, (4.17)

FLi FL FaapFLays FLi® Fioo Frap®Frays FLiFLaapF 13" FLays (4.18)

After symmetrization described in Sec. III B 3, we find no Lorentz structure that is antisymmetric over the gauge bosons,
which implies that the type BW? whose SU(2)y, structure has to be totally antisymmetric must vanish. The nonvanishing
types are given below:

(GAGE)(GAGE),  dACEABPE(GAGP)(GEGP),  fACE fBPE(GAGE)(GCGP),

Og:% (GAGB)(GAGB)’ dACEdBDE(GAGB)(GCGD)’ fACEfBDE(GAGB)(GCGD)’
(GAGB)(GAGB), dACEdBDE(GAGB)(GCGD), fACEfBDE(GAGB)(GCGD),

O1~6) (WWHW W), (WWH(WW), (W (W W),

VT WIW) (W), (WIW) (W), (W) (W),
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0LV |(B?)(B?).  (B>)(BB). (BB)(BB),
o0~) G*W?, G*(W'W'),  (GAGMW?,  (GAGH(W'W!),
CVI(GWHGW!),  (GAWD(GAW!), (GAW)(GAWY),
G?B?, G*(BB), (GAG")B*, (GG

~—
—

U~ BB),

@B | (GAB)(GAB),  (GAB)(G*B). (G"B)(G"B),

o0~ B*W?, W2*(BB), (W!'WHB?, (W!W!)(BB),

W (WIB)(W'B).  (W!B)(W'B). (W'B)(W'B),

(1) dABC(BGA)(GBGC), dABC(BGA)(GBGC>,

OBG3 dABC(BGA)(GBGC)’ dABC(BGA)(GBGC>' (4'19)

C. Classes involving two fermions

1. No gauge boson involved

In this subsection we deal with the classes y?¢>~"» D", Note from Eq. (2) that for odd 1, we have fermions of opposite
helicities, or chirality conserving, and for even n, we have them with the same helicities or chirality violating.
Class y*¢’: The only Lorentz structure of this subclass is

W1 WauP3hadsbedr. (4.20)
In the SMEFT, these are Yukawa terms with additional Higgses, which are all complex types:
(,)QMCH*?H':'2 |€il(QpaiuC [;)HI(HTH)27

Oparrn(de Qe ) HT (HTH)?,
O, Liw|(ecpLy)H' (HTH). (4.21)

After taking the Higgs VEV, they give rise to additional contributions to the SM fermion Yukawa couplings. According to
Appendix A 1, the relevant bilinear of two-component spinors can be converted to the four-component notation as

(Qpairucg) = (ﬁ‘rqupai)’ (dC;ZJFQmi) = (a§FQrui)v (eCpFLri) = (éprlri)’ I'= ﬂ’TI’)“A’DH' (422)
Class y*¢*D: The subclass has to be yy'¢*D, which has the following Lorentz structures:

W19y (Dp3) a5y &, Y1203 (Depy) s . W1 ‘P34 (Dps) et & (4.23)

In the SMEFT, all but one of the types are real:

O(1~4) i(quiUMQT Lr”)(HTDﬂH)(HTH)’ i(QpaigﬂQT ?j)HTiHj(HTD/tH)’

Q0'H*H™D

(Qpaio" Q" )H"H;D,(H'H),  i(Q,u0" Q" )H"'D,H,;(H'H),
OMCMEHZHTZD‘i(ucgaﬂugm)(HTDﬂH) (HTH),

Oyeqiprrplildcotds,. ) (H D, H)(H'H),

o1 i(Lo*L" ) (H'D,H)(H'H), i(L,c"'L"})H"H,(H'D,H),
LL'H?H™D . ) . . PN
(L,io*L"$)H""H;D,(H'H), i(L,0*L"})H"'D,H;(H'H),
OeCeEH2H”D|i(eCpG”eE’)(HTDMH) (HTH) (424)

015026-26



COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE ... PHYS. REV. D 104, 015026 (2021)

The only complex type is
O, mnrpl€™ (uchotdi) (HTH)H D, Hy. (4.25)

After taking VEV for two of the Higgses, these are the five neutral fermion currents and one charged fermion current

coupled with the neutral and charged Higgs current, which are already present at dimension six, but with additional v*/A?

suppression. Note that for the left-handed fermions Q; and L;, new terms exist due to the richness of the SU(2),; structures.
The conversion of these fermion currents to four-component spinor notation is shown by the following examples:

(ecpo'Tel,) = (¢,7"Te,), (L,io*TL" L) = —(Iiy"T'L,;), =17, D" (4.26)
Class y*¢*>D?: The subclass y2¢>D? contains six independent Lorentz structures:

1o (DB3) i (D) jbs., W1°Wo (D#3)aaba(Des)f, w1 W $3(Dey) i (Dobs ).
llflallfza(D%)g(D@)gﬁbs, WlaW2a(D¢3)§¢4(D¢5)g7 "8} l//2a¢3(D¢4) (D¢5> (4-27)

Types of this subclass in the SMEFT are similar to the Yukawa terms, which are all complex, with additional Higgs and
derivatives:

i€ (Q pqittc “)D,H(H'D*H),  ic*(Q, 0" uc *)D,H,(H'D,H),
onetrr 2| € (Qpaitic Y HUDHIDUH), (0 0™ uc $)Hy (D,H'D,H),
€*(Q puittc D, HD'(H'H), (00" uc 9)D,HD, (H'H),
i(dc8 Q) D*H'(H'D,H),  i(dc0" Q) D, HY (H'D,H),
dcsQ,a) H(D'H'D,H),  (dc80" Q.0 H'(D,H'D,H),
dc0,a) D*H'D, (H'H),  (dc80™Q,0)D,H''D,(H'H),

0(1~6)

Qd-HH™D?

(

(
i(ec, )DMH“(HTD H), i(ecpa””L”»)DﬂH”(HTBDH),

O epe| (ecyL)HF(D'HD,H),  (ec,o"L,;)H"(D,H™D,H), (4.28)

(ecp,L,)D*H''D,(H'H), (ec,0**L,;)D,H"'D,(H H),

but due to the derivatives, these are new Lorentz structures at dimension eight. In some of the terms, the dipole moment
bilinear appears, which is converted to four-component notation as

(ecp0TLy;) = (2,0"Tl,), (Qpaic"* Tuct) = (470" Tqp;), r=1,7,24 D" (4.29)
Class y*¢*D3: With three derivatives, we have only two independent Lorentz structures as follows:
v\ “(D)s(Dps) (DY) Wl(l¢2(D2¢3)aaﬂ(DW4) , (4.30)

which can easily be checked by enumerating the SSYT of shape quq and labels {1, 1,1,2,2,3,3, 4} (cf. Sec. III B 2). The
types in the SMEFT are very similar to those of the subclass y2¢*D, with five real types:
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O(]~4) i(Qpaing+ ?i)D(HTD”H),

QQ'HH'D*| raj Lo
Z(Qpaio-ﬂQ r )D(H”D”Hj)’

(1.2) o Lo
OMCMTCHH"'W i(uc pGﬂMTCm)D(H D"H),

(1.2) o e
Oedimrrp»| 1(de $o,di ) H D H),

o1 i(L0,L" YO(H D H),

LL'HH'D? L o
i(L 0, L7 )O(H"D*H;),

(12) . =
OecefCHH*W l(ec:p%ez: AO(H'D*H),

and one complex type:

i(QpaiJ/Al(—):/QT [;i)(D”HTDyH)’

l.(me-O'ﬂDDQT ?j)(DﬂHTiDDHj)’

i(uc 96,D,ul)(D"H' D' H),
i(dc 96,D,di.)(D"H' D" H),
i(Li0,D, L7 1) (D*HDVH),

i(Lyi0,D,L*)(D'H'D*H;),

i(ec,0,D el .)(D*HD'H),

. =y a U Y i ) )
Ou@dJCHZD3|l€ (MC]IJD dC’”)D”HszHJ-

If we use the Fierz identity of SU(N) group Eq. (A26), we can

perform the following transformation:

. ai i<—> 1 e <~ e <~
i(Qpai0, " ¥ )IH"D"H ) = 5i(8,7,4,) D(H D H) + (37,7 q,)I(H'e' D H).

It could help convert our terms in Eq. (4.31) to more common forms, such as

i QpaiaﬂQ+ ?I)D(HTBﬂH)

i(Qpui0, 0" ¥YO(H"D H;) .

(
(

i(Qpaio-ﬂBl/QT trli)(DﬂHTDVH)
(

i QpaziayDyQ]L fj) (D”HTiDij>

i(@,7,4,)O(H D*H)
i(2,7,7'q,)O(H' ' D*H)
i(@,7,D,4,)(D*H'D*H)

i(3,7,7'D,q,)(D*H"t'D*H )

2. One gauge boson involved

Class Fy’¢?: The only independent Lorentz structure of this

subclass is

F Llaﬂ llfzall/3ﬂ¢4¢5¢6-

The operators with these Lorentz structures in the dimension eight SMEFT are

OGoucrnt ‘ €ikGﬁy(Qpai5”y(/1A)Zuc 7)H(H'H),

0(1.2)

WQucH*H' ek (T[)iﬂW/Iw(QpaiaﬂbuC [rl)HijHTi7

OBQMCHZH'[' ‘ €ikBﬂy(QpaiO'lqu ?)Hk(HTH),

Ogacnre | Ghlde 40" ()20, ) H (HTH),
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2 a puv i i a v
OE,‘I/QLCHHTZ ‘ W;[w(dC po-ll Qrai)l-rr <HTT’H)’ (TI)IW/Iw(dC pg; Qmi)H.”(HTH)’

OBQd@HHTZ ‘ B;w(dc: ZO'WQmi)HTi(HTH)’

(12) ‘
Wec LHH™

OpecLun ‘ B,,(ecpo*L,)H" (H'H). (4.36)

W;Iw(eCpaﬂyLri)HTi(HTTIH)v (TI);.W{W(eCpU”yLri)HTl(HTH)’

Note that these are all complex types, whose real part and imaginary part contribute to the electric and magnetic dipole

moments of the fermions, respectively, after the Higgses take their VEV. One may refer to Eq. (4.29) for the conversion to
four-component spinor notation.

Class O(Fy?@¢*D): In this class, the two spinors have opposite helicities and form a fermion current, while the gauge
boson couples with both the fermion current and the Higgs current. Two independent Lorentz structures are present:

FLlaﬁWZa(D¢3)ﬂd¢4wz&7 FLiysus (D¢4)ﬂdl//;m' (4.37)

In the SMEFT, real types with neutral fermion currents are as follows:

G (Qpaic* )50 M)DH(HH),  iG(Qpuic® (A1)50" V) (H' D H)
| GMQuuct QD (HH), G Qo ()01 V) (HDH).
o0t A v(jAYa ot bi i A v(Aa Ot b (D
G/w(QpaiG ()“ )hQ r )D”(H H])’ lG (Qpaia ()“ )hQ r )(H D"H )?
G (Qpuic” (W) QT P)DHHYH,).  iGp(Qpuie* (#)5Q" V) (HTD#H))
Wi, (Qpuic* Q" )D,(HTT H),  iW!,(Qu0* Q" #)(H'< D H).
VV/Iu/(QpaiGDQJF ?i)Dﬂ(HTTIH)’ iﬁ/;lw(QpaiUDQT ?i)(HTTID”H)’
(1~12) (T[);?‘/V/Iw(Qpaio-”QT ?j)DM(HTin)’ ( )kWI (Qpaz UQT aj)(HTiDﬂHk)’
OWQQTHHTD i ) o (4.38)
(T[)fw/ltl/(Qpato-yQ' VJ)DM(HJ”H/C)’ ( ) (thll UQT )(HTlDﬂHk)’
()i Wi (Qpuic” O YD, (HH,), (e ), Wh (Qpuic” Q' &) (H*DHH,),
(71>2 L 1141/<QpatUDQ+ ?j)Dy(HTkHj)’ Z(T ) (meanT a])( kD”Hj)v
B,,(Q,.i0*Q"“\D*(H'H), iB,,(0puic” OF “’)(HTD H),
o) Bo(Qpuic* Q" $)DH(HH). B, (Qpuic* Q" ) (H'D'H),
BOO'HH'D taj ) _ aj <u
B/w(Qpaing'r )DM(HTIH]')’ lB/w(QpaionT )( ”D Hj)?
. - aj Fi iR vOT Yy (HTi "
B;w(QpaiayQ1 YJ)DM(I-II H)’ le/(QpaiG Q‘ J)( D Hj)7
iy | Ghuc s Nl DU (HTH). G (uc 0t (1) oul ) (HTD'H).
GuCuTCHHTD A a v()A\b,,T ¥ + A a , v(yA\b,,T Teﬂ
G;w(uC pU (}“ )auC rh)Dﬂ(H H)’ lG/w(uCpa (’1 ) Uc rp )(H D H)’
(1~4) W/IAL/(”C Zgyu:: ra)Dﬂ(HTTIH)? lWI (MC pa MC ra)(H' ID H)
Wucul HH'D| . ~
;Iu/(uC ZGDMQT: ra)Dﬂ(H'TIH)7 iW] (”C p(7 uc ra)( ID H)
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(1~4)
Bucul HH'D

(1~4)
Gded HH'D

O(1~4)

Wdcd HH'D| .

(1~4)

Bdcd HH'D|

(1~12)
Owrirmmp

o)

BLL'HH'D
(1~4)
Wecel HH'D

(1~4)
Becel HH'D

Buu(uC ZUVMI; ra)DM(HTH)’

Bﬂy(”@ ZO-DMZ: ra)Dﬂ(HTH)’

Ga(de
Wi, (de 4*dl.)D*(H 7 H),
Wi, (dc So*dl.) D (H' T H),
B, (d¢ %0*d.)DF(HH),
B, (dc40*di.)DF(HYH),

Wi, (L,io*L" D)D,(H T H),

B,,(L,ic*L' \)D*(H'H),

)
B,,(L,c"L")D*(H'H),
),
)

B,,(L,c"L"])D*(H'H;

B, (L,e*L"])D*(HH;),

J
W;Iw(eCpGDeTC r)D” (HTTIH)7

W,'w(ecpa’“eé )DH(HT ' H),

B/w(eCpGUeTC r)D# (HTTIH)’

Bu(ec,ovel )D!(HTH),

while complex types with charged currents also exist:

1,2 ..
éuc)d;HzDWG (uc bo* (A4)hd],, ) H:D"H,.
1.2

Oi)V C)di-lr-l7 | jk( ) Wl (MC ZGUdTm)HiDﬂHj’

1,2)
ol I€iB,, (uc

Buc d*

96*di)H;D'H,,

Gﬁp(dc ?76 (’IA)de rb)Dﬂ (HTH),
(

o*(AN)odL ) DM (HTH),

iB,, (uc %" ul. ;o) (H'D"H),
iB,,(uc 4o ul ,,)(H'DVH),

G (de 0" ()2} ) (HDH),

iGh,(dc
iWl,(de ;GVdga)(H*r’D “H),

iWl, (dc 9c*dL. ) (H T/ D#H),

<>
iB,,(dc %6*dL ) (H' DV H),

~ <>
iB,,(dc %6*dL ) (H' DV H),

iW!,(L,c*L"\)(H'T'D*H),

iW!,(L,c*L"\)(H'<'D"H),

iny(eCpa eI: D(H T DFH),
iWh,(ecpovel ) (H'T'D*H),

iB,,(ecpo’el ) (H T/ D*H),
<>
iB,,(ec,0vel ) (H'7'DVH),

1G4, (uc 4* (A)hd. ) H,D"H;,

a Crb

ek ()i W, (uc 40*dl ) H,D'H;,

€''B,, (uc 40*ds. ) H:D*H;.

o (IVbdl. ) (HT DV H),

(4.39)

(4.40)

These operators involve new Lorentz structures that were absent at lower dimensions. The conversion to the four spinor
notation for the fermion currents can be found in Egs. (4.26) and (4.33).

015026-30



COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE ... PHYS. REV. D 104, 015026 (2021)

Class Fy*¢D?*: There are two subclasses of this form. One is Fyy?¢D?, a dimension-six class Fyy2¢ with two
additional derivatives, which has two independent Lorentz structures:

FLi®yy" (Dyr3) g (Deba) %, Fr

](II}WZ(I(DW3);¢}(D¢4);I‘ (441)

The other subclass is Fry?¢D?, where the flip of helicity for the gauge boson is made possible by the presence of the two
additional derivatives. The Lorentz structure of this subclass is unique:

W1°Wo" (D*¢3) 4oy Fra (4.42)

Converting to the F, F basis, these two subclasses mix together. Below we present the operators of this class in the SMEFT,

which are all complex types:

1oz |€7Gh(Qpuio® (AN )juc 2)D*D,H
2 Lo~ B
COUHD™| €1 GA (Q paio™ (A1) guc D)D'D,H;.  €9G(Qpei(A4)iD uc )D H;,
(1~3) eik(7> (Qpaza Ucr )DﬂDDHj,
WQucHD?| ‘ '
Quc eqk(rl) A(gzpazﬁ M(:r)l)”l)vf{j, fdk(f')LVVﬁy(£2pail)”uc:?)l)”ilj,
o3 | €/Bu(Qpuic” uc{)D"D,H;.
BQucHD? gl]Bﬂ (meg uc ¢ )D"D H eijB;w(QpaiD”MC ?)D”Hj,
O1~3) Gy (de §6*4(24)2 Qi)D" D,H,
T2 -
COIIDT| G (d 464 (34)0Q,)D*D,HY . G, (de 4(34)D" Q) DV HY,
O(1N3) ( ) <dC delQral)DﬂD HT]
WOULHDT] (2 i (de 0 Q) DUDLH', (e1)iWy (de D Qi) DV H'Y,
| Builde 50 Q) DFDLH',
BQdCHTDH E ( CF yl{Qral)DﬂD HTl Bﬂl/(dC%DﬂQrai)DyHTi,
(1~3) (e ) (ec:PGMLn)D”D H'J,
] ) L Cecpo L DD, (WL ecpDP LD HY,
o3 | BulecpoLy)D"D,H. (4.43)
BeclD*| B (ecpo*’L,)D'D,H'", B, (ecpD'L,;)D*H". :

The Lorentz structures here are also new at dimension
eight. To convert to four-component spinor notation, one
may refer to Egs. (4.29) and (4.22).

3. Two gauge boson involved

Class F*y*¢: Two subclasses are involved, with the
same opposite helicities for the gauge bosons and fermions.
For the subclass F?y?¢, we obtained two independent
Lorentz structures,

Fr Fr (4.44)

1P FLo wagwa, ds. 1P FLaap s Way s

015026-

while for F%
structure,

w?¢ we have only one independent Lorentz

Wlaw2a¢3FR4(},/}FR5d/} (4.45)

After converting to the F, F basis, the second in Eq. (4.44)
and the one in Eq. (4.45) combine to the form as products
of a Yukawa coupling and a gauge kinetic term, while the
first in Eq. (4.44) is a distinct one. The types of this class in
the SMEFT can be found by adding two gauge bosons to
the Yukawa terms, which are all complex:
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€d"BC(GAGP)(Qpui(A€)duc V) H,

1~5 ii = a
Orgnert| €AY (GAGP)(Qpai(1uc 1) H,§

(1~3) €UW (QpaiuC r)Hja

eisz(Qpai”C trl)Hj’
eij(GAGA)(QpaiuC ?)Hja

lijBCGA GB#/I(Qpal Dl{(ﬂ )buC r)
EIJ(W[WI)(QpaiuC ?)Hﬁ

WAQueH | (1K)i K ik WL WK, (Q 0% uc ),

iy |G W Qe D,
GWQucH| ; i i v a
] ek (2 (GAWT)(Q i (A e 2 H . e (T ) WG (Qpaid” (W1 )jue 2)H
1.2 ij a €l
OI(BZQ)MCH e'le(QpaiuC r)Hj’ ](BB)(quluC r)H

€ (BG*)(Qpai(4")juc 7)H,
6”(3 A)(Qpai( )auclf)H
(") (BW)(Qpaitic ) H .
(D) (BW)(Qpaittc $)H;,
d*PC(GAGP) (de §(A€) 0 Qi) H'
Ooer | PEE(GAGP) (de (1), HTY,
fAPCGL,GPHy(de

(1~3) W2<dC?7Qrai>HTi’

(1~3)
OBGQucH

~3
OE?WQ)MCH

(@) WHB,u (Q paic uc ¢)H;,
Gz(dC ;Qrui)HTi’
(GAG*)(dc 40,0 H',

504 (A)a Qi) H',

WA | (WIW!) (de §Q,ai) HY, (25 KW WM, (de 407 Q0 HY,
s | SOV
dcHY i - a j i a U i
OWCAC (1) (WIG) (de 4 (220 HTT . (2)iWH,GA, (de 404 (4)50 ) HT
1.2 a i s a i
O](_’BZQBCHT BZ(dC pQrai)I{T ’ (BB)(dC [)Qral‘)I_IT ’
0(1~3) (BGA)(dC ;(AA)ZQrbi)H“7
POCICHT| (BGA) (de (M50 HT. By G (de 40 (21)50 ) HT,
O<1N3) (Tl); (BWI)(dC ;Qrai)HTj’
BWQd-H' (

1,2 ;
O(GzeiLH"' Gz(eCeri)HTl’

o) W2(ecpL, ) H",
W2ecLHT (WIWI)<eCeri)H'}‘i’

oY | BecpL,)HT,

BecLH
0(1N3) (TI);(BWI)(eCPLri)HTja
Pkt () (BW)(ecpLyi)H'Y,

Conversion to four-component spinor notation in this clas

o) (BW)(de §Qrai) H'Y,

(TI); WIMEB;W (dC ZO-M Qrai)HTj’

(G*G*)(ecpL)H™,

(K et KWL W e ot L HT.

(BB)(ecpL)H',

();W',B,,(ecpo* L, ) H'.

s can be found in Egs. (4.22) and (4.29).

(4.46)

(4.47)

Class F*y?D: The gauge bosons can have the same or opposite helicities, leading to two subclasses Fy F. /Ryn//TD, each
of which contains only one independent Lorentz structure,

FLiFraq! (Dyr3 )/)’y&l//jla,

FLlaﬂW2a(Dl//;>ﬁ{;ﬁFR4&ﬂ
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Without other fields carrying hypercharges, the fermions in this class have to form a neutral current, which demands the
types in the SMEFT to be all real:

(1-5)
OGZQQTD

o~

W200'D

Op00'p

(1~5)
qucu::D

Oy

'
ucucD

OBZMCuTCD

(1~5)
G2dcd.D

szdCdTCD
OBZd@dTCD

OGZLL*D

O(1~4)

W2LL'D

OBZLLTD
OGZeCeTCD

OWZeCeTCD

OBzeCeTCD

ifABcc;A”l/GBD/?L(Q]migl1 (AC)ZD;J QT {")i)’
ifABCf;A”l/GBIJA(Qpaia/1 (AC)ZD/; QJr lr)i)a

GG, (0,00 (A)4D, 01 ),

ieuK WI”Z/ VVJU}L(Qpcin}L (TK)j‘Dy QT ;”) ’

iGUK Wlﬂv VVJy)»(QpaiG)L (TK)j'Dﬂ QJr trl]) ’

iB",B1(Qpui o D, 0 ),

) DM”%rh)’

56/ (AC)LD,uf: ).

l.fABCGA”DGBDA(uC 11170,,1(/10 b
ifABCGA”DGByl(MC
ifABCGAﬂDGBDl(uC ?,OJ”(AC b

W W (ue S0 Dyl ).

iB*,B,(uc pa‘D UE ra):
i FABCGA G (
PG GO 3 1O ).
ifABCGAﬂyGBvl(dC ZO.A(AC
Wi, W, (dc 45'D WL ra):
iB*,B",(dc 56" D, d}- o).

iG*,G",(L,c'D,L""}),

ielTK Wi, Wi A(LpiGA(TK)i»B L)),
]JKWIﬂ WJZ/ (L 0&( ) LTJ)
iB*,B",(L "D, L' 1),

iGA”yGAUA(eCPUADﬂeQTZ "
<~ KX
W W (ecpo' Dyel. ).

hig L
BB (ecpo'Dyel ),

)aDﬂu(E rb)’

de 4 ()DL 1),

)ZDMd('j rb)’

id"PCGM, G (0, (1)3D, 07 V),

iGM, G, (0,00 D, 0" ).

iW[MvWID/l(QpaiGADy Q}L ?i) 5
i(:'UK WIMDWJUﬁ (Qpai(’)L (TK)j'Dy QJr ‘r”) ’

idABCGA”DGB” ( aa/l(/IC)bDﬂucrh)

iGM*, G, (ucp ’1D ”c: ra)s

(4.49)

idABCGAnyBu (d agll(ﬂC)bD dC rb)

iGM™,GY,(d¢ gaﬁD dt o),

iWH, W, (Lio* D, L"),

iKW, WY (L 0" (%)iD, Lt ),
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O~

GWQQ'D

(g |IGM B
OGBQQ* D
iG*, B+

vl VA
lW”iB

(1~4)
OWBQQ“D

(1~4) lGA”/{Byl
GBuCuI:D

O(IN4) lGA”lBDi dCZ u
GBdcd'.D
i, B (d 46, (242D, d
ety | IWHB (Lo, (')iD, LT
OWBLL*D o
iw",B*(L 0,(z")iD,L"

Conversion of the relevant fermion currents to four-
component notation can be found in Eqgs. (4.26) and (4.33).

D. Classes involving four fermions

The classes of Lorentz structures with four fermions are
the most populated in the dimension-eight SMEFT; thus to

iGM,W(Q 00, (A1) 5(2")D,,

iGN, W(Q 0, (24)0(2)iD, 0" 1),

o' o,

(4.50)

consequently B — L is conserved for all the dimension-
eight operators.
Note that repeated fermions start to appear in this

section, for which Young symmetrizers are applied to

present in a less dense way, we separate the types in
different lists by the number of quarks involved. Those with
three quarks and one lepton violate both the baryon number

and lepton number AB = AL = +1, which is the only
source of these violations at dimension eight,

and

W2a¢3¢4ll/5 al//-m

W?nglfsallu/f(f’s%,

the terms to retain particular flavor symmetries, as
explained in Secs. III A and IVA.

1. Two scalars involved

Class w*¢*: There are two subclasses in this class:
w2y ¢ and w*¢* + H.c., and the independent Lorentz
structures are

W?WZO:V/;WMQ{)SQ%' (4-5 1)

With the two scalars taken to be (H"H), we get the same types as the four-fermion operators at dimension six with the
additional Higgses. There are new types at dimension eight with the two scalars taken to be the Higgses with the same
hypercharges H? or H'2, whose SU(2)y, indices must be symmetric to avoid the repeated field constraint. This demands at
least another pair of SU(2)y, doublets in the four fermions, which excludes the following types that are also Lorentz

invariant gauge singlets, but with all four fermions as SU(2),, singlets:

dcd};\zucHz, déeceguCHz,

i 2
diuc uCH

dczecucHTz, €CMC3H2. (452)

Operators of this class contribute to the four-fermion interactions if the Higgs fields take their VEV, and operators involving

two or four L’s are relevant to the neutrino nonstandard interactions.
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1. Operators involving only quarks: There are six real types from all combinations of the three quark currents:

Y o, B8] (QpaiQroy) (@S QTYF) HY Hy, Y [, 61 (QpaiQre) (QTH QTY') (HTH),
Y 65, 59 (QpaiQryy) (QTXQTF) HV Hy, Y [, ] (QpaiQry) (QT9QTYF) HY Hy,
Oiottam | Y [0 (Quai@ray) (Q4'Q) HY He, Y [BLw] (QpaiQuy) (QUH/QIE) HIHy
y 7 ] (Qpaerb]) (QT?QTgk) HT]H}C» y 7 (QpaiQrbj) (QTZ]QT?’C) HTlH}m
Y [ (QpaiQres) (R Q1Y) (HTH) . Y [ (QpaiQrey) (QT5' Q1Y) H'Y Hy,
o (Qpaittct) (QTFulie) HIH;,  (Qpasuct) (QTulse) (HTH),
QQTuCuﬂ HHT (Qpazu ?«) (QTG] l b) HTiva (Qpazuvr) (QTaluTtb) (HTH)a ( )
4.53
O(1~4) . ( aQrm) (d chch HTiva (d@gQrai) (dlchng) (HTH)»
QQtd. dlHH? ; Y ;
‘ (d:5 Qi) (d Q) HIH;,  (d.5Qm:) (dlaQ1Y) (HTH),
002 ey | Y0 (it ) (weguct) (HTH) . Y ] (uhsaun) (weguc) (H1H),
O 1 s | (dlontaa) (defucd) (HTH) (0l an) (defuct) (HT),
O gy | Y EDEE (dhaadln) (dgdet) (HUH) Y BE] (dhaedln) (dgd.t) (H1H).
An addition of four complex types exist:
O(1N4)2 , y ? €’ik€jm (Qpaiuc?) (Qrbj @?) chHm; [; I eik'ej'm (Qpaiucg) (Qrbjucg) Hk:Hmv
uc*H y [7 ] Eikﬁjm (Qpaiucg) (Q’I“bj ) Hka7 y [a ] eikejm (Qpaiu@l;) (Qrbjucltl) Hka7
o0t | VB (5Qun) (40Qua) HVHY, 3 ] (6 Qua) (4.4 Quy) HIHY,
QS Y o, 611 (g Qubi) (d.2Quag) HYH, Y [, 610] (de 6 Quas) (2 Quy) HTH',
Oggf)%dgm ¢tk (dlstT?J) (Qpaiuc,li) H;Hy, ek (dlstT?j) (Qpaiu.l) H; Hk (4.54)
y eik (ngQsaj) (Qrbz Ct) HTij:a y [] eik (dchsbj) (Qruiucg) HT 'Hk
ot | V[E] € (depQ@aag) (Qroruct) (HTH) Y [if] € (depQuny) (Qrasuct) (H )
QRucdc HHT 1 ) [ et* (d.5Qsaj) (Qrosuct) HV Hy, Y[ € (d.yQsy) (Qrasuct) H'I Hy,
Y [} gl ( LaQsaJ) (Qrbzuct) (HTH) Yy [] € (dcastj) (Qrazuct) (HTH)
Recall the definition of Young symmetrizer ) in Sec. III A 2, we can obtain the following relations for type O Q12 ng)H ot
OSZ)Q+2HH+ (Qpaerb] =+ QrazQpb])( a]QT ok + QT anJ.- bk)HﬂHk’
O(Q‘?QQHH% = (QpaiQrbj + QraiQpbj)(QT HJQT ok QJr an k) ”Hkﬂ
O s = (QpaiQusj = CraiQyis) (QT QTP+ 0T QT WY HTTH
O<Q82)Q+2HH+ = (QpaiQrb] QrazQpb])(Q} a]QI bk — 1 an} bk)H“Hk (455)

as an example of how )’s act on the terms.
The conversion from the two-component spinors to the four-component spinors, with extra transformation via Fierz
identity, are shown by the following examples:
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(QpalQer)(QTanT bk) (qme‘Irbj)(qS CC] ) (q y”Qpat)(Qt yuQrb/)

l\)l»—‘

T 747 1 77

(uC Sau;rj tb)(”C guC I:) - (usacutb)(u PCM lr)) - E ( ”usa)(u lryy;tutb)’
fcj o -a —cj 1

(QpaiuC f)(Q' SJMC tc) = (u erai)(q Sl]””tc) - E( y””tc)(q s 7/4qpal)

The Hermitian conjugate of a non-Hermitian operator of this class is, for example,
o . N bi
[elkejm(QpaiuC ?)(Qrb/”c za)Hka]T = eikejm(”C 30" Zl)(’lc Q" rJ)HTkHTm-

Operators involving d quark and leptons of this class can be converted similarly.

(4.56)

(4.57)

2. Operators involving three quarks with AB = AL = +1: All the types with three quarks are complex, and there are

seven of them in this class:

abc ” kn (Qrantcm) ( pistk) HTmH y[
y [] €abc€ik€jn (QT@thcm) (Lpistk:) HTmHna y
y Eabceikejn (Qrantcm) (Lpistk,) HTmHTn

(1~7)
OQ?LHHT

HEH

(12

OQMr‘;eme ‘ Y [ erteetel® (dl soels) (Qpai@ro;) HiH,

Ogutzpms | VH e (ulwtedic) (LyiQras) HI'HY,
(’)SuﬁdT i | e (@t o) (LiQrag) (HTH), €6 (dfulve) (LyiQrag) HYI Hy,
QdL2LH? ‘ el el (dl syl ic) (LpiQras) HiHi,

up?d e HHY ‘y[] €abe (ecrucf) (d U )(HTH) y. Eab(' (d Ue )(HTH)

Here are examples in the type ol 0 L HH about how the Young symmetrizers )’s act on the operators:

Ot = €€ (0 Qren) (L pi Qi) + (QuajQrem) (L i Qo) | HT*H,
- eabceimej”[(Qtanrcm)(Lpistk) + (Qtanscm)(LpiQrbk)]HTkHﬂ’
O = €€ [(Q,0 Qren) (L pi Qi) + (QuajQuem) (L i Qo) | HH,
+ €™M [(Q,14 O rem) (L pi Qi) + (QrajQsem) (L pi Qo) JH™ H
+ €™ [(Q14jQsem) (L piQriok) + (QsajQrem) (L pi Quuic) |H™ Hp,
O<Q63)LHH+ = e [(Q1ajQrem) (L pi Qi) = (QsajQrem) (L pi Qi) JH™ H,,
— €€ [(Q14;Qrem) (L pi Qi) + (QrajQuem) (L piQuo)JH™ H,,
+ €™ e [(Q14j Qsem) (L piQrik) + (QsajQrem) (L piQuit) | H H,,.

Q2 THHJF ‘ y abceik (egsuztc) (QpaiQrbj) HTij:a Y [] eabeeik (elsultc) (QpaiQrbj) HTija

[ eabc m ejn (Qra]thm) (Lpistk) HTana y [ abceikejn (Qrantcm) (Lpistk) HTman
[ ] abe imejn (Qrantcm) (Lpistk) HTana
€ab(' m ]n (Qra]thm) (Lpistk) HTana

(4.58)

(4.59)

3. Operators involving two leptons and two quarks: There are six real types as combinations of the three quark currents

and the two lepton currents:
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(LpiQraj)(LT leT ?k)H+'ins (LpiQraj)(LT ISQT ?i)HTijv
1~5 T a ti | T ai +
O ot v | (LpiQra)JLHOT OV H  Hy, (LyiQ,) (LTQT ) (HTH),
(LpiQraj)(LT Ix{QT taj)HTinv
12 N i
(QQzeceTCHHT (echrai)(eI?sQT taj)HTlHj’ (eCpQrai)(edT:sQ ?Z)(HTH)’
12
O oy | Ly (LTl JHTH; (Lyiue (LTl ) (H'H),
OucugeceEHHT (eTC sua': ta)(eCpuC r)(HTH)
1.2 N prti .
O Loy | (e SLAAL WL DHUH;. (e §L,3)(d] LT ) (HTH),
Ouedieceint | (e saet ) (de hecr)(HTH). (4.60)
There are also five complex types, in which three involve repeated Higgses:
(1~4) eij(eCstaj)(LrluC ?)(HTH)’ €ij(e eri)(Qsaqu?)(HTH>’
+ . . . .
Quekecttt elk (eCstaj)(LrtuC ?)H”Hk’ €lk(e eri)(Qsaqu ?)HT]Hk’
(OQMCLT%H2 eik(e:: SLT {)(quiuC ?)Hij’
12 P T
(QdC)LeCH“ (dcfzee:r)(LsiQmj)H ‘HY, (%"Qmj)(da: ﬁLsi)H“H“v
1.2 ~ . ,
ot | (€6 LT D § Q) HH. (el LT {)(de §Qrat) (HTH),
OquTCLL"'HZ eik(d;r: mLJr {)(LpiuC ?)Hij' (461)

4. Operators involving only leptons: The combinations of the two kinds of lepton currents give three real types of

operators in this class:

Y (e, 58] (Lpi L) (LY L) HY Hy, Y (o0, 61 (Lypi Lig) (LT LTY) (HTH),
O(Ll22§2HHT y [’ (LPiLTj) (LTZLT{?) HTin7 y . ] L[)ZLT_] (LT(J;LT?) H“Hlm
y [, (L Lr‘) (LTgLTk) H“Hk,
com t (4.62)
SL’QT)%%HHT (echTi) (egsLTi) H“Hja (echri) (elsLTi) (HTH),
O, setommr | VEREE (ecpecr) (eloels) (HTH).
There is one more complex type with repeated Higgses:
O(Ll2§ 2Ht2 y 7 ] (eCPL ) (ecrLtj) HTlHT]v y [7 ] (e«;pLsi) (ercrLtj) HTZHT] (463)

2. One derivative involved

Class w*¢D: The subclass of this form must contain three spinors of the same helicities and one spinor of the opposite
helicity, namely yy ¢D. A total of three independent Lorentz structures exist in this subclass,
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woyh (Dyrs )a/;&¢4ll/§a, Wways.(Deby

All the types in this subclass must be complex.
1. Operators involving only quarks: The six types are all of the combinations of the two quark Yukawa terms and the
three quark kinetic terms:

(1~12)
OQQQ*uCHD

(1~12)
OQ2QT(1CHTD

(1~6)
OQuCQUé HD

(1~6)
QuCuEdCHTD

(1~6)
Qugd.dLHD

0(1~6)
Qd.2dLHTD

Y [E] € @iy D) (Quaicr Q1Y) Hr.
y e (@paiucs) (QrbquQT?j) DV Hy,
Y [E] € (Qpaitcs) (QrbquQT?j) D" Hy,
Y [ €% (Qry; DFu %) (Qp(liauQT§j> H,
Y [ e (Qpuitec?) (Qrogou @'Y ) D Hi
V[ € (Qpaiuc?) (QrbjUpQT?j) D*Hy,

Y (dthrbi) (QsajUp,Qng D“H“,
Y [ (45 @rai) (Queson@'’) DHHT,

)ﬁdl//;a’ l//{IIWZaV’g(qu“)ﬁdwga'

] €7 (Qroy D) (QpaicuQT}F) Hy
| €7 (Qpaiue?) (Qryjo,QTE*) D Hy,
[E] €7 (Qpaitic?) (QujouQTg*) D Hy,
g i (Qrp; D u ) (me,a.uQTgk) H,,

"] € (Qpaiucg) (QrijuQT?k) D" Hy,

, V] € (Qpaitc) (Qrejo, QTE*) DM Hy,

Y [H] (d.2Qri) (Quajon Qi) DHHTI,
Y ] (dch’l‘ai) (QschuQT§i> DMI{—U7

Y (Q'f'biD#Qsaj) (dCZU;AQTf&)j) HTiv Yy (Q’!‘biDHQsaj) (dczUuQTgi) HTj’

V] (4Qui) (Quajon @Y ) DRHT,
y[] (dchrai) (QschuQT;ﬁ:j D/J«HTi7
Y ] (@i D Quas) (@11 ) HTY,

€7 (u b DFPu®) (Qpaiouule) Hj,

€ (uchuucg) (Qpaiauugtc) Hj’

€7 (Qpaitte?) (ucfauugtb) DVMHj,

e e

[=]=]

(dC;Qrbi) (chgﬂugm) D;AH“’ (dcaQra

V] (dp@rvi) (Qajon@Ty') DHHY,
V[ (defQrai) (QsejonQYs') DHHT,
Yy [] (QrbiD“Qsaj) (dc;UuQTgi) HTj,

Y[ € (ueh D'u ) (Qpaionuln) Hj,

[

=

L) (ucga“ugtb) DHHJ”,

€7 (u 8 D' u§) (Qpaiopul i) Hj

€7 (Qpait.?) (uclr’aﬂultb) DHH;,

s

(d a,umb) (Qrbiauulta) DHH“, (d a,u/"b) (Qraio-uu(ttb) DMHTi’

cpYcs

(depo*ulta) (QroiDyucs) HTY,

CpCs

€' (dC;Q,.ai) (uCZU“dEtb) D,Hj,

€ (d.5.) (Qroscdln) D H,.
ij (ngJudltb) (QraiDﬂucls)) Hj

@)

V[ (d.2Qsai) (dbotdiw) D HT, V]
Y [E (ngsti) (d.bordly,) D,HT, V|

(450"t ) (Qra D) HY,

€7 (deyQrvi) (uct0"dlva) Dy Hj,
Eij (dcgucg) (Qrbio-udgta) D/LHj7
Eij (dcgo—ﬂdlta) (QrbiDyu@g) Hj

] (dchsai) (dcg(f“ditb) DMH“,
] (chsti) (dclﬁa“dzm) DHHTi,

Y[ (depodl) (deyDpQsai) HY, Y (o] (dejotdl ) (de)DpQsai) H.

(4.64)

(4.65)

To see how )’s act on operators one can refer to Eqs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors are shown by the following examples:
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(ljt qpat)(q ij”Qrbj)’
( qpai)(ufyﬂutb)’
(qrb1CDﬂCIsa])( yMCZI?j)

(Qpaittc )(Qrpj0" QT V)
(QpaiuC ?)(uC ra MC Ib)

(Qrsz Qm])(deG#QT )

1
- 5 (dayﬂ}/ DﬂCIYaJ)(CII nyrbl)
(uC rD Uc s)(Qpazo MC tc) ( aCDuﬁg)(qpaiC}’M”tc)
( erai)(Dﬂu gy”utc) - (ﬁ (rlyﬂutc)(Duﬁ gCIpai)' (466)
The Hermitian conjugate of a non-Hermitian operator of this class is, for example,
[eik(Qpaiu‘Csal)(QrbjUMQJr fj)DMHkF = eik(uzi saQT ?j)(thja'uQJr Ir)j)D/tH%k' (467)

2. Operators involving three quarks with AB = AL = +1: There are seven B-violating types in this class:

(1~4)
OQ3 THD

(1~6)
Q2ulLH'D

(1~6)
t
Q2dl.LHD

O(1N3)

QTLL 2€ HD

(1~3)
OQ*u,,d ecHTD

y IMI 6abc Zkejm (Qpalaue t) (Qrb]D Qsck:) y [] abe ij kem (Qpazaue t) (QTb]DMQsck)
y[] abe zk€]m (Qpaza-ue t) (vang Qsck:) ms y |:l abe zk€]m (Qpaza-ue t) (vang Qsck:)

V[T €€ (LpiQraj) (Quvkopulec) DFPHY Y [H] €€ (LyiQraj) (Qubropulec) DFHI,
V[ €€ (LpiQraj) (Qspkopulec) DFHTF Y [H] €€ (LpiQraj) (Qspreopulic) DFHT,
V[ €€ (Lyiopulse) (Qraj D*Quern) HY, Y [ €€ (Lyioyulic) (Qraj D" Qspi) H,

Y [ €€ €™ (LpiQraj) (Qsbioudise) D Hpy Y [EH] €€ €™ (LpyiQraj) (Qspkopdlsc) D Hp,
Y [e] €P¢€9 ™ (LpiQraj) (Qubkopdlise) D Hpny Y [H] €€ eE™ (LpiQraj) (Qsbropdlse) D Hyp,
Y [mE] €€ ™ (Lyiopdlic) (QrajDHQspr) Him, Y [H] €€ e™ (Lyiondlie) (Qraj D" Qsvi) H,

Y [5] ane (ecpte?) (el @157) DV,
Yy €abe (€cplicy) (chUuQTgi) D" H;,

Y (5] €ane (12 D70) (eep, Q1) Hi,

€abc€ij (dczecT) (UCZO—HQTg‘j D”H“,

€abeij ( orDPu, ) (dcpcru@w) Ht,
€abe€ij (dcgucg) (eCTJuQT? DrHTE,

Yy [] €abe (dcpucr> (U‘CEO_HLT%) DMH;,
Y . EabC( cpt u,y) (“cgauLTi) DrH;,
V(] €ancei (deucs) (dbou L) DAHTE Y [65] eaeeis (defor L) (deoDMucs) BT,
y €abc€ij (d pucs) (dC?UﬂLTi) D#HJ”.

Y [ €ape (Ucf«D“ch) (chU#LT@ H;,

(4.68)

3. Operators involving two leptons and two quarks: The combinations of two quark Yukawa terms and two lepton kinetic
terms, and the combinations of one lepton Yukawa term and three quark kinetic terms, constitute seven types here, while

one more type quELeCHD not as such a combination is present:
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(ecpo, Q" ') (L, ;D" Q) H™, (ecpo, Q" ¢')(L;D* Q) H',
Ohott o | (ecPLi)(Quaso, T YD HT,  (ecpLyi)(Qyujo, QF ) DHH,
(ecpQsq))(L 0,07 \DrHT, (ecpQsq))(Lyi0,Q" ¢)D*HTI,
€ (QaiD"uc §)(Lpio, L' Hy,  €7(QrqiD"uc §)(L yio, L' ¥)Hy,
O o (L0t 80, LT DD Hy €0(Lyi0y0) (e S, LT E)DAH,
e (L piuc 9)(Qrajo, LT )D'Hy (L yuc 4)(Q,450,LT ¥)DHy,
(1~3) c(ecpQuai)uc fo'el )D,H;  eV(ecpuc$)(Qruiotel )D,Hj, (4.69)
Queec P (e potel. ) (QruDytic ) Hj. |
(dc %0, L" ) (LiD* Q) H™, (dc 40, L7 })(L,:D* Qi) H',
O™ o] (e $L,)(Quujo, LI NDFHT . (de 4Ly0) (Quajo, LT ) DHH,
(dc $0.4j)(L,i0,LT ) DFHT, (de $Qs4j) (Lo, LT })DFH,
(1~3) (de Secr)(Quuiotel )D,H, (ecrotel )(dc % Qsu)D,H,
QdeececH'D| (¢0rD, 0,,1)(dc Sovel  H,
(1~3) (ecpL,;)(uc %o* uC m)D HY, (ecpucf)(L,ia"uZ: m)DﬂH'“,
vetckec D (e potul 1) (L Dyuc OH,
(1~3) el(ecpL,;)(uc $o"dg: o)D,H;, e(ecpuc$)(L,i0"dy. o)D,H;,
el ecHD | el (o0 potd}. ,)(L,iDuc ) H.
(1~3) (de pecr)(Lyod w)D,H,  (deLy)(ecro*dl u)D,H', (@70
dedclect'D| (oo rD, L ;) (de S0 d). o) H''. '

4. Operators involving only leptons: The two following types are simply the lepton Yukawa term combined with one of
the lepton kinetic terms:

Y [H] DHHT (e,p L) (szauLT{) . VI[eB] D*HT (epLyi) (LSJO—HL 2),
(1~6) ) . ) )
OLQLTE wip | Y [E| DFH (epLyi) (Lsjo, L), Y [em] DPHY (egpLys) (Lsjo, L1Y),
y [] HY (L D* L) ( LPUIALTg) ;Y[ HY (LyiD¥ Lyj) (echuLTg>v (4.71)
(1N3)T Y [] (ecpLs )(ecrguegt) DuHTiv Y . ( ecpote] t) (ecrDy Ly) H',
Lec?et HID | v) &) (eopLsi) (ecv»a“eit) DHH“.

3. Two derivatives involved
Class w*D?:
There are two subclasses of this form: w2y 2D? and w*D? + H.c., and five independent Lorentz structures are involved:
Y (DW) oy (DWL)E’ . wiyau(DYY)) (Dvu) :
Wi (D) waa(Dyra) l/f‘l’v/{(D%)ad(Dw)ﬁw Wiyl (D3 ) (Dyy)s . (4.72)

Note that in converting to the conventional form of Lorentz structures, we avoid having parts such as ¢* D ,yr because they
are related to D,y by the EOM redundancy. The types in this class are exactly the dimension-six four-fermion types plus
two extra derivatives, which include 15 real types and seven complex types, among which are four B-violating types.
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1. Operators involving only quarks: There are six all-quark real types as follows:

Y BE (D@ DR (@i Q) Y B (Du@9DQM) (Qpaic? Quiy),
08;51)2D2 Y BE] (QpaiQrsy) (DqugiD“QT?j) YV IBE (QpaiQrj) (D.QTY DHQTY),

Y [, e (DHQT;“‘DUQ“;J) (Qpaid™” Qryz) ;Y [0, 610 (D, QT DL QTY) (Qpai o Qrg),
Y [ 615] (QpaiQ@rig) (Du QT DHQTY ) Y [, 615] (Qpai Qo) (Du QT DHQIYY),

(1~4)

. Qpailc (D QJ[CZDNU )a (@paiot’u.7) (D“QTgiDuulm)
QQTu ul D?

") iy
meua:?«) (D QTMD# l b)> (DMQTgiDuUltb) (Qpaio'#yuclr))a
(

)
) D decDMQTCZ)y (dCZUMUQTai) (D dpsc-D QT01)7
i) (Dudlsa D*QY) , (DpdlsaDuQYY) (defot™ Qroi),

(D

oY Y B i (DulsaDoulin) (uegoucy) Y [EEH (vepu ) pitlsa D ul),
vttt Y o, 61§ (Dyuf s Dyl ) (u sotvucl) Ve Em (v guk) (DyulsaDPuly),

al

QQ#dCdé D2 (473)

(
(
O(1N4) ( Qr
( Qrb

o0~ (d.2u.b) (Dpdt D ul ), (Dpdi g Doulsa) (4,20 u ),
weutdedt D | (g oy D) (Ddl g DPul ), (Dpdlsa Dol ) (doCo™ u b),
(1~ Y [EE i (DudlsaDudln) (depod.y) Y [BLE] (depde?) (Dudlsa D dle),

424D | 3 (5, 61 i (Dpdt sa Dol ) (do0#vd b)Y [ 1] (d.9d,8) (Dyud! s Dl L),
and one complex type:

Y [ € (0 Quss) (D QusD*uct) - V(€ (e Qucy) (DyQros DVc)
1~6 .. ..
OE?Quc)dCDZ y [] € (DuQsajDuch) ( u,p HVQrbz) ) y [] € (chQsaj) (DuQrbiDHucg)v (474)
y € (dc;Qscj) (D#QrazD uct)v y €' (DuQsajDuuC?) (dcgaqurbi)-

To see how )’s act on operators one can refer to Egs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors follows Eq. (4.56) as

(Dy QT ?I'Dz/QT i’j)(Qpaiaﬂerbj) = (Dﬂq ?iCqu fj)(qimicaﬂquj)

1 . i
= E (qu glypo-ﬂUCIrbj)(Duq ?jyquai)7
<D MC saD MC tb)(uC po'/wu@ r) (D ”saCD ”tb)(u o"'Cu )

1 _ _
= 5 (u gaﬂyypl)uutb)(u lr?pryusa)’

(D,0" Dyl (o uc b) = (D7 4D, (1264 ). (4.75)

The Hermitian conjugate of a non-Hermitian operator of this class is, for example,

[€7(D,QsqiDyuc ?)(de 46" Qi)™ = eij(Duujé D, 0" 7)ot bl"””djc pa)- (4.76)

Operators involving leptons can be converted similarly.
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2. Operators involving one lepton and three quarks with AB = AL = £1: The four B-violating types are

y [] €abc€ik€jm (Lpist/c) (DuQrajD“thm) ) y ] eabc€ij€km (Lpistk) (DMQrajDHthm)7

(1~4)

QLD | 3 [ ek (D, Qun Dy Q) (Lo Qo) Y [H] eotecii ™ (LyiQuon) (DuQras D Qrem),
et pe | VI €T (QpuiQuy) (DuelaDulie) . ¥ [ i€ e (DpelaDufsc) (Qpaio* Qry):

0 e | €€ (LiQua) (DudlaDiulee) e (DudlwDyulie) (Lpic** Quay),

(1~3) Y e €ave (dejue?) (DpecrDPucg) Y [ €ave (dejuc) (Duecr DHuf),

2 2
uc?doe. D

Y [ cate (depecr) (Dpuc DM ucf).
(4.77)

3. Operators involving two leptons and two quarks: Combinations of three kinds of quark currents and two kinds of
lepton currents provide six real types:

(LpiQraj)(DﬂL-r <'Dﬂ QT tm>’ (D”LT jSDI/QI tai)(LpiO-ﬂeraj)’

O(le) -

LL"D + g +aj . ~ai

e (LpiQraj)(DﬂL}‘lsDﬂQI ta])’ (D/,tLI lstQ‘ ?])(LpiGMDQraj)’
1,2 + . . .

O(QQT)ECEEDZ (echrai) (DﬂeC SD”Q1 ?l>’ (DﬂeC SDI/QT tm)<eCpo-lerai>’
1.2 i i i
,(JCM%CLL*DZ (LpiuC ?)(D”LT ‘\'Dﬂuc tu)v (DMLT A‘Dyu;r: ta)(Lpialqu {:)’
(1.2) a i o, T D i D T z a
HCMEQCQEDZ (eCpuC r)(DﬂeC sD: Uc ta)7 ( u€c sylc ta)(eCpO- Uc r)’
(1.2) i i

Oyt orpe| e §Lr)(Dydg soDULTY). (Dydg DL 1) (de 0Ly,
1.2 +

O((J,’Cdf)cecej:Dz (dC ?JeCr) (Dyd}.j saD”eC t)’ (Dyd:j saDuedT: l)(dC zgﬂpe&?r)- (478)

Two additional complex types are present:

eij(eCeri) (D/AQsajDMuC ?)’ eij(eCpaﬂyLri)(D;thajDuuC ?),
eij(eCstaj) (D/ALriDﬂuC ta)?

(dC ZQrai) (Duegj SDMLT ;)v (Duefc sDz/L-i- ;)(dC ZO-’WQmi)' (479)

(1~3)
Qu¢LecD?

0(1,2)

QdcL'el D?

4. Operators involving only leptons: Two kinds of lepton currents form three real types with all leptons:

o0~ Y [BE (LpiLey) (DML*éD“LT'Z) . VEH (DHLTQDVLT'Z) (Lpio"" L),
27,1202 i . i .
Y e ) (DRLTED, L) (Lpio Lyy) . Y 6] (LyiLe) (DRLTE DALY,

(1,2) t purti t ti v (4.80)
Lite el D2 (ecpLri) (Duel sDHLTY),  (Dpel Dy L1}) (eepo™ L),
1,2 B v
O ips | VD (DuelsDuels) (ecpo™ecr), VI B (ecpecr) (DuelaD¥el).
4. One gauge boson involved
Class Fy*: There are two subclasses in this class: Fy?y > + H.c. with only one Lorentz structure,
F Llaﬁ ll/2all'3ﬂ’l/z C-,w?‘, (4-81)

015026-42



COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE ... PHYS. REV. D 104, 015026 (2021)

and Fpy* + H.c. with three independent Lorentz structures,

FLi™w wsWaps,. FLi™woys WasWs,. FLi™ oy gy s, (4.82)

In converting to the conventional form, the gauge boson always contracts with the ¢* (one may convert to other forms
via Fierz identities, which we choose not to do), and due to the identity F,,(¢"), = iF,,(c"),’, the F and F are
equivalent; hence we only use F instead of F in our operators. The types in this class are simply the dimension-six four-
fermion types with an additional gauge boson, depending on the gauge charges of the fermions: B is always available as all

the fermions are charged under U(1)y; G is available whenever quarks are present; W is available whenever Q or L is
present.

1. Operators involving only quarks: Based on the six real types with four quarks, B and G can be added to all of them,
while W can be added to the three types with Q. Overall, 6 + 6 + 3 = 15 real types exist:

Gﬁl/ (QT(‘]QTM) (Qpazo'# Qrb])a
Gty (QraiQpes) (QTF 7 Q127),
)

Y Boem) (V). G4, (QUEQ1) (Quuio Q) Y [Bm] ().

] (M%),

(X“)i QIR (Qpaicr™ Q)
( )Z

A

(W), G
Y [, el (/\A)Z v (QrajQpei) (QT?&“VQTgi),
Y (=3, E] ()‘A)i ( TWQTM) (Qpai™ Qrij) ,
(A4), G
b

S
EE BB
Il
gi

E
l

ﬁﬁ
Ell
[=]

EE]

085212)“ [’! A pv Qra]Qpcz) (QT?@-IWQT(S”)
Y [BE 4 (Q*“Q*‘”) (Qpaic™ Quy) s YV [
Y EH (), il (Qros@per) (@7 Q12°)

QTalQpcg (QTb]UW/QTm>
(QTC]QTM) (Qpaza QT‘bj)a
(QWQW (@Wamqie)

E

). G
)y G

[~]=]

=

5] —

[=]

=]

>/
vvt

Y o] 0 hYen A (etdqiy) (QWWQW Ve 8 (Q9Q1) (Qpaic™ Q).
y [ ] ()‘ ) Gﬁy (Qranpci) (QTfjﬁwQT?i) ) y [7] /\A ;1,1/ (QraiQpcj) (QT?ja'“VQT:i)v
Y Bem] (71) Wi, (QQ1) (Quaio™ Q) . ¥ [BhEm] (r1); Wiy Q@) (Q1P 5 Q12Y),

y 7 ] (Tl>i (QTmQTbk) (Qpazo—u Qrb]) y . I (T ) (QTQ]QTbk) (QpaiUMUQrbj)7
k i .
01(/11/5122T2 y 7 ] (TI)] Qrkapm ( TbJ “VQT?) ) [I’! (T ) Qrkapaj) (QT?JO'IWQT?)
o] (1) W, (QT‘”Q“”“) (Qpaio™ Qre;), Y [em,cm] (7 )k L, (QT99QT) (Qpaid™ Qriy),
o] (7)WL, (QukQpai) (QTP Q1) Y[, i1s] (7)) W, (Qrik@pay) (@11 5 Q127),
Y [, (1YWL (@IQH) Qe @), ¥ ] (+) TWEL Q@) (QTP 5 Q1E),

Y B Buo (QU5Q1) (Qpuio Quty) . Y B8] B (Q9QM) (Qpaio™ Qusy).
053155)@72 y ] v (Qrbj Qpai) (QTbj ’WQTM) ,] B, (QrbiQpaj) (QTbJ MVQTGZ>
Y [ B (QU4Q1Y) (Qpaic™ Quog) s ¥ [59. 5] B (QUHQY) (Qpaicr™ Q).
Y [ B Qi Qo) (Q0 Q1) ¥ [, Buw (@i Qo) (@17 Q11),
(A1), G (Q2ulaa) (Quuio™uck) . (M) G (ue @pm) (ul o Q1e),
o~ | (M) G (QEulua) (Qpaso ), (M), Gl (e Qpes) (00 QT),
Gaatie | (\A); Gt (Q1ulie) (Quuso™uct) . (W), G (15 Q) (ul 0 Q12
(M) G, (QT9uln) (Qpaic*u ), (M0 G, (ul pm.) (uf ot Qta),

(4.83)
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ou~ (1) W (QTulie) (Qpuio™ uct) (7)) W, (5 Qpes) (w10 Q1EY),
W@ttt | (1) Wik, (QTTul ) (Qpaio™uck) s (71)] W, (uctQpay) (uf o™ Q1.
O(1~4) B,uu (QTCiuth) (Qpaio—uyu ?) ) 1/( n ercz) (uTtao—quTm)a
BQQTuc uC Bp,u (QTgiuitb) (mea' Umli) ) Bp,l/ ( chpaz) (uTtbgﬂuQTm)v
(AA)ZG;‘U( I o0 QT8 (420" Qua) , (N ) A (Qraid.2) (QTedl ),
b
O(1~8) (AA)GGZXU (decQTcz) (dm UNVQrbz); ()\A) 4 ( i p) (QszauudT )
ot | (AL (00 (10, O G, (Quu 5) (@ L)
(M), G (dleQY) (dejo? Qui) - (M)7 Gl (Qroidey) (QT7 ™ d ca),
ot | Wi (4@ (50 @uu) - ()] Wy (@reges) (@1 L)
WQQtd, dl (7_1) dlgaQTbJ) d U“”Qm ’ (TI)Z IV (Qrbj Pp) (Q’rbz ;wdT )
O(1~4) . Bp,y (dzchTfl) (dcgoqurai) ) ,LLV (Qrcz Cp) (QTgfauudlSG),
BQQ#dCdC B,uy (dlsaQng) (dc(plaqurbi) ) ;u/ (Qrbz ) (QT?’L(}#lesa)’
Y [ e (AA) GA (wdsattlia) (ucpotucy), Y [ ) (AA) GA (veiucp) (ulwo" ulsa),
OG i YBE (), G (ulaulea) (uegorul) . Y BE (M), 6 (uw%p) (wlwo" ulsa),
G Y [, =] (A ) GA (ulsavlea) (uepo ucy), ¥ e, emm) (A )dG:i‘u( erticy) (ulwo™ulsa). (4.84)
Ve [- (), Gfu( Faulea) (uepo™ut) Y ] (M), G, (uctucs) (ufwoul ),
i) | B () g ad) 3 ] B () oo L)
u y[ ’l B,uu (uTsau tb) (Ucpgﬂyuc?«)a [ ,l B,uu ( cr wp) (uTtbo—uyuTsa)v
)L, (L) (o). (V5 G, (58) (o)
ot~ | (M), Gl (dhaulia) (deporucy) . (W) Gy (ucidep) (ulnd”™ dlsa),
Gencdede | (W), Gy (dlculia) (degotucl) . (M), Gh, (ufdep) (ulnodlsa),
(M), Gl (dlseulnn) (degor ucy) . (M) Gh, (ueldep) (ufnwodl ),
(~a) | Bu (dlspulta) (%ZO””%?) v By (ucgdcg) (ul 5" d sa),
Buculdedt | B (dhsyul ) (20", 2) . B (0,242 (ul nodl ),
Y Boem] (M), Gl (dadl ) (degod b)Y [Bher] (AA)ZGZ?V (detdep) (Lo dlsa),
d b
ot~ | YBE (), Gl (dsadla) (deporder) - Y [BE] (A1), Gl (defide ) (Lo dfsa),
A | g (V) G, (@) (L300.) V] (V) G, (4.94.3) ()
Y Emf] (W), G, (dfsadta) (degor™dt) Y [ ] (W), G, (dedd.g) (dlwotdlsa),
ou~d | Y [7] By (dlsadlw) (degotd.y) Y B8] B (depdep) (dlnodlsa),
PRI Y [ ] By (@l sadln) (dpordet) Y [ By (dbdcy) (d ot dlsa).

The only complex four-quark type with additional G, W, or B constitute the three complex types:
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Ve 9 (A1) G, (dofucd) (Quoio™ Quaz) Y ] €9 (A)! GA, (debuc) (Qrvio™ Qucy),
V] € (M) G, (Quoined) (480" Quag) . Y] €7 (M)) G, (Qrosecf) (do80™ Quey ),
oy, VI O, G (@) (307 Q) Vel (1), G (@) (i Q)
vele | Y E € (M), G, (dofucd) (Quuio™ Q) Y [E] €7 (M) G4, (d.0u) (Qroio™ Qscy),
Y[E €9 (), G (Quited) (debo Quas) s Y [ €9 (M), G, ( rbiuci) (depo™ Qscs),
Y[H €7 (M), Gl (Qraitef) (depot Ques) YV [ €7 (M), Gty (Qroitic?) (depo™ Qses);
V] (1) W (de5t) (@uaio™ Qo). ¥ [E] O (1), W, (@uoind) (420 Q). )
Ofvna. | V[E (rfj;Wf (Qraitef) (do80" Ques) Y [EE] (Tf);w (.2 (Qri o™ Quay),
Y [z & (1), WL, (Quoie )(d«pg’”Qsa]) Y[ €% (71), Wik (Qraites) (defo™ Qses),
V5] €4 By, (dSucf) (Qrvio™ Qsay) » y[]ejBW (Qroiucy) (d.20™ Qsaj),
01('315261);@% Y [] EijBMV (szuct) (deijQscj) ) y EUBW/ (d puct) (Qrbza Qsaj)
YV [E] € By (Quoitic?) (de 0 Quay) y[] €9 By (Qrasttc§) (d,20" Quey)-

To see how )’s act on operators one can refer to Egs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors are similar to Eq. (4.75). The Hermitian conjugate of a non-Hermitian operator of this class
is, for example,

[€TB(Q,ittc §) (de 0, Qse)]) = €1 (ul 1. QT ¢)(QF ¥6,,d[. ). (4.86)

Other operators of this class can be converted similarly.

2. Operators involving one lepton and three quarks with AB = AL = +1: In the four B-violating four-fermion couplings
at dimension six, uc>dcec consists of only the SU(2)y, singlet, which cannot couple to W in this class. Therefore we have
44443 =11 types in all:

Y [t eredeterm (A)! G, (QuikQrem) (Lyio™ Qrag),
Y [ e*cdetd ehm ()\A)ZG;?,,( piQtem) (Qrajo™ Qspk)s
Y B encdeikerm (A4)) GA, (QubrQrem) (Lpio™ Qraz)s
OggfL Y [ el _ijel_cm ()‘A);z ny (QsokQtem) (Lpio™ Qraj), (4.87)

V[ eedetteim (M) G, (QsbrQrem) (Lpio™™ Qray),s
Y [5E] enedetkeim (A" GA (LyiQuem) (Qrajo™ Qunr)s
Y [H] excdeterm (AA), GA, (QuukQuem) (Lpic™ Qrag).

Y || et (M), GA, (LyiQiem) (Qrajot™ Qo).
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(1~6)
OWQSL

(1~4)
OBQ3L

(1~4)
GQzu:f:eg

(1,2)
OWQuI dir

(1,2)
BQuldlL

(1~6)
OGu,,Qd [

Og:32)d ec

y [] Eabcejn hm (TI)i /{y (stthcm) (LpiUHVQTaj)v

y [ eabc Zkejn (TI) piQtem) (QT@qustbk‘)?

y [ eabce_;n km (TI) uy stthcm)( szHVQraj)a

Yy [ eabeeikein (TI)ZL stthcm)( pzo—quraj)v

y [ eabcejn km( I) ( p?Qt(‘m) (Qraja"qusbk)a

y || Eabcgzkejn (T )n ;Lu (stthcm) (LpiO—MVQTaj)a

y [} €abceik6ijuV (stthcm) (Lpio-'quraj) ) y ] eabceiijmBuu (Lpithm) (Qrajo-uustk)y
y [] €abcﬁik€ijuy (stthcm) (Lpz'o'leraj) ) y [ GabCEikEijuy (stthcm) (Lpio'leraj),
y[ acd U ( ) GA (eTsuth) (QpaiUMUQrbj) y[] acd ij ()‘A)b A (Qrchpbi) (uitaf}wjels)7
Y [ exeterr (A )b (el sl ic) (Quaio™ Queg) s Y [ exeed (M) Gy (Qrei Q) (w10 el),
y [- abcejk ( ) ( psu tc) (Q;Daza Qrbj) y eabc€jk' (TI)jC W;{y (Qrchpbi) (uztaa-ﬂyejzs)a

Yy [ GabceijB,uu (elsultc) (QpaiUHVQrbj)v Yy [] fabcﬁijB;w (Qrchpbi) (Ultaa'uyegs)a

eacdeii ()\A)Z Gﬁy (d,« sbutfc) (Lpio'leraj) > ebedeli ()\A)Z Gﬁ]/ (dl sbugtc) (Lpia'leraj)y
3 (NGl Qg ) (). @5 ()G (@rey ) (059 )

et b (1Y WL, (0] (o™ Q) 0 (1) W (Qrey L) (1l )

6abC5ijB;u/ (dgsbugtc) (Lpio-#UQraj) ) eabceijBuu (Qrchpi) (ugtba-“”dg sa)7

y[ Gacd ()\A) GA ( CZ “,t) (ecro-l“/u(cg)7 y €abd( )dGA ( Ca "t) (eCTUMVuCIS))7
y [ 6acd ()‘A)b ny( Ecrle ) (d¢pouyu Z) Y [] EaCd( ) GA ( ”Z c t) (eﬁ’“guyu@g)’
y [} €abd (AA)ZIG;? (dcpuct) (ecrO"“quZ) ) Yy [] €acd ( )b Gﬁy ( Eerlh ct) (dcgauuucg)a
Yo ]GabCB m (dcgucf) (em’aul’ucg) ; VI[Er] €ave B (ecruct) (d J/wucg)7

y [I 6abc (dcgucg) (eCTU#VuCZ)‘

(4.88)

3. Operators involving two leptons and two quarks: Among the six real types with two leptons and two quarks, two
involve only SU(2)y, singlets. Hence we have 6 + 6 + 4 = 16 real types:

i |GG L0 Q). UG Qi )(Q o LTS),

GO (G)aGA (LY QT ) (L o™ Q). (F)EGA(QuyLy)(QF “ELT ),

(YW (LY Q ) (Lo Q). (7)WL (QruaLpi) (QF & LT 1),

O | WL LT AQ ) (L), ()W Qi ) (O G LT ),

(WL ) (Lo Qray), (YW Qraf L) (QTFL74),
o0 Bu(L 0! il_)(L,,ia "0r)s Bl Qrail ) (05 L .
Bu(L' 0" ) (Lyo™ Qi) Buu(QrajLyi)(QT LT 1),
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1.2 a T bi v ai =~uv
Ootrecet | FVEGH (el Q1) (ecpo™ Quai).  ()EGH(Quiec,)(Q 15l ).

Oowrecet | @iWhulel sQ1 ) ecpo™ Ora). (X)IWiul(Quugec, Q" 5" L ).

WQQ‘ea;eC
12 + .

O;Q;"ecez B/w(ecsQT?’)(eCP"”meJ, (thecp)(QTmGﬂv T )’
1.2 t ot
(Guc)u;‘c'LL'l' (}LA) GA L l”Ctb)<L 0" ucf), (AA)ZG;}I/(MCI;L[H')(MC taG’wL“s),

12 vy i
O 1| EVWhL UL ) (Lo uc ). (&)W (e tLyy) (L7,

1.2 + 7= i
(Buc)ujc-LL’l' BW(LV é”qT: ta)(LpiGHU”C ‘rl)v BMD(MC ?Lpi)(uC taGMDDL 15)’

O L MVEGA, (el sl ) (ecpauct),  (A)IGA (uc bec,) (ul uot el ,)
Gucuéece;c aTuv\€c s“ctb C Cr)s Cr€cCp C ta Cs/»
1.2 oot =
;uc)uéecez Bm,(e;: sUc ta)(eCPG”y”C lrl)v B/w(uC ?eCP)(uIZ mgﬂve;f: S>’

12 i a pv a 7
O 1o | PVEGA (AL wLT D (de b0 L) (V3G (Lysde §(LT 6 dL o).

1.2 j a pv j a i ~pv
O | EIWIdE (LT de g0 L), ()Wh(Lyjde §) (LT 1 ).

(1,2)

BdCdELLT B;u/(d;‘: saLT ;)(dC ;GﬂDLri)7 Bm/ (LridC ?7) (L1 ;'a.;wdjé sa)’

1.2 v HY
Ot ecet |V VeGANAE el ) deforecr),  (P)iGhulecde (el 0 d ),
1.2 a v a ~UVU
Opiontevet | Bulde sael Nde gorecr). By (ec,dey)(el @ y,). (4.89)

Both of the two complex four-fermion types with two leptons and two quarks can couple to all of the three gauge bosons;
hence we have 2 +2 +2 = 6 complex types:

ecpuc )(LrtG/wQsaj)’ €ij(/1A)ZGAW(LriMC f’)(‘ch%uQsaj),
Osajtic ) (ecpouLy),

ecpluc i )(erdszm])’ ek ()W (L,uc ) (ec po,, Oy
e ()W (Qyqjuc ) (ecpouLyi),

GijB”y(eq:PuC ?)(Lria/wQsaj) elij(Lri”C ?)(ecpo;wQsaj)’
€/B"(Qyqjuc ) (ecpouLyi).

12 i a v a Tizuv
Oomerret | BEGA(el (LD (de 50" Q). (#)2GA (Quuide §)(L el ,).

(1~3)
OGQucLec

(1~3)
OWQucLeC

m\
~
s
S
~—
—— e~ .
>
=
<
. T~

(1~3
OBQucLeC

1,2 i +J a v J a Ty
Oponerret | I Wh(eE LT Nde 0% Qpai)e (&YW (Qpusde §)(L7 157l ).

1.2 Fi a v a iy T
OES’Q(LU@E Byv(e;; sL1 t)(dC pgﬂ Qrai)’ Bm/(QraidC p)(L1 taﬂ ec S)' (490)

4. Operators involving only leptons: There should be no G coupled to the four-lepton types; hence we have 0 + 3 42 =
5 real types as follows:
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(1~6)
OWLQLT2

(1~4)
Oprapt

(1,2)
OWLLTeCe:f:

0(172)

BLLte el By (el sL1}) (ecpot Lyi)

0(172)

2,12
Be,?eg

% , ] B, (elsezt) (ecpotecr),

V. CONCLUSION

In this paper, we provided the full result of the inde-
pendent dimension-eight operator basis in the standard
model effective field theory. Although the number of the
dimension-eight operators was already counted [12—15,18],
and part of the list, only gauge bosons and the Higgs boson
involved, was also given in Refs. [22,24], it is the first time
that the two-fermion and four-fermion operators are listed
in full form that constitute over half of the complete list.
What is more important is that the form of the operators we
provide here has definite symmetry over the flavor indices,
making it possible to identify independent flavor-specified
operators. These flavor-independent operators were never
obtained in the past, nor a systematic approach, for various
higher-dimensional operators, including the Warsaw basis
in dimension six [3].

To achieve the goal, we need to overcome two main
obstacles. The first is to list all the independent Lorentz
structures. The methods used in literature, such as the
Hilbert series, are usually good for counting the number of
independent Lorentz structures, but not suitable for writing
down the explicit form of the operators. Inspired by
[33,37], we introduce a SU(N) transformation of the
operators, which divides the space of Lorentz structures
into complementary invariant subspaces, one of which
consists of those with factors of total derivatives. The other
invariant subspace, which turns out to be a single irreduc-
ible representation space, is hence a linear space of
independent operators regarding the integration by parts.
Group theory allows us to use the semistandard Young
tableau to enumerate a basis for this irreducible represen-
tation space, which is the basis of Lorentz structures we are
looking for. It is worth mentioning that the notation of
operators used in this derivation is largely inspired by the
on-shell amplitudes, which is made possible by a corre-
spondence proposed in Refs. [28-32]. This work may

Y [Bom] (7)) Wi, (LULTE) (Lpio™ Ley), Y [ fl) (1) W, (Lo (Lo L1,

uv

Y BE (LW (L) (Lo Ley), Y B (7)) W (LoLys) (Lo L),
Y [, ) (7)) Wh, (LTLTE) (Lyio Lyy) . Y e (7)Y Wi, (LeaLyi) (LT{a—WLTg),

y ’] B.U'V LT;LT{ (LPiO—HVLTj)7 y 7] BHV (L'r'iji) LTga'MULT; s
V[ E] Buw (LYLY) (Lypio* Lyj) . Y [@2LE] By (LrjLys) (L1 L),

(4.91)

() Wh, (o) (ecpr™ Lus) (7Y W, (Lrjecy) (LTigels),
By (Lyiecp) (LTia el ),

y [’ ] By (ecrecp) (6;[755;“/6(13)'

further imply that the on-shell language may be much
closer to the essence of effective field theory than the
traditional field theory language.

The second obstacle is to get a form with definite
permutation symmetries among the flavor indices. In liter-
ature, although the technique of plethysm is already widely
used [12-15,18] to perform a systematic counting of oper-
ators withrepeatedfields, itisnotenough for writing down the
explicit form of the operators. We propose a systematic
method to solve this issue. To obtain the basis particularly for
an irreducible representation space of the permutation sym-
metry S, which permutes fields only within the group of
repeated fields, we apply the left ideal projector of the group
algebra to an already-found independent basis, either for the
Lorentz structure or the gauge group tensors. Then by use of
the Clebsch-Gordan coefficients of the inner product decom-
position, we combine all the symmetrized factors to get a
flavor tensor with definite permutation symmetry. The
independent flavor-specified operators are thus given by,
again, the semistandard Young tableau. This essential feature
on the flavor structure makes our result more practically
useful than the other papers on listing higher-dimensional
operators. With the flavor structure addressed, we list the
complete and independent set of the flavor-specified dimen-
sion-9 operators of the SMEFT in the forthcoming paper [44].

After the complete list of operators is written, it is worth-
while to investigate various phenomenological applications
of these operators. As mentioned in the Introduction, if the
contribution from dimension-six operators is subdominant
or highly constrained, the dimension-eight operators should
be seriously considered, even though their Wilson coef-
ficients are suppressed by a higher inverse power of the new
physics scale. We notice there are several new Lorentz
structures that only appear at the dimension-eight level, and
there are several dimension-eight operators dominant over
the dimension-six operators. These phenomenological
applications deserve a closer look in the future.
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The whole procedure is implemented and automized by
Mathematica, and our code can easily be applied to higher
dimensions of SMEFT and other EFTs beyond the SM. In
terms of efficiency, listing the dimension-eight operators
only cost less than 2 min on a personal laptop.
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Note added.—Reference [34] also presents a list of the
dimension-eight operators in the standard model effective
field theory. There are two main differences between our
works. First, we provide a systematic and automated
method in which we obtain an independent basis directly
in which the EOM and IBP redundancies are entirely
absent. This would help our method apply to more com-
plicated cases where the correctness of our result is
guaranteed from the first principle. Second, in contrast
to [34], the form of the operators we provide has definite
symmetry over the flavor indices, and thus the independent
flavor-specified operators could be obtained easily as a
semistandard Young tableau.

APPENDIX A: CONVERSION BETWEEN
NOTATIONS

Various people have various conventions for how
operators are written, while our result is presented only
in one of them. In this Appendix, we provide a complete set
of identities for conversions of Lorentz structures between
different conventions, together with a bunch of examples,
in order to make it easier for different readers to use our
result. Relevant conventions are SL(2,C) vs SO(3,1)

Lorentz indices, two-component Weyl spinor vs four-
component Dirac spinor, various forms of four-fermion
couplings related by Fierz identities, and the chiral basis
Fi g vs Hermitian basis F, F of the gauge bosons.

1. Identities for spinors
a. 1.6 techniques

This part is devoted to conversions between Lorentz
structures written with all spinor indices, while all factors
are in irreducible representations of SL(2, C), and the form
with the usual Lorentz indices u, v, etc., running over
0,1,2,3, on derivatives and the gauge bosons. The key of the
conversion is at the reduction of ¢ products. We adopt the
following definitions: the metric is “mostly minus” g, =
diag(+1,—-1,—1,—1); the Levi-Civita tensors are ¢1?* =
—€g13 = +1 and €'? = €,; = +1; the sigma matrices are
defined as o, = (144, 7.,)", 3% = (19, =7l with
identity 1 and Pauli matrices 7,i =1, 2, 3. The two
sigmas are related by raising and lowering indices by
the € tensor

spaa . off ap .
& e?e OZﬂ'

We also define
(") =

(0#5* — 6v5"),/,

(A1)

N[ ~.

U =5 (30" = 50", (A2)

(5) i

which directly induce the decomposition of two ¢ products:

(Uﬂél/)aﬂ = gﬂl/é{i - i(aﬂ’/) s

a

(A3)

(6#0")"; = g"”éZ —i(")%. (A4)

For more than two ¢’s multiplying as a chain, we may use
the following three o decompositions:

(0/6°07) 1y =0 = 00, + 970 16 0,5 (AS)

(646"57) W = grvvil — rGvap 4 g hah — l’gﬂl/ﬂi&jﬂ’ (A6)

to recursively reduce it toward a linear combination of
1,0",6", 0", and 6"*. The Hermitian conjugates of these
bilinears are given by

(1,1/11,1/2)T = ‘/’;‘/’L
(w10'ywh)t = waoty],
(w10"y,)t = ylomy. (A7)
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To compute the trace of a ¢’s chain, one simply reduces the
chain to the above basic forms and takes the trace as
follows:

Trl =2, Tro* = Tré* = Tro** = Tr6"* = 0. (A8)

The frequently used example of four ¢ chain and trace is
given as follows:

MG OPTE = (¢ PN — GG+ g g + i)
_ i(g;wo./m — P + PP + ieyl//)/lo./llc),
Tt(0"5°075%) = 29" " — 29" ¢ + 2¢7 ¢ + i/,
Tt(5#6°576%) = 2 " — 24 ¢ + 2g"7 ¢ — 2ieH™,
(A9)

b. Converting two-component to
four-component spinor

In this part, we use W, ¥ to denote four-component
spinors and &, y to denote two-component left-handed
spinors, while their Hermitian conjugates &', ' are right-
handed spinors. Generally, we may combine a left-handed
Weyl spinor £, and an independent right-handed Weyl
spinor ' into a four-component Dirac spinor

g
Y = ( v |
V4
We can then write down the spinor bilinears that are
commonly used

=0 = (&), (Al0)

li’1\112
li’17”"112 =

Kila + E0
K + £ 5,
‘i‘la"”‘l’z 17 (c™) ﬁfz/}"’fT (") /x)(ﬂ’
YicY, = §"§2a+)(1a)(
Yicyy, = &dxs +)( 0" E
YT Co"W, = & (c") P Erp +;(,d(6””)‘.’/';)(;ﬁ,
B, CP] = 1.8 + 4

Py Y = 40t & + 846" 2
W0 CVT = &,(6") Y + x1(0) Prp. (Al
h C = __ (€ap O e’ 0 u_ (0 ”Z/}
where W 7/ ( a/}) ( 0 —e, )’ v = (;,m't/f ())

wp

in the chiral representation, and o =£[p* "] =

((”ﬂg)‘ﬂ ) ). In the SM, the four-component chiral fer-

mions are related to our notations of two-component
fermions as

() w=(4
Ug = u:-: s R — dI: 5

0

= (5) = (2) A
q. = (0,0"), ig = (uc,0), dg = (dc.0),

I =(0,L"), er = (ec.0). (A13)

The conversion rules of the fermion bilinears in the SM to

the four-component notation are obtained by substituting

these fields into the relations in Eq. (A11), such as

utdt = u’Cd.
(A14)

ucaﬂué = uytu, ecL =el,

c. A brief introduction to Fierz identities

The following 16 bilinear forms constitute a complete
basis of the 4 x 4 Hermitian matrices

s =1, (A15)
I} through T} = y#, (A16)
I'T through I'Y = o#*, (A17)
4 through I'} = y#ys, (A18)
o= 7s (A19)

Labels S, V, T, A, P denote scalar, vector, tensor, axial-
vector, and pseudoscalar respectively, while ¢ = '[y" Y],
vs=ir%'7*r* =('%). The inner product between them is
defined as

Tr[T7TE] = 6%,
dim A,

A,B:S,V,T7A9P5

a=1,..., b=1,...,dimB. (A20)
Regarding ¢ as the metric depending on our choice of
coordinates in each subspace, and using it to raise and
lower indices, the inner product induces an orthogonality
relation, which allows any 4 x 4 matrix M to be expanded
in this basis as M =), M“Tl',, with coordinates M* =
Tr(MT9).

Fierz transformations of four-fermion couplings are the
linear transformations:

Z(FA ij FAa kl - ZCABZ

According to the orthogonality Eq. (A20), we infer
immediately C 45 = >, Tr(T4/T5T4T5?). Calculating all
the C 45 to get the following formula:

)il FBb (A21)
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0:j0k1 1/4 1/4  1/4 —1/4 1/4 0iby;
)i V) 1 -12 0 -1/2 -1 )it (V)i
%(O'W)ij<”pu)k1 =13/2 0 -1/2 0 3/2 %(0' “)ule ;u/)k] . (A22)
(7)1 (rurs)u -1 -12 0 -1/2 1 ("75)u(Vurs)i
(75)ij(7/5)k1 /4 —1/4 1/4 /4 1/4 (75);’1(75)@'

Both sides of Eq. (A22) contract with W,;W,, %5, Wy,

CijCu —1/4 1/4 1/4 1/4 -1/4 816
(C)i;(Cru)u -1 -1/2 0 1/2 1 (") a(v) jx
l( WC)"(CGﬂD)kl =1 -3/2 0 -1/2 0 -3/2 %(Uﬂy)ﬁ(%v)]’k . (A23)
(7"75C)i;(CYurs)u =12 0 12 -l ("75)u(vurs) jx
(Ysc)ij(c}’s)kz —1/4 —1/4 1/4 -1/4 -1/4 (Ys)il(}’s)jk

Both sides of Eq. (A23) contract with P,;'P, W3 W4 With these Fierz identities, some four-fermion interactions can be
transformed to couplings of neutral fermion currents,

1

(dD)(1d) = =7 (dd)(1l) -5 (dV"d)(lnl) -3 (dﬁ””d)(ld,wl) +7 (dV”J/Sd)(lVﬂYsl) 7 (d}’sd)(IVSI)

>—-l>

(drd)(Iy, D). (A24)

|
N

(1) (1Cq) = =y (I)(@a) +; (7D @r,4) + (1) @0,ua) + 5 (r'rsi) @r,rsa) = 5 (Orsl) arsa)

(lr"1)(@r,q)- (A25)

l\.)l'—‘

It is worth mentioning that ", may also be generators of fundamental SU(N), denoted by T, Since {1, T, } is a complete
set of N x N Hermitian matrices, substituting I = T,,,[; = 1, Tr(T,T;,) = 8,5 into Eq. (A21), we get the Fierz identity
for SU(N) group as

1
Z(Ta)ij(Ta)kl = 5i15kj - N‘Sijékl‘ (A26)

a

d. Examples

Under Fierz identities, some terms can be transformed into bilinear form which readers may be more familiar with. Here
are some examples.

(1) Example 1, type (’)QQ HE DY

i(Qpi0,D*Q" ) (D'H'D,H) = i(g%y,D"q,.;)(D*H'D,H) = i(g,y,D"q,)(D*H'D,H), (A27)
i(Qpui0,D*Q" D, H,DH' = i(§y,D"q ) D, H; D H''
2 riu pai)H vt
i ((@27,D ¢ Dy H D HT = - gty DV g ) D H DAH
+ i (@77,D"qpei)D,H; —5(% 7D q,4i)D,H;
1 o hig + L pas
=5i(@7,D"q,)(D"H'D,H) + i(3,7,7' D*q,)(D"H'z'D,H). (A28)
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Hence, the basis can be transformed into

i(Qpuie, Q" ¢)O(H D H) i(3,7,4,)O(H D H)
(a0 )OHDHH,) | i@, a,JOUH' DAH)
i(Qpai0,D,0" ) (D*H'D*H) i(2,7,D,q,)(D*H D'H)
i(Qpui0,D,Q" ) (DHYD'H)) | i(d,7,7'D,q,)(D*H'<' D' H,)

(i) Example 2, type o~ 0 QTu W HH

. . 1 .
(QﬂaluC r)(QT s uC tb)(H'H) = (ﬁgqlvai)(é?lutthTH) = _E (Z]?lyﬂQPai)(aeyﬂutb)(HJFH)
1
= _5 (ésyFQp)(urqut)(HTH)’

- _ o L _., _
(QpaiuC ?)(QT ;luij tc)(HTH) = (u?qpai)(qfvlutc)(HTH) = _5(qyyﬂqpai)(M;lyyutc)(HTH)

1 ~ci —a 1 ~ai =C
= _5 ((qglyﬂani)(uryﬂutc>(HTH) - g(CIs y”Qpai)(”rYﬂutc)(HTH)>

1 i .
= ¢ @7 dpai) (B, u1e) (H "H)

1 B 1, _
=-3 (g2 q,)(i,y, A u)(H H) — G (asr*q,)(i,y,u,)(H H),

_aj ; 1, 4 _ L
(Qpaite P)(Q" ¥ ug w)H' Hy = () q,0) (@3 ) HH ;= = 5 (387" q ) (027,100 H'H
Y . o i .
= = 5 (@) @), = @8 ) W00V

(297" i) (@2 yuy ) H H

t\)|—-l>l-*

— = (g7 q,) (,y,u,) (H 7' H) —%(Elsy”qp)(ﬁrmut)(HW),

c 1 = - T 1 = 77
(Qpaittc (O S ul )HYH; = 5(qsy"f’/l"qp)(urm*‘ut)(H T’H)—5(qsy"f’qp)(urmut)(HTT’H)

1, _ I _
- Z (qsy”ﬂqu)(uryﬂﬂA ut)(HTH) - E (qsyﬂqp) (uryﬂut)(HTH)'

Hence, the basis can be transformed into

(Qpaiue 1)(Q" uc ) HH [ (g7, () (H' H)
(Qpaec Q" S'uc c) (H'H) | (@sr""4,) () (H'H)
(Qpaittc 2)(OF Y ul ) HI H; (@577 q,) (it 7,10,) (H e H)
(Qpaittc 1) (O ¢ul ) (HTH) (@ur"e M q,) (@, A u,) (H T H)
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(iii) Example 3, type o\~

QTLLTHHT’
(L Qru)) (LT EQT ) HIH, = L (y#1,.) @70, HVH
= S (A1) @, ) (HEH) + 5 () @, (HTH), (A35)
(L Qrag) (LT4Q #)(HTH) = 3 (p#e'1,) @1, ) (H'H) + 5 (g1, )@, ) (HTH),  (A36)
(L Q) (L1101 VU H, = 3 (1) @t 0, (HTeH) 4 (L) Gy, )HTH), (A37)
(L Qrag) (LT4Q VHH, = 3 (B ) 7,0, H Hy
= %(l-Y”Tllp)(Q?khqraz)(fl)ﬁth"Hk + % (Lr*1,) (@Y Gra) H H
= e, @, ) (H H) 5 (el ) (HYH)
+%( 1) (@t q,)(H' 7' H) + ; (Ly"1,)(G.r,q,) (H H)
= SR (Lol @, a,) (HTEH) + 5 (el @r,ela,) (TH)
+ % (Lre'1,)(@ruq, ) (HT'H) + % (I,r"1,)(G:7,7 q,) (H T H)
45 (0L, @) (H'H), (A38)

. ) ) 1. - _ 1 - _
(LpiQraj)(L' lchw‘ ;“)HT/Hk = E lele(ls}/ﬂfllp)(QIypTKQr) (HTTJH) + Z (lsyﬂfllp><q17ﬂTIQr)(HTH)

1

+— (L' 1,) (@ wq,) (H T H) + = (I7#1,)(G,y, 7' q,) (H T H)

|

(Lr*1,)(@,v,q,) (H H), (A39)

ool»—-l>|>—~

Hence, the basis can be transformed into

(LpiQraj) (LT QT ¢ )H H (Ly"1,)(q17,q,) (H'H)

(LpiQraj) (LT QT () H H, (11,) (@, 7' q,) (H T H)

(LpiQra))(LTLQT M HTH, = { (1441,) (g7, q,) (H'H) : (A40)
(LpiQray)(LTLQT ¢) (H'H) (Ly*e'l,)(Giy,uq,) (H'<'H)

(L )

piQra)) (LTXOTHYH, "  (Liy''1,) (G, q,) (H <" H)

(iv) Example 4, type OLZL“HH*’

1

(LpiLop) (LYY ) (HTH) = 5 Ly L)yl ) (HH), (A41)

(LpiLrj)(L]L {;LT ;()HﬂHk - (ls}/ﬂlr)af}’ulpi)HﬁHk

N\»—I\JI'—‘

) Qe (B 4 () (o) TH). (A42)
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Since different )’s indicate different flavor symmetries, operators with different )’s should not be mixed if one does
not want to confuse the flavor symmetry. Y [[4, cra] means we will get a minus sign if we exchange p,r. The basis can
be transformed into

T (LpiLry) (LTILYF) HY H,
] (LyiLeg) (L1LY) (H'H)
(LpiLy;) (LYILTF) HY H), (A43)
, ] (LpiLyj) (LYILTY) HY Hy,
](LPlLTJ ( ULT?) HTZHIc

L) (Lvely) (HTH)). (A44)
1A*1) (Lyulp) (HTH))
HTTIH) + 1 (1ey1,) (hyuly) (HTH))

(v) Example 5, type OLZLTZDZ’

(LpiLy) (DL iD'LY]) = 3 (D,li,1,) (D171, (A45)

N =

Operator i(D,L"iD,L'])(L,6*"L,;) is equivalent to (L,,D*L,;)(L*iD,L']) up to IBP and EOM, and

(L,iD*L,;)(L"iD,L"]) = = (Ly,1,)(D*1y*D,1,). (A46)

N =

Hence, the basis can be transformed into

VB (L) (DuL'2D011) YBH (D) (D)
Y B (DD (Lo L) VBl () (541 Do)

(A47)

":I

D

= i .
Y [, 1) (D LtiD L”) (Lo Ly;) Y [E5, 55 (s% o) (D17 Dyly)
Y [, (L Ly) (DL DMLY Y [ (Dulowly) (DM 1)

I, 14

(vi) Example 6, type (’)BQ3L,

y I EabceikGJmB/LV (Lpithm) (QrajO—“Vstk) y ] Eabceik€ij#V (lpicqtcm) (QTajOO—MVQSbk)
y I €ab66” kaBuV (Lpithm) (Qrajo-'qusbk) y ] €abC€Z]€kmBuu (lpicqtcm) (QT'ajCO-MVQSbk)
y [] eabceikeijHV (Lpithm) (Qrajo’qusbk:) y [] abceikeijMV (lpicqtcm) (qrajCUuVQSbk) ’
abc ik .gm v abc ik _gm v
y € b € kej Buu (LpithnL) (Qrajo'# stk) y € b € kf] B;Ll/ (lpicqtc’m) (Q'rajco'# QSbk)
(A48)
It should be noted that O\~ is a complex type, which means the Hermitian conjugate of independent operators of this type

BQ‘L
are still independent operators.
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At last we give some examples of how )’s act on operators,

O1~10)

it | 9 [ Qi) (QI5'Q1Y) HU A,

Y [B, 511 (Qpai@roy) (QTHQTYF) HTI H,
Y [BE (Qpai@rsj) (QT9QTY) (HTH) |

with

(1)
OQZQ%ZHH+

(QpaiQrbj + CraiQpij

= (QpaiQrj + QraiQps;
(QpaiQrpj = CraiQpb;

(QpaiQrvj —

0(4)

0’ Q”HH
(6) —
QZ Q%ZHH% -

®) _
OQZ Q%ZHH+ -

)
)
o )
)

and

y I Gabceimejn (QTantcm) (Lpistk) HTana
Yy I eabeelighn (Qrantcm) (vaerk) HTmHna
y [} abe ikejn (Qrantcm) (Lpistk) HTmHna

(1~7)
OQ3LHHT

Y [0, 1] (Qpai@rsy) (QT9QTYF) HT Hy,
y [_ ] (QpaiQrbj) (QTngT?k) HJ”Hk

QT ‘UQT bk+ QT a/Qa
QralQpb/ QTaJQThk

Y [, E12] (QpaiQrv;) (QTPQTY) (HTH)
Y [55 5] (QaiQny) (QTHQTY) HY M,
2,510 (QpaiQrey) (QTY QM) HY Hy
BB (Qpai@rey) (T QYY) HT' Hy

] (QpaiQrey) (QTQTYF) HI H),

ﬂ

[pI7]

(A49)

]

Ve
V[E

[r]

VI

QT “JQT bk+ QT a]Q' bk) %in’

QT ?JQT bk QT a/Qu ”Hk’

oH
bk ) IlHkv
0 QM HTH, (A50)

y I Gabceikejn (Qrantcm) (Lpistk) HTman
y [} eabceimejn (Qrantcm) (Lpistk) HTan’

y |::| eabceimejn (Qrantcm) (Lpistk) HTan;

y |:Ii| abe zkf]n Qra]thm) (Lpistk)HTmHn

with

o)

Q’LHH'

o

Q’LHH'
+ eabceimejn [(Qtaj Qrcm) (Lpi Q

+ Gabceimejn [(Qtaj Qscm) (Lpi Q

0(6)

Q’LHH'

+ €™ e [( Q14 Qsem) (L i O

2. Conversion between Fy, g and F F

From Sec. III B 1 it is clear that we are strongly inclined
to use the chiral basis of the gauge bosons Fy g, which
massively simplifies our derivations. Physically, it may be
due to their direct correspondence with on-shell particles
with definite helicities. However, the other basis that is
more commonly used, F, F, also has many privileges such
as its Hermiticity and definite CP. Moreover, a lot of
applications are also based on the F, F basis, such as the

015026-

= e"bceim€/"[(Qijtcm)(LpiQSbk) +
— gabce‘imé'jn[(Qijrcm)(LPiQSbk) +
= e‘abc(:'imejn[(Qruthcm)(LPistk) T

= e“bceimej"[(Qrantcm>(LpiQSbk) B
— g“bce‘imé'jn[(Qranrcm)(LPiQShk) +

(A51)

(QsajQrem) (L pi Qi) |H™*H
(010jOQsem) (L pi Qi) |JH*H,,,
(QsajQrem) (L pi Qi) |JH™ H,,
+(QrajQsem) (L piQu)JH H,,
+ (Q54jQrem) (L piQui ) |JH™H,,.
(QsajO1em) (L pi Qi )|JH™ H,
(0rajOsem) (L piQui)|H*H,
+ (Q54jQrem) (L piQui)JH™ H,,.

sbk)

rbk)

rhk) (A52)

Feynman rule calculations. In this subsection we summa-
rize the conversion rules between the two bases. We start by
writing down the definitions:

= Fir==(FFiF), (A53)

1
Z chvpn
26‘ F o>

| =

from which we can easily deduce the following useful
identities:
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- - 1 -
Fly/)FZPD = _FID/JFZ/);/ _5(F1F2)6;’ (A54)

I 1
Fi,Fy" = F\"Fy,, + = (F1F,)d,.

5 (A55)

In the following, we present various situations where we
explicitly do the conversions as examples:

a. Operators involving one gauge bosons
When the gauge boson contracts with a two form O,
with property O}, = O,,» we have
CF{"0,, + H.c. = (ReC)O,, F* + (ImC)O,, F*,
(A56)

while for (’),Tw = 0,, we get instead

CF”0,, +H.c. = (ImC)O,, F* + (ReC)O,, F*.
(A57)

In particular, when Fy, F contract with o,,, it is further
simplified to

FL”U(UW)(,'B = Fﬂy(aﬂu)gﬂ = _iﬁﬂy(ayu)aﬂ»

F11(5,,)%; = 0, (A58)
Fr* (o), =0,
FR”V(C_YW)&/'} = Fﬂy((_’yu)d/}' = iFW(&yu)d/}“ (A59)

Note that the basis F, F are degenerate when contracting
with 6,,. In our result, for instance, Eq. (4.36), we adopt F

instead of F in the operators.

b. Operators involving two gauge boson
For the X**X,, contractions, we have
FlL”UFZR/w =0,

(FiLFo) =5 (F\Fy = iF | Fy),

N[ =

1 o
(FirFaRr) :§(F1F2+1F1F2). (A60)

Thus in the operator they are recombined as

C(F  F5)O + H.c. = (ReC)(F,F,)O + (ImC)(F, F,)O,
(A61)

where O = O is Hermitian. Contractions of the form
X, X", are converted as

1 .
Fy,,F17" = g5;(192 +iFF), (A62)

1 .
Fry,Fr?” = g5;(F2 —iFF), (A63)
Fy, Fr?”¥ = 1F Frv 1F26” A64
Lup®™ R* — 5 Hp + g e ( )

When F,, F, are antisymmetric, thus (F,F,) = (F,F,) =
0 (for instance, they have antisymmetric group indices), we
can deduce

1 o

FlLupFZLpD = 4 (2F1,4pF2p” + lFlprZpﬂ - lFlﬂpF2/V)7
(A65)

pv 1 pv LU : I pv

FlRy/)FZR = Z(zFlﬂ/)FZ - lFl F2/)/l + lFl/,thZ )7

(AG6)
pv 1 LU L . I pv

FlLﬂpFZR = Z (lFl szll + lFl/lpFZ ) (A67)

For examples to get operators in Eq. (4.49) we performed
the following conversions:

idABCGf s uGg v ﬂ(QpaiGA(’lcﬂDﬂQT fl>

i < .
= EdABCGAM uGByl(Qpaiglu’c)ZDy QT lr”)’ (A68)

fABCGﬁ a l/Gg g A(Qpaigi(lc)zl)y QJr };l)

i ~ ~ g ,
= PG + GAG) (0,00 0D, 01 ),
(A69)

while for the complex type with complex Wilson coef-
ficient C we get

CPACGEH G ¥ 1(Qpuie (A)3iD, 0 1) + Hc.
= (REC)fABCGAMyGfg(QpaiGi(ﬂc)ziBﬂQT 7)

% (ImC) fA5€ (G GE, - G4,GP*)

X (Q,i0* (193D, 0 ).

_I_
(A70)

When two Fj or Fy contract with o, we write the
conversion rules similar with Egs. (A58) and (A59),

2
F” F2L/1D(6

;w)aﬂ = FlﬂﬂFZAU(G

Hv

). (AT1)

FiMFory*(5,,)"y = FI"Fp*(6,,)%.  (AT72)
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¢. Operators involving more gauge bosons

If all gauge bosons contract with each other, they vanish
for any mixed helicity configurations

FlLﬂDFZLpr3RpH =0, FlLnyZRupF3Rp” =0, (A73)

but survive when all the helicities are the same,

1 , i
Fi/ Fo/Fat = 3 (F1 Fof Fa,lt — iF, Y Fy P F3,l),

(A74)

FlRyDFZRl//)F3R[I” = (FlﬂDF2pr3/)ﬂ + iFlyUFZVpF_’V)ﬂ)’

| =

(A75)

Similar features hold for more gauge bosons contracting
together. Some nonvanishing examples of four gauge boson
contractions are

CB3G? + H.c. = - (ReC)(B2G + (BB)(GG))

1
2
+ =~ (ImC)(B*(GG) — (BB)G?), (A76)

CBy,, B1* ;B "B " ,+H.c.
= (ReC)B,, B" ;B*’B" , + (InC)B, B* BB’ ,.
(A77)

APPENDIX B: MATHEMATICAL TOOLS

1. Convention in permutation operation

The elements of symmetric groups §,, are permutations
of m objects. Two most popular ways to represent the
elements of the S,, are cycles notation and matrix notation.
For example, a typical element in S,, that permutes the first
three objects and exchanges the last two objects can be
expressed in the following form:

1 23 45
n:(123)(45):<2 s s 4). (B1)

In the matrix notation, the numbers in the first row can be
viewed as the labels or the positions of the objects and the
corresponding numbers in the second row are the labels or
the positions of those objects after permutation. In this
sense, the permutation can also be viewed as a function that
maps the numbers in the first row to the numbers in the
second row; i.e., in the above example we have

z(1) =2,
n(4) =35, (B2)

With the above point of view, which treats the group
elements as a function, the group multiplication rule is
inherent by the composition rule of the function such that

”i(”j(k)) = (x; '”j)(k)’

where - is the ordinary group multiplication and i and j are
labels of the group elements. Further, we can define the
group elements as an operation that permutes the order of
arguments of a function such that it becomes another
function of the same set of arguments with the original
order,

(B3)

”ioF(plv P2s-es pm) = F(plr,-(l)v Pr,(2)s -+ pﬂ,(m))

EFﬂi(plvp%""pm)’ (B4)

and without loss of clarity, we shorten the above notation
as ;0 F({pi}) = F({Prw}) = Fz,({pi})- More specifi-
cally, the above operation changes the kth argument of the
function F to the argument that originally seats at the
7;(k)th slot in F, or equivalently, moves the ith argument to
the z7!(k) slot. The operation z;o is essentially a map
that converts a function to another function; hence the
composition rule of this map can be defined. It is easy to
show that such a composition rule naturally preserves the
group multiplication rule:

(miom;)o F({pi}) = mio(x;0 F({pi}))
=mioF, ({pi}) = 7o F({prw})
= F({Pr,z,an}) = F{P@=y0)})

(

= (n;-m;) o F({pi}). B5)
which means the correspondence between the group
element z; and the operation z;0 on functions is a
homomorphism.

In Sec. IIT A, we mention that to generate a set of bases of
the Lorentz structures and the group factors transforming
under a certain irrep of the symmetric group, one only
needs to act on an unsymmetrized Lorentz structure or
group factor a set of group algebra elements b7 that form a
basis of the same irrep in the group algebra space.
Therefore, we need to generalize the concept of group
elements as operations on functions to the group algebra
space. We define a group algebra element as an operation
on a function based on the definition in Eq. (B4). For a
generic element » = Y, riz; in the §,,, the corresponding
operation ro on functions is defined as

ro = g rigio.
i

This operation still changes a function to another func-
tion with the same set of arguments, while this resulting

(B6)
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function is a linear combination of the original one with
arguments permuted:

Zrﬂ o F({pi})
- Z.’"’F({Pmm =F.({p)-

One can verify that the generalization preserves the
multiplication rule in the group algebra:

mioF.({pi}) = mioroF({pi})
=F,({mi(k)})
= erF({p(ﬂi~ﬂj)<k)})

_Z (”t ”/ {pk})
= (- r) o F({pi})-

In this case, one can obtain a set of functions F%({p;}) b
exerting b’ defined in Eq. (3.16) such that

Fi({p}) = bt o F({pi}).

ZFﬂ {pk} yx(”z)

roF({pi}) =

(B7)

(B8)

(B9)

o Fi({pi}) = (B10)

As an example we show in the following how to
generate the basis of [2, 1] representation of §; with
TP1P2P3Ps = T(py, pa, 3, Pa) = €/1P2eP3P4 First one can

verify that the group algebra elements b[lz’l] and b[22,1] below
do form a basis of [2, 1] irrep in the group algebra space,

b2 = % e+ (12) = (13) = (123)].  (BI11)

pPY =2 [—(12) + (23) - (123) + (132)],  (BI2)

W | =

such that any permutation 7 in S3 acting on either of them
will result in a linear combination of them. This set of bases
generates a matrix representation DI>!/(z) of §; with the
two generators (12) and (123) given by

i) = (o 7)) o= () ).

(B13)

Readers can verify that the relation in Eq. (3.16) does hold
with the definitions in Eqs. (B12) and (B13). Under the

operations b[,%ﬁl] o, we obtain a basis from T'(p, p,, p3, p4):

2,1
T[l ](PI,P27P3,P4)
2,1
- b[l ! © T(pl7p2,p3, p4)
= l(gmﬂzemm + eP2P1gP3Ps — gP2P4gP3P1 — €P1P4€P3P2)
3
1

(€P1P4€P2P3 + €P1P3€P2P4)7 (B14)

759 (p1. pas p3. pa)
:b[1 }OT(pl,pzypz,IM)
1

( eP2P1eP3P4 | gP1P3gP2P4 — gP2P3eP1P4 | €P3P1€P2P4)

w|»—w|

(€P1 P2gP3Ps — gP1PagP2P3 )

(B15)

and again readers can verify with the Schouten identity that
they transform according to Eq. (B12).

2. Projection operator and CGCs

We define the projection operator in the direct product
space V =Q V. of the S, group,

(B16)

where d; is the dimension of the A representation, m! is the
order of the S, group, and D,(x);; is the matrix repre-

sentation of z in irrep A.U(x) is the representation of S,, on
V defined by

U(x) (@v’jj) = Z(@vﬁ)ﬂ%(n) ik (B17)

Ji

where V is the j;th basis vector of 4; irrep.

The Theorem 4.2 in Ref. [39] states that for any v € V,
{(Plv,i=1,...,
such that

d,} transform as irrep A if they are not null

U(x)(Pv) =Y (Pv)D,, (n)4

k

(B13)

In practice, we chose j = 1 and generated invariant sub-
spaces of irrep A by iterating v for different basis vector
® VI;’ until we get the number of the linear independent
subspaces equal to the number of multiplicity of irrep 4 in
the inner product decomposition ® 4;. The CGCs can be
extracted from the coefficient of basis vectors of the
resulting invariant subspaces of irrep A.
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