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We present a complete list of the dimension-eight operator basis in the standard model effective field
theory using group theoretic techniques in a systematic and automated way. We adopt a new form of
operators in terms of the irreducible representations of the Lorentz group and identify the Lorentz structures
as states in a SUðNÞ group. In this way, redundancy from equations of motion is absent and that from
integration by part is treated using the fact that the independent Lorentz basis forms an invariant subspace
of the SUðNÞ group. We also decompose operators into the ones with definite permutation symmetries
among flavor indices to deal with subtlety from repeated fields. For the first time to our knowledge, we
provide the explicit form of independent flavor-specified operators in a systematic way. Our algorithm can
easily be applied to higher-dimensional standard model effective field theory and other effective field
theories, making these studies more approachable.
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I. INTRODUCTION

The standard model (SM) of particle physics is a great
triumph of modern physics. It has successfully explained
almost all experimental results and predicted a wide variety
of phenomena with unprecedented accuracy. Despite its
great success, however, the SM fails to account for some
basic properties of our universe, e.g., neutrino masses,
matter-antimatter asymmetry, and the existence of dark
matter. This has motivated both the theorists and the
experimentalists to make a dedicated effort to search for
pieces of evidence of new physics (NP) beyond the SM.
Until now, direct searches have not yielded anything of
significance, which already pushed the NP scale to be
above the tera-electron-volt (TeV) scale. Therefore, it is

highly motivated to study NP phenomena involving only
the SM particles within the framework of effective theories.
Effective field theory (EFT) provides a systematical

framework for parametrizing various NP based on only the
field content, the Lorentz invariance, and the gauge sym-
metries in the SM. The Lagrangian of such an EFT contains
not only the renormalized SM Lagrangian but also all the
higher-dimensional invariant operators, which parametrize
all the possible deviations from the SM. Assuming that NP
appears at the scale Λ above the electroweak scale,1 the
general Lagrangian can be parametrized as

LSMEFT ¼ Lð4Þ
SM þ

X
d>4

�
1

Λ

�
d−4X

i

CðdÞ
i OðdÞ

i ; ð1:1Þ

which describes the standard model effective field theory
(SMEFT), withCi identified as theWilson coefficients. The
only possible dimension-five (d ¼ 5) operator is the famous
Weinberg operator [1], with lepton number violation
encoded. The dimension-six operators were first listed in
Ref. [2], and a subtle problem arises due to redundancies
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1New physics could also exist below the electroweak scale, but
such a scenario is not considered here.
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among the operators. It is often convenient to obtain a
complete set of independent operators, namely the non-
redundant operator basis. This task is highly nontrivial
because different structured operators may be related by
theequationofmotion(EOM), integrationbyparts (IBP),and
Fierz identities. These redundancies could be avoided by
imposing the EOMs and IBPs explicitly, the independent
dimension-six operators in the Warsaw basis [3] were con-
structed based on this principle, and the complete renorm-
alization group equations are written in Refs. [4–6]. In
Ref. [7,8] the complete set of dimension-seven operators
has been obtained. Recently theHilbert seriesmethod [9–11]
has been applied to enumerate the SMEFT operators up to
dimension 15 [12–15], but it is only designed to count
the number of independent operators in each dimension.
Besides, a fewother papers [16–19] also developed programs
to count the number of operators in alternativeways. Although
partial lists of the dimension-8 (dim-8) andhigher-dimensional
operators have been obtained [20–24], writing down a
complete set of the nonredundant operators explicitly at
dimension eight and higher is still a challenging task.
Our goal in this paper is to find a complete set of

dimension-eight operators in the SMEFT framework. For a
physical process, if the leading NP contribution directly
comes from the dimension-eight operators, or if the
contribution from the dimension-six operators is subdomi-
nant or highly constrained, the dimension-eight operators
should be seriously considered, even though their Wilson
coefficients are suppressed by a higher inverse power of the
NP scale. The first example is the neutral triple gauge boson
couplings (nTGC) ZZV and ZγV, for which no dimension-
six operator contributes and thus dimension-eight operators
dominate [22,25]. Furthermore, in the dimension-six oper-
ator basis, the Wilson coefficient for the quartic gauge
boson coupling (QGC) is related to the one in the triple
gauge boson coupling (TGC), while at dimension eight
there is no such correlation in the Wilson coefficients [26].
Similar is true for various Higgs gauge boson couplings.
For the four-fermion interactions, let us take the nonstand-
ard neutrino interaction (NSI) as an example. At the
dimension-six level, new physics which induces the neutral
current NSI also induces an operator involving the charged
current NSI, which has been tightly constrained by experi-
ments. Thus we expect the dimension-eight operators could
dominate the neutral current NSI processes [27]. The
presence of the electric dipole moment (EDM) which
can also be generated by the dimension-eight operators
directly indicates the existence of the CP violation in the
UV theory, and in some cases dimension-eight operators
can be the leading order contribution as its counterpart at
the dimension-six operator vanishes. The dimension-eight
operators also generate new kinds of four-fermion inter-
actions with quite different Lorentz structures. Overall, the
dimension-eight operator basis deserves a detailed study
with all the nonredundant operators written explicitly.

The main difficulty of listing the independent operators
arises from how to effectively eliminate the redundancies
among operators with derivatives. Operators with deriva-
tives often involve two types of redundancies: (1) operators
differing by the classical EOM are related to each other
through field redefinitions; (2) operators differing by a total
derivative are equivalent in perturbative calculations, the
so-called IBP. At lower dimensions where limited operators
with derivatives are present, the EOM and IBP relations
could be imposed explicitly to eliminate all the redundan-
cies, as was done when the dim-6 and dim-7 operators were
written down [3,7]. The on-shell amplitude method [28–32]
has been applied to the dimension-six SMEFT [29–31]
which solves the EOM redundancy but still needs to impose
conditions to treat the IBP redundancy. Nevertheless, at
dimension eight or higher, the number of such operators
increases tremendously, which makes the task very tedious
and prone to error. The Hilbert series method, applied to the
SMEFT, deals with these redundancies via decomposing
the field derivatives into irreducible representations of the
Lorentz group and removing all the descendants while
keeping the primaries in each irreducible representation of
the conform group. In spite of its efficiency at counting, this
method does not help us write down the operator basis
explicitly. One step forward along this line is Ref. [33], in
which independent Lorentz structures were constructed as
“harmonics” on the sphere of momentum conservation that
is exempt from the IBP redundancy, but the issue of
identical particles, namely the repeated field problem for
operators, was not taken into account. Reference [16]
generates an overcomplete list of operators at first, and
then reduces it to an independent basis by putting all the
redundant relations into a matrix, which has also been
applied [24] to write down the partial list of the dimension-
eight operators involving only the bosonic fields.
Another difficulty is how to obtain independent flavor

structures when repeated fields are present. In the literature
[3,18,34], the concept of Lagrangian terms is ambiguous,
and it is usually subtle to talk about their flavor structures.
In particular, the Q3L type operators were pointed out to
have only one independent term [3,35] instead of two terms
shown in the older literature [1], while for both of them,
extra efforts are needed to provide independent flavor-
specified operators. It is especially confusing when more
than one term has to be written down, when the dependence
among their flavor-specified operators is even more
obscure. Later when the dimension-seven operators were
listed, this issue of flavor structure was completely ignored
in Ref. [7] but later addressed in Ref. [36] by imposing
several flavor relations explicitly with a tedious procedure.
Reference [18] provides a systematic way to deal with
flavor structures with repeated fields, in which permutation
symmetries of all the factor structures [Lorentz, SUð3Þ,
SUð2Þ] in the operator are combined via inner product
decomposition into irreducible representations of the flavor
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tensors. Again, this was only for counting, and thus did
not work out any of the symmetrized factor structures
explicitly.
In this work, we provide a new and systematic method to

list all the independent operators by using group theoretic
techniques, which solves the two main difficulties men-
tioned above. Inspired by the correspondence between
operators and on-shell amplitudes [28–32] and the
SUðNÞ transformation of on-shell amplitudes [33,37],
we start by adopting a new form of operators constructed
from building blocks, fields with or without derivatives, in
the irreducible representations (irreps) of the Lorentz
group, for which the EOM redundancy is absent. The
Lorentz structure of operators is then identified as states
that transform linearly under the SUðNÞ group and form a
large interclass space, in which total derivatives form an
invariant subspace of the SUðNÞ. Group theory indicates
that the nonredundant Lorentz structures with respect to the
IBP should also form an invariant space consisting of irrep
spaces, and a basis for them is easily found by translating
the semistandard Young tableau (SSYT) of these irreps. In
addition, we develop a procedure to list all classes of
Lorentz structures at a given dimension, and for each of
them we can directly obtain the corresponding irrep of the
SUðNÞ and the labels to be filled in, which is sufficient for
enumerating all the SSYTs and Lorentz structures. Since
we directly obtain an independent basis of Lorentz struc-
tures in the process, we never need to actually use the EOM
and IBP relations as in other literature, and the correctness
of our result is theoretically guaranteed.
For the sake of generality, we treat the gauge group

structures systematically which, as far as we know, was not
presented yet before. Gauge symmetry demands singlet
combinations of fields with various representations,
described by tensor product decomposition. To construct
these singlets explicitly, we turn all the constituting fields
into forms with only fundamental indices, and adopt the
Littlewood-Richardson rules to merge their Young dia-
grams into a singlet Young diagram, during which we keep
their fundamental indices in the diagram as labels. What we
finally get is a singlet Young tableau, each column
representing a Levi-Civita tensor in the group structure
that contracts with the indices inside the column. In this
way, we get an independent basis of group structures
consisting of Levi-Civita’s.
Having obtained the complete basis of Lorentz and

gauge group structures, it is easy to combine them into a
basis of operators with only free flavor indices. However, as
mentioned above, permutation symmetries among repeated
fields induce symmetries of the flavor indices, which we
shall resolve by constructing the factor structures with
definite permutation symmetries and combining them via
inner product decomposition. According to the plethysm
technique, operators with definite permutation symmetry of
flavor indices can be systematically addressed by obtaining

definite Lorentz and gauge group permutation symmetries
of the same set of repeated fields. To obtain the sym-
metrized Lorentz and gauge group structures, we introduce
the basis symmetrizer in the minimal left ideal of the
symmetric group algebra, which, applied to the factor
structures, generates a basis transforming as irrep of the
symmetric group. Using these bases, we obtain the flavor-
independent operators at dimension-eight that constitute
our main result.
The paper is organized as follows. In Sec. II, we

introduce notations for fields and operators used in our
paper and define the terminologies for operators at different
levels. In Sec. III, we first discuss the problem of repeated
fields and show in Sec. III A that solving this problem
leads to the demand of finding symmetrized Lorentz and
gauge group bases. Then we explain our algorithm to
obtain these symmetrized bases in details in Secs. III B and
III C for the Lorentz and gauge groups, respectively. In
Sec. III D we show how to obtain the operators with
definite permutation symmetries of flavor indices from
ingredients discussed above via inner product decom-
position of the symmetric group. In Sec. IV, we exhibit
a table showing numbers of operators for each subclass in
terms of the fermion flavor number, and we list the
complete set of dim-8 SMEFT operators organized by
the number of fermions. Our conclusion is presented in
Sec. V. In Appendix A, we list useful identities and
examples of format conversions between Lorentz repre-
sentations, both for fermions and gauge bosons, which are
used in presenting our results. In Appendix B, we introduce
some basics of symmetric groups Sm and a few group
theory tools we used in the paper, including the basis
symmetrizer bλ and the projection operator involved in the
inner product decomposition.

II. STANDARD MODEL EFFECTIVE
FIELD THEORY

A. SM fields: Building block, and notation

The Lagrangian of SMEFT should be invariant under the
Lorentz group and the SM gauge group. We start by
defining the building blocks of the effective operators:
fields and their covariant derivatives. The building blocks
are characterized by their representations under the Lorentz
group SLð2;CÞ ¼ SUð2Þl × SUð2Þr and the SM gauge
groups SUð3ÞC × SUð2ÞW ×Uð1ÞY . The representation
under Lorentz symmetry is given by ðjl; jrÞ, the quantum
numbers of the SUð2Þl and SUð2Þr components of the
Lorentz group SLð2;CÞ. We adopt the following notations
on the field constituents:

(i) Since all the SM fermions are chiral-like, we use the
two-component Weyl spinor notation, which trans-
forms as irreps of the Lorentz group

ψα ∈ ð1=2; 0Þ; ψ†
_α ∈ ð0; 1=2Þ; ð2:1Þ
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where the indices α and _α denote the fundamental
representation of SUð2Þl, and SUð2Þr, respectively.
We further adopt the all-left chirality convention for
the fermions: Q and L are the left-handed compo-
nents of the quark and lepton doublet fields, and uC,
dC, and eC are the left-handed components of the
anti-up, anti-down, and anti-electron fields. The
transformation to the four-component Dirac spinor
notation is given in Appendix A 1.

(ii) We use the following notation for the SM Higgs
doublet:

Hi ∈ ð0; 0Þ; H†i ∈ ð0; 0Þ; ð2:2Þ

where the index i denotes the (anti)fundamental
representation of SUð2ÞW . We avoid using the
notation H̃ ¼ ϵH†, as it is essentially the same as
H† but with the original SUð2ÞW antifundamental
indices lowered to the fundamental one by the ϵ
tensor. In our final results all the gauge group indices
are left explicit; consequently whenever there is a H̃
present in other literature, it translates into ϵijH†j in
our notation.

(iii) We use the chiral basis of the gauge boson FL=R ¼
1
2
ðF � iF̃Þ because they transform under irreps of

the Lorentz group, which is important for us to study
the constraints on the Lorentz structures. They
transform to the normal gauge field strength as

FLαβ ¼
i
2
Fμνσ

μν
αβ ∈ ð1; 0Þ;

FR _α _β ¼ −
i
2
Fμνσ̄

μν

_α _β
∈ ð0; 1Þ: ð2:3Þ

The spinor indices of FL=R are symmetric in order to
form (1, 0) or (0, 1) representations, as can be proved
by the property of σμν, defined in Appendix A 1.

The field constituents without derivatives are given in
Table I. As shown in Table I, the indices for the (anti)
fundamental representation of SUð2Þl, SUð2Þr, SUð3ÞC,
and SUð2ÞW are denoted by fα; β; γ; δg, f _α; _β; _γ; _δg,
fa; b; c; dg, and fi; j; k; lg, respectively. We use subscripts
to indicate the fundamental representation and superscripts
to indicate the antifundamental representation. The indices
for the adjoint representation of SUð3ÞC and SUð2ÞW are
denoted by fA;B; C;Dg and fI; J; K; Lg, respectively. In
case flavor indices are needed, we use fp; r; s; tg. In the
final result, the spinor indices are left implicit.
Not only the SM fields but also the fields with covariant

derivatives are the building blocks, although the cova-
riant derivative itself is not. In our notation, the covariant
derivatives only act on the nearest field on the right, and the
gauge group indices on that field should be understood as
the indices of the whole, for example, DQpai ¼ ðDQpÞai.
Regarding the Lorentz index on D, we also adopt the
SLð2;CÞ notation for convenience,

Dα _α ¼ Dμσ
μ
α _α ∈ ð1=2; 1=2Þ; ð2:4Þ

with the ordinary covariant derivative Dμ defined by

Dμ ¼ ∂μ − igsGA
μTA − igWa

μτ
a − ig0QYBμ; ð2:5Þ

with the SUð3Þ and SUð2Þ generators TA and τa as well as
the Uð1ÞY charge QY determined by the fields it acts on.
Thus covariant derivatives of a field DnDΦ, in which Φ
denotes the SM field, could be expressed in general as

ðDr−jhjΦÞαð1Þ���αðr−hÞ _αð1Þ��� _αðrþhÞ ≡
�
Dαð1Þ _αð1Þ � � �DαðrþhÞ _αðrþhÞΦαðrþhþ1Þ���αðr−hÞ ; h < 0;

Dαð1Þ _αð1Þ � � �Dαðr−hÞ _αðr−hÞΦ _αðr−hþ1Þ��� _αðrþhÞ ; h > 0;
ð2:6Þ

where h is the helicity of the massless particle annihilated
by the field and r ¼ jhj þ nD is half the total number of
spinor indices in this building block. One could verify the

number of Lorentz indices is correct for anyΦ, for example,
the r ¼ 5=2 building block of field Q, which has helicity
h ¼ −1=2, is given by

TABLE I. The field content of the standard model, along with
their representations under the Lorentz and gauge symmetries.
The representation under the Lorentz group is denoted by ðjl; jrÞ,
while the helicity of the field is given by h ¼ jr − jl. The number
of fermion flavors is denoted as nf, which is three in the standard
model. All of the fields are accompanied with their Hermitian
conjugates that are omitted: ðFLαβÞ† ¼ FR _α _β for gauge bosons,

ðψαÞ† ¼ ðψ†Þ _α for fermions, and H† for the Higgs, which are
under the conjugate representations of all the groups.

Fields SUð2Þl × SUð2Þr h SUð3ÞC SUð2ÞW Uð1ÞY Flavor

GA
Lαβ (1, 0) −1 8 1 0 1

WI
Lαβ (1, 0) −1 1 3 0 1

BLαβ (1, 0) −1 1 1 0 1

Lαi ð1
2
; 0Þ −1=2 1 2 −1=2 nf

eCα ð1
2
; 0Þ −1=2 1 1 1 nf

Qαai ð1
2
; 0Þ −1=2 3 2 1=6 nf

uaCα ð1
2
; 0Þ −1=2 3̄ 1 −2=3 nf

daCα ð1
2
; 0Þ −1=2 3̄ 1 1=3 nf

Hi (0,0) 0 1 2 1=2 1
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ðD2QaiÞαð1Þαð2Þαð3Þ _αð1Þ _αð2Þ ¼ Dαð1Þ _αð1ÞDαð2Þ _αð2ÞQαð3Þai: ð2:7Þ

With these building blocks, operators are simply con-
structed as combinations of building blocks that form the
singlet representation, under all of the Lorentz group and
gauge groups. In general, when the constituents of the

operator are fixed, the indices of the Lorentz and gauge
groups are also fixed, and then the simplest way to
assemble these constituents into a singlet is to contract
all the indices with invariant tensors for each group. In this
way we obtain a basis of operators that are direct products
of three-factor structures:

Θffg ¼ Tfgg
SU3T

fhg
SU2

�
Tfαg;f _αg
Lorentz

YN
i¼1

ðDri−jhijΦiÞαð1Þi ���αðr−hÞi _αð1Þi ��� _αðrþhÞ
i

�ffg
fgg;fhg

¼ Tfgg
SU3T

fhg
SU2M

ffg
fgg;fhg; ð2:8Þ

where the invariant tensors TSU3, TSU2, and TLorentz form
polynomial rings generated by the following corresponding
ingredients:

SUð3Þ∶ fABC; dABC; δAB; ðλAÞba; ϵabc; ϵabc;
SUð2Þ∶ ϵIJK; δIJ; ðτIÞji ; ϵij; ϵij;
Lorentz∶ σμναβ; σ̄

μν

_α _β
; σμα _α; σ̄

μ _αα; ϵαβ; ϵ̃ _α _β: ð2:9Þ

In the second line, we collapse Tfαg;f _αg
Lorentz with the building

blocks to a formal Lorentz singlet Mffg
fgg;fhg, which we will

often refer to as a Lorentz structure, with free flavor and
gauge group indices that are specified after fixing the
constituting fields.2

The dimension of Θ can be derived as

dimðΘÞ ¼
XN
i¼1

ðri − jhij þ dimðΦiÞÞ ¼ N þ r; ð2:10Þ

where N is the particle number, r ¼ P
i ri turns out to be

the mass dimension of the on-shell amplitude generated
by Θ.
In Sec. III we will put additional constraints on the form

of building blocks, Eq. (2.8), and our master formula of
operator basis Eq. (3.80) will be constructed as particular
nonredundant combinations of them.

B. Invariants at different levels: Class, type, term,
and operator

The above subsection defines the building blocks that we
use in constructing invariants, i.e., operators; for the sake of
clarity, we specify the terminologies used in the rest of the
paper that describe the invariants at different levels. For

practical purposes, we group the effective operators into
several levels of clusters defined as below:

(i) The biggest cluster is called a class, which involves
operators with the same kinds of fields in terms of
spin, and the same number of derivatives, denoted
as FnFψnψ ϕnϕDnD . One could be more accurate by
setting the definite number of left/right-handed
fermions and gauge bosons, so that we get sub-
classes such as

Fn−1
L ψn−1=2ϕn0ψ†n1=2Fn1

R DnD:

One could come up with any combinations of ni at
this level and rule out the ones that are not able
to form Lorentz invariants later, but we propose
criteria for selecting the Lorentz invariant sub-
classes, which makes the program more effective
at higher dimensions.

(ii) In a (sub)class, we further group together operators
with the same constituting fields, selected by the
requirement of conservation laws: the combination
of fields should be able to form a singlet of any
symmetric groups (besides the Lorentz group) the
theory has. This level of cluster is called a type,
denoted by a sequence of fields and derivatives. An
example of the type is

Q2u†CLH
†D; ð2:11Þ

which corresponds to n−1=2 ¼ 3; n0 ¼ 1; n1=2 ¼ 1;
nD ¼ 1. Note that Lorentz structures may not be
fixed at this level, especially at higher dimensions,
when a type could contain quite a number of
independent ones. At this level, though, we could
identify the groups of repeated fields in a type,
which put constraints on the form of independent
operators within a type.

(iii) At this level, we define the (Lagrangian) terms that
have different interpretations from the other liter-
ature, e.g., [18]. We define a term as an operator with

2We would like to point out here that formally each field in our
notation has a flavor index, even for gauge bosons and the Higgs
which can take only one possible value. The reason will be clear
in Sec. III A.
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free flavor indices that transform as an irreducible
tensor of the auxiliary flavor symmetry group
SUðnfÞ for each set of repeated fields with nf
number of flavors. We occasionally refer to the
irreducible tensor nature of terms as the flavor
symmetry of the operator. An example of a term
for the type in Eq. (2.11) is

Θprst ¼ iϵabcϵjkððLpiQsbkðQrajσ
μu†CtcÞ

þ ðLpiQrajðQsbkσ
μu†CtcÞÞDμH†k: ð2:12Þ

One can verify that Θprst is symmetric under the
exchange of r, s flavor indices of two Q’s, which
indicates Θprst is an irreducible tensor represented
by under SUðnfÞ group for Q’s. This definition
of the term renders enumerating independent flavor-
specified operators defined below trivial by finding
all the SSYTs of the corresponding Young diagram
of irrep of SUðnfÞ. We shall explicitly illustrate this
point and describe the algorithm to obtain a com-
plete set of terms up to any dimensions in detail in
Sec. III A.

(iv) Finally, the flavor-specified operators are defined as
independent flavor assignments in a term. The
corresponding example gives

Θ1111 ¼ iϵabcϵjkððL1iQ1bkðQ1ajσ
μu†

C1cÞ
þ ðL1iQ1ajðQ1bkσ

μu†
C1cÞÞDμH†k: ð2:13Þ

III. OPERATOR BASIS FOR LORENTZ AND
GAUGE SYMMETRIES

A. Motivation and mathematical preparation

In this subsection, we first explain why we need definite
permutation symmetries of the Lorentz and gauge group
structures for the term we defined in Sec. II B as well as
how they are related to the permutation symmetry of the
flavor indices, and then we give a gentle introduction to
mathematical tools used in generating symmetrized
Lorentz and gauge group structures.

1. Why permutation symmetry

Given a type of the operator, one can enumerate all the
independent ways to construct a singlet under both Lorentz
and gauge symmetries with flavor indices unspecified.
Fixing the flavor indices of such a Lorentz and gauge
singlet completely determines the form of a flavor-specified
operator. If there are no repeated fields, then different
choices of flavor for each field correspond to different
operators. However, the presence of repeated fields

complicates the game. To demonstrate the problem let us
take a look at the dim-5 Weinberg operator in the SMEFT:

Θff1f2;11g ≡ ϵi1j1ϵi2j2ϵα1α2Lf1
α1;i1

Lf2
α2;i2

Hj1Hj2 ; ð3:1Þ

where α1;2 are spinor indices, i1;2 and j1;2 are SUð2ÞW
indices, and Θff1f2;11g has the same notation defined in
Eq. (2.8) with Φi’s specified to LLHH. We have also
grouped the flavor indices of each set of repeated fields
together where the flavor indices for H have already been
set to 1 as we only have one Higgs in the SM. In the
following, we shall drop the flavor indices of H when their
absences do not obscure our explanation. One can verify that
Θf1f2 ¼ Θf2f1 , which we will prove later, is a result of the
antisymmetric nature of the Lorentz and gauge structures;
therefore the number of independent operators are nfðnf þ
1Þ=2 if we have nf flavors of L. Generally, to count and
enumerate independent operators with flavor indices speci-
fied, one can viewΘffkg as a tensor of the SUðnfÞ group and
decompose it into different irreps of the SUðnfÞ group; then
the independent operators are given by setting the flavor
indices according to all the SSYTs of the corresponding irrep
with numbers in the tableaux weakly increased in each row
and strictly increased in each column. Following the example
above,Θf1f2 in Eq. (3.1) is symmetric under the exchange of
f1 and f2, and hence it is represented by the Young tableau:

. If nf ¼ 2, then there are three semistandard Young
tableaux: , , and , which correspond to indepen-
dent operatorsΘ11,Θ12, andΘ22. All the other choices of f1
and f2 can be expressed by the linear combination of these
three using Fock’s conditions [38], and in this example, we
simply have Θ21 ¼ Θ12.
The LLHH example above seems to be too trivial as it is

easy to find out the symmetric properties among the flavor
indices f1 and f2. However, the situation becomes com-
plicated when the number of repeated fields in a set goes
up. The simplest nontrivial example is Q3L in the dim-6
SMEFT. In the Warsaw basis [3] it is expressed as

ϵabcϵjiϵkm½ðqajr ÞTCqbks �½ðqcmt ÞTClip�; ð3:2Þ

where q and l are four component SUð2ÞW quark and
lepton doublets of which the relation to our two-component
notations are shown in Appendix A 1; a, b, c are SUð3ÞC
indices; i, j, k, m are SUð2ÞW indices; and p, r, s, t are
flavor indices of fermions, respectively. From Eq. (3.2), it is
very hard to tell the independent components of the flavor-
specified operators. However, we separate this operator
into three terms in our notation, and each term is an irrep
of SUðnfÞ,
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ð3:3Þ

ð3:4Þ

ð3:5Þ

where the subscripts of Θ are partitions of the integer 3 that have a one-to-one correspondence with the Young diagrams
(YD) on the left of each equation. From the above notation, we can immediately write down the independent combinatorial
choices of r, s, t by enumerating the SSYTs of each irrep:

and then each Young tableau can pair with three choices of
lepton flavor p ¼ 1, 2, 3 resulting in totally 3 × ð1þ 8þ
10Þ independent operators. In addition to the benefits
discussed above, we would like to point out that our
definition of term, combined with the algorithm obtaining
a complete set of independent terms described below, will
automatically avoid the redundancy that needs to be
resolved by obscure relations between different terms with
flavor indices permuted. For example, Q3L was initially
written as two independent terms in Ref. [3] and was
corrected to only one in the form of Eq. (3.2) later. We will
not proceed with this example further in this subsection as it
involves technical details discussed in Sec. III D, which
may blur the big picture we would like to convey. Therefore
we shall continue with the LLHH example below and show
the roadmap constructing these SUðnfÞ irreps.
The above discussion demonstrates the desire to obtain

Θffkg as an irrep of SUðnfÞ, where ffkg are the flavor
indices of a set of repeated fields. Because of the Schur-
Weyl duality and also pointed out in Ref. [18], if one can

construct a set of tensor Θffkg
ðλ;xÞ that transform as an irrep λ of

the symmetric group Sm (m is the number of the repeated
fields) in terms of permuting subscripts k, then any one of

the Θffkg
ðλ;xÞ is the irrep of SUðnfÞ with the number of

independent components obtained by the hook content

formula Sðλ; nfÞ [18]. λ is a partition of the integer m that
can be written in the form of the subscripts in Eqs. (3.3)–
(3.5) serving as a character of irreps of Sm. x goes from 1 to

dλ labeling basis vectors in the irrep λ. Θffkg
ðλ;xÞ by definition

satisfies the following relation:

π ∘Θffkg
ðλ;xÞ ≡ ΘffπðkÞg

ðλ;xÞ

¼
X
y

Θffkg
ðλ;yÞD

λðπÞyx; ð3:6Þ

for π ∈ Sm, where the action π ∘ on tensors is defined
according to the first line and DλðπÞyx is the matrix
representation of the Sm group for irrep λ. In the presence
of multiple sets of repeated fields, one can generalize Θffkg

into Θffk;pm;…g as irreps of the groups:

SU ¼ SUðn1fÞ ⊗ SUðn2fÞ ⊗ � � � ;
S̄ ¼ Sm1

⊗ Sm2
⊗ � � � ; ð3:7Þ

where n1f; n
2
f;…, andm1; m2;…, are numbers of flavor and

fields for different sets of repeated fields, respectively. An
immediate conclusion that can be drawn from the above
discussion is that the operators involving repeated fields
with only one flavor such as gauge bosons or Higgs must be
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in a totally symmetric representation, which is simply a
result of

Sðλ; 1Þ ¼ 0; ∀ λ ≠ ½m�; ð3:8Þ

where [m] is the totally symmetric irrep.
Now we are going to show that permuting flavor indices

of a given set of repeated fields in a term is equivalent to
permuting the corresponding indices related to the gauge
and Lorentz structures. In general, a term of a given type
can be formally expressed as a linear combination of a set
of factorizable Θ’s according to Eq. (2.8) as

Θffk;…g ¼ Tfgk;…g
SU3 Tfhk;…g

SU2 Mffk;…g
fgk;…g;fhk;…g; ð3:9Þ

where Tfgk;…g
SU3 ; Tfhk;…g

SU2 are the same TSU3; TSU2 in Eq. (2.8)
with the indices of each set of repeated fields grouped
together; the same argument applies for the correspondence

between Mffk;…g
fgk;…g;fhk;…g here and Mffg

fgg;fhg in Eq. (2.8).

Concretely, in the LLHH example we have

TSU3 ¼ 1;

Tfi1i2;j1j2g
SU2 ¼ ϵi1j1ϵi2j2 ;

Mff1f2;11g
fi1i2;j1j2g ¼ ϵα1α2Lf1

α1;i1
Lf2
α2;i2

Hj1Hj2 :

For a given type, we call in the rest of our paper a complete

set of independent Tfgk;…g
SU3 ; Tfhk;…g

SU2 , and Mffk;…g
fgk;…g;fhk;…g as

the Lorentz and gauge basis from which a term is
constructed. It is enough to show the permutation relations
between flavor and combined gauge and Lorentz structures
hold for these factorizable bases, and the same is true for a
general term. A permutation of the flavor indices of the first
set of repeated fields in Θffk;…g can be expressed as

π ∘Θffk;…g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
permute flavor

¼ Tfgk;…g
SU3 Tfhk;…g

SU2 M
ffπðkÞ;…g
fgk;…g;fhk;…g

¼ T
fgπðkÞ;…g
SU3 T

fhπðkÞ;…g
SU2 M

ffπðkÞ;…g
fgπðkÞ;…g;fhπðkÞ;…g

¼ ðπ ∘Tfgk;…g
SU3 Þðπ ∘Tfhk;…g

SU2 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
permute gauge

ðπ ∘Mffk;…g
fgk;…g;fhk;…gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

permute Lorentz

;

ð3:10Þ

where π ∘T again only permutes the gauge indices of the
first set of the repeated fields; ðπ ∘MÞ is equal to the
permutation of all the subscripts of the Lorentz indices and
the associated derivatives of the first set of repeated fields
while leaving the gauge and flavor indices unchanged. We
demonstrate that the second to the third line in Eq. (3.10)
does hold for M and ðπ ∘MÞ defined above with the
LLHH example in Eq. (3.1) with π ¼ ð12Þ,

ð3:11Þ

where we have used the Grassmann nature of the lep-
ton field.
So far, it is obvious from Eq. (3.10) that those of gauge

and Lorentz indices determine the permutation property of
flavor indices. Hence, if a set of Mλ1

j , T
λ2
SU3, and Tλ3

SU2

transform according to irreps λ1;2;3 of Sm for the certain set
of repeated fields, then the direct product space spanned by

fΘðλ1;x1Þ;ðλ2;x2Þ;ðλ3;x3Þ ¼ Mλ1
x1T

λ2
SU3;x2

Tλ3
SU2;x3

jxi ∈ 1;…; dλig;
ð3:12Þ

with dλi the dimension of irreps λi, can be decomposed into
invariant subspaces that form different irreps of λ. The inner
product decomposition λ1 ⊙ λ2 ⊙ λ3 ¼

P
λ⊢m rλλ tells that

the multiplicity of the invariant subspace of irrep λ is rλ. For
the LLHH example we discussed above, one can find that

M
ffπðkÞ;11g
fiπðkÞg;fjmg ¼ Mffk;11g

fikg;fjmg ¼ M½2�
1 forms a total symmetric

representation of S2 of two lepton fields, the same is for the

SUð3ÞC gauge group factor T ½2�
SU3;1 ¼ 1. The permuted

SUð2ÞW gauge group factor T
fiπðkÞ;jmg
SU2 ¼ ϵi2j1ϵi1j2 seems

not equal to the unpermuted one. However, this is just a

result of the simplification of the symmetric one T ½2�
SU2;1 ¼

ðϵi2j1ϵi1j2 þ ϵi1j1ϵi2j2Þ=2 when contracting with Hj1Hj2 ,
3 so

it also forms a totally symmetric representation of S2. One
can find from the inner product decomposition ½2� ⊙ ½2� ⊙
½2� ¼ ½2� that the only resulting irrep is the symmetric one
½2�, and indeed the Θf1f2 is totally symmetric under
permutation of the flavor indices. In general, this decom-
position is more complicated and contains the irreps with
dimensions larger than one. We will present a nontrivial
exampleQ3LWL in Sec. III D and refer to Appendix B 2 for
more general cases. Although we only consider the
permutation symmetry for a single set of repeated fields
in Eqs. (3.10) and (3.12), it is straightforward to generalize
it to multiple sets of repeated fields under the product group
S̄ as the permutations acting on different sets of repeated
fields simply commute with each other.
Up to now, we have changed the problem of finding a

term Θffk;…g as irreps of SU into finding a series ofΘffk;…g
ðλ;iÞ;…

as irreps of S̄, and then further into finding the correspond-
ing Tλ2;…

SU3;x2;…
; Tλ3;…

SU3;x3;…
, and Mλ1;…

x1;… as irreps of S̄. Before

3This is also an example discussed in Eq. (3.8) that the
repeated fields of one flavor must form a total symmetric
representation under permutation. As the Lorentz structure of
H2 is trivial, therefore Tfikg;fjmg

SU2 must be symmetric under h1, h2.
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we delve into the details of obtaining all the independent
symmetrized group factors and Lorentz structures, we first
digress to introduce the mathematical tools used in the rest
of the section.

2. Group algebra and left ideal

As mentioned above, in this section, we explain the key
mathematical tools to obtain the Lorentz and gauge
structure in different irreps λ of the symmetric group
associated with the repeated fields. We introduce the idea
of group algebra and the method using them to generate a
series of symmetrized functions transforming as an irrep of
the Sm group under permutations defined in (3.6) from an
asymmetrized one. The first concept is the group algebra
space S̃m of Sm, which is defined as a set consisting of
formal linear combinations of the group elements in the
group Sm [39],

S̃m∶frjr ¼
X
i

riπi for ri ∈ C; πi ∈ Smg: ð3:13Þ

The addition and multiplication rules of the elements in the
group algebra are

c1rþ c2q¼
X
i

πiðc1ri þ c2qiÞ for r;q ∈ S̃m; c1; c2 ∈ C;

ð3:14Þ

r · q ¼
X
i;j

riqjðπi · πjÞ ¼
X
i;j;k

πkΔk
ijr

irj; ð3:15Þ

where the matrix Δk
ij with only one nonzero element

defined by πi · πj ¼
P

k πkΔk
ij is the regular representation

of the group. Obviously, a linear vector space structure is
contained in the group algebra. In this sense, the group
algebra elements have a dual role of vectors and linear
operators.
It is well known that the S̃m [38,39] can be decomposed

into invariant subspaces transforming as irrep λ of the Sm
expanded by a set of group algebra elements bλx ¼

P
i c

λ;i
x πi

such that

πi · bλx ¼
X
y

bλyDλ
yxðπiÞ; ð3:16Þ

where the indices x, y go from 1 to dλ and the dimension of
irrep λ, Dλ

yxðπiÞ is the same one in Eq. (3.6), the matrix
representation of λ [39]. The invariant subspaces expanded
by bλx are actually a minimal left ideal Lλ of S̃m such that

r · b ∈ Lλ; ∀ r ∈ S̃m; b ∈ Lλ: ð3:17Þ

Alternatively, one can view the group algebra elements
as symmetrizers that act on a function generating another

one by permuting the arguments. It can be shown in
Appendix B 1 that a series of new functions Fλ

xðfpkgÞ
generated by applying bλx to a function FðfpkgÞ defined by

Fλ
xðfpkgÞ ¼ bλx ∘FðfpkgÞ

¼
�X

i

cλ;ix πi

�
∘FðfpkgÞ

≡X
i

cλ;ix FðfpπiðkÞgÞ ð3:18Þ

transform as an irrep of λ under the permutation

πi ∘Fλ
xðfpkgÞ ¼ Fλ

xðfpπiðkÞgÞ
¼

X
y

Fλ
yðfpkgÞDλ

yxðπiÞ: ð3:19Þ

The function here has general meanings: in the LLHH
example above, the function can be referred to the gauge
group tensor Ti1i2;j1j2

SU2 with arguments i1;2; j1;2 or the
Lorentz structureM ¼ Mðα1; α2Þwith the arguments α1;2.
In addition, we would like to mention that our con-

vention for bλx follows Chapter 6 of the textbook in [38],
where bλ1 is proportional to the Young symmetrizer of the
normal Young tableau of λ, i.e., the Young tableau with the
numbers 1 to n appearing in order from left to right and

from the top row to the bottom row. For example, b½2;1�1 is

proportional to the Young symmetrizer of , which is

equal to the multiplication of sλ, the sum over all possible
horizontal permutations, and aλ, the sum over all possible
vertical permutations weighted by their signatures, �1 for

even and odd permutations, respectively. For , we have

s½2;1� ¼ Eþ ð12Þ; ð3:20Þ

a½2;1� ¼ E − ð13Þ; ð3:21Þ

ð3:22Þ

¼ Eþ ð12Þ − ð13Þ − ð132Þ: ð3:23Þ

When we apply b½2;1�1 on a tensor Trst, we will associate the
tensor indices r, s, t to the numbers 1,2,3 (not to confuse
with flavors), and then formally we have

ð3:24Þ
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The resulting symmetrized tensor is symmetric for the
permutation of labels r, s as they appear in the same row in
the Young tableau, which is a general property of the Young
symmetrizers.

B. Lorentz basis: SUðNÞ × S̄ irreps

To obtain an independent set of Lorentz structures, in
literature such as the Warsaw basis [3], one usually writes
down all the possible Lorentz invariant combinations
of the building blocks, and then removes all the redun-
dancies by imposing the following relations among oper-
ators repeatedly:
(a) Fierz identity. As explained in Appendix A 1, for Weyl

spinors, the Fierz identities can be expressed as

gμνσ
μ
α _ασ

ν
β _β

¼ 2ϵαβϵ _α _β; ð3:25Þ

ϵαβδγκ þ ϵβγδακ þ ϵγαδβκ ¼ 0;

ϵ̃ _α _βδ
_κ
_γ þ ϵ̃_β _γδ

_κ
_α þ ϵ̃_γ _αδ

_κ
_β
¼ 0: ð3:26Þ

For the first identity, we choose to replace the left-hand
side whenever it appears in the operator by the right-
hand side. As our building blocks do not contain any
Lorentz indices μ, ν, etc., there would be no chance to
use the σ matrices in TLorentz, Thus we are left with
only the ϵ tensors for both dotted and undotted spinor
indices in the Lorentz invariant tensor. The other two
identities, also known as the Schouten identities, will
be tackled later.

(b) ½Dμ; Dν� ¼ −iFμν. We also choose to replace the left-
hand side whenever it appears in the operator by the
right-hand side. Note that the replacement changes the
type of operator, and thus it should not be counted in
the original type as an independent operator. Effec-
tively, we treat ½Dμ; Dν� as zero while counting
operators of a given type.

(c) Equation of motion. Classically there are the EOM
relations for each kind of fields

D2ϕþ Jϕ ¼ 0; i=Dψ þ Jψ ¼ 0;

DμFμν þ JνA ¼ 0: ð3:27Þ

For quantum fields, these are not rigorous operator
equations. Nevertheless, operators differing by EOM
are related with each other by field redefinitions and
are hence physically equivalent. To remove this
redundancy of field redefinition, we choose to replace
the first term (the kinetic term) whenever it appears in
the operator by the source term JΦ. Again, because the
type is changed during the replacement, we effectively
treat the kinetic terms as zero while counting operators
of a given type. This choice guarantees that the

operator basis we find has nonvanishing on-shell
amplitudes, which also form an amplitude basis.

(d) Integration by part. In perturbative quantum field
theory, we have

XDμY ∼ −DμXY: ð3:28Þ

In other words, operators are equivalent modulo total
derivatives. From the on-shell point of view, it is
equivalent to the momentum conservation law. This
may be themost subtle one, because it is theway people
eliminate this redundancy while counting that prevents
the listing of the independent operator basis. In this
section, we develop a new method to deal with IBP.

We aim at a systematic treatment of all of these redun-
dancies before we write down operators, so that we do not
need to examine them in an overcomplete list. Section III B
1 tackles the redundancies (b), (c), and the first half of (a),
while Sec. III B 2 deals with the Schouten identities and the
IBP. Finally in Sec. III B 3, we symmetrize the Lorentz
structures over repeated fields for a specific type and obtain
the Lorentz basis.

1. Lorentz invariance: Enumerating the classes

We start by further analyzing the building block defined
in Eq. (2.6) and reduce them to irreps of the Lorentz group.
By applying the following relations:

D½α _αDβ� _β ¼DμDνσ
μ
½α _ασ

ν
β� _β ¼−D2ϵαβϵ _α _βþ

i
2
½Dμ;Dν�ϵαβσ̄μν_α _β;

D½α _αψβ� ¼Dμσ
μ
½α _αψβ� ¼−ϵαβð=DψÞ _α;

D½α _αFLβ�γ ¼DμFνρσ
μ
½α _ασ

νρ
β�γ ¼ 2DμFμνϵαβσ

ν
γ _α; ð3:29Þ

where D2 ¼ DμDμ and

=D ¼ γμDμ ¼
�

0 Dμσ
μ
α _α

Dμσ̄
μ _ββ 0

�
;

we note that any pair of antisymmetric spinor indices in a
building block would lead to factors that vanish according
to the redundancies (b) or (c). As a consequence, we are left
with building blocks in which all spinor indices, dotted or
undotted, are totally symmetric, respectively. After raising
the dotted indices, we could express the remaining building
blocks as

ðDr−jhjΦÞð _αð1Þ _αð2Þ… _αðrþhÞÞ
ðαð1Þαð2Þ…αðr−hÞÞ ≡ ðDr−jhjΦÞ _αrþh

αr−h
∈
�
r − h
2

;
rþ h
2

�
;

ð3:30Þ
where, without ambiguity, we abbreviate the totally sym-
metric indices (indicated by the parentheses) by an index
with a power. Now the remaining building block trans-
forms as irreps under the Lorentz group as shown above.
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We would like to emphasize here that, with the above
construction we throw away all the possible kinetic terms
that may be replaced with EOMs in our building blocks,
and our algorithm enumerates the complete and indepen-
dent operators basis type by type at a fixed dimension, once
operator bases for all the types for a fixed dimension are
found, our goal is completed; thus the interchange between
types and different dimensions due to EOMs never plays a
role in our method.
With this notation, together with our treatment of the

redundancy (a) using Eq. (3.25), we arrive at a general form
of Lorentz structure modulo (b) and (c) redundancies as

M ¼ ðϵαiαjÞ⊗nðϵ̃ _αi _αjÞ⊗ñ
YN
i¼1

ðDri−jhijΦiÞ _α
riþhi
i

α
ri−hi
i

∈ ½M�N;n;ñ;

ð3:31Þ

where N is the number of building blocks in the operator,
corresponding to the number of particles in the on-shell
amplitude it generates. Here we recognize the epsilon
tensors introduced is the Lorentz invariant tensor TLorentz
in Eq. (2.6), in which Eq. (3.26) guarantees that only the
epsilon tensors appear. The power of the epsilon tensors

should be understood as a product of epsilons with possibly
different spinor indices, which are only distinguished by
the building block Eq. (3.30) they come from. Such
operators with certain N and the numbers of epsilons
ðn; ñÞ form a basis of the linear space ½M�N;n;ñ, which still
have redundancy from the Schouten identity and the IBP.
To solve the IBP problem, we decompose the space as

½M�N;n;ñ ¼ ½A�N;n;ñ ⊕ ½B�N;n;ñ, where the subspace ½B�N;n;ñ

contains all the Lorentz structures with total derivatives.
For any Lorentz structure M ∈ ½M� we have

M ¼ MA þMB; MA ∈ ½A�; MB ∈ ½B�: ð3:32Þ

If this decomposition is possible, the subspace ½A� would
be the space of the nonredundant Lorentz structures,
because for any two Lorentz structures in ½A�, their
difference is also in ½A� and cannot be a total derivative.
We will achieve this decomposition in the next subsection.
Before that, we would like to show how Lorentz

invariance constrains the classes appearing at a certain
dimension. We derive some nontrivial constraints among
the parameters in Eq. (3.31). The contractions of spinor
indices lead to the following relations:

ñþ n ¼
X
i

ri ¼ r; ñ − n ¼
X
i

hi ≡ h; ð3:33Þ

nD ¼
X
i

ðri − jhijÞ ¼ 2nþ h −
X
i

jhij ¼ 2ñ − h −
X
i

jhij ≤ minð2n; 2ñÞ: ð3:34Þ

Here we find another interpretation of r as the total number of ϵ’s. The second line gives one constraint on the number of
derivatives necessary for an operator with given helicity combination hi, that the number must equal h −

P
i jhijmod 2 and

is bounded by twice the minimum of n and ñ. Another constraint is already shown in [40] and comes from the following fact
indicated by r ≥ jhj:

n ≥ ri − hi ≥ −2hi; ∀ i ⇒
1

2

X
i

ðri − hiÞ ¼ n ≥ −2 min hi;

ñ ≥ ri þ hi ≥ 2hi; ∀ i ⇒
1

2

X
i

ðri þ hiÞ ¼ ñ ≥ 2max hi; ð3:35Þ

from which we deduce

nD ¼
X
i

ðri − hiÞ −
X
hi<0

2jhij ≥ −4min hi −
X
hi<0

2jhij;

nD ¼
X
i

ðri þ hiÞ −
X
hi>0

2jhij ≥ 4max hi −
X
hi>0

2jhij: ð3:36Þ

In sum, we arrive at the complete constraint on nD:

minð2n; 2ñÞ ≥ nD ≥ max

0
BBBBB@

h −
P
i
jhij;mod 2

−4min hi −
P
hi<0

2jhij

4max hi −
P
hi>0

2jhij

1
CCCCCA: ð3:37Þ
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The minimum is a correction to the constraint shown
in [40].
In light of the above relations, we can enumerate the

classes of Lorentz structures for a given dimension after the
following steps:

(i) From Eqs. (2.10) and (3.33), we get d ¼ nþ ñþ N.
We start by iteratingN from 34 to d, while for eachN
we could iterate n; ñ under the constraint nþ ñ ¼
d − N.

(ii) Given the tuple ðN; n; ñÞ, we iterate nD from 0 to
minð2n; 2ñÞ according to Eq. (3.37). Provided the
number of derivatives nD, we have the following
relations implied by Eq. (3.34):

2n−1 þ n−1=2 ¼
X
i

jhij − h ¼ 2n − nD;

2n1 þ n1=2 ¼
X
i

jhij þ h ¼ 2ñ − nD: ð3:38Þ

(iii) Then we find all tuples ni ¼ ðn−1; n−1=2; n0; n1=2; n1Þ
that satisfy Eq. (3.38) and

P
i ni ¼ N, making sure

that nD satisfies the minimum given in Eq. (3.37) at
the meantime. In this way, we find all the combi-
nations of ðni; nDÞ that could form Lorentz invariant
structures, each of which determines a subclass of
operators.

At dimension eight, we list all the subclasses in Table II.5

2. Lorentz structures as SUðNÞ states
Back to the problem of finding the subspace ½A� fromM

as proposed after Eq. (3.32), we first claim property of its
elements in the format of Eq. (3.31) that such a Lorentz
structure is completely determined by the epsilon tensors,
because the numbers of αi and _αi on these tensors fix all the
parameters of the building blocks Dri−jhijΦi. For example,
given ϵα1α3ϵα2α3ϵ _α3 _α4 , we obtain

ϵα1α3ϵα2α3 ϵ̃ _α3 _α4

⇒ M ¼ ϵα1α3ϵα2α3 ϵ̃ _α3 _α4ðψ1Þα1ðψ2Þα2ðDψ3Þ _α3α2
3

ðψ†
4Þ _α4 :

ð3:39Þ

Those who are familiar with spinor helicity variables
should recognize that these epsilons are nothing but the
spinor brackets ϵαiαj ∼ hiji, ϵ _αi _αj ∼ ½ij�.6 Therefore our
claim here is exactly the amplitude-operator correspon-
dence [29,41]. In this subsection, unless stated otherwise,
we claim that a product of epsilons refers to the Lorentz
structure determined by it, and a linear combination of
them refers to the linear combination of the corresponding
Lorentz structures. It gives us a hint on how to identify ½B�,
the subspace of Lorentz structures with total derivatives.
First, a derivative on field Φi has a pair of indices ðαi; _αiÞ,
which must also be found in the epsilons. Hence there has
to be a factor of ϵαiαj ϵ̃ _αi _αk in the epsilons. Therefore, a total
derivative is thus represented by a factor of

P
i ϵ

αiαj ϵ̃ _αi _αk ,
which is the character of Lorentz structures in ½B�.
To identify the complement space ½A�, we use a trick: by

introducing an SUðNÞ group for which Lorentz structures

TABLE II. All the subclasses of Lorentz structures at dimension eight.

N ðn; ñÞ5 Subclasses

4 (4,0) F4
L þ H:c:

(3,1) F2
Lψψ

†Dþ H:c: ψ4D2 þ H:c: FLψ
2ϕD2 þ H:c: F2

Lϕ
2D2 þ H:c:

(2,2) F2
LF

2
R FLFRψψ

†D ψ2ψ†2D2 FRψ
2ϕD2 þ H:c:

FLFRϕ
2D2 ψψ†ϕ2D3 ϕ4D4

5 (3,0) FLψ
4 þ H:c: F2

Lψ
2ϕþ H:c: F3

Lϕ
2 þ H:c:

(2,1) FLψ
2ψ†2 þ H:c: F2

Lψ
†2ϕþ H:c: ψ3ψ†ϕDþ H:c: FLψψ

†ϕ2Dþ H:c:
ψ2ϕ3D2 þ H:c: FLϕ

4D2 þ H:c:

6 (2,0) ψ4ϕ2 þ H:c: FLψ
2ϕ3 þ H:c: F2

Lϕ
4 þ H:c:

(1,1) ψ2ψ†2ϕ2 ψψ†ϕ4D ϕ6D2

7 (1, 0) ψ2ϕ5 þ H:c:

8 (0,0) ϕ8

4N ¼ 3 is a special case when there is the so-called special
kinematics that renders n ¼ 0 or ñ ¼ 0. Particularly it implies that
nD ¼ 0 when N ¼ 3. For example, we have Dμϕ1Dμϕ2ϕ3 ¼
1
2
ðϕ1ϕ2D2ϕ3 − ϕ1D2ϕ2ϕ3 −D2ϕ1ϕ2ϕ3Þ which is redundant due

to EOM of ϕi in our treatment.
5We only list classes with n ≥ ñ, while all the classes with

n < ñ are Hermitian conjugates of some classes listed here
(denoted as þH:c:).

6Recall the r is the number of ϵ’s, which corresponds to the
number of spinor brackets in the on-shell amplitude, or in other
words, the mass dimension of the amplitude. It matches with the
discovery in Eq. (2.10).
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M ∈ ½M� transform linearly, and both ½M� and ½B� are
invariant spaces, ½A� must also be an invariant space that
consists of whole representation spaces. This group is
defined by the following transformations of the epsilons:

ϵαiαj →
X
k;l

U i
kU

j
lϵ

αkαl ; ϵ̃ _αi _αj →
X
k;l

U† k
iU

† l
jϵ̃ _αk _αl :

ð3:40Þ
In other words, the undotted spinor index αi with subscript i
running from 1 to N transforms as 2 ×N of the SLð2;CÞ ×
SUðNÞ group, while the dotted index _αi transforms as
2̄ × N̄. Obviously, the transformation does not change the
tuple ðN; n; ñÞ, which means that ½M� is invariant. It is also
easy to prove the invariance of ½B�,

X
i

ϵαiαj ϵ̃ _αi _αk →
X
m;n

Uj
mU† n

k

X
i

ϵαiαm ϵ̃ _αi _αn : ð3:41Þ

Now the task is converted to finding irreducible represen-
tation spaces of SUðNÞ in ½M�N;n;ñ and classifying them

into ½A� and ½B�. Specifically, because of Eq. (3.40), it
amounts to the decomposition of the tensor representations
formed by products of the epsilons.
In terms of SUðNÞ YD in which a box represents

fundamental representation, ϵ and ϵ̃ form irreducible

representations and , respectively,

due to the antisymmetry of their indices. Given specific
labels i, j for the epsilons, they are states in these
representation spaces, indicated by the Young tableau.
For example, when N ¼ 5, we have

ð3:42Þ

where E is the Levi-Civita tensor of SUðNÞ.
Then we use the Littlewood-Richardson (LR) rules [38]

to decompose their products. First, we examine the tensor
power of each type of the epsilons. Since

ð3:43Þ

We can use the Schouten identity to eliminate representa-
tions with more than two rows, either dotted or undotted,

ð3:44Þ

and hence we are left with only the first term in the decom-
position Eq. (3.43). Similarly if we multiply more epsilons
of the same kind, we should be left with only the following
YDs:

ð3:45Þ

This reflects the fact that the spinor indices take only two
values, forbidding antisymmetry over more than two of
them. The independent basis of the representation space is
given by the SSYTs, where labels filled in the YD are

increasing down the columns and nondecreasing along the
rows. Fock’s conditions [38] for such YDs are nothing but
the Schouten identities. Therefore, choosing the SSYT
basis automatically eliminates the redundancy from the
Schouten identity. For example,7

ð3:46Þ

7Note that it seems as if we did not perform the row
symmetrization for the Young tableau, which was done in
Ref. [33]. It is due to our different treatments of the action of
permutations on the SUðNÞ tensors: in Ref. [33] the action of
permutation, say (12), means permuting the specific labels 1 and
2, while we treat the action of (12) as permuting the first and
second indices in the tensor. While the two treatments give
different sets of Lorentz structures, both of them are the
independent basis of the same space. In our treatment, the Young
tableau would have indicated the column antisymmetry rather
than the row symmetry of the resulting tensor. That is why we
only need to translate each column to an ϵ tensor to generate this
desired feature. The same translation of the Young tableau is used
in the next subsection regarding gauge group tensors.
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The two terms on the right-hand side corresponding to the SSYTs are our standard basis, and the left-hand side
corresponding to the non-SSYT can be expressed by the standard basis via the Schouten identity.
Finally we use the LR rule to obtain the tensor product of these two YDs. Using the LR rules we place boxes from ½n2�

into the YD ½ñN−2�

ð3:47Þ

where the first term describes the case when all the boxes are put to the right of the original ½ñN−2� boxes and the terms in � � �
are cases when boxes are put under the original YD. Following the correspondence Eq. (3.42), whenever a box from ½n2�
is placed under a column in ½ñN−2�, the resulting column with N − 1 rows represent a tensor,X

l1;l2

Ek1;…;kN−2;l1;l2 ϵ̃αl1αl2 ϵ
αiαj þ ðantisym over k1;…; kN−2; iÞ ¼

X
y

Ek1;…;kN−2;i;xϵ̃αxαyϵ
αyαj ; ð3:48Þ

which contains a factor of total derivative as discussed previously. According to Eq. (3.41), the whole representation space
is contained in the subspace B of ½M�N;n;ñ. It rules out all but the first term in Eq. (3.47); thus we conclude that the
remaining YD, which we define as the primary YD, is the only irrep contained in ½A�, namely

ð3:49Þ

The primary YD ½A�N;n;ñ is exactly the space of Lorentz structures without any of the redundancies listed at the beginning of
this section. Our next task is to obtain a complete basis of this space, which is again the SSYTs. Fock’s conditions between
non-SSYTand the SSYT basis are equivalent to the Schouten identity or the IBP. An example of Fock’s condition reflecting
the IBP is

ð3:50Þ

where D2ϕ5 is understood to be eliminated by the EOM.
As shown by Table II, ½M� usually contains more than

one class of operators, and so does ½A�. The full set of its
SSYT basis includes a lot of nonphysical fillings that
involve fields with large helicities (gravitino, graviton, and
even higher). Thus it would be wise to single out a subset of
them as the Lorentz structures for a given class. By
obtaining the tuple ðN; n; ñÞ from the helicities and nD

according to Eq. (3.38), we can easily find the ½A� that
the class is included, in which the labels in it come from
either ϵαiαj or Ei���jkϵ̃ _αj _αk. The number of the former, ϵ with
index αi, equals the number of α indices in the building
block i, which is ri − hi according to Eq. (3.31), while the
number of the latter, the same as the number of ϵ̃ without
index _αi, equals ñ − ðri þ hiÞ. Together with Eq. (3.38),
we get
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#i ¼ ñ − 2hi ¼
1

2
nD þ

X
hi>0

jhij − 2hi; ð3:51Þ

which surprisingly does not depend on ri and are hence
completely and uniquely determined by the class informa-
tion ðfhig; nDÞ.
Our strategy is nowclear: for each subclass,we find theYD

of Eq. (3.49) determined by Eq. (3.38), and use Eq. (3.51) to
deduce the tuple of labels f1#1;…; N#Ng to fill in the YD;
the SSYTs obtained this way8 correspond to the complete
and independent basis of Lorentz structures. As an example,
consider the class of operators ψψψψ†D at dimension seven,
with hi ¼ f−1=2;−1=2;−1=2; 1=2g and nD ¼ 1. With
Eqs. (3.38) and (3.51) we have #1 ¼ #2 ¼ #3 ¼ 2; #4 ¼ 0
and n ¼ 2; ñ ¼ 1. The only SSYT is given by

ð3:52Þ

which leads to the Lorentz structure Eq. (3.39). It means that
Eq. (3.39) is the only independent Lorentz structure of this
class, which sounds counterintuitive. Indeed, in [42] the
authors pointed out several redundancies of the dim-7
operators listed in [43] and found the correct independent
operator basis. One of the redundancies was about this
particular class of operators, for which they explicitly apply

the identity relations (a)–(d) shown at the beginning of this
section to prove the redundancies. With our strategy, the
redundancy relations, such as Eqs. (35)–(37) in [42], are
nothing but Fock’s conditions between the Young tableau,
which is automatically tackled by choosing the SSYT.
Another example where a class contains several indepen-

dent Lorentz structures is FLψ
4, which has #1 ¼ 2; #2 ¼

#3 ¼ #4 ¼ #5 ¼ 1 and n ¼ 3; ñ ¼ 0. The YD has the same
shape as the above example, but they indicate different
representation spaces due to their different ðN; n; ñÞ. The
SSYT basis of Lorentz structures for this class is given by

ð3:53Þ
To count the number of the basis for a given class, we can
treat the YD of Eq. (3.49) as a product of YDs with the same
labels, since the latter is determined by the class information
#i: they have to be totally symmetric one-row YD [#i]. For
the case of Eq. (3.52), we have ½#1� ¼ ½#2� ¼ ½#3� ¼
(label 4 does not contribute), and hence we examine the
decomposition of their product

ð3:54Þ

and find only one target YD in it, which means only one SSYTwith a certain filling exists. Similarly, for the case of
Eq. (3.53) we have

ð3:55Þ

where the multiplicity of the target YD precisely
reproduces the number of SSYT we listed in Eq. (3.53).
In summary, by identifying Lorentz structures as states

in the SUðNÞ representation space ½A�N;n;ñ, not only can

we quickly count the number of independent basis but
also we can write them down by a translation from the
SSYTs. This makes our approach superior to the com-
petitors and allows us to achieve a systematic way to list
the operators in generic effective field theories.

3. Permutation: Counting and listing
the Lorentz basis

The Lorentz structures we obtained as SSYTs in the
above subsection did not take into account the permutation

8Note that in [33] the complete basis is given by the so-called
reduced SSYTs, which eliminates the overcounting of classes
while enumerating the SSYTs. But since we start from a certain
class, we do not suffer from the overcounting of classes. Thus the
condition of SSYT is sufficient.
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symmetries of possible repeated fields when we specify the
type. For the purpose of counting, we adopt the technique
of plethysm. Since the repeated fields with the same
helicities must have an equal number of labels to be filled
into the YD, instead of taking a direct product of the [#i] as
in Eq. (3.54), we take the plethysm with particular
permutation symmetry. In particular, for any YD Y we have

Y⊗m ¼
X
λ⊢m

dλY ⓟ λ; ð3:56Þ

where dλ is the dimension of the Sm irrep λ. In the example
of Eqs. (3.52) and (3.54), suppose the three ψ’s are repeated
fields as in the type of operator Q3He†CD, where the three
Q’s could have permutation symmetries [3], [2, 1], and ½13�,
for which we derive the plethysm

ð3:57Þ

These are nothing but classifications of the result in
Eq. (3.54). Note that d½2;1� ¼ 2, so the YDs in the second
line should be counted twice while matching with
Eq. (3.54). Among the results, we find the target YD,
namely , which only appears in ½13� symmetry. The
permutation symmetry λ obtained here, which in general
should include all sets of repeated fields λ ¼ Q

Φ λΦ, is

slightly different from that of the Lorentz structure M
itself, which we defined in Sec. III A as λ1. There are two
sources of differences:

(i) λ characterizes the permutation symmetry of labels
filled in the YD, which are indices of the combina-
tion of the Lorentz structure and ñ factors of E from
the Hodge duals of the ϵ̃’s. As E is totally anti-
symmetric for any subset of labels, each E contrib-
utes total antisymmetry ½1mi � to the ith repeated
fields.

(ii) The SSYT does not know about spin statistics;
hence the permutation symmetry of fermionic re-
peated fields has not taken into account their Grass-
mann feature, which should have contributed an
extra ½1mi �.

The property of inner product λ ⊙ ½1m� ¼ λT; ∀ λ⊢m then
suggests that the final permutation symmetry of the Lorentz
structure is given by

λ1 ¼
Y

fermion

λTΦ ×
Y
boson

λΦ; ñ is even;

λ1 ¼
Y

fermion

λΦ ×
Y
boson

λTΦ; ñ is odd: ð3:58Þ

Take the example in Eq. (3.52) where the only Lorentz
structure has the permutation symmetry λ ¼ ½13� as shown
in Eq. (3.57), the type of operators Q3He†CD has ñ ¼ 1,
and the repeated field Q is a fermion, which means
λM ¼ λ ¼ ½13�. As for the case in Eq. (3.53), we take the
typeWLQ3L as an example which has repeated fieldQ, and
we compute the plethysm

ð3:59Þ

It indicates that the three SSYTs obtained in Eq. (3.53) are grouped into ½3�T ¼ ½13� and ½2; 1�T ¼ ½2; 1� representation
spaces.
In order to construct the bases of these representation spaces as combinations of the original SSYT statesMξ, we apply

the projectors bλx introduced in Sec. III A 2 to all of the SSYTs,

Mλ1
ξ;x ≡ bλxMξ; x ¼ 1;…; dλ; ð3:60Þ

where the difference between the symmetries λ → λ1 should be noticed. Each of the projections either forms a
representation space of symmetry ½λ1� according to Eq. (3.19),
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π ∘Mλ1
ξ;x ¼

X
y

Mλ1
ξ;yDðπÞyx; π ∈ S̄; ð3:61Þ

or vanishes by the projection. For the example (3.53) where we got three independent Lorentz structures for the type
WLQ3L, which we denote as Mξ¼1;2;3, respectively, we obtain

M½13�
1 ≡M½13�

1;1 ¼ M½13�
2;1 ¼ M½13�

3;1 ¼ 1

3
ðM1 þM2 þM3Þ;

M½2;1�
x ≡M½2;1�

1;x ¼ −M½2;1�
3;x ¼

�
1

3
ðM1 þM2 − 2M3Þ;

1

3
ðM1 − 2M2 þM3Þ

�
x
;

M½2;1�
2;x ¼ f0; 0g; ð3:62Þ

hence we get the symmetrized Lorentz structures as M½13�
1 and M½2;1�

x ; x ¼ 1, 2. Note that b½2;1�x acting on M1 and M3

produce the same representation space. In general, when there are multiple numbers of the same representation space ½λ1�,
picking out linearly independent spaces from the nonvanishing projections of bλx is nontrivial, which is why we use Fock’s
conditions to convert the symmetrized Lorentz structures to combinations of the original basis Mξ. Generically we obtain

Mλ1
ξ;x ¼

X
ζ

Kλ1;x
ξζ Mζ; ð3:63Þ

where the coefficient matrix Kλ1;x has rank9 N λ1 . Now we can select N λ1 number of rows from Kλ1;x as ξ̄ ¼ ξ1;…; ξN λ1

which provide an independent set of the ½λ1�-symmetry Lorentz basis as Mλ1
ξ̄;x
. In the above example, we have

K½13�;1 ¼

0
BB@

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
CCA; K½2;1�;1 ¼

0
BB@

1
3

1
3

− 2
3

0 0 0

− 1
3

− 1
3

2
3

1
CCA; K½2;1�;2 ¼

0
BB@

1
3

− 2
3

1
3

0 0 0

− 1
3

2
3

− 1
3

1
CCA; ð3:64Þ

which have ranks N ½3� ¼ N ½2;1� ¼ 1. In that there are no
multiplicities of the representation spaces, we are allowed
to omit the subscript ξ̄ as in Eq. (3.62).

C. Gauge basis: Littlewood-Richardson rule

After obtaining the symmetrized Lorentz structures Mλ
x,

we are now ready to find a set of symmetrized gauge group
factorsTλ

SU3;x andT
λ
SU2;x in Eq. (2.8): the procedure is similar

to finding the symmetrized Lorentz structures discussed
above. We shall find all the independent group factors Tξ

first, and then symmetrize themby applyingbλx’s discussed in
Sec. III A 2 to the gauge group indices of the repeated fields:

Tλ
ξ;x ¼ bλx ∘Tξ: ð3:65Þ

In principle, one can obtain all the independent Tξ by
recursively usingClebsch-Gordan coefficients (CGCs) of the
corresponding gauge group; however, this method cannot
give nice forms of group factors expressed in terms of

invariants usingLevi-Civita tensors. Herewe postulate away
to express allTξ in terms of Levi-Civita tensors of the SUðNÞ
group provided that each field is expressed in a tensor of
fundamental indices only. The algorithm is to use the LR rule
repeatedly but with indices associated with the correspond-
ing irreps filled in during the construction of a singlet YD.
From this procedure, one can obtain different singlet Young
tableaux withN rows as different ways to construct a SUðNÞ
singlet. Each Young tableau then translates into a Tξ as a
product of ϵ tensors with the indices setting to the corre-
sponding indices in each column in a consistent manner. We
illustrate the procedure by constructing the SUð2ÞW group
factor of the operator Q3LWL. Suppose the SUð2ÞW indices
for three Q’s and L are j, k, l, and i, respectively, while that
forWL is I. The first step is to convert all the nonfundamental
indices into fundamental ones. The only field that needs this
preprocessing in our case is WI

L, and we convert it by
contracting with ðτIÞxm1

ϵxm2
, which leads to

WL;m1m2
¼ WI

LðτIÞxm1
ϵxm2

; ð3:66Þ
where the summation over the repeated indices is implied.
Next, we are going to form the Young tableaux with indices
j; k; l; i; m1; m2 according to the LR rule. There are three
differentTSU2;ξ’s which correspond to three different paths to
construct 3 × 2 YDs. We illustrate them in the following:

9Actually, the linear dependence among the rows of the matrix
Kλ1;x should not depend on x, just as the projector bλx either
projects out a full representation space, nonvanishing for all x, or
annihilate a Lorentz structure, vanishing for all x. Therefore, the
rank N λ

1 is also independent of x.
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ð3:67Þ

ð3:68Þ

ð3:69Þ

ð3:70Þ

where the first line tells the order of the fields in forming the
singlet YDs. We follow the above paths to fill each box with
the corresponding indices of the field and translate them into
products of ϵ’s:

ð3:71Þ

ð3:72Þ

ð3:73Þ

ð3:74Þ

With this set of TSU2;ξ, we can project out the corres-
ponding Tλ

SU2;x by using the symmetrizers bλx. To find out
which λ the three Q’s can take, we first need to enumerate
all the SUð2ÞW irreps constructed by Q’s that can form a
singlet with the rest of the fields L and W. In this example
both the quadruplet and the doublet are capable. Next, one
can pick out the λ that after taking plethysm with the
SUð2ÞW irrep ofQ’s are able to produce the quadruplet and
doublet:

ð3:75Þ

ð3:76Þ

From the above equation, we find that [3] and [2,1] are the
possible choices, and we have

T ½3�
SU2;1 ¼ b½3�1 ∘TSU2;1 ¼

1

6
½ϵjiϵkm1ϵlm2 þ ðperm i; j; kÞ�

¼ TSU2;1 −
1

3
ðTSU2;2 þ TSU2;3Þ; ð3:77Þ

T ½2;1�
SU2;1 ¼ b½2;1�1 ∘TSU2;1 ¼

1

3
½ϵjm1ϵkiϵlm2 þ ϵjiϵkm1ϵlm2 − ϵjm2ϵkm1ϵli − ϵjm1ϵkm2ϵli�

¼ 2

3
TSU2;2 −

1

3
TSU2;3; ð3:78Þ
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T ½2;1�
SU2;2 ¼ b½2;1�2 ∘TSU2;1 ¼

1

3
½ϵjm1ϵkm2ϵli þ ϵjiϵkm2ϵlm1 − ϵjm2ϵkiϵlm1 − ϵjm1ϵkiϵlm2 �

¼ −
1

3
TSU2;2 þ

2

3
TSU2;3: ð3:79Þ

From the first to the second lines in the above equations,
we have used the Schouten identity and the fact that any
terms proportional to ϵm1m2 can be dropped as WL;m1m2

is a
symmetric tensor. In addition, one can verify that the

projection of b½3�1 on TSU2;2 or TSU2;3 gives a null space

while that of b½2;1�x ’s generates the same space as the one we
generate above from Eq. (3.78) to Eq. (3.79).
Readers can follow this method to derive the SUð3ÞC

group factor for this type of operator, which is quite trivial

yielding T ½13�
SU3;1 ¼ ϵabc given that the indices of three Q’s

are a, b, c. It is obvious that this group factor is in the ½13�
representation of S3.
The above construction can be generalized to operator

types with more than one set of repeated fields. The
projection operations for different sets of repeated fields
simply commute with each other. Therefore one can
obtain a set of symmetrized group factors transforming
as irreps of the direct product symmetric group S̄ defined in
Sec. III A.

D. Flavor basis: Inner product decomposition

The above two subsections describe the systematic ways
to generate the Lorentz structures and the group factors as
irreps of S̄. Now we are at the stage to show how to use
these ingredients to construct operators with certain flavor
permutation symmetry. Still, we shall take the Q3LWL as

an example to demonstrate the procedure of the inner
product decomposition of a single symmetric group S3, and
the generalization to arbitrary sets of repeated fields will be
manifest.
We use the projection operator defined in Theorem 4.2 in

Ref. [39] to obtain the generalized CGCs Cðλ1;x1Þ;ðλ2;x2Þ;ðλ3;x3Þ
ðλ;xÞ;j

of the symmetric group with the definition

Θðλ;xÞ;j ¼
X

x1;x2;x3

Cðλ1;x1Þ;ðλ2;x2Þ;ðλ3;x3Þ
ðλ;xÞ;j Mλ1

x1 ⊗ Tλ2
SU3;x2

⊗ Tλ3
SU2;x3

;

ð3:80Þ

where Θðλ;xÞ;j is the xth basis vector in the jth (label of
multiplicity) irrep λ from the decomposition, which is
essentially a linear combination of various factorizable
terms defined in Eq. (2.8). The details of using a projection
operator to extract CGCs are given in Appendix B 2, and
here we directly provide the relevant CGCs of S3 for our
example Q3LWL. As we have obtained in the above two
sections, the permutation symmetries of the Lorentz struc-
ture can be ½13� or [2, 1], those of the SUð2ÞW group factor
can be ½3� or [2, 1], while the SUð3ÞC group factor only
takes ½13�. Therefore there are four possibilities to form
direct product representations, of which the inner product
decompositions are

ð3:81Þ

One can observe that the first three combinations of the
permutation symmetries are trivial as the decomposition
only results in a single irrep of S3, so we only show the

detail for the last one in the following. The relevant CGCs
for the last decomposition are summarized in Table III.
Since in our case, the multiplicities of each irrep is 1, the
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last indices of the subscripts of C are all 1. Also as
discussed in Ref. [18], for irreps with dimension larger
than 1, we only need to choose one of the basis vectors
from the decomposed invariant space as others generate
the same flavor space. Here we always select the first
vector in our basis, and this is why the third subscript
indices of C is always 1. In principle it is equivalent to
select any one of the basis vectors; the reason we choose

the first one in our convention is that it is equal to the
Young symmetrizer of the normal Young tableau of the
corresponding YD discussed in Sec. III A 2, which helps us
simplify our forms of operators in Sec. IV. We shall come
back to this point later in Sec. IVA.
Therefore we obtain three terms from the last line

of Eq. (3.81):

Θprst
ð½3�;1Þ;1 ¼

2

3
T ½13�
SU3;1ðT ½2;1�

SU2;1M
½2;1�
1 þ T ½2;1�

SU2;2M
½2;1�
2 Þ þ 1

3
T ½13�
SU3;1ðT ½2;1�

SU2;1M
½2;1�
2 þ T ½2;1�

SU2;2M
½2;1�
1 Þ; ð3:82Þ

Θprst
ð½2;1�;1Þ;1 ¼

1

3
T ½13�
SU3;1ðT ½2;1�

SU2;1M
½2;1�
1 þ T ½2;1�

SU2;2M
½2;1�
2 þ T ½2;1�

SU2;2M
½2;1�
1 Þ; ð3:83Þ

Θprst
ð½13�;1Þ;1 ¼

1

2
T ½13�
SU3;1ðT ½2;1�

SU2;2M
½2;1�
1 − T ½2;1�

SU2;1M
½2;1�
2 Þ; ð3:84Þ

where r, s, t, and p are the flavor indices of Q’s and L, respectively. As each factor is rather lengthy, we only show the full
expression of Θprst

ð½13�;1Þ;1 here:

Θprst
ð½13�;1Þ;1 ¼

i
12

ϵabcðτIÞim1
WI

Lμνfð2ϵjkϵlm1 − ϵjlϵkm1Þ½ðLpiσ
μνQsbkÞðQrajQtclÞ − ðLpiσ

μνQrajÞðQskbQtclÞ�
−ð2ϵjlϵkm1 − ϵjkϵlm1Þ½ðLpiσ

μνQsbkÞðQrajQtclÞ þ 2ðLpiσ
μνQrajÞðQskbQtclÞ�g

¼ −
i
4
ϵabcðτIÞim1

WI
Lμν½ϵjm1ϵklðLpiσ

μνQsbkÞðQrajQtclÞ þ ϵjlϵkm1ðLpiσ
μνQrajÞðQskbQtclÞ�; ð3:85Þ

where the Schouten identity has been used in the last line.
One can verify thatΘprst

ð½13�;1Þ;1 is indeed totally antisymmetric

about indices r, s, t as it should be.

So far, we have demonstrated the whole process to obtain
a term with a concrete exampleQ3LWL. We summarize our
algorithm to find a complete set of independent terms for a
given dimension in a flow chart in Fig. 1 and realize
automated treatment in a Mathematica code.
Given a dimension, one can enumerate theoperator classes

that determine the number of fields of each spin and the
number of the derivative. Further, by finding the correspond-
ing SSYTs, one can obtain the Lorentz structure candidates
without EOM and IBP redundancy. All of these above the
first dash-dotted line in the figure are model independent,
which can be applied to any Lorentz invariant EFTs.
After specifying the UV model, one can determine the

types of operators for each class and, indeed, determine the
independent Lorentz and gauge structures Mξ’s and Tξ’s.
Afterward, taking into account the information of repeated
fields from the specific type, one can symmetrize theMξ’s
and Tξ’s to obtain a set of Lorentz and gauge group basis
that transform as irreps of S̄. Finally, by putting these
ingredients together to form the Lorentz and gauge singlets
that transform as direct product representations of S̄, and
using inner product decomposition to decompose them
back into the irreps of S̄, one obtains several irrep spaces,
each corresponding to an independent term with a definite
flavor permutation symmetry. The symmetrization and the
inner product decomposition below the second dash-dotted

TABLE III. The relevant CGCs of S3 inner product decom-
position.

Flavor sym Relevant CGCs

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½3�;1;1Þ ¼ 2

3

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½3�;1Þ;1 ¼ 1

3

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½3�;1Þ;1 ¼ 1

3

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½3�;1Þ;1 ¼ 2

3

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½2;1�;1Þ ¼ 1

3

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½2;1�;1Þ;1 ¼ 1

3

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½2;1�;1Þ;1 ¼ 1

3

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½2;1�;1Þ;1 ¼ 0

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½13�;1Þ ¼ 0

Cð½2;1�;1Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½13�;1Þ;1 ¼ 1

2

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;1Þ
ð½13�;1Þ;1 ¼ − 1

2

Cð½2;1�;2Þ;ð½13�;1Þ;ð½2;1�;2Þ
ð½13�;1Þ;1 ¼ 0
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line are our unique contributions that are not present in the
literature yet.

IV. LISTS OF OPERATOR BASIS

A. Preview of the result

In this section, we list all the dimension-eight terms of
operators, grouped by the classes of Lorentz structures. In
Table IV we show the statistics of all the SMEFT
dimension-eight results organized by subclasses, with links
referring to the corresponding lists of operators in the
following subsections. The subclasses with nontrivial
polynomials of nf, the fermion flavor number, as the total
number of operators are those for which we need to take
care of the repeated field issues. The statistics for the B
violation (ΔB ¼ �1) are listed with underlines, while the
lepton number violation is not shown because B − L is
conserved at dimension eight.
For readers’ convenience, we further perform several

notation changes and simplifications on the basis of the
terms directly produced by our algorithm:

(i) In the Lorentz structures, we convert the derivatives
and the gauge bosons to the form with Lorentz
indices μ; ν; ρ;…. This is done by grouping the
spinor contractions into chains that start and end at
fermions, and traces that start and end at the same F
or D. On the one hand, we reduce the σ products in
the chains to the three basic bilinear forms ψχ,
ψσμχ†, and ψσμνχ and their conjugates, where all
spinor indices are suppressed and ψ , χ are both left-
handed Weyl spinors as in our convention for the
fermion fields. On the other hand, all the traces are

reduced to products of gμν, σμν, and ϵμνρη. Relevant
formulas are listed in Appendix A 1.

(ii) We are using two-component spinors for all the
fermion fields as they are the most natural way to
deal with chiral fermions. Conversion rules to four-
component spinor notation are provided in Appen-
dix A 1. Because of the way we deal with the Fierz
identity Eq. (3.25), the Lorentz structures we exhibit
do not contain any vector, axial, or tensor couplings
for four-fermion interactions. Readers could use
Fierz identities also presented in Appendix A 1 to
convert the operators to any forms they like. Exam-
ples are also provided beside the lists in Sec. IV D.

(iii) We also convert the chiral basis of gauge bosons
FL=R to the Hermitian fields F; F̃ by using the
formula in Appendix A 2. After this is done, some
of the types, even from different subclasses, merge
into one.

(iv) The following common notations are adopted to
reduce some of our terms:

XDμY −DμXY ≡ XD
↔μ

Y; DμDμ ≡□;

H†iHi ≡ ðH†HÞ; H†iðτIÞjiHj ≡ ðH†τIHÞ;
F1μνF

μν
2 ≡ ðF1F2Þ ≡F1¼F2¼F

F2: ð4:1Þ

(v) The most subtle simplification is trying to super-
ficially reduce the length of terms10 in order to

FIG. 1. Flow chart for finding all the independent terms at a given dimension. The content above the first dash-dotted line is model
independent and can be applied to any EFT. The content below the second dash-dotted line is our main contribution to this work. We
automatize the whole procedure in a Mathematica code.

10In this paragraph, term without quotes only indicates a
monomial in a polynomial expression rather than a level of
operators in our construction.
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present them in the paper better. Take Eq. (3.85) as
an example, where two terms exist after expansion.
The two terms together guarantee the total antisym-
metry of the Q flavors r, s, t in Θprst

ð½13�;1Þ;1. It is fair to

guess that by performing total antisymmetrization
on one of the terms over r, s, t should reproduce
Θprst

ð½13�;1Þ;1, such as

ð4:2Þ

TABLE IV. Complete statistics of dimension-eight operators in the SMEFT, while the numbers with underlines are for the B-violating
operators. N in the leftmost column shows the number of particles. ðn; ñÞ are the numbers of ϵ and ϵ̃ in the Lorentz structure, which
determines the primary YD ½A� the subclasses belong to. Note that our definition of “term” is different from the other literature, and the
numbers are larger than those in, for instance, [18] because they did an extra step of merging before the counting. However, the number
of operators is exactly the same as in [15,18]. The links in the rightmost column refer to the list(s) of the terms in given subclasses.
N type;N term, and N operator show the number of types, terms, and Hermitian operators, respectively (independent conjugates are
counted).

N ðn; ñÞ Subclasses N type N term N operator Equations

4 (4,0) F4
L þ H:c: 14 26 26 (4.19)

(3,1) F2
Lψψ

†Dþ H:c: 22 22 22n2f (4.50)

ψ4D2 þ H:c: 4þ4 18þ14 12n4fþn3fð5nf − 1Þ (4.74), (4.77), (4.79)

FLψ
2ϕD2 þ H:c: 16 32 32n2f (4.43)

F2
Lϕ

2D2 þ H:c: 8 12 12 (4.14)

(2,2) F2
LF

2
R 14 17 17 (4.19)

FLFRψψ
†D 27 35 35n2f (4.49), (4.50)

ψ2ψ†2D2 17þ4 54þ8 1
2
n2fð75n2f þ 11Þþ6n4f (4.73), (4.78)–(4.80)

FRψ
2ϕD2 þ H:c: 16 16 16n2f (4.43)

FLFRϕ
2D2 5 6 6 (4.14)

ψψ†ϕ2D3 7 16 16n2f (4.31), (4.32)

ϕ4D4 1 3 3 (4.8)

5 (3,0) FLψ
4 þ H:c: 12þ10 66þ54 42n4fþ2n3fð9nf þ 1Þ (4.85), (4.87), (4.88), (4.90)

F2
Lψ

2ϕþ H:c: 32 60 60n2f (4.46), (4.47)

F3
Lϕ

2 þ H:c: 6 6 6 (4.16)

(2,1) FLψ
2ψ†2 þ H:c: 84þ24 172þ32 2n2fð59n2f − 2Þþ24n4f (4.83)–(4.84), (4.87)–(4.91)

F2
Rψ

2ϕþ H:c: 32 36 36n2f (4.46), (4.47)

ψ3ψ†ϕDþ H:c: 32þ14 180þ56 n3fð135nf − 1Þþn3fð29nf þ 3Þ (4.65), (4.68)–(4.71)
FLψψ

†ϕ2Dþ H:c: 38 92 92n2f (4.39), (4.40)

ψ2ϕ3D2 þ H:c: 6 36 36n2f (4.28)

FLϕ
4D2 þ H:c: 4 6 6 (4.10)

6 (2,0) ψ4ϕ2 þ H:c: 12þ4 48þ18 5ð5n4f þ n2fÞþ 2
3
ð8n4f þ n2fÞ (4.54), (4.58), (4.61), (4.63)

FLψ
2ϕ3 þ H:c: 16 22 22n2f (4.36)

F2
Lϕ

4 þ H:c: 8 10 10 (4.12)

(1,1) ψ2ψ†2ϕ2 23þ10 57þ14 n2fð42n2f þ nf þ 2Þþ3n3fð3nf − 1Þ (4.53), (4.54), (4.58)–(4.62)
ψψ†ϕ4D 7 13 13n2f (4.24), (4.25)

ϕ6D2 1 2 2 (4.8)

7 (1, 0) ψ2ϕ5 þ H:c: 6 6 6n2f (4.21)

8 (0,0) ϕ8 1 1 1 (4.8)

Total 48 471þ70 1070þ196 993ðnf ¼ 1Þ; 44807ðnf ¼ 3Þ
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where the Young symmetrizer specified by the Young tableaux , equivalent to the projector b½1
3�

1 as explained in Sec. III A

2, acts on the flavor indices r, s, t, so that the permutation symmetry over these indices are guaranteed by the property of the
projector Eq. (3.16) to Eq. (3.19). An example of the nontrivial symmetrizer for the mixed symmetry is

ð4:3Þ

where … represents the possible presence of flavor indices of other sets of repeated fields. For terms involving more than
one set of repeated fields, the symmetrizer is specified by several Young tableaux, for example,

ð4:4Þ

Back to the example of Eq. (3.85), where only one ½13�
operator exists for the type WLQ3L, there is no doubt that
Eq. (4.2) can reproduce it up to an overall constant factor. In
this way, we reduce the length of our terms with the definite
flavor symmetry and hide the complexity into the corre-
sponding Young symmetrizer leaving rather simple forms
exhibited in the following sections. The case becomes more
complicated when a certain type containing more than one
copy of irrep of the same flavor symmetry λ. In these cases a
dedicated “desymmetrization” procedure [44] is performed
to find out the monomials such that after acting on the
corresponding Young symmetrizer they are symmetrized to
independent terms. Moreover, if several irreducible flavor
tensors can be written as different Young symmetrizers
acting on the same term, these tensors can be merged into
one tensor with reducible flavor symmetry, which is how
term was used in [18]. TheQ3L operator at dimension six is
one of such examples, which is why there is only one term
for it in the Warsaw basis [3]. However, the principle for the
merging does not exist so far, the number of such a term is
an ambiguous quantity as discussed in [18]. We emphasize
that our term defined in Sec. II B does not have such
ambiguity, and we prefer not to do the merging but instead
shorten our notation with the trick of the Young symmetr-
izer mentioned above.
(vi) Finally, instead of listing subclasses sorted by the

tuple ðN; n; ñÞ, we list chirality-blind classes sorted
by the number of fermions to fit the needs of
phenomenologists. Within a class, operators are
listed as either “complex” types or “real” types.
We refer to a type of operators whose conjugates are

of different types as a complex type, and a self-
conjugate type as a real type. Since we do not
present conjugates of the complex types, operators
of these types should be counted twice in the sense
of Hermitian degrees of freedom. For the real types,
although the operators presented may not be Her-
mitian on their own, their conjugates must be
combinations of operators in the same type and
should not be counted separately, so these operators
are only counted as 1 Hermitian degree of freedom.
The numbers presented in Table IVare all counted in
this manner. We have also listed the B-violating
operators separately in Sec. IV D.

B. Classes involving bosons only

In the following sections, we list our operators in terms
of subclasses, ordered by the number of fermions and
gauge bosons. The subclasses shown here are summarized
in Table II, while those not showing up are redundant
according to our treatments of various redundancy relations
listed at the beginning of Sec. III B.
Class ϕ8−nDDnD : Operators with only scalars. The

subclasses available in Table II are nD ¼ 0, 2, 4. The
Lorentz structure of the all-scalar subclass ϕ8 is trivial,
shown as

ϕ1ϕ2ϕ3ϕ4ϕ5ϕ6ϕ7ϕ8: ð4:5Þ

For the subclass ϕ6D2, all the Lorentz structures are given
by the algorithm in Sec. III B 2 as follows:

ϕ1ðDϕ2Þα_αϕ3ϕ5ðDϕ4Þ _ααϕ6; ϕ1ðDϕ2Þα_αϕ3ϕ4ðDϕ5Þ _ααϕ6; ϕ1ðDϕ2Þα_αϕ3ϕ4ϕ5ðDϕ6Þ _αα;
ϕ1ϕ2ðDϕ3Þα_αðDϕ4Þ _ααϕ5ϕ6; ϕ1ϕ2ðDϕ3Þα_αϕ4ðDϕ5Þ _ααϕ6; ϕ1ϕ2ðDϕ3Þα_αϕ4ϕ5ðDϕ6Þ _αα;
ϕ1ϕ2ϕ3ðDϕ4Þα_αðDϕ5Þ _ααϕ6; ϕ1ϕ2ϕ3ðDϕ4Þα_αϕ5ðDϕ6Þ _αα; ϕ1ϕ2ϕ3ϕ4ðDϕ5Þα_αðDϕ6Þ _αα; ð4:6Þ

while those for the subclass ϕ4D4 are given as
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ϕ1ðD2ϕ2Þαβ_α _β
ϕ3ðD2ϕ4Þ _α _β

αβ ; ϕ1ðDϕ2Þα_αðDϕ3Þβ_βðD2ϕ4Þ _α _β
αβ ; ϕ1ϕ2ðD2ϕ3Þαβ_α _β

ðD2ϕ4Þ _α _β
αβ : ð4:7Þ

Plugging fields from Table I to these Lorentz structures, making sure that the total hypercharge is zero, we get the
following three types of operators, and by going through our algorithm, we obtain six terms in all as a nonredundant basis:

OH4H†4

				ðH†HÞ4;

Oð1;2Þ
H3H†3D2

				ðH†HÞ2□ðH†HÞ; ðH†HÞjH†DμHj2;

Oð1∼3Þ
H2H†2D4

				ðH†HÞ□2ðH†HÞ; jH†DμDνHj2; ðH†DμHÞ�□ðH†DμHÞ: ð4:8Þ

The superscripts of the O’s label the terms in the particular type, in the order of left to right and top to bottom. The first
operator modifies the shape of the Higgs potential, and the rest could renormalize the Higgs field and thus modify the Higgs
couplings uniformly.
Class Fϕ6−nDDnD : Operators with one gauge boson and arbitrary scalars. According to Table II, only one subclass

FLϕ
4D2 survives our criteria, which contains the following three independent Lorentz structures:

FL1
αβϕ2ðDϕ3Þα _αðDϕ4Þ _αβϕ5; FL1

αβϕ2ðDϕ3Þα _αϕ4ðDϕ5Þ _αβ; FL1
αβϕ2ϕ3ðDϕ4Þα _αðDϕ5Þ _αβ: ð4:9Þ

Together with their Hermitian conjugates, they combine into the form with F; F̃, that become real in this notation. In the
SMEFT, we have the following real types:

Oð1∼4Þ
WH2H†2D2

				W
IμνðH†HÞðDμH†τIDνHÞ; W̃IμνðH†HÞðDμH†τIDνHÞ;

WIμνðDμH†DνHÞðH†τIHÞ; W̃IμνðDμH†DνHÞðH†τIHÞ;
Oð1;2Þ

BH2H†2D2 jBμνðH†HÞðDμH†DνHÞ; B̃μνðH†HÞðDμH†DνHÞ: ð4:10Þ

Class F2ϕ4−nDDnD : Operators with two gauge bosons and arbitrary scalars. Table II contains two subclasses of this form,
with nD ¼ 0, 2. The only Lorentz structure in the subclass F2ϕ4 is

FL1
αβFL2αβϕ3ϕ4ϕ5ϕ6: ð4:11Þ

In the SMEFT we get the following types under this subclass:

Oð1;2Þ
G2H2H†2 jG2ðH†HÞ2; ðGA

μνG̃
AμνÞðH†HÞ2;

Oð1∼4Þ
W2H2H†2

				W
I
μνWJμνðH†τIHÞðH†τJHÞ; W2ðH†HÞ2;

WI
μνW̃JμνðH†τIHÞðH†τJHÞ; ðWIW̃IÞðH†HÞ2;

Oð1;2Þ
B2H2H†2 jB2ðH†HÞ2; ðBB̃ÞðH†HÞ2;

Oð1;2Þ
BWH2H†2 jBμνWIμνðH†τIHÞðH†HÞ; BμνW̃IμνðH†τIHÞðH†HÞ: ð4:12Þ

When all the Higgs bosons are put to their vacuum expectation values (VEVs), the operators normalize the kinetic terms of
gauge bosons and thus modify the corresponding gauge couplings uniformly.
On the other hand, there are three independent Lorentz structures in the subclass F2ϕ2D2:

FL1
αβFL2α

γðDϕ3Þβ _αðDϕ4Þ _αγ ; FL1
αβFL2αβðDϕ3Þγ_αðDϕ4Þ _αγ ; FL1

αβϕ2ðD2ϕ3Þαβ _α _βF
_α _β
R4 : ð4:13Þ

Again, combined with their Hermitian conjugates, we obtain the following real types:
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Oð1∼3Þ
G2HH†D2 jG2ðDμH†DμHÞ; ðGAG̃AÞðDμH†DμHÞ; GAμ

λGAνλðDμH†DνHÞ;

Oð1∼6Þ
W2HH†D2

								
W2ðDμH†DμHÞ; iϵIJKWI μ

λ WJνλðDμH†τKDνHÞ;
ðWIW̃IÞðDμH†DμHÞ; iϵIJKWI ½μ

λW̃Jν�λðDμH†τKDνHÞ;
WIμ

λWIνλðDμH†DνHÞ; iϵIJKWI ðμ
λW̃JνÞλðDμH†τKDνHÞ;

Oð1∼3Þ
B2HH†D2 jB2ðDμH†DμHÞ; ðBB̃ÞðDμH†DμHÞ; Bμ

λ BνλðDμH†DνHÞ;

Oð1∼6Þ
BWHH†D2

								
ðBWIÞðDμH†τIDμHÞ; ðBW̃IÞðDμH†τIDμHÞ;

iB½μ
λWIν�λðDνH†τIDμHÞ; iB½μ

λW̃Iν�λðDνH†τIDμHÞ;
Bðμ

λWIνÞλðDνH†τIDμHÞ; Bðμ
λW̃IνÞλðDνH†τIDμHÞ;

ð4:14Þ

where brackets for the indices are shorthand notations for (anti)symmetrization F½μ
1 λF

ν�λ
2 ≡ Fμ

1λF
νλ
2 − Fν

1λF
μλ
2 and

Fðμ
1 λF

νÞλ
2 ≡ Fμ

1λF
νλ
2 þ Fν

1λF
μλ
2 . The operators of these types contribute to the neutral triple gauge boson couplings, which

do not appear at lower dimensions [22].
Class F3ϕ2: Operators with triple gauge bosons. Note that the operators of class F3D2 are absent due to our treatment

about EOM. The only Lorentz structure in the subclass F3ϕ2 is

FL1
αβFL2α

γFL3βγϕ4ϕ5: ð4:15Þ

Note that the types B3HH†; BG2HH†; B2WHH†, and G2WHH† cannot exist, even though they are able to form Lorentz
invariant gauge singlets. The reason is that the only Lorentz structure shown above is totally antisymmetric for the three
gauge bosons. In case no antisymmetric structures from the gauge group sectors, such as the structure constants, are
available, the operators must vanish due to the commuting nature of any repeated gauge bosons in it. The nonvanishing
types, which all involve totally antisymmetric structure constants, are shown below

Oð1;2Þ
G3HH† jfABCGA

μνGBμ
λGCνλH†H; fABCGA

μνGB μ
λG̃

CνλH†H;

Oð1;2Þ
W3HH† jϵIJKWI

μνWJ μ
λWKνλH†H; ϵIJKWI

μνWJμ
λW̃KνλH†H;

Oð1;2Þ
BW2HH† jϵIJKBμνWIμ

λ WJνλH†τKH; ϵIJKBμνWIμ
λW̃JνλH†τKH: ð4:16Þ

These operators contribute to the anomalous triple gauge boson couplings.
Class F4: Operators with four gauge bosons. There is one Lorentz structure of subclass F2

LF
2
R and three Lorentz

structures of subclass F4
L,

FL1
αβFL2αβFR3 _α _βFR4

_α _β; ð4:17Þ

FL1
αβFL2

γδFL3αβFL4γδ; FL1
αβFL2α

γFL3β
δFL4γδ; FL1

αβFL2αβFL3
γδFL4γδ: ð4:18Þ

After symmetrization described in Sec. III B 3, we find no Lorentz structure that is antisymmetric over the gauge bosons,
which implies that the type BW3 whose SUð2ÞW structure has to be totally antisymmetric must vanish. The nonvanishing
types are given below:

Oð1∼9Þ
G4

								
ðGAGBÞðGAGBÞ; dACEdBDEðGAGBÞðGCGDÞ; fACEfBDEðGAGBÞðGCGDÞ;
ðGAGBÞðGAG̃BÞ; dACEdBDEðGAGBÞðGCG̃DÞ; fACEfBDEðGAGBÞðGCG̃DÞ;
ðGAG̃BÞðGAG̃BÞ; dACEdBDEðGAG̃BÞðGCG̃DÞ; fACEfBDEðGAG̃BÞðGCG̃DÞ;

Oð1∼6Þ
W4

				 ðW
IWIÞðWJWJÞ; ðWIWIÞðWJW̃JÞ; ðWIW̃IÞðWJW̃JÞ;

ðWIWJÞðWIWJÞ; ðWIWJÞðWIW̃JÞ; ðWIW̃JÞðWIW̃JÞ;
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Oð1∼3Þ
B4 jðB2ÞðB2Þ; ðB2ÞðBB̃Þ; ðBB̃ÞðBB̃Þ;

Oð1∼7Þ
G2W2

				G
2W2; G2ðWIW̃IÞ; ðGAG̃AÞW2; ðGAG̃AÞðWIW̃IÞ;
ðGAWIÞðGAWIÞ; ðGAWIÞðGAW̃IÞ; ðGAW̃IÞðGAW̃IÞ;

Oð1∼7Þ
G2B2

				G
2B2; G2ðBB̃Þ; ðGAG̃AÞB2; ðGAG̃AÞðBB̃Þ;
ðGABÞðGABÞ; ðGABÞðGAB̃Þ; ðGAB̃ÞðGAB̃Þ;

Oð1∼7Þ
W2B2

				B
2W2; W2ðBB̃Þ; ðWIW̃IÞB2; ðWIW̃IÞðBB̃Þ;
ðWIBÞðWIBÞ; ðWIBÞðWIB̃Þ; ðWIB̃ÞðWIB̃Þ;

Oð1∼4Þ
BG3

				 d
ABCðBGAÞðGBGCÞ; dABCðBGAÞðGBG̃CÞ;

dABCðBG̃AÞðGBGCÞ; dABCðBG̃AÞðGBG̃CÞ: ð4:19Þ

C. Classes involving two fermions

1. No gauge boson involved

In this subsection we deal with the classes ψ2ϕ5−nDDnD . Note from Eq. (2) that for odd nD we have fermions of opposite
helicities, or chirality conserving, and for even nD we have them with the same helicities or chirality violating.
Class ψ2ϕ5: The only Lorentz structure of this subclass is

ψ1
αψ2αϕ3ϕ4ϕ5ϕ6ϕ7: ð4:20Þ

In the SMEFT, these are Yukawa terms with additional Higgses, which are all complex types:

OQuCH3H†2 jϵilðQpaiuC a
r ÞHlðH†HÞ2;

OQdCH2H†3 jðdC a
pQraiÞH†iðH†HÞ2;

OeCLH2H†3 jðeCpLriÞH†iðH†HÞ2: ð4:21Þ

After taking the Higgs VEV, they give rise to additional contributions to the SM fermion Yukawa couplings. According to
Appendix A 1, the relevant bilinear of two-component spinors can be converted to the four-component notation as

ðQpaiΓuCa
rÞ ¼ ðūarΓqpaiÞ; ðdCa

pΓQraiÞ ¼ ðd̄apΓqraiÞ; ðeCpΓLriÞ ¼ ðēpΓlriÞ; Γ ¼ 1; τI; λA;Dμ: ð4:22Þ

Class ψ2ϕ4D: The subclass has to be ψψ†ϕ4D, which has the following Lorentz structures:

ψ1
αϕ2ðDϕ3Þα _αϕ4ϕ5ψ

†
6
_α; ψ1

αϕ2ϕ3ðDϕ4Þα _αϕ5ψ
†
6
_α; ψ1

αϕ2ϕ3ϕ4ðDϕ5Þ α _αψ†
6
_α: ð4:23Þ

In the SMEFT, all but one of the types are real:

Oð1∼4Þ
QQ†H2H†2D

					
iðQpaiσ

μQ† ai
r ÞðH†D

↔

μHÞðH†HÞ; iðQpaiσ
μQ† aj

r ÞH†iHjðH†D
↔

μHÞ;
ðQpaiσ

μQ† aj
r ÞH†iHjDμðH†HÞ; iðQpaiσ

μQ† aj
r ÞH†iD

↔

μHjðH†HÞ;
OuCu

†
CH

2H†2DjiðuCa
pσ

μu†CraÞðH†D
↔

μHÞðH†HÞ;

OdCd
†
CH

2H†2DjiðdCa
pσ

μd†C ra ÞðH†D
↔

μHÞðH†HÞ;

Oð1∼4Þ
LL†H2H†2D

					
iðLpiσ

μL† i
rÞðH†D

↔

μHÞðH†HÞ; iðLpiσ
μL† j

rÞH†iHjðH†D
↔

μHÞ;
ðLpiσ

μL† j
rÞH†iHjDμðH†HÞ; iðLpiσ

μL† j
rÞH†iD

↔

μHjðH†HÞ;
OeCe

†
CH

2H†2DjiðeCpσμe†CrÞðH†D
↔

μHÞðH†HÞ: ð4:24Þ
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The only complex type is

OuCd
†
CH

3H†DjϵjkðuCa
pσ

μd†CraÞðH†HÞHjDμHk: ð4:25Þ

After taking VEV for two of the Higgses, these are the five neutral fermion currents and one charged fermion current
coupled with the neutral and charged Higgs current, which are already present at dimension six, but with additional v2=Λ2

suppression. Note that for the left-handed fermionsQi and Li, new terms exist due to the richness of the SUð2ÞW structures.
The conversion of these fermion currents to four-component spinor notation is shown by the following examples:

ðeCpσμΓe†CrÞ ¼ ðēpγμΓerÞ; ðLpiσ
μΓL† i

rÞ ¼ −ðl̄irγμΓlpiÞ; Γ ¼ 1; τI; λA;Dμ: ð4:26Þ

Class ψ2ϕ3D2: The subclass ψ2ϕ3D2 contains six independent Lorentz structures:

ψ1
αψ2

βðDϕ3Þα _αðDϕ4Þ _αβϕ5; ψ1
αψ2

βðDϕ3Þα _αϕ4ðDϕ5Þ _αβ; ψ1
αψ2

βϕ3ðDϕ4Þα _αðDϕ5Þ _αβ;
ψ1

αψ2αðDϕ3Þβ_αðDϕ4Þ _αβϕ5; ψ1
αψ2αðDϕ3Þβ_αϕ4ðDϕ5Þ _αβ; ψ1

αψ2αϕ3ðDϕ4Þβ_αðDϕ5Þ _αβ: ð4:27Þ

Types of this subclass in the SMEFT are similar to the Yukawa terms, which are all complex, with additional Higgs and
derivatives:

Oð1∼6Þ
QuCH2H†D2

								
iϵikðQpaiuC a

r ÞDμHkðH†D
↔

μHÞ; iϵikðQpaiσ
μνuC a

r ÞDμHkðH†D
↔

νHÞ;
ϵikðQpaiuC a

r ÞHkðDμH†DμHÞ; ϵikðQpaiσ
μνuC a

rÞHkðDμH†DνHÞ;
ϵikðQpaiuC a

r ÞDμHkDμðH†HÞ; ϵikðQpaiσ
μνuC a

rÞDμHkDνðH†HÞ;

Oð1∼6Þ
QdCHH†2D2

								
ið dCa

pQraiÞDμH†iðH†D
↔

μHÞ; ið dCa
pσ

μνQraiÞDμH†iðH†D
↔

νHÞ;
ð dCa

pQraiÞH†iðDμH†DμHÞ; ð dCa
pσ

μνQraiÞH†iðDμH†DνHÞ;
ð dCa

pQraiÞDμH†iDμðH†HÞ; ð dCa
pσ

μνQraiÞDμH†iDνðH†HÞ;

Oð1∼6Þ
eCLHH†2D2

								
iðeCpLriÞDμH†iðH†D

↔

μHÞ; iðeCpσμνLriÞDμH†iðH†D
↔

νHÞ;
ðeCpLriÞH†iðDμH†DμHÞ; ðeCpσμνLriÞH†iðDμH†DνHÞ;
ðeCpLriÞDμH†iDμðH†HÞ; ðeCpσμνLriÞDμH†iDνðH†HÞ;

ð4:28Þ

but due to the derivatives, these are new Lorentz structures at dimension eight. In some of the terms, the dipole moment
bilinear appears, which is converted to four-component notation as

ðeCpσμνΓLriÞ ¼ ðēpσμνΓlriÞ; ðQpaiσ
μνΓuCa

r Þ ¼ ðūarσμνΓqpaiÞ; Γ ¼ 1; τI; λA;Dμ: ð4:29Þ

Class ψ2ϕ2D3: With three derivatives, we have only two independent Lorentz structures as follows:

ψ1
αðDϕ2Þβ_αðDϕ3Þα _βðDψ†

4Þ _α
_β

β ; ψ1
αϕ2ðD2ϕ3Þβα _α _β

ðDψ†
4Þ _α

_β
β ; ð4:30Þ

which can easily be checked by enumerating the SSYTof shape and labels f1; 1; 1; 2; 2; 3; 3; 4g (cf. Sec. III B 2). The
types in the SMEFT are very similar to those of the subclass ψ2ϕ4D, with five real types:
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Oð1∼4Þ
QQ†HH†D3

				 iðQpaiσμQ† ai
r Þ□ðH†D

↔
μHÞ; iðQpaiσμD

↔

νQ† ai
r ÞðDμH†DνHÞ;

iðQpaiσμQ† aj
r Þ□ðH†iD

↔
μHjÞ; iðQpaiσμD

↔

νQ† aj
r ÞðDμH†iDνHjÞ;

Oð1;2Þ
uCu

†
CHH†D3

				 iðuC a
pσμu

†
CraÞ□ðH†D

↔
μHÞ; iðuC a

pσμD
↔

νu
†
CraÞðDμH†DνHÞ;

Oð1;2Þ
dCd

†
CHH†D3

				 iðdC a
pσμd

†
CraÞ□ðH†D

↔
μHÞ; iðdC a

pσμD
↔

νd
†
CraÞðDμH†DνHÞ;

Oð1∼4Þ
LL†HH†D3

				 iðLpiσμL† i
rÞ□ðH†D

↔
μHÞ; iðLpiσμD

↔

νL† i
rÞðDμH†DνHÞ;

iðLpiσμL† j
rÞ□ðH†iD

↔
μHjÞ; iðLpiσμD

↔

νL† j
rÞðDμH†iDνHjÞ;

Oð1;2Þ
eCe

†
CHH†D3

				 iðeCpσμe
†
C rÞ□ðH†D

↔
μHÞ; iðeCpσμD

↔

νe
†
C rÞðDμH†DνHÞ; ð4:31Þ

and one complex type:

OuCd
†
CH

2D3 jiϵijðuC a
pσ

νD μd†CraÞDμHiDνHj: ð4:32Þ

If we use the Fierz identity of SUðNÞ group Eq. (A26), we can perform the following transformation:

iðQpaiσμQ† aj
r Þ□ðH†iD

↔
μHjÞ ¼

1

2
iðq̄rγμqpÞ□ðH†D

↔
μHÞ þ iðq̄rγμτIqpÞ□ðH†τID

↔
μHÞ: ð4:33Þ

It could help convert our terms in Eq. (4.31) to more common forms, such as

8>>>>>>>><
>>>>>>>>:

iðQpaiσμQ† ai
r Þ□ðH†D

↔
μHÞ

iðQpaiσμQ† aj
r Þ□ðH†iD

↔
μHjÞ

iðQpaiσμD
↔

νQ† ai
r ÞðDμH†DνHÞ

iðQpaiσμD
↔

νQ† aj
r ÞðDμH†iDνHjÞ

⇒

8>>>>>>>><
>>>>>>>>:

iðq̄rγμqpÞ□ðH†D
↔

μHÞ
iðq̄rγμτIqpÞ□ðH†τID

↔
μHÞ

iðq̄rγμD
↔

νqpÞðDμH†DνHÞ
iðq̄rγμτID

↔

νqpÞðDμH†iτIDνHjÞ

: ð4:34Þ

2. One gauge boson involved

Class Fψ2ϕ3: The only independent Lorentz structure of this subclass is

FL1
αβψ2αψ3βϕ4ϕ5ϕ6: ð4:35Þ

The operators with these Lorentz structures in the dimension eight SMEFT are

OGQuCH2H† ϵikGA
μνðQpaiσ

μνðλAÞabuC b
r ÞHkðH†HÞ;

Oð1;2Þ
WQuCH2H†

				 ϵkmðτIÞjmWI
μνðQpaiσ

μνuC a
r ÞHjHkH†i; ϵkmðτIÞimWI

μνðQpaiσ
μνuC a

r ÞHkðH†HÞ;

OBQuCH2H† ϵikBμνðQpaiσ
μνuC a

r ÞHkðH†HÞ;
OGQdCHH†2 GA

μνðdC a
pσ

μνðλAÞbaQrbiÞH†iðH†HÞ;
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Oð1;2Þ
WQdCHH†2 WI

μνðdC a
pσ

μνQraiÞH†iðH†τIHÞ; ðτIÞilWI
μνðdC a

pσ
μνQraiÞH†lðH†HÞ;

OBQdCHH†2 BμνðdC a
pσ

μνQraiÞH†iðH†HÞ;
Oð1;2Þ

WeCLHH†2 WI
μνðeCpσμνLriÞH†iðH†τIHÞ; ðτIÞilWI

μνðeCpσμνLriÞH†lðH†HÞ;
OBeCLHH†2 BμνðeCpσμνLriÞH†iðH†HÞ: ð4:36Þ

Note that these are all complex types, whose real part and imaginary part contribute to the electric and magnetic dipole
moments of the fermions, respectively, after the Higgses take their VEV. One may refer to Eq. (4.29) for the conversion to
four-component spinor notation.
Class OðFψ2ϕ2DÞ: In this class, the two spinors have opposite helicities and form a fermion current, while the gauge

boson couples with both the fermion current and the Higgs current. Two independent Lorentz structures are present:

FL1
αβψ2αðDϕ3Þβ _αϕ4ψ

† _α
5 ; FL1

αβψ2αϕ3ðDϕ4Þβ _αψ† _α
5 : ð4:37Þ

In the SMEFT, real types with neutral fermion currents are as follows:

Oð1∼8Þ
GQQ†HH†D

														

GA
μνðQpaiσ

νðλAÞabQ† bi
r ÞDμðH†HÞ; iGA

μνðQpaiσ
νðλAÞabQ† bi

r ÞðH†D
↔

μHÞ;
G̃A

μνðQpaiσ
νðλAÞabQ† bi

r ÞDμðH†HÞ; iG̃A
μνðQpaiσ

νðλAÞabQ† bi
r ÞðH†D

↔
μHÞ;

GA
μνðQpaiσ

νðλAÞabQ† bj
r ÞDμðH†iHjÞ; iGA

μνðQpaiσ
νðλAÞabQ† bj

r ÞðH†iD
↔

μHjÞ;
G̃A

μνðQpaiσ
νðλAÞabQ† bj

r ÞDμðH†iHjÞ; iG̃A
μνðQpaiσ

νðλAÞabQ† bj
r ÞðH†iD

↔
μHjÞ;

Oð1∼12Þ
WQQ†HH†D

																			

WI
μνðQpaiσ

νQ† ai
r ÞDμðH†τIHÞ; iWI

μνðQpaiσ
νQ† ai

r ÞðH†τID
↔

μHÞ;
W̃I

μνðQpaiσ
νQ† ai

r ÞDμðH†τIHÞ; iW̃I
μνðQpaiσ

νQ† ai
r ÞðH†τID

↔
μHÞ;

ðτIÞkjWI
μνðQpaiσ

νQ† aj
r ÞDμðH†iHkÞ; iðτIÞkjWI

μνðQpaiσ
νQ† aj

r ÞðH†iD
↔

μHkÞ;
ðτIÞkjW̃I

μνðQpaiσ
νQ† aj

r ÞDμðH†iHkÞ; iðτIÞkjW̃I
μνðQpaiσ

νQ† aj
r ÞðH†iD

↔
μHkÞ;

ðτIÞikWI
μνðQpaiσ

νQ† aj
r ÞDμðH†kHjÞ; iðτIÞikWI

μνðQpaiσ
νQ† aj

r ÞðH†kD
↔

μHjÞ;
ðτIÞikW̃I

μνðQpaiσ
νQ† aj

r ÞDμðH†kHjÞ; iðτIÞikW̃I
μνðQpaiσ

νQ† aj
r ÞðH†kD

↔
μHjÞ;

ð4:38Þ

Oð1∼8Þ
BQQ†HH†D

												

BμνðQpaiσ
νQ† ai

r ÞDμðH†HÞ; iBμνðQpaiσ
νQ† ai

r ÞðH†D
↔μ

HÞ;
B̃μνðQpaiσ

νQ† ai
r ÞDμðH†HÞ; iB̃μνðQpaiσ

νQ† ai
r ÞðH†D

↔μ
HÞ;

BμνðQpaiσ
νQ† aj

r ÞDμðH†iHjÞ; iBμνðQpaiσ
νQ† aj

r ÞðH†iD
↔μ

HjÞ;
B̃μνðQpaiσ

νQ† aj
r ÞDμðH†iHjÞ; iB̃μνðQpaiσ

νQ† aj
r ÞðH†iD

↔μ
HjÞ;

Oð1∼4Þ
GuCu

†
CHH†D

					
GA

μνðuC a
pσ

νðλAÞbau†C rbÞDμðH†HÞ; iGA
μνðuC a

pσ
νðλAÞbau†C rbÞðH†D

↔μ
HÞ;

G̃A
μνðuC a

pσ
νðλAÞbau†C rbÞDμðH†HÞ; iG̃A

μνðuC a
pσ

νðλAÞbau†C rbÞðH†D
↔μ

HÞ;

Oð1∼4Þ
WuCu†CHH†D

					
WI

μνðuC a
pσ

νu†C raÞDμðH†τIHÞ; iWI
μνðuC a

pσ
νu†C raÞðH†τID

↔μ
HÞ;

W̃I
μνðuC a

pσ
νu†C raÞDμðH†τIHÞ; iW̃I

μνðuC a
pσ

νu†C raÞðH†τID
↔μ

HÞ

COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE … PHYS. REV. D 104, 015026 (2021)

015026-29



Oð1∼4Þ
BuCu

†
CHH†D

				BμνðuC a
pσ

νu†C raÞDμðH†HÞ; iBμνðuC a
pσ

νu†C raÞðH†D
↔

μHÞ;
B̃μνðuC a

pσ
νu†C raÞDμðH†HÞ; iB̃μνðuC a

pσ
νu†C raÞðH†D

↔
μHÞ;

Oð1∼4Þ
GdCd

†
CHH†D

				G
A
μνðdC a

pσ
νðλAÞbad†C rbÞDμðH†HÞ; iGA

μνðdC a
pσ

νðλAÞbad†C rbÞðH†D
↔

μHÞ;
G̃A

μνðdC a
pσ

νðλAÞbad†C rbÞDμðH†HÞ; iG̃A
μνðdC a

pσ
νðλAÞbad†C rbÞðH†D

↔
μHÞ;

Oð1∼4Þ
WdCd

†
CHH†D

				W
I
μνðdC a

pσ
νd†CraÞDμðH†τIHÞ; iWI

μνðdC a
pσ

νd†CraÞðH†τID
↔

μHÞ;
W̃I

μνðdC a
pσ

νd†CraÞDμðH†τIHÞ; iW̃I
μνðdC a

pσ
νd†CraÞðH†τID

↔
μHÞ;

Oð1∼4Þ
BdCd

†
CHH†D

				BμνðdC a
pσ

νd†CraÞDμðH†HÞ; iBμνðdC a
pσ

νd†CraÞðH†D
↔

μHÞ;
B̃μνðdC a

pσ
νd†CraÞDμðH†HÞ; iB̃μνðdC a

pσ
νd†CraÞðH†D

↔
μHÞ;

Oð1∼12Þ
WLL†HH†D

																			

WI
μνðLpiσ

νL† i
rÞDμðH†τIHÞ; iWI

μνðLpiσ
νL† i

rÞðH†τID
↔

μHÞ;
W̃I

μνðLpiσ
νL† i

rÞDμðH†τIHÞ; iW̃I
μνðLpiσ

νL† i
rÞðH†τID

↔
μHÞ;

ðτIÞkjWI
μνðLpiσ

νL† j
rÞDμðH†iHkÞ; iðτIÞkjWI

μνðLpiσ
νL† j

rÞðH†iD
↔

μHkÞ;
ðτIÞkjW̃I

μνðLpiσ
νL† j

rÞDμðH†iHkÞ; iðτIÞkjW̃I
μνðLpiσ

νL† j
rÞðH†iD

↔
μHkÞ;

ðτIÞikWI
μνðLpiσ

νL† j
rÞDμðH†kHjÞ; iðτIÞikWI

μνðLpiσ
νL† j

rÞðH†kD
↔

μHjÞ;
ðτIÞikW̃I

μνðLpiσ
νL† j

rÞDμðH†kHjÞ; iðτIÞikW̃I
μνðLpiσ

νL† j
rÞðH†kD

↔
μHjÞ;

Oð1∼8Þ
BLL†HH†D

												

BμνðLpiσ
νL† i

rÞDμðH†HÞ; iBμνðLpiσ
νL† i

rÞðH†D
↔

μHÞ;
B̃μνðLpiσ

νL† i
rÞDμðH†HÞ; iB̃μνðLpiσ

νL† i
rÞðH†D

↔
μHÞ;

BμνðLpiσ
νL† j

rÞDμðH†iHjÞ; iBμνðLpiσ
νL† j

rÞðH†iD
↔

μHjÞ;
B̃μνðLpiσ

νL† j
rÞDμðH†iHjÞ; iB̃μνðLpiσ

νL† j
rÞðH†iD

↔
μHjÞ;

Oð1∼4Þ
WeCe

†
CHH†D

				W
I
μνðeCpσ

νe†C rÞDμðH†τIHÞ; iWI
μνðeCpσ

νe†C rÞðH†τID
↔

μHÞ;
W̃I

μνðeCpσ
νe†C rÞDμðH†τIHÞ; iW̃I

μνðeCpσ
νe†C rÞðH†τID

↔
μHÞ;

Oð1∼4Þ
BeCe

†
CHH†D

				BμνðeCpσ
νe†C rÞDμðH†τIHÞ; iBμνðeCpσ

νe†C rÞðH†τID
↔

μHÞ;
B̃μνðeCpσ

νe†C rÞDμðH†τIHÞ; iB̃μνðeCpσ
νe†C rÞðH†τID

↔
μHÞ;

ð4:39Þ

while complex types with charged currents also exist:

Oð1;2Þ
GuCd

†
CH

2D
j ϵijGA

μνðuC a
pσ

νðλAÞbad†CrbÞHiDμHj; ϵijG̃A
μνðuC a

pσ
νðλAÞbad†CrbÞHiDμHj;

Oð1;2Þ
WuCd

†
CH

2D
j ϵjkðτIÞikWI

μνðuC a
pσ

νd†CraÞHiDμHj; ϵjkðτIÞikW̃I
μνðuC a

pσ
νd†CraÞHiDμHj;

Oð1;2Þ
BuCd

†
CH

2D
j ϵijBμνðuC a

pσ
νd†CraÞHiDμHj; ϵijB̃μνðuC a

pσ
νd†CraÞHiDμHj: ð4:40Þ

These operators involve new Lorentz structures that were absent at lower dimensions. The conversion to the four spinor
notation for the fermion currents can be found in Eqs. (4.26) and (4.33).
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Class Fψ2ϕD2: There are two subclasses of this form. One is FLψ
2ϕD2, a dimension-six class FLψ

2ϕ with two
additional derivatives, which has two independent Lorentz structures:

FL1
αβψ2

γðDψ3Þαβ _αðDϕ4Þγ _α; FL1
αβψ2αðDψ3Þγβ _αðDϕ4Þ _αγ : ð4:41Þ

The other subclass is FRψ
2ϕD2, where the flip of helicity for the gauge boson is made possible by the presence of the two

additional derivatives. The Lorentz structure of this subclass is unique:

ψ1
αψ2

βðD2ϕ3Þ _α _β αβFR4
_α _β: ð4:42Þ

Converting to the F; F̃ basis, these two subclasses mix together. Below we present the operators of this class in the SMEFT,
which are all complex types:

Oð1∼3Þ
GQuCHD2

				 ϵ
ijGA

μλðQpaiσ
νλðλAÞabuC b

r ÞDμDνHj;

ϵijG̃A
μλðQpaiσ

νλðλAÞabuC b
r ÞDμDνHj; ϵijGA

μνðQpaiðλAÞabDμuC b
r ÞDνHj;

Oð1∼3Þ
WQuCHD2

				 ϵ
ikðτIÞjkWI

μλðQpaiσ
νλuC a

r ÞDμDνHj;

ϵikðτIÞjkW̃I
μλðQpaiσ

νλuC a
r ÞDμDνHj; ϵjkðτIÞikWI

μνðQpaiDμuC a
r ÞDνHj;

Oð1∼3Þ
BQuCHD2

				 ϵ
ijBμλðQpaiσ

νλuC a
r ÞDμDνHj;

ϵijB̃μλðQpaiσ
νλuC a

r ÞDμDνHj; ϵijBμνðQpaiDμuC a
r ÞDνHj;

Oð1∼3Þ
GQdCH†D2

				G
A
μλðdC a

pσ
νλðλAÞbaQrbiÞDμDνH†i;

G̃A
μλðdC a

pσ
νλðλAÞbaQrbiÞDμDνH†i; GA

μνðdC a
pðλAÞbaDμQrbiÞDνH†i;

Oð1∼3Þ
WQdCH†D2

				 ðτ
IÞijWI

μλðdC a
pσ

νλQraiÞDμDνH†j;

ðτIÞijW̃I
μλðdC a

pσ
νλQraiÞDμDνH†j; ðτIÞijWI

μνðdC a
pDμQraiÞDνH†j;

Oð1∼3Þ
BQdCH†D2

				BμλðdC a
pσ

νλQraiÞDμDνH†i;

B̃μλðdC a
pσ

νλQraiÞDμDνH†i; BμνðdC a
pDμQraiÞDνH†i;

Oð1∼3Þ
WeCLH†D2

				 ðτ
IÞijWI

μλðeCpσνλLriÞDμDνH†j;

ðτIÞijW̃I
μλðeCpσνλLriÞDμDνH†j; ðτIÞijWI

μνðeCpDμLriÞDνH†j;

Oð1∼3Þ
BeCLH†D2

				BμλðeCpσνλLriÞDμDνH†i;

B̃μλðeCpσνλLriÞDμDνH†i; BμνðeCpDμLriÞDνH†i:
ð4:43Þ

The Lorentz structures here are also new at dimension
eight. To convert to four-component spinor notation, one
may refer to Eqs. (4.29) and (4.22).

3. Two gauge boson involved

Class F2ψ2ϕ: Two subclasses are involved, with the
same opposite helicities for the gauge bosons and fermions.
For the subclass F2

Lψ
2ϕ, we obtained two independent

Lorentz structures,

FL1
αβFL2α

γψ3βψ4γϕ5; FL1
αβFL2αβψ3

γψ4γϕ5; ð4:44Þ

while for F2
Rψ

2ϕ we have only one independent Lorentz
structure,

ψ1
αψ2αϕ3FR4 _α _βFR5

_α _β: ð4:45Þ

After converting to the F; F̃ basis, the second in Eq. (4.44)
and the one in Eq. (4.45) combine to the form as products
of a Yukawa coupling and a gauge kinetic term, while the
first in Eq. (4.44) is a distinct one. The types of this class in
the SMEFT can be found by adding two gauge bosons to
the Yukawa terms, which are all complex:
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Oð1∼5Þ
G2QuCH

						
ϵijdABCðGAGBÞðQpaiðλCÞabuC b

r ÞHj; ϵijG2ðQpaiuC a
r ÞHj;

ϵijdABCðGAG̃BÞðQpaiðλCÞabuC b
r ÞHj; ϵijðGAG̃AÞðQpaiuC a

r ÞHj;

ϵijfABCGA
μνGBμ

λðQpaiσ
νλðλCÞabuC b

r ÞHj;

Oð1∼3Þ
W2QuCH

				 ϵ
ijW2ðQpaiuC a

r ÞHj; ϵijðWIW̃IÞðQpaiuC a
r ÞHj;

ðτKÞikϵIJKϵjkWI
μνWJμ

λðQpaiσ
νλuC a

rÞHj;

Oð1∼3Þ
GWQuCH

				 ϵ
jkðτIÞikðGAWIÞðQpaiðλAÞabuC b

rÞHj;

ϵjkðτIÞikðGAW̃IÞðQpaiðλAÞabuC b
rÞHj; ϵjkðτIÞikWIμ

λGA
μνðQpaiσ

νλðλAÞabuC b
r ÞHj;

Oð1;2Þ
B2QuCH

				 ϵijB2ðQpaiuC a
r ÞHj; ϵijðBB̃ÞðQpaiuC a

r ÞHj;

Oð1∼3Þ
BGQuCH

				 ϵ
ijðBGAÞðQpaiðλAÞabuC b

r ÞHj;

ϵijðBG̃AÞðQpaiðλAÞabuC b
r ÞHj; ϵijBμνGAμ

λðQpaiσ
νλðλAÞabuC b

r ÞHj;

Oð1∼3Þ
BWQuCH

				 ϵ
jkðτIÞikðBWIÞðQpaiuC a

r ÞHj;

ϵjkðτIÞikðBW̃IÞðQpaiuC a
r ÞHj; ϵjkðτIÞikWIμ

λBμνðQpaiσ
νλuC a

r ÞHj;

Oð1∼5Þ
G2QdCH†

						
dABCðGAGBÞðdC a

pðλCÞbaQrbiÞH†i; G2ðdC a
pQraiÞH†i;

dABCðGAG̃BÞðdC a
pðλCÞbaQrbiÞH†i; ðGAG̃AÞðdC a

pQraiÞH†i;

fABCGA
μνGBμ

λðdC a
pσ

νλðλCÞbaQrbiÞH†i;

Oð1∼3Þ
W2QdCH†

				W
2ðdC a

pQraiÞH†i;

ðWIW̃IÞðdC a
pQraiÞH†i; ðτKÞijϵIJKWI

μνWJμ
λðdC a

pσ
νλQraiÞH†j;

Oð1∼3Þ
GWQdCH†

				 ðτ
IÞijðWIGAÞðdC a

pðλAÞbaQrbiÞH†j;

ðτIÞijðWIG̃AÞðdC a
pðλAÞbaQrbiÞH†j; ðτIÞijWIμ

λGA
μνðdC a

pσ
νλðλAÞbaQrbiÞH†j;

ð4:46Þ

Oð1;2ÞÞ
B2QdCH†

				B2ðdC a
pQraiÞH†i; ðBB̃ÞðdC a

pQraiÞH†i;

Oð1∼3Þ
BGQdCH†

				 ðBG
AÞðdC a

pðλAÞbaQrbiÞH†i;

ðBG̃AÞðdC a
pðλAÞbaQrbiÞH†i; BμνGAμ

λðdC a
pσ

νλðλAÞbaQrbiÞH†i;

Oð1∼3Þ
BWQdCH†

				 ðτ
IÞijðBWIÞðdC a

pQraiÞH†j;

ðτIÞijðBW̃IÞðdC a
pQraiÞH†j; ðτIÞijWIμ

λBμνðdC a
pσ

νλQraiÞH†j;

Oð1;2Þ
G2eCLH†

				G2ðeCpLriÞH†i; ðGAG̃AÞðeCpLriÞH†i;

Oð1∼3Þ
W2eCLH†

				W
2ðeCpLriÞH†i;

ðWIW̃IÞðeCpLriÞH†i; ðτKÞijϵIJKWI
μνWJμ

λðeCpσνλLriÞH†j;

Oð1;2Þ
B2eCLH†

				B2ðeCpLriÞH†i; ðBB̃ÞðeCpLriÞH†i;

Oð1∼3Þ
BWeCLH†

				 ðτ
IÞijðBWIÞðeCpLriÞH†j;

ðτIÞijðBW̃IÞðeCpLriÞH†j; ðτIÞijWIμ
λBμνðeCpσνλLriÞH†j:

ð4:47Þ

Conversion to four-component spinor notation in this class can be found in Eqs. (4.22) and (4.29).
Class F2ψ2D: The gauge bosons can have the same or opposite helicities, leading to two subclasses FLFL=Rψψ

†D, each
of which contains only one independent Lorentz structure,

FL1
αβFL2α

γðDψ3Þβγ _αψ† _α
4 ; FL1

αβψ2αðDψ†
3Þβ _α _βFR4

_α _β: ð4:48Þ
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Without other fields carrying hypercharges, the fermions in this class have to form a neutral current, which demands the
types in the SMEFT to be all real:

Oð1∼5Þ
G2QQ†D

									

ifABCGAμ
νGBν

λðQpaiσ
λðλCÞabD

↔

μQ† bi
r Þ; idABCGAμ

νGBν
λðQpaiσ

λðλCÞabD
↔

μQ† bi
r Þ;

ifABCG̃Aμ
νGBν

λðQpaiσ
λðλCÞabD

↔

μQ† bi
r Þ; iGAμ

νGAν
λðQpaiσ

λD
↔

μQ† ai
r Þ;

ifABCGAμ
νG̃

Bν
λðQpaiσ

λðλCÞabD
↔

μQ† bi
r Þ;

Oð1∼4Þ
W2QQ†D

				 iϵ
IJKWIμ

νWJν
λðQpaiσ

λðτKÞijD
↔

μQ† aj
r Þ; iWIμ

νWIν
λðQpaiσ

λD
↔

μQ† ai
r Þ;

iϵIJKW̃Iμ
νWJν

λðQpaiσ
λðτKÞijD

↔

μQ† aj
r Þ; iϵIJKWIμ

νW̃Jν
λðQpaiσ

λðτKÞijD
↔

μQ† aj
r Þ;

OB2QQ†D

				 iBμ
νBν

λðQpaiσ
λD
↔

μQ† ai
r Þ;

Oð1∼5Þ
G2uCu

†
CD

				
ifABCGAμ

νGBν
λðuC a

pσ
λðλCÞbaD

↔

μu
†
CrbÞ; idABCGAμ

νGBν
λðuC a

pσ
λðλCÞbaD

↔

μu
†
CrbÞ;

ifABCG̃Aμ
νGBν

λðuC a
pσ

λðλCÞbaD
↔

μu
†
C rbÞ; iGAμ

νGAν
λðuC a

pσ
λD
↔

μu
†
C raÞ;

ifABCGAμ
νG̃

Bν
λðuC a

pσ
λðλCÞbaD

↔

μu
†
C rbÞ;

OW2uCu
†
CD

				 iWIμ
νWIν

λðuC a
pσ

λD
↔

μu
†
C raÞ; ð4:49Þ

OB2uCu
†
CD

				 iBμ
νBν

λðuC a
pσ

λD
↔

μu
†
C raÞ;

Oð1∼5Þ
G2dCd

†
CD

									

ifABCGAμ
νGBν

λðdC a
pσ

λðλCÞbaD
↔

μd
†
C rbÞ; idABCGAμ

νGBν
λðdC a

pσ
λðλCÞbaD

↔

μd
†
C rbÞ;

ifABCG̃Aμ
νGBν

λðdC a
pσ

λðλCÞbaD
↔

μd
†
C rbÞ; iGAμ

νGAν
λðdC a

pσ
λD
↔

μd
†
C raÞ;

ifABCGAμ
νG̃

Bν
λðdC a

pσ
λðλCÞbaD

↔

μd
†
C rbÞ;

OW2dCd
†
CD

				 iWIμ
νWIν

λðdC a
pσ

λD
↔

μd
†
C raÞ;

OB2dCd
†
CD

				 iBμ
νBν

λðdC a
pσ

λD
↔

μd
†
C raÞ;

OG2LL†D

				 iGAμ
νGAν

λðLpiσ
λD
↔

μL† i
rÞ;

Oð1∼4Þ
W2LL†D

				 iϵ
IJKWIμ

νWJν
λðLpiσ

λðτKÞijD
↔

μL† j
rÞ; iWIμ

νWIν
λðLpiσ

λD
↔

μL† i
rÞ;

iϵIJKW̃Iμ
νWJν

λðLpiσ
λðτKÞijD

↔

μL† j
rÞ; iϵIJKWIμ

νW̃Jν
λðLpiσ

λðτKÞijD
↔

μL† j
rÞ;

OB2LL†D

				 iBμ
νBν

λðLpiσ
λD
↔

μL† i
rÞ;

OG2eCe
†
CD

				 iGAμ
νGAν

λðeCpσλD
↔

μe
†
C rÞ;

OW2eCe
†
CD

				 iWIμ
νWIν

λðeCpσλD
↔

μe
†
C rÞ;

OB2eCe
†
CD

				 iBμ
νBν

λðeCpσλD
↔

μe
†
C rÞ;
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Oð1∼4Þ
GWQQ†D

				 iG
Aμ

λWIνλðQpaiσνðλAÞabðτIÞijD
↔

μQ† bj
r Þ; iGAμ

λW̃IνλðQpaiσνðλAÞabðτIÞijD
↔

μQ† bj
r Þ;

iGAν
λWIμλðQpaiσνðλAÞabðτIÞijD

↔

μQ† bj
r Þ; iGAν

λW̃IμλðQpaiσνðλAÞabðτIÞijD
↔

μQ† bj
r Þ;

Oð1∼4Þ
GBQQ†D

				 iG
Aμ

λBνλðQpaiσνðλAÞabD
↔

μQ† bi
r Þ; iGAμ

λB̃νλðQpaiσνðλAÞabD
↔

μQ† bi
r Þ;

iGAν
λBμλðQpaiσνðλAÞabD

↔

μQ† bi
r Þ; iGAν

λB̃μλðQpaiσνðλAÞabD
↔

μQ† bi
r Þ;

Oð1∼4Þ
WBQQ†D

				 iW
Iμ

λBνλðQpaiσνðτIÞijD
↔

μQ† aj
r Þ; iWIμ

λB̃νλðQpaiσνðτIÞijD
↔

μQ† aj
r Þ;

iWIν
λBμλðQpaiσνðτIÞijD

↔

μQ† aj
r Þ; iWIν

λB̃μλðQpaiσνðτIÞijD
↔

μQ† aj
r Þ;

Oð1∼4Þ
GBuCu

†
CD

				 iG
Aμ

λBνλðuC a
pσνðλAÞbaD

↔

μu
†
C rbÞ; iGAμ

λB̃νλðuC a
pσνðλAÞbaD

↔

μu
†
C rbÞ;

iGAν
λBμλðuC a

pσνðλAÞbaD
↔

μu
†
C rbÞ; iGAν

λB̃μλðuC a
pσνðλAÞbaD

↔

μu
†
C rbÞ;

Oð1∼4Þ
GBdCd

†
CD

				 iG
Aμ

λBνλðdC a
pσνðλAÞbaD

↔

μd
†
C rbÞ; iGAμ

λB̃νλðdC a
pσνðλAÞbaD

↔

μd
†
C rbÞ;

iGAν
λBμλðdC a

pσνðλAÞbaD
↔

μd
†
C rbÞ; iGAν

λB̃μλðdC a
pσνðλAÞbaD

↔

μd
†
C rbÞ;

Oð1∼4Þ
WBLL†D

				 iW
Iμ

λBνλðLpiσνðτIÞijD
↔

μL† j
rÞ; iWIμ

λB̃νλðLpiσνðτIÞijD
↔

μL† j
rÞ;

iWIν
λBμλðLpiσνðτIÞijD

↔

μL† j
rÞ; iWIν

λB̃μλðLpiσνðτIÞijD
↔

μL† j
rÞ:

ð4:50Þ

Conversion of the relevant fermion currents to four-
component notation can be found in Eqs. (4.26) and (4.33).

D. Classes involving four fermions

The classes of Lorentz structures with four fermions are
the most populated in the dimension-eight SMEFT; thus to
present in a less dense way, we separate the types in
different lists by the number of quarks involved. Those with
three quarks and one lepton violate both the baryon number
and lepton number ΔB ¼ ΔL ¼ �1, which is the only
source of these violations at dimension eight, and

consequently B − L is conserved for all the dimension-
eight operators.
Note that repeated fermions start to appear in this

section, for which Young symmetrizers are applied to
the terms to retain particular flavor symmetries, as
explained in Secs. III A and IVA.

1. Two scalars involved

Class ψ4ϕ2: There are two subclasses in this class:
ψ2ψ†2ϕ2 and ψ4ϕ2 þ H:c:, and the independent Lorentz
structures are

ψα
1ψ2αϕ3ϕ4ψ

†
5 _αψ

† _α
6 ; ψα

1ψ
β
2ψ3αψ4βϕ5ϕ6; ψα

1ψ2αψ
β
3ψ4βϕ5ϕ6: ð4:51Þ

With the two scalars taken to be ðH†HÞ, we get the same types as the four-fermion operators at dimension six with the
additional Higgses. There are new types at dimension eight with the two scalars taken to be the Higgses with the same
hypercharges H2 or H†2, whose SUð2ÞW indices must be symmetric to avoid the repeated field constraint. This demands at
least another pair of SUð2ÞW doublets in the four fermions, which excludes the following types that are also Lorentz
invariant gauge singlets, but with all four fermions as SUð2ÞW singlets:

dCd
†2
C uCH2; d†CeCe

†
CuCH

2; d†CuC
2u†CH

2; dC2eCuCH†2; eCuC3H2: ð4:52Þ

Operators of this class contribute to the four-fermion interactions if the Higgs fields take their VEV, and operators involving
two or four L’s are relevant to the neutrino nonstandard interactions.
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1. Operators involving only quarks: There are six real types from all combinations of the three quark currents:

ð4:53Þ

An addition of four complex types exist:

ð4:54Þ

Recall the definition of Young symmetrizer Y in Sec. III A 2, we can obtain the following relations for type Oð1∼10Þ
Q2Q†2HH† :

Oð1Þ
Q2Q†2HH† ¼ ðQpaiQrbj þQraiQpbjÞðQ† aj

s Q† bk
t þQ† aj

t Q† bk
s ÞH†iHk;

Oð4Þ
Q2Q†2HH† ¼ ðQpaiQrbj þQraiQpbjÞðQ† aj

s Q† bk
t −Q† aj

t Q† bk
s ÞH†iHk;

Oð6Þ
Q2Q†2HH† ¼ ðQpaiQrbj −QraiQpbjÞðQ† aj

s Q† bk
t þQ† aj

t Q† bk
s ÞH†iHk;

Oð8Þ
Q2Q†2HH† ¼ ðQpaiQrbj −QraiQpbjÞðQ† aj

s Q† bk
t −Q† aj

t Q† bk
s ÞH†iHk; ð4:55Þ

as an example of how Y’s act on the terms.
The conversion from the two-component spinors to the four-component spinors, with extra transformation via Fierz

identity, are shown by the following examples:
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ðQpaiQrbjÞðQ† aj
s Q† bk

t Þ ¼ ðqpaiCqrbjÞðq̄ aj
s Cq̄ bk

t Þ ¼ 1

2
ðq̄ aj

s γμqpaiÞðq̄ bk
t γμqrbjÞ;

ðu†C sau
†
C tbÞðuC a

puC b
r Þ ¼ ðusaCutbÞðū a

pCū b
r Þ ¼

1

2
ðū a

pγ
μusaÞðū b

rγμutbÞ;

ðQpaiuC a
r ÞðQ† cj

s u
†
C tcÞ ¼ ðū a

rqpaiÞðq̄ cj
s uutcÞ ¼ −

1

2
ðū a

rγ
μutcÞðq̄ cj

s γμqpaiÞ: ð4:56Þ

The Hermitian conjugate of a non-Hermitian operator of this class is, for example,

½ϵikϵjmðQpaiuC b
s ÞðQrbjuC a

t ÞHkHm�† ¼ ϵikϵjmðu†C sbQ† ai
p Þðu†C taQ† bj

r ÞH†kH†m: ð4:57Þ

Operators involving d quark and leptons of this class can be converted similarly.
2. Operators involving three quarks with ΔB ¼ ΔL ¼ �1: All the types with three quarks are complex, and there are

seven of them in this class:

ð4:58Þ

Here are examples in the type Oð1∼7Þ
Q3LHH† about how the Young symmetrizers Y’s act on the operators:

Oð1Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ þ ðQsajQtcmÞðLpiQrbkÞ�H†kHn

− ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQtajQscmÞðLpiQrbkÞ�H†kHn;

Oð4Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ þ ðQsajQtcmÞðLpiQrbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQrajQscmÞðLpiQtbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQscmÞðLpiQrbkÞ þ ðQsajQrcmÞðLpiQtbkÞ�H†kHn;

Oð6Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ − ðQsajQtcmÞðLpiQrbkÞ�H†kHn

− ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQrajQscmÞðLpiQtbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQscmÞðLpiQrbkÞ þ ðQsajQrcmÞðLpiQtbkÞ�H†kHn: ð4:59Þ

3. Operators involving two leptons and two quarks: There are six real types as combinations of the three quark currents
and the two lepton currents:
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Oð1∼5Þ
QQ†LL†HH†

								
ðLpiQrajÞðL† i

sQ† ak
t ÞH†jHk; ðLpiQrajÞðL† k

sQ† ai
t ÞH†jHk;

ðLpiQrajÞðL† j
sQ† ak

t ÞH†iHk; ðLpiQrajÞðL† j
sQ† ai

t ÞðH†HÞ;
ðLpiQrajÞðL† k

sQ† aj
t ÞH†iHk;

Oð1;2Þ
QQ†eCe

†
CHH†

				 ðeCpQraiÞðe†C sQ† aj
t ÞH†iHj; ðeCpQraiÞðe†C sQ† ai

t ÞðH†HÞ;

Oð1;2Þ
uCu

†
CLL

†HH†

				 ðLpiuC a
r ÞðL† j

su
†
C taÞH†iHj; ðLpiuC a

rÞðL† i
su

†
C taÞðH†HÞ;

OuCu
†
CeCe

†
CHH†

				 ðe†C su
†
C taÞðeCpuC a

r ÞðH†HÞ;

Oð1;2Þ
dCd

†
CLL

†HH†

				 ðdC a
pLriÞðd†C saL† j

tÞH†iHj; ðdC a
pLriÞðd†C saL† i

tÞðH†HÞ;

OdCd
†
CeCe

†
CHH†

				 ðd†C sae
†
C tÞðdC a

peCrÞðH†HÞ: ð4:60Þ

There are also five complex types, in which three involve repeated Higgses:

Oð1∼4Þ
QuCLeCHH†

				 ϵ
ijðeCpQsajÞðLriuC a

t ÞðH†HÞ; ϵijðeCpLriÞðQsajuC a
t ÞðH†HÞ;

ϵikðeCpQsajÞðLriuC a
t ÞH†jHk; ϵikðeCpLriÞðQsajuC a

t ÞH†jHk;

OQuCL†e†CH
2

				 ϵikðe†C sL† j
tÞðQpaiuC a

r ÞHjHk;

Oð1;2Þ
QdCLeCH†2

				 ðdC a
peCrÞðLsiQtajÞH†iH†j; ðeCrQtajÞðdC a

pLsiÞH†iH†j;

Oð1;2Þ
QdCL†e†CHH†

				 ðe†C sL† j
tÞðdC a

pQraiÞH†iHj; ðe†C sL† i
tÞðdC a

pQraiÞðH†HÞ;

OuCd
†
CLL

†H2

				 ϵikðd†C saL† j
tÞðLpiuC a

r ÞHjHk: ð4:61Þ

4. Operators involving only leptons: The combinations of the two kinds of lepton currents give three real types of
operators in this class:

ð4:62Þ

There is one more complex type with repeated Higgses:

ð4:63Þ

2. One derivative involved

Class ψ4ϕD: The subclass of this form must contain three spinors of the same helicities and one spinor of the opposite
helicity, namely ψ3ψ†ϕD. A total of three independent Lorentz structures exist in this subclass,
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ψα
1ψ

β
2ðDψ3Þαβ _αϕ4ψ

† _α
5 ; ψα

1ψ
β
2ψ3αðDϕ4Þβ _αψ† _α

5 ; ψα
1ψ2αψ

β
3ðDϕ4Þβ _αψ† _α

5 : ð4:64Þ

All the types in this subclass must be complex.
1. Operators involving only quarks: The six types are all of the combinations of the two quark Yukawa terms and the

three quark kinetic terms:

ð4:65Þ

To see how Y’s act on operators one can refer to Eqs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors are shown by the following examples:
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ðQpaiuC a
s ÞðQrbjσ

μQ† bj
t Þ ¼ −ðū a

sqpaiÞðq̄ bj
t γμqrbjÞ;

ðQpaiuC a
sÞðuC b

rσ
μu†C tbÞ ¼ ðū a

sqpaiÞðū b
rγ

μutbÞ;
ðQrbiDμQsajÞðdC a

pσ
μQ† bj

t Þ ¼ ðqrbiCDμqsajÞðd̄ a
pγ

μCq̄bjt Þ

¼ 1

2
ðd̄ a

pγ
μγνDμqsajÞðq̄bjt γνqrbiÞ;

ðuC a
rDμuC c

sÞðQpaiσ
μu†C tcÞ ¼ ðū a

rCDμū c
sÞðqpaiCγμutcÞ

¼ ðū a
rqpaiÞðDμū c

sγ
μutcÞ − ðū a

rγ
μutcÞðDμū c

sqpaiÞ: ð4:66Þ

The Hermitian conjugate of a non-Hermitian operator of this class is, for example,

½ϵikðQpaiuCsaÞðQrbjσ
μQ† bj

t ÞDμHk�† ¼ ϵikðu†C saQ† ai
p ÞðQtbjσ

μQ† bj
r ÞDμH†k: ð4:67Þ

2. Operators involving three quarks with ΔB ¼ ΔL ¼ �1: There are seven B-violating types in this class:

ð4:68Þ

3.Operators involving two leptons and two quarks: The combinations of two quark Yukawa terms and two lepton kinetic
terms, and the combinations of one lepton Yukawa term and three quark kinetic terms, constitute seven types here, while
one more type uCd

†
CLeCHD not as such a combination is present:
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Oð1∼6Þ
QQ†LeCH†D

								
ðeCpσμQ† aj

t ÞðLriDμQsajÞH†i; ðeCpσμQ† ai
t ÞðLriDμQsajÞH†j;

ðeCpLriÞðQsajσμQ† aj
t ÞDμH†i; ðeCpLriÞðQsajσμQ† ai

t ÞDμH†j;

ðeCpQsajÞðLriσμQ† aj
t ÞDμH†i; ðeCpQsajÞðLriσμQ† ai

t ÞDμH†j;

Oð1∼6Þ
QuCLL†HD

								
ϵikðQrajDμuC a

s ÞðLpiσμL† j
tÞHk; ϵijðQrajDμuC a

s ÞðLpiσμL† k
t ÞHk;

ϵikðLpiQrajÞðuC a
sσμL† j

tÞDμHk; ϵijðLpiQrajÞðuC a
sσμL† k

t ÞDμHk;

ϵikðLpiuC a
s ÞðQrajσμL† j

tÞDμHk; ϵijðLpiuC a
s ÞðQrajσμL† k

t ÞDμHk;

Oð1∼3Þ
QuCeCe

†
CHD

				 ϵ
ijðeCpQraiÞðuC a

sσ
μe†C tÞDμHj; ϵijðeCpuC a

sÞðQraiσ
μe†C tÞDμHj;

ϵijðeCpσμe†C tÞðQraiDμuC a
sÞHj;

ð4:69Þ

Oð1∼6Þ
QdCLL†H†D

								
ðdC a

pσμL† j
tÞðLriDμQsajÞH†i; ðdC a

pσμL† i
tÞðLriDμQsajÞH†j;

ðdC a
pLriÞðQsajσμL† j

tÞDμH†i; ðdC a
pLriÞðQsajσμL† i

tÞDμH†j;

ðdC a
pQsajÞðLriσμL† j

tÞDμH†i; ðdC a
pQsajÞðLriσμL† i

tÞDμH†j;

Oð1∼3Þ
QdCeCe

†
CH

†D

				 ðdC
a
peCrÞðQsaiσ

μe†C tÞDμH†i; ðeCrσμe†C tÞðdC a
pQsaiÞDμH†i;

ðeCrDμQsaiÞðdC a
pσ

μe†C tÞH†i;

Oð1∼3Þ
uCu

†
CLeCH

†D

				 ðeCpLriÞðuC a
sσ

μu†C taÞDμH†i; ðeCpuC a
s ÞðLriσ

μu†C taÞDμH†i;

ðeCpσμu†C taÞðLriDμuC a
s ÞH†i;

Oð1∼3Þ
uCd

†
CLeCHD

				 ϵ
ijðeCpLriÞðuC a

sσ
μd†C taÞDμHj; ϵijðeCpuC a

s ÞðLriσ
μd†C taÞDμHj;

ϵijðeCpσμd†C taÞðLriDμuC a
sÞHj;

Oð1∼3Þ
dCd

†
CLeCH

†D

				 ðdC
a
peCrÞðLsiσ

μd†C taÞDμH†i; ðdC a
pLsiÞðeCrσμd†C taÞDμH†i;

ðeCrDμLsiÞðdC a
pσ

μd†C taÞH†i:
ð4:70Þ

4. Operators involving only leptons: The two following types are simply the lepton Yukawa term combined with one of
the lepton kinetic terms:

ð4:71Þ

3. Two derivatives involved

Class ψ4D2:
There are two subclasses of this form: ψ2ψ†2D2 and ψ4D2 þ H:c:, and five independent Lorentz structures are involved:

ψα
1ψ

β
2ðDψ†

3Þα _α _βðDψ†
4Þ _α

_β
β ; ψα

1ψ2αðDψ†
3Þβ_α _β

ðDψ†
4Þ _α

_β
β ;

ψα
1ðDψ2Þβγ_α ψ3αðDψ4Þ _αβγ; ψα

1ψ
β
2ðDψ3Þγα _αðDψ4Þ _αβγ; ψα

1ψ2αðDψ3Þβγ_α ðDψ4Þ _αβγ: ð4:72Þ

Note that in converting to the conventional form of Lorentz structures, we avoid having parts such as σμνDμψ because they
are related to Dνψ by the EOM redundancy. The types in this class are exactly the dimension-six four-fermion types plus
two extra derivatives, which include 15 real types and seven complex types, among which are four B-violating types.
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1. Operators involving only quarks: There are six all-quark real types as follows:

ð4:73Þ

and one complex type:

ð4:74Þ

To see how Y’s act on operators one can refer to Eqs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors follows Eq. (4.56) as

ðDμQ† ai
s DνQ† bj

t ÞðQpaiσ
μνQrbjÞ ¼ ðDμq̄ ai

s CDνq̄
bj
t ÞðqpaiCσμνqrbjÞ

¼ 1

2
ðDμq̄ ai

s γ
ρσμνqrbjÞðDνq̄

bj
t γρqpaiÞ;

ðDμu
†
C saDνu

†
C tbÞðuC a

pσ
μνuC b

r Þ ¼ ðDμusaCDνutbÞðū a
pσ

μνCū b
r Þ

¼ 1

2
ðū a

pσ
μνγρDνutbÞðū b

rγρDμusaÞ;
ðDμQ† ai

s Dνu
†
C tbÞðQpaiσ

μνuC b
r Þ ¼ ðDμq̄ ai

s DνutbÞðū b
rσ

μνqpaiÞ: ð4:75Þ

The Hermitian conjugate of a non-Hermitian operator of this class is, for example,

½ϵijðDμQsajDνuC b
t ÞðdC a

pσ
μνQrbiÞ�† ¼ ϵijðDνu

†
C tbDμQ† aj

s ÞðQ† bi
r σ̄

μνd†C paÞ: ð4:76Þ

Operators involving leptons can be converted similarly.
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2. Operators involving one lepton and three quarks with ΔB ¼ ΔL ¼ �1: The four B-violating types are

ð4:77Þ

3. Operators involving two leptons and two quarks: Combinations of three kinds of quark currents and two kinds of
lepton currents provide six real types:

Oð1∼4Þ
QQ†LL†D2

				 ðLpiQrajÞðDμL† j
sDμQ† ai

t Þ; ðDμL† j
sDνQ† ai

t ÞðLpiσ
μνQrajÞ;

ðLpiQrajÞðDμL† i
sDμQ† aj

t Þ; ðDμL† i
sDνQ† aj

t ÞðLpiσ
μνQrajÞ;

Oð1;2Þ
QQ†eCe

†
CD

2

			 ðeCpQraiÞðDμe
†
C sDμQ† ai

t Þ; ðDμe
†
C sDνQ† ai

t ÞðeCpσμνQraiÞ;

Oð1;2Þ
uCu

†
CLL

†D2

			 ðLpiuC a
r ÞðDμL† i

sDμu†C taÞ; ðDμL† i
sDνu

†
C taÞðLpiσ

μνuC a
r Þ;

Oð1;2Þ
uCu

†
CeCe

†
CD

2

			 ðeCpuC a
r ÞðDμe

†
C sDμu†C taÞ; ðDμe

†
C sDνu

†
C taÞðeCpσμνuC a

r Þ;

Oð1;2Þ
dCd

†
CLL

†D2

			 ðdC a
pLriÞðDμd

†
C saDμL† i

tÞ; ðDμd
†
C saDνL† i

tÞðdC a
pσ

μνLriÞ;

Oð1;2Þ
dCd

†
CeCe

†
CD

2

			 ðdC a
peCrÞðDμd

†
C saDμe†C tÞ; ðDμd

†
C saDνe

†
C tÞðdC a

pσ
μνeCrÞ: ð4:78Þ

Two additional complex types are present:

Oð1∼3Þ
QuCLeCD2

				 ϵ
ijðeCpLriÞðDμQsajDμuC a

t Þ; ϵijðeCpσμνLriÞðDμQsajDνuC a
t Þ;

ϵijðeCpQsajÞðDμLriDμuC a
t Þ;

Oð1;2Þ
QdCL†e†CD

2

				 ðdC a
pQraiÞðDμe

†
C sDμL† i

tÞ; ðDμe
†
C sDνL† i

tÞðdC a
pσ

μνQraiÞ: ð4:79Þ

4. Operators involving only leptons: Two kinds of lepton currents form three real types with all leptons:

ð4:80Þ

4. One gauge boson involved

Class Fψ4: There are two subclasses in this class: FLψ
2ψ†2 þ H:c: with only one Lorentz structure,

FL1
αβψ2αψ3βψ

†
4 _αψ

† _α
5 ; ð4:81Þ
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and FLψ
4 þ H:c: with three independent Lorentz structures,

FL1
αβψ2

γψ3αψ4βψ5γ; FL1
αβψ2αψ3

γψ4βψ5γ; FL1
αβψ2αψ3βψ4

γψ5γ: ð4:82Þ

In converting to the conventional form, the gauge boson always contracts with the σμν (one may convert to other forms
via Fierz identities, which we choose not to do), and due to the identity F̃μνðσμνÞαβ ¼ iFμνðσμνÞαβ, the F and F̃ are
equivalent; hence we only use F instead of F̃ in our operators. The types in this class are simply the dimension-six four-
fermion types with an additional gauge boson, depending on the gauge charges of the fermions: B is always available as all
the fermions are charged under Uð1ÞY ; G is available whenever quarks are present; W is available whenever Q or L is
present.
1. Operators involving only quarks: Based on the six real types with four quarks, B and G can be added to all of them,

while W can be added to the three types with Q. Overall, 6þ 6þ 3 ¼ 15 real types exist:

ð4:83Þ
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ð4:84Þ

The only complex four-quark type with additional G, W, or B constitute the three complex types:
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ð4:85Þ

To see how Y’s act on operators one can refer to Eqs. (4.55) and (4.59). The conversion from the two-component spinors
to the four-component spinors are similar to Eq. (4.75). The Hermitian conjugate of a non-Hermitian operator of this class
is, for example,

½ϵijBμνðQraiuC c
t ÞðdC a

pσμνQscjÞ�† ¼ ϵijBμνðu†C tcQ† ai
r ÞðQ† cj

s σ̄μνd
†
C paÞ: ð4:86Þ

Other operators of this class can be converted similarly.
2.Operators involving one lepton and three quarks withΔB ¼ ΔL ¼ �1: In the four B-violating four-fermion couplings

at dimension six, uC2dCeC consists of only the SUð2ÞW singlet, which cannot couple toW in this class. Therefore we have
4þ 4þ 3 ¼ 11 types in all:

ð4:87Þ
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ð4:88Þ

3. Operators involving two leptons and two quarks: Among the six real types with two leptons and two quarks, two
involve only SUð2ÞW singlets. Hence we have 6þ 6þ 4 ¼ 16 real types:

Oð1∼4Þ
GQQ†LL†

				 ðλ
AÞabGA

μνðL† j
sQ† bi

t ÞðLpiσ
μνQrajÞ; ðλAÞbaGA

μνðQrbiLpjÞðQ† aj
t σ̄μνL† i

sÞ;
ðλAÞabGA

μνðL† i
sQ† bj

t ÞðLpiσ
μνQrajÞ; ðλAÞbaGA

μνðQrbjLpiÞðQ† aj
t σ̄μνL† i

sÞ;

Oð1∼6Þ
WQQ†LL†

								
ðτIÞjkWI

μνðL† i
sQ† ak

t ÞðLpiσ
μνQrajÞ; ðτIÞkjWI

μνðQrakLpiÞðQ† aj
t σ̄μνL† i

sÞ;
ðτIÞjkWI

μνðL† k
sQ† ai

t ÞðLpiσ
μνQrajÞ; ðτIÞkjWI

μνðQraiLpkÞðQ† aj
t σ̄μνL† i

sÞ;
ðτIÞikWI

μνðL† k
sQ† aj

t ÞðLpiσ
μνQrajÞ; ðτIÞkiWI

μνðQrajLpkÞðQ† aj
t σ̄μνL† i

sÞ;

Oð1∼4Þ
BQQ†LL†

				BμνðL† j
sQ† ai

t ÞðLpiσ
μνQrajÞ; BμνðQraiLpjÞðQ† aj

t σ̄μνL† i
sÞ;

BμνðL† i
sQ† aj

t ÞðLpiσ
μνQrajÞ; BμνðQrajLpiÞðQ† aj

t σ̄μνL† i
sÞ;
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Oð1;2Þ
GQQ†eCe

†
C

				 ðλAÞabGA
μνðe†C sQ† bi

t ÞðeCpσμνQraiÞ; ðλAÞbaGA
μνðQrbieCpÞðQ† ai

t σ̄
μνe†C sÞ;

Oð1;2Þ
WQQ†eCe

†
C

				 ðτIÞijWI
μνðe†C sQ† aj

t ÞðeCpσμνQraiÞ; ðτIÞjiWI
μνðQrajeCpÞðQ† ai

t σ̄
μνe†C sÞ;

Oð1;2Þ
BQQ†eCe

†
C

				Bμνðe†C sQ† ai
t ÞðeCpσμνQraiÞ; BμνðQraieCpÞðQ† ai

t σ̄
μνe†C sÞ;

Oð1;2Þ
GuCu

†
CLL

†

				 ðλAÞbaGA
μνðL† i

su
†
C tbÞðLpiσ

μνuC a
r Þ; ðλAÞabGA

μνðuC b
rLpiÞðu†C taσ̄

μνL† i
sÞ;

Oð1;2Þ
WuCu

†
CLL

†

				 ðτIÞijWI
μνðL† j

su
†
C taÞðLpiσ

μνuC a
r Þ; ðτIÞjiWI

μνðuC a
rLpjÞðu†C taσ̄

μνL† i
sÞ;

Oð1;2Þ
BuCu

†
CLL

†

				BμνðL† i
su

†
C taÞðLpiσ

μνuC a
r Þ; BμνðuC a

rLpiÞðu†C taσ̄
μνL† i

sÞ;

Oð1;2Þ
GuCu

†
CeCe

†
C

				 ðλAÞbaGA
μνðe†C su

†
C tbÞðeCpσμνuC a

r Þ; ðλAÞabGA
μνðuC b

reCpÞðu†C taσ̄
μνe†C sÞ;

Oð1;2Þ
BuCu

†
CeCe

†
C

				Bμνðe†C su
†
C taÞðeCpσμνuC a

r Þ; BμνðuC a
reCpÞðu†C taσ̄

μνe†C sÞ;

Oð1;2Þ
GdCd

†
CLL

†

				 ðλAÞbaGA
μνðd†C sbL† i

tÞðdC a
pσ

μνLriÞ; ðλAÞabGA
μνðLridC b

pÞðL† i
tσ̄

μνd†C saÞ;

Oð1;2Þ
WdCd

†
CLL

†

				 ðτIÞijWI
μνðd†C saL† j

tÞðdC a
pσ

μνLriÞ; ðτIÞjiWI
μνðLrjdC a

pÞðL† i
tσ̄

μνd†C saÞ;

Oð1;2Þ
BdCd

†
CLL

†

				Bμνðd†C saL† i
tÞðdC a

pσ
μνLriÞ; BμνðLridC a

pÞðL† i
tσ̄

μνd†C saÞ;

Oð1;2Þ
GdCd

†
CeCe

†
C

				 ðλAÞbaGA
μνðd†C sbe

†
C tÞðdC a

pσ
μνeCrÞ; ðλAÞabGA

μνðeCrdC b
pÞðe†C tσ̄

μνd†C saÞ;

Oð1;2Þ
BdCd

†
CeCe

†
C

				Bμνðd†C sae
†
C tÞðdC a

pσ
μνeCrÞ; BμνðeCrdC a

pÞðe†C tσ̄
μνd†C saÞ: ð4:89Þ

Both of the two complex four-fermion types with two leptons and two quarks can couple to all of the three gauge bosons;
hence we have 2þ 2þ 2 ¼ 6 complex types:

Oð1∼3Þ
GQuCLeC

				 ϵ
ijðλAÞabGAμνðeCpuC b

t ÞðLriσμνQsajÞ; ϵijðλAÞabGAμνðLriuC b
t ÞðeCpσμνQsajÞ;

ϵijðλAÞabGAμνðQsajuC b
t ÞðeCpσμνLriÞ;

Oð1∼3Þ
WQuCLeC

				 ϵ
jkðτIÞikWIμνðeCpuC a

t ÞðLriσμνQsajÞ; ϵjkðτIÞikWIμνðLriuC a
t ÞðeCpσμνQsajÞ;

ϵjkðτIÞikWIμνðQsajuC a
t ÞðeCpσμνLriÞ;

Oð1∼3Þ
BQuCLeC

				 ϵ
ijBμνðeCpuC a

t ÞðLriσμνQsajÞ; ϵijBμνðLriuC a
t ÞðeCpσμνQsajÞ;

ϵijBμνðQsajuC a
t ÞðeCpσμνLriÞ;

Oð1;2Þ
GQdCL†e†C

				 ðλAÞbaGA
μνðe†C sL† i

tÞðdC a
pσ

μνQrbiÞ; ðλAÞbaGA
μνðQrbidC a

pÞðL† i
tσ̄

μνe†C sÞ;

Oð1;2Þ
WQdCL†e†C

				 ðτIÞijWI
μνðe†C sL† j

tÞðdC a
pσ

μνQraiÞ; ðτIÞjiWI
μνðQrajdC a

pÞðL† i
tσ̄

μνe†C sÞ;

Oð1;2Þ
BQdCL†e†C

				Bμνðe†C sL† i
tÞðdC a

pσ
μνQraiÞ; BμνðQraidC a

pÞðL† i
tσ̄

μνe†C sÞ: ð4:90Þ

4. Operators involving only leptons: There should be no G coupled to the four-lepton types; hence we have 0þ 3þ 2 ¼
5 real types as follows:
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ð4:91Þ

V. CONCLUSION

In this paper, we provided the full result of the inde-
pendent dimension-eight operator basis in the standard
model effective field theory. Although the number of the
dimension-eight operators was already counted [12–15,18],
and part of the list, only gauge bosons and the Higgs boson
involved, was also given in Refs. [22,24], it is the first time
that the two-fermion and four-fermion operators are listed
in full form that constitute over half of the complete list.
What is more important is that the form of the operators we
provide here has definite symmetry over the flavor indices,
making it possible to identify independent flavor-specified
operators. These flavor-independent operators were never
obtained in the past, nor a systematic approach, for various
higher-dimensional operators, including the Warsaw basis
in dimension six [3].
To achieve the goal, we need to overcome two main

obstacles. The first is to list all the independent Lorentz
structures. The methods used in literature, such as the
Hilbert series, are usually good for counting the number of
independent Lorentz structures, but not suitable for writing
down the explicit form of the operators. Inspired by
[33,37], we introduce a SUðNÞ transformation of the
operators, which divides the space of Lorentz structures
into complementary invariant subspaces, one of which
consists of those with factors of total derivatives. The other
invariant subspace, which turns out to be a single irreduc-
ible representation space, is hence a linear space of
independent operators regarding the integration by parts.
Group theory allows us to use the semistandard Young
tableau to enumerate a basis for this irreducible represen-
tation space, which is the basis of Lorentz structures we are
looking for. It is worth mentioning that the notation of
operators used in this derivation is largely inspired by the
on-shell amplitudes, which is made possible by a corre-
spondence proposed in Refs. [28–32]. This work may

further imply that the on-shell language may be much
closer to the essence of effective field theory than the
traditional field theory language.
The second obstacle is to get a form with definite

permutation symmetries among the flavor indices. In liter-
ature, although the technique of plethysm is already widely
used [12–15,18] to perform a systematic counting of oper-
atorswithrepeatedfields, it isnotenoughforwritingdownthe
explicit form of the operators. We propose a systematic
method to solve this issue. Toobtain the basis particularly for
an irreducible representation space of the permutation sym-
metry S̄, which permutes fields only within the group of
repeated fields, we apply the left ideal projector of the group
algebra to an already-found independent basis, either for the
Lorentz structure or the gauge group tensors. Then by use of
theClebsch-Gordan coefficients of the inner product decom-
position, we combine all the symmetrized factors to get a
flavor tensor with definite permutation symmetry. The
independent flavor-specified operators are thus given by,
again, the semistandardYoung tableau.This essential feature
on the flavor structure makes our result more practically
useful than the other papers on listing higher-dimensional
operators. With the flavor structure addressed, we list the
complete and independent set of the flavor-specified dimen-
sion-9operatorsof theSMEFTin the forthcomingpaper [44].
After the complete list of operators is written, it is worth-

while to investigate various phenomenological applications
of these operators. As mentioned in the Introduction, if the
contribution from dimension-six operators is subdominant
or highly constrained, the dimension-eight operators should
be seriously considered, even though their Wilson coef-
ficients are suppressed by a higher inverse power of the new
physics scale. We notice there are several new Lorentz
structures that only appear at the dimension-eight level, and
there are several dimension-eight operators dominant over
the dimension-six operators. These phenomenological
applications deserve a closer look in the future.
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The whole procedure is implemented and automized by
Mathematica, and our code can easily be applied to higher
dimensions of SMEFT and other EFTs beyond the SM. In
terms of efficiency, listing the dimension-eight operators
only cost less than 2 min on a personal laptop.

ACKNOWLEDGMENTS

We are grateful to Christopher W. Murphy for cor-
respondence on their work on the same topic, and we
also thank Adam Martin and Veronica Sanz for valuable
discussions. H. L. L. thanks Zhou Xu for helpful dis-
cussion on programming problems. J. H. Y. thanks Jordy
de Vries for discussion that initializes this project and
appreciates the hospitality of Amherst Center for
Fundamental Interactions, University of Massachusetts at
Amherst,whileworkingon thisproject. J. S.,M. L. X., andJ.
H. Y thank TomMelia for useful comments. H. L. L., Z. R.,
and J. H. Y. are supported by the National Natural Science
Foundation of China (NSFC) under Grants No. 12022514
andNo. 11875003. J. H. Y. is also supported by the National
Natural Science Foundation of China (NSFC) under Grant
No. 12047503. J. S. is supported by the National Natural
Science Foun- dation of China under Grants No. 12025507,
No. 11690022, No. 11947302, and is supported by the
Strategic Priority Research Program and Key Research
Program of Frontier Science of the Chinese Academy of
Sciences under Grants No. XDB21010200,
No. XDB23010000, and No. ZDBS-LY-7003. M. L. X. is
supported by the National Natural Science Foundation of
China (NSFC) underGrant No. 2019M650856 and the 2019
International Postdoctoral Exchange Fellowship Program.

Note added.—Reference [34] also presents a list of the
dimension-eight operators in the standard model effective
field theory. There are two main differences between our
works. First, we provide a systematic and automated
method in which we obtain an independent basis directly
in which the EOM and IBP redundancies are entirely
absent. This would help our method apply to more com-
plicated cases where the correctness of our result is
guaranteed from the first principle. Second, in contrast
to [34], the form of the operators we provide has definite
symmetry over the flavor indices, and thus the independent
flavor-specified operators could be obtained easily as a
semistandard Young tableau.

APPENDIX A: CONVERSION BETWEEN
NOTATIONS

Various people have various conventions for how
operators are written, while our result is presented only
in one of them. In this Appendix, we provide a complete set
of identities for conversions of Lorentz structures between
different conventions, together with a bunch of examples,
in order to make it easier for different readers to use our
result. Relevant conventions are SLð2;CÞ vs SOð3; 1Þ

Lorentz indices, two-component Weyl spinor vs four-
component Dirac spinor, various forms of four-fermion
couplings related by Fierz identities, and the chiral basis
FL=R vs Hermitian basis F; F̃ of the gauge bosons.

1. Identities for spinors

a. 1.σ techniques

This part is devoted to conversions between Lorentz
structures written with all spinor indices, while all factors
are in irreducible representations of SLð2;CÞ, and the form
with the usual Lorentz indices μ, ν, etc., running over
0,1,2,3, on derivatives and the gauge bosons. The key of the
conversion is at the reduction of σ products. We adopt the
following definitions: the metric is “mostly minus” gμν ¼
diagðþ1;−1;−1;−1Þ; the Levi-Civita tensors are ϵ0123 ¼
−ϵ0123 ¼ þ1 and ϵ12 ¼ ϵ21 ¼ þ1; the sigma matrices are
defined as σμα _α ¼ ð1α _α; τiα _αÞμ, σ̄μ _αα ¼ ð1 _αα;−τi _ααÞμ, with
identity 1 and Pauli matrices τi; i ¼ 1, 2, 3. The two
sigmas are related by raising and lowering indices by
the ϵ tensor

σ̄μ _αα ¼ ϵαβϵ _α _βσμ
β _β
:

We also define

ðσμνÞαβ ¼
i
2
ðσμσ̄ν − σνσ̄μÞαβ; ðA1Þ

ðσ̄μνÞ _α _β ¼
i
2
ðσ̄μσν − σ̄νσμÞ _α _β; ðA2Þ

which directly induce the decomposition of two σ products:

ðσμσ̄νÞαβ ¼ gμνδβα − iðσμνÞαβ; ðA3Þ

ðσ̄μσνÞ _α _β ¼ gμνδ _α_β − iðσ̄μνÞ _α _β: ðA4Þ

For more than two σ’s multiplying as a chain, we may use
the following three σ decompositions:

ðσμσ̄νσρÞα _β¼gμνσρ
α_β
−gμρσν

α _β
þgνρσμ

α _β
þ iϵμνρλσλα _β; ðA5Þ

ðσ̄μσνσ̄ρÞ _αβ¼gμνσ̄ν _αβ−gμρσ̄ν _αβþgνρσ̄μ _αβ− iϵμνρλσ̄ _αβ
λ ; ðA6Þ

to recursively reduce it toward a linear combination of
1; σμ; σ̄μ; σμν, and σ̄μν. The Hermitian conjugates of these
bilinears are given by

ðψ1ψ2Þ† ¼ ψ†
2ψ

†
1;

ðψ1σ
μψ†

2Þ† ¼ ψ2σ
μψ†

1;

ðψ1σ
μνψ2Þ† ¼ ψ†

2σ̄
μνψ†

1: ðA7Þ

COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE … PHYS. REV. D 104, 015026 (2021)

015026-49



To compute the trace of a σ’s chain, one simply reduces the
chain to the above basic forms and takes the trace as
follows:

Tr1 ¼ 2; Trσμ ¼ Trσ̄μ ¼ Trσμν ¼ Trσ̄μν ¼ 0: ðA8Þ

The frequently used example of four σ chain and trace is
given as follows:

σμσ̄νσρσ̄κ ¼ ðgμνgρκ − gμρgνκ þ gνρgμκ þ iϵμνρκÞ1
− iðgμνσρκ − gμρσνκ þ gνρσμκ þ iϵμνρλσλκÞ;

Trðσμσ̄νσρσ̄κÞ ¼ 2gμνgρκ − 2gμρgνκ þ 2gνρgμκ þ 2iϵμνρκ;

Trðσ̄μσνσ̄ρσκÞ ¼ 2gμνgρκ − 2gμρgνκ þ 2gνρgμκ − 2iϵμνρκ:

ðA9Þ

b. Converting two-component to
four-component spinor

In this part, we use Ψ; Ψ̄ to denote four-component
spinors and ξ, χ to denote two-component left-handed
spinors, while their Hermitian conjugates ξ†, χ† are right-
handed spinors. Generally, we may combine a left-handed
Weyl spinor ξα and an independent right-handed Weyl
spinor χ† _α into a four-component Dirac spinor

Ψ ¼
�

ξα

χ† _α

�
; Ψ̄ ¼ Ψ†γ0 ¼ ðχα; ξ†_αÞ: ðA10Þ

We can then write down the spinor bilinears that are
commonly used

Ψ̄1Ψ2 ¼ χα1ξ2α þ ξ†1_αχ
† _α
2 ;

Ψ̄1γ
μΨ2 ¼ χα1σ

μ
α _αχ

† _α
2 þ ξ†1_ασ̄

μ _ααξ2α;

Ψ̄1σ
μνΨ2 ¼ χα1ðσμνÞαβξ2β þ ξ†1_αðσ̄μνÞ _α _βχ

_β
2;

ΨT
1CΨ2 ¼ ξα1ξ2α þ χ†1_αχ

† _α
2 ;

ΨT
1Cγ

μΨ2 ¼ ξα1σ
μ
α _αχ

† _α
2 þ χ†1_ασ̄

μ _ααξ2α;

ΨT
1Cσ

μνΨ2 ¼ ξα1ðσμνÞαβξ2β þ χ†1_αðσ̄μνÞ _α _βχ†
_β

2 ;

Ψ̄1CΨ̄T
2 ¼ ξ†1_αξ

† _α
2 þ χα1χ2α;

Ψ̄1γ
μCΨ̄T

2 ¼ χα1σ
μ
α _αξ

† _α
2 þ ξ†1_ασ̄

μ _ααχ2α;

Ψ̄1σ
μνCΨ̄T

2 ¼ ξ†1_αðσ̄μνÞ _α _βξ†
_β

2 þ χα1ðσμνÞαβχ2β; ðA11Þ

where C ¼ iγ0γ2 ¼ ðϵαβ
0

0

ϵ _α _βÞ ¼ ð−ϵαβ
0

0
−ϵ _α _β

Þ, γμ ¼ ð 0
σ̄μ _αβ

σμ
α_β

0
Þ

in the chiral representation, and σμν ¼ i
2
½γμ; γν� ¼

ððσμνÞαβ
0

0
ðσ̄μνÞ _α _βÞ. In the SM, the four-component chiral fer-

mions are related to our notations of two-component
fermions as

qL ¼
�
Q

0

�
; uR ¼

�
0

u†C

�
; dR ¼

�
0

d†C

�
;

lL ¼
�
L

0

�
; eR ¼

�
0

e†C

�
; ðA12Þ

q̄L ¼ ð0; Q†Þ; ūR ¼ ðuC; 0Þ; d̄R ¼ ðdC; 0Þ;
l̄L ¼ ð0; L†Þ; ēR ¼ ðeC; 0Þ: ðA13Þ

The conversion rules of the fermion bilinears in the SM to
the four-component notation are obtained by substituting
these fields into the relations in Eq. (A11), such as

uCσμu
†
C ¼ ūγμu; eCL ¼ ēl; u†Cd

†
C ¼ uTCd:

ðA14Þ

c. A brief introduction to Fierz identities

The following 16 bilinear forms constitute a complete
basis of the 4 × 4 Hermitian matrices

ΓS
1 ¼ 1; ðA15Þ

ΓV
1 through ΓV

4 ¼ γμ; ðA16Þ

ΓT
1 through ΓT

6 ¼ σμν; ðA17Þ

ΓA
1 through ΓA

4 ¼ γμγ5; ðA18Þ

ΓP
1 ¼ γ5: ðA19Þ

Labels S, V, T, A, P denote scalar, vector, tensor, axial-
vector, and pseudoscalar, respectively, while σμν¼ i

2
½γμ;γν�;

γ5¼ iγ0γ1γ2γ3¼ð−1
0
0
1
Þ. The inner product between them is

defined as

Tr½ΓA
a ΓB

b � ¼ δABgab; A;B ¼ S; V; T; A; P;

a ¼ 1;…; dimA; b ¼ 1;…; dimB: ðA20Þ

Regarding g as the metric depending on our choice of
coordinates in each subspace, and using it to raise and
lower indices, the inner product induces an orthogonality
relation, which allows any 4 × 4 matrix M to be expanded
in this basis as M ¼ P

a M
aΓa, with coordinates Ma ¼

TrðMΓaÞ.
Fierz transformations of four-fermion couplings are the

linear transformations:

X
a

ðΓA
a ÞijðΓAaÞkl ¼

X
B

CAB

X
b

ðΓB
b ÞilðΓBbÞkj: ðA21Þ

According to the orthogonality Eq. (A20), we infer
immediately CAB ¼ P

a TrðΓA
a ΓB

bΓAaΓBbÞ. Calculating all
the CAB to get the following formula:
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0
BBBBBB@

δijδkl

ðγμÞijðγμÞkl
1
2
ðσμνÞijðσμνÞkl

ðγμγ5Þijðγμγ5Þkl
ðγ5Þijðγ5Þkl

1
CCCCCCA

¼

0
BBBBBB@

1=4 1=4 1=4 −1=4 1=4

1 −1=2 0 −1=2 −1
3=2 0 −1=2 0 3=2

−1 −1=2 0 −1=2 1

1=4 −1=4 1=4 1=4 1=4

1
CCCCCCA

0
BBBBBB@

δilδkj

ðγμÞilðγμÞkj
1
2
ðσμνÞilðσμνÞkj

ðγμγ5Þilðγμγ5Þkj
ðγ5Þilðγ5Þkj

1
CCCCCCA
: ðA22Þ

Both sides of Eq. (A22) contract with Ψ̄1iΨ2jΨ̄3kΨ4l,

0
BBBBBB@

CijCkl

ðγμCÞijðCγμÞkl
1
2
ðσμνCÞijðCσμνÞkl

ðγμγ5CÞijðCγμγ5Þkl
ðγ5CÞijðCγ5Þkl

1
CCCCCCA

¼

0
BBBBBB@

−1=4 1=4 1=4 1=4 −1=4
−1 −1=2 0 1=2 1

−3=2 0 −1=2 0 −3=2
1 −1=2 0 1=2 −1

−1=4 −1=4 1=4 −1=4 −1=4

1
CCCCCCA

0
BBBBBB@

δilδjk

ðγμÞilðγμÞjk
1
2
ðσμνÞilðσμνÞjk

ðγμγ5Þilðγμγ5Þjk
ðγ5Þilðγ5Þjk

1
CCCCCCA
: ðA23Þ

Both sides of Eq. (A23) contract with Ψ̄1iΨ̄2jΨ3kΨ4l. With these Fierz identities, some four-fermion interactions can be
transformed to couplings of neutral fermion currents,

ðd̄lÞðl̄dÞ ¼ −
1

4
ðd̄dÞðl̄lÞ − 1

4
ðd̄γμdÞðl̄γμlÞ −

1

8
ðd̄σμνdÞðl̄σμνlÞ þ

1

4
ðd̄γμγ5dÞðl̄γμγ5lÞ −

1

4
ðd̄γ5dÞðl̄γ5lÞ

¼ −
1

2
ðd̄γμdÞðl̄γμlÞ; ðA24Þ

ðl̄Cq̄ÞðlCqÞ ¼ −
1

4
ðl̄lÞðq̄qÞ þ 1

4
ðl̄γμlÞðq̄γμqÞ þ

1

8
ðl̄σμνlÞðq̄σμνqÞ þ

1

4
ðl̄γμγ5lÞðq̄γμγ5qÞ −

1

4
ðl̄γ5lÞðq̄γ5qÞ

¼ 1

2
ðl̄γμlÞðq̄γμqÞ: ðA25Þ

It is worth mentioning that Γa may also be generators of fundamental SUðNÞ, denoted by Ta. Since f1; Tag is a complete
set of N × N Hermitian matrices, substituting ΓA

a ¼ Ta;ΓI ¼ 1;TrðTaTbÞ ¼ δab into Eq. (A21), we get the Fierz identity
for SUðNÞ group as

X
a

ðTaÞijðTaÞkl ¼ δilδkj −
1

N
δijδkl: ðA26Þ

d. Examples

Under Fierz identities, some terms can be transformed into bilinear form which readers may be more familiar with. Here
are some examples.

(i) Example 1, type Oð1∼4Þ
QQ†HH†D3 ,

iðQpaiσμD
↔

νQ† ai
r ÞðDμH†DνHÞ ¼ iðq̄air γμD

↔
νqpaiÞðDμH†DνHÞ ¼ iðq̄rγμD

↔
νqpÞðDμH†DνHÞ; ðA27Þ

iðQpaiσμD
↔

νQ† aj
r ÞDνHjDμH†i ¼ iðq̄ajr γμD

↔
νqpaiÞDνHjDμH†i

¼ 1

2
iðq̄air γμD

↔
νqpaiÞDνHjDμH†j

þ i

�
ðq̄ajr γμD

↔
νqpaiÞDνHjDμH†i −

1

2
ðq̄air γμD

↔
νqpaiÞDνHjDμH†j

�

¼ 1

2
iðq̄rγμD

↔
νqpÞðDμH†DνHÞ þ iðq̄rγμτID

↔
νqpÞðDμH†τIDνHÞ: ðA28Þ

COMPLETE SET OF DIMENSION-EIGHT OPERATORS IN THE … PHYS. REV. D 104, 015026 (2021)

015026-51



Hence, the basis can be transformed into

8>>>>>>>><
>>>>>>>>:

iðQpaiσμQ† ai
r Þ□ðH†D

↔
μHÞ

iðQpaiσμQ† aj
r Þ□ðH†iD

↔
μHjÞ

iðQpaiσμD
↔

νQ† ai
r ÞðDμH†DνHÞ

iðQpaiσμD
↔

νQ† aj
r ÞðDμH†iDνHjÞ

⇒

8>>>>>>>><
>>>>>>>>:

iðq̄rγμqpÞ□ðH†D
↔

μHÞ
iðq̄rγμτIqpÞ□ðH†τID

↔
μHÞ

iðq̄rγμD
↔

νqpÞðDμH†DνHÞ
iðq̄rγμτID

↔

νqpÞðDμH†iτIDνHjÞ

: ðA29Þ

(ii) Example 2, type Oð1∼4Þ
QQ†uCu

†
CHH† ,

ðQpaiuC b
r ÞðQ† ai

s u
†
C tbÞðH†HÞ ¼ ðūbrqpaiÞðq̄ais utbÞðH†HÞ ¼ −

1

2
ðq̄ais γμqpaiÞðūbrγμutbÞðH†HÞ

¼ −
1

2
ðq̄sγμqpÞðūrγμutÞðH†HÞ; ðA30Þ

ðQpaiuC a
rÞðQ† ci

s u
†
C tcÞðH†HÞ ¼ ðūarqpaiÞðq̄cis utcÞðH†HÞ ¼ −

1

2
ðq̄cis γμqpaiÞðūarγμutcÞðH†HÞ

¼ −
1

2

�
ðq̄cis γμqpaiÞðūarγμutcÞðH†HÞ − 1

3
ðq̄ais γμqpaiÞðūcrγμutcÞðH†HÞ

�

−
1

6
ðq̄ais γμqpaiÞðūcrγμutcÞðH†HÞ

¼ −
1

2
ðq̄sγμλAqpÞðūrγμλAutÞðH†HÞ − 1

6
ðq̄sγμqpÞðūrγμutÞðH†HÞ; ðA31Þ

ðQpaiuC b
r ÞðQ† aj

s u†C tbÞH†iHj ¼ ðūbrqpaiÞðq̄ajs utbÞH†iHj ¼ −
1

2
ðq̄ajs γμqpaiÞðūbrγμutbÞH†iHj

¼ −
1

2

�
ðq̄ajs γμqpaiÞðūbrγμutbÞH†iHj −

1

2
ðq̄ais γμqpaiÞðūbrγμutbÞH†jHj

�

−
1

4
ðq̄ais γμqpaiÞðūbrγμutbÞH†jHj

¼ −
1

2
ðq̄sγμτIqpÞðūrγμutÞðH†τIHÞ − 1

4
ðq̄sγμqpÞðūrγμutÞðH†HÞ; ðA32Þ

ðQpaiuC a
r ÞðQ† cj

s u
†
C tcÞH†iHj ¼ −

1

2
ðq̄sγμτIλAqpÞðūrγμλAutÞðH†τIHÞ − 1

6
ðq̄sγμτIqpÞðūrγμutÞðH†τIHÞ

−
1

4
ðq̄sγμλAqpÞðūrγμλAutÞðH†HÞ − 1

12
ðq̄sγμqpÞðūrγμutÞðH†HÞ: ðA33Þ

Hence, the basis can be transformed into

8>>>>><
>>>>>:

ðQpaiuC a
rÞðQ† cj

s u
†
C tcÞH†iHj

ðQpaiuC a
rÞðQ† ci

s u
†
C tcÞðH†HÞ

ðQpaiuC b
rÞðQ† aj

s u†C tbÞH†iHj

ðQpaiuC b
rÞðQ† ai

s u
†
C tbÞðH†HÞ

⇒

8>>>>><
>>>>>:

ðq̄sγμqpÞðūrγμutÞðH†HÞ
ðq̄sγμλAqpÞðūrγμλAutÞðH†HÞ
ðq̄sγμτIqpÞðūrγμutÞðH†τIHÞ
ðq̄sγμτIλAqpÞðūrγμλAutÞðH†τIHÞ

: ðA34Þ
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(iii) Example 3, type Oð1∼5Þ
QQ†LL†HH† ,

ðLpiQrajÞðL† k
sQ† aj

t ÞH†iHk ¼
1

2
ðl̄ksγμlpiÞðq̄ajt γμqrajÞH†iHk

¼ 1

2
ðl̄sγμτIlpÞðq̄tγμqrÞðH†τIHÞ þ 1

4
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ; ðA35Þ

ðLpiQrajÞðL† j
sQ† ai

t ÞðH†HÞ ¼ 1

2
ðl̄sγμτIlpÞðq̄tγμτIqrÞðH†HÞ þ 1

4
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ; ðA36Þ

ðLpiQrajÞðL† i
sQ† ak

t ÞH†jHk ¼
1

2
ðl̄sγμlpÞðq̄tγμτIqrÞðH†τIHÞ þ 1

4
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ; ðA37Þ

ðLpiQrajÞðL† j
sQ† ak

t ÞH†iHk ¼
1

2
ðl̄jsγμlpiÞðq̄akt γμqrajÞH†iHk

¼ 1

2
ðl̄sγμτIlpÞðq̄akt γμqralÞðτIÞlmH†mHk þ

1

4
ðl̄sγμlpÞðq̄akt γμqralÞH†lHk

¼ 1

2
ðl̄sγμτIlpÞðq̄tγμτJqrÞðH†τIτJHÞ þ 1

4
ðl̄sγμτIlpÞðq̄tγμqrÞðH†τIHÞ

þ 1

4
ðl̄sγμlpÞðq̄tγμτIqrÞðH†τIHÞ þ 1

8
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ

¼ 1

2
iϵIJKðl̄sγμτIlpÞðq̄tγμτJqrÞðH†τKHÞ þ 1

4
ðl̄sγμτIlpÞðq̄tγμτIqrÞðH†HÞ

þ 1

4
ðl̄sγμτIlpÞðq̄tγμqrÞðH†τIHÞ þ 1

4
ðl̄sγμlpÞðq̄tγμτIqrÞðH†τIHÞ

þ 1

8
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ; ðA38Þ

ðLpiQrajÞðL† k
sQ† ai

t ÞH†jHk ¼
1

2
iϵIJKðl̄sγμτIlpÞðq̄tγμτKqrÞðH†τJHÞ þ 1

4
ðl̄sγμτIlpÞðq̄tγμτIqrÞðH†HÞ

þ 1

4
ðl̄sγμτIlpÞðq̄tγμqrÞðH†τIHÞ þ 1

4
ðl̄sγμlpÞðq̄tγμτIqrÞðH†τIHÞ

þ 1

8
ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ; ðA39Þ

Hence, the basis can be transformed into

8>>>>>>>><
>>>>>>>>:

ðLpiQrajÞðL† i
sQ† ak

t ÞH†jHk

ðLpiQrajÞðL† k
sQ† ai

t ÞH†jHk

ðLpiQrajÞðL† j
sQ† ak

t ÞH†iHk

ðLpiQrajÞðL† j
sQ† ai

t ÞðH†HÞ
ðLpiQrajÞðL† k

sQ† aj
t ÞH†iHk

⇒

8>>>>>>>><
>>>>>>>>:

ðl̄sγμlpÞðq̄tγμqrÞðH†HÞ
ðl̄sγμlpÞðq̄tγμτIqrÞðH†τIHÞ
ðl̄sγμτIlpÞðq̄tγμτIqrÞðH†HÞ
ðl̄sγμτIlpÞðq̄tγμqrÞðH†τIHÞ
ϵIJKðl̄sγμτIlpÞðq̄tγμτJqrÞðH†τKHÞ

: ðA40Þ

(iv) Example 4, type Oð1∼5Þ
L2L†2HH† ,

ðLpiLrjÞðL† j
sL† i

tÞðH†HÞ ¼ 1

2
ðl̄sγμlrÞðl̄tγμlpÞðH†HÞ; ðA41Þ

ðLpiLrjÞðL† j
sL† k

t ÞH†iHk ¼
1

2
ðl̄sγμlrÞðl̄kt γμlpiÞH†iHk

¼ 1

2
ðl̄sγμlrÞðl̄tγμτIlpÞðH†τIHÞ þ 1

4
ðl̄sγμlrÞðl̄tγμlpÞðH†HÞ: ðA42Þ
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Since different Y’s indicate different flavor symmetries, operators with different Y’s should not be mixed if one does
not want to confuse the flavor symmetry. means we will get a minus sign if we exchange p,r. The basis can
be transformed into

ðA43Þ

ðA44Þ

(v) Example 5, type Oð1∼4Þ
L2L†2D2 ,

ðLpiLrjÞðDμL† i
sDμL† j

tÞ ¼
1

2
ðDμl̄sγνlpÞðDμ l̄tγνlrÞ: ðA45Þ

Operator iðDμL† i
sDνL† j

tÞðLpiσ
μνLrjÞ is equivalent to ðLpiDμLrjÞðL† i

sDμL† j
tÞ up to IBP and EOM, and

ðLpiDμLrjÞðL† i
sDμL† j

tÞ ¼
1

2
ðl̄sγνlpÞðDμl̄tγνDμlrÞ: ðA46Þ

Hence, the basis can be transformed into

ðA47Þ

(vi) Example 6, type Oð1∼4Þ
BQ3L

,

ðA48Þ

It should be noted thatOð1∼4Þ
BQ3L

is a complex type, which means the Hermitian conjugate of independent operators of this type

are still independent operators.
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At last we give some examples of how Y’s act on operators,

ðA49Þ

with

Oð1Þ
Q2Q†2HH† ¼ ðQpaiQrbj þQraiQpbjÞðQ† aj

s Q† bk
t þQ† aj

t Q† bk
s ÞH†iHk;

Oð4Þ
Q2Q†2HH† ¼ ðQpaiQrbj þQraiQpbjÞðQ† aj

s Q† bk
t −Q† aj

t Q† bk
s ÞH†iHk;

Oð6Þ
Q2Q†2HH† ¼ ðQpaiQrbj −QraiQpbjÞðQ† aj

s Q† bk
t þQ† aj

t Q† bk
s ÞH†iHk;

Oð8Þ
Q2Q†2HH† ¼ ðQpaiQrbj −QraiQpbjÞðQ† aj

s Q† bk
t −Q† aj

t Q† bk
s ÞH†iHk; ðA50Þ

and

ðA51Þ

with

Oð1Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ þ ðQsajQtcmÞðLpiQrbkÞ�H†kHn

− ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQtajQscmÞðLpiQrbkÞ�H†kHn;

Oð4Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ þ ðQsajQtcmÞðLpiQrbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQrajQscmÞðLpiQtbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQscmÞðLpiQrbkÞ þ ðQsajQrcmÞðLpiQtbkÞ�H†kHn;

Oð6Þ
Q3LHH† ¼ ϵabcϵimϵjn½ðQrajQtcmÞðLpiQsbkÞ − ðQsajQtcmÞðLpiQrbkÞ�H†kHn

− ϵabcϵimϵjn½ðQtajQrcmÞðLpiQsbkÞ þ ðQrajQscmÞðLpiQtbkÞ�H†kHn

þ ϵabcϵimϵjn½ðQtajQscmÞðLpiQrbkÞ þ ðQsajQrcmÞðLpiQtbkÞ�H†kHn: ðA52Þ

2. Conversion between FL=R and F;F̃

From Sec. III B 1 it is clear that we are strongly inclined
to use the chiral basis of the gauge bosons FL=R, which
massively simplifies our derivations. Physically, it may be
due to their direct correspondence with on-shell particles
with definite helicities. However, the other basis that is
more commonly used, F; F̃, also has many privileges such
as its Hermiticity and definite CP. Moreover, a lot of
applications are also based on the F; F̃ basis, such as the

Feynman rule calculations. In this subsection we summa-
rize the conversion rules between the two bases. We start by
writing down the definitions:

F̃μν ¼ 1

2
ϵμνρηFρη; FL=R ¼ 1

2
ðF ∓ iF̃Þ; ðA53Þ

from which we can easily deduce the following useful
identities:
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F̃1μρF2
ρν ¼ −F1

νρF̃2ρμ −
1

2
ðF1F̃2Þδνμ; ðA54Þ

F̃1μρF̃2
ρν ¼ F1

νρF2ρμ þ
1

2
ðF1F2Þδνμ: ðA55Þ

In the following, we present various situations where we
explicitly do the conversions as examples:

a. Operators involving one gauge bosons

When the gauge boson contracts with a two form Oμν

with property O†
μν ¼ Oμν, we have

CFμν
L Oμν þ H:c: ¼ ðReCÞOμνFμν þ ðImCÞOμνF̃μν;

ðA56Þ

while for O†
μν ¼ Oνμ we get instead

CFμν
L Oμν þ H:c: ¼ ðImCÞOμνFμν þ ðReCÞOμνF̃μν:

ðA57Þ

In particular, when FL; FR contract with σμν, it is further
simplified to

FL
μνðσμνÞαβ ¼ FμνðσμνÞαβ ¼ −iF̃μνðσμνÞαβ;

FL
μνðσ̄μνÞ _α _β ¼ 0; ðA58Þ

FR
μνðσμνÞαβ ¼ 0;

FR
μνðσ̄μνÞ _α _β ¼ Fμνðσ̄μνÞ _α _β ¼ iF̃μνðσ̄μνÞ _α _β: ðA59Þ

Note that the basis F; F̃ are degenerate when contracting
with σμν. In our result, for instance, Eq. (4.36), we adopt F
instead of F̃ in the operators.

b. Operators involving two gauge boson

For the XμνXμν contractions, we have

F1L
μνF2Rμν ¼ 0; ðF1LF2LÞ ¼

1

2
ðF1F2 − iF1F̃2Þ;

ðF1RF2RÞ ¼
1

2
ðF1F2 þ iF1F̃2Þ: ðA60Þ

Thus in the operator they are recombined as

CðF1LF2LÞOþ H:c: ¼ ðReCÞðF1F2ÞOþ ðImCÞðF1F̃2ÞO;

ðA61Þ

where O† ¼ O is Hermitian. Contractions of the form
XμνXν

ρ are converted as

FLμρFL
ρν ¼ 1

8
δνμðF2 þ iFF̃Þ; ðA62Þ

FRμρFR
ρν ¼ 1

8
δνμðF2 − iFF̃Þ; ðA63Þ

FLμρFR
ρν ¼ 1

2
FμρFρν þ 1

8
F2δνμ: ðA64Þ

When F1, F2 are antisymmetric, thus ðF1F2Þ ¼ ðF1F̃2Þ ¼
0 (for instance, they have antisymmetric group indices), we
can deduce

F1LμρF2L
ρν ¼ 1

4
ð2F1μρF2

ρν þ iF1
νρF̃2ρμ − iF1μρF̃2

ρνÞ;
ðA65Þ

F1RμρF2R
ρν ¼ 1

4
ð2F1μρF2

ρν − iF1
νρF̃2ρμ þ iF1μρF̃2

ρνÞ;
ðA66Þ

F1LμρF2R
ρν ¼ 1

4
ðiF1

νρF̃2ρμ þ iF1μρF̃2
ρνÞ: ðA67Þ

For examples to get operators in Eq. (4.49) we performed
the following conversions:

idABCGA
L
μ
νGB

R
ν
λðQpaiσ

λðλCÞabD
↔

μQ† bi
r Þ

¼ i
2
dABCGAμ

νGBν
λðQpaiσ

λðλCÞabD
↔

μQ† bi
r Þ; ðA68Þ

fABCGA
L
μ
νGB

R
ν
λðQpaiσ

λðλCÞabD
↔

μQ† bi
r Þ

¼ i
4
fABCðGAμνG̃B

νλ þGA
λνG̃

BνμÞðQpaiσ
λðλCÞabD

↔

μQ† bi
r Þ;

ðA69Þ

while for the complex type with complex Wilson coef-
ficient C we get

CfABCGA
L
μ
νGB

L
ν
λðQpaiσ

λðλCÞabiD
↔

μQ† bi
r Þ þ H:c:

¼ ðReCÞfABCGAμνGB
νλðQpaiσ

λðλCÞabiD
↔

μQ† bi
r Þ

þ 1

2
ðImCÞfABCðGAμνG̃B

νλ −GA
λνG̃

BνμÞ

× ðQpaiσ
λðλCÞabiD

↔

μQ† bi
r Þ: ðA70Þ

When two FL or FR contract with σμν, we write the
conversion rules similar with Eqs. (A58) and (A59),

F1L
μλF2Lλ

νðσμνÞαβ ¼ F1
μλF2λ

νðσμνÞαβ; ðA71Þ

F1R
μλF2Rλ

νðσ̄μνÞ _α _β ¼ F1
μλF2λ

νðσ̄μνÞ _α _β: ðA72Þ
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c. Operators involving more gauge bosons

If all gauge bosons contract with each other, they vanish
for any mixed helicity configurations

F1Lμ
νF2Lν

ρF3Rρ
μ ¼ 0; F1Lμ

νF2Rν
ρF3Rρ

μ ¼ 0; ðA73Þ

but survive when all the helicities are the same,

F1Lμ
νF2Lν

ρF3Lρ
μ ¼ 1

2
ðF1μ

νF2ν
ρF3ρ

μ − iF1μ
νF2ν

ρF̃3ρ
μÞ;
ðA74Þ

F1Rμ
νF2Rν

ρF3Rρ
μ ¼ 1

2
ðF1μ

νF2ν
ρF3ρ

μ þ iF1μ
νF2ν

ρF̃3ρ
μÞ:
ðA75Þ

Similar features hold for more gauge bosons contracting
together. Some nonvanishing examples of four gauge boson
contractions are

CB2
RG

2
L þ H:c: ¼ 1

2
ðReCÞðB2G2 þ ðBB̃ÞðGG̃ÞÞ

þ 1

2
ðImCÞðB2ðGG̃Þ − ðBB̃ÞG2Þ; ðA76Þ

CBLμνBL
μ
λBL

λρBL
ν
ρ þ H:c:

¼ ðReCÞBμνB
μ
λBλρBν

ρ þ ðImCÞBμνB
μ
λBλρB̃ν

ρ:

ðA77Þ

APPENDIX B: MATHEMATICAL TOOLS

1. Convention in permutation operation

The elements of symmetric groups Sm are permutations
of m objects. Two most popular ways to represent the
elements of the Sm are cycles notation and matrix notation.
For example, a typical element in Sm that permutes the first
three objects and exchanges the last two objects can be
expressed in the following form:

π ¼ ð123Þð45Þ ¼
�
1 2 3 4 5

2 3 1 5 4

�
: ðB1Þ

In the matrix notation, the numbers in the first row can be
viewed as the labels or the positions of the objects and the
corresponding numbers in the second row are the labels or
the positions of those objects after permutation. In this
sense, the permutation can also be viewed as a function that
maps the numbers in the first row to the numbers in the
second row; i.e., in the above example we have

πð1Þ ¼ 2; πð2Þ ¼ 3; πð3Þ ¼ 1;

πð4Þ ¼ 5; πð5Þ ¼ 4: ðB2Þ

With the above point of view, which treats the group
elements as a function, the group multiplication rule is
inherent by the composition rule of the function such that

πiðπjðkÞÞ ¼ ðπi · πjÞðkÞ; ðB3Þ

where · is the ordinary group multiplication and i and j are
labels of the group elements. Further, we can define the
group elements as an operation that permutes the order of
arguments of a function such that it becomes another
function of the same set of arguments with the original
order,

πi ∘Fðp1; p2;…; pmÞ ¼ Fðpπið1Þ; pπið2Þ;…; pπiðmÞÞ
≡ Fπiðp1; p2;…; pmÞ; ðB4Þ

and without loss of clarity, we shorten the above notation
as πi ∘FðfpkgÞ ¼ FðfpπiðkÞgÞ≡ FπiðfpkgÞ. More specifi-
cally, the above operation changes the kth argument of the
function F to the argument that originally seats at the
πiðkÞth slot in F, or equivalently, moves the ith argument to
the π−1i ðkÞ slot. The operation πi ∘ is essentially a map
that converts a function to another function; hence the
composition rule of this map can be defined. It is easy to
show that such a composition rule naturally preserves the
group multiplication rule:

ðπi ∘ πjÞ ∘FðfpkgÞ≡ πi ∘ ðπj ∘FðfpkgÞÞ
¼ πi ∘FπjðfpkgÞ ¼ πi ∘FðfpπiðkÞgÞ
¼ FðfpπiðπjðkÞÞgÞ ¼ Fðfpðπi·πjÞðkÞgÞ
¼ ðπi · πjÞ ∘FðfpkgÞ; ðB5Þ

which means the correspondence between the group
element πi and the operation πi ∘ on functions is a
homomorphism.
In Sec. III A, we mention that to generate a set of bases of

the Lorentz structures and the group factors transforming
under a certain irrep of the symmetric group, one only
needs to act on an unsymmetrized Lorentz structure or
group factor a set of group algebra elements bλx that form a
basis of the same irrep in the group algebra space.
Therefore, we need to generalize the concept of group
elements as operations on functions to the group algebra
space. We define a group algebra element as an operation
on a function based on the definition in Eq. (B4). For a
generic element r ¼ P

i r
iπi in the S̃m, the corresponding

operation r ∘ on functions is defined as

r ∘ ¼
X
i

riπi ∘ : ðB6Þ

This operation still changes a function to another func-
tion with the same set of arguments, while this resulting
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function is a linear combination of the original one with
arguments permuted:

r ∘FðfpkgÞ ¼
X
i

riπi ∘FðfpkgÞ

¼
X
i

riFðfpπiðkÞgÞ≡ FrðfpkgÞ: ðB7Þ

One can verify that the generalization preserves the
multiplication rule in the group algebra:

πi ∘FrðfpkgÞ ¼ πi ∘ r ∘FðfpkgÞ
¼ FrðfπiðkÞgÞ
¼

X
i

rjFðfpðπi·πjÞðkÞgÞ

¼
X
i

rjðπi · πjÞFðfpkgÞ

¼ ðπi · rÞ ∘FðfpkgÞ: ðB8Þ

In this case, one can obtain a set of functions Fλ
xðfpkgÞ by

exerting bλx defined in Eq. (3.16) such that

Fλ
xðfpkgÞ≡ bλx ∘FðfpkgÞ; ðB9Þ

πi ∘Fλ
xðfpkgÞ ¼

X
y

Fλ
yðfpkgÞDλ

yxðπiÞ: ðB10Þ

As an example we show in the following how to
generate the basis of [2, 1] representation of S3 with
Tp1p2p3p4 ¼ Tðp1; p2; p3; p4Þ ¼ ϵp1p2ϵp3p4 . First one can

verify that the group algebra elements b½2;1�1 and b½2;1�2 below
do form a basis of [2, 1] irrep in the group algebra space,

b½2;1�1 ¼ 1

3
½eþ ð12Þ − ð13Þ − ð123Þ�; ðB11Þ

b½2;1�2 ¼ 1

3
½−ð12Þ þ ð23Þ − ð123Þ þ ð132Þ�; ðB12Þ

such that any permutation π in S3 acting on either of them
will result in a linear combination of them. This set of bases
generates a matrix representation D½2;1�ðπÞ of S3 with the
two generators (12) and (123) given by

D½2;1�ðð12ÞÞ ¼
�
1 −1
0 −1

�
; D½2;1�ðð123ÞÞ ¼

�−1 1

−1 0

�
:

ðB13Þ
Readers can verify that the relation in Eq. (3.16) does hold
with the definitions in Eqs. (B12) and (B13). Under the

operations b½2;1�1;2 ∘ , we obtain a basis from Tðp1; p2;p3; p4Þ:

T ½2;1�
1 ðp1; p2; p3; p4Þ
¼ b½2;1�1 ∘Tðp1; p2; p3; p4Þ

¼ 1

3
ðϵp1p2ϵp3p4 þ ϵp2p1ϵp3p4 − ϵp2p4ϵp3p1 − ϵp1p4ϵp3p2Þ

¼ 1

3
ðϵp1p4ϵp2p3 þ ϵp1p3ϵp2p4Þ; ðB14Þ

T ½2;1�
2 ðp1; p2; p3; p4Þ
¼ b½2;1�1 ∘Tðp1; p2; p3; p4Þ

¼ 1

3
ð−ϵp2p1ϵp3p4 þ ϵp1p3ϵp2p4 − ϵp2p3ϵp1p4 þ ϵp3p1ϵp2p4Þ

¼ 1

3
ðϵp1p2ϵp3p4 − ϵp1p4ϵp2p3Þ; ðB15Þ

and again readers can verify with the Schouten identity that
they transform according to Eq. (B12).

2. Projection operator and CGCs

We define the projection operator in the direct product
space V ¼⊗ Vλi of the Sm group,

Pj
λi ¼

dλ
m!

X
π

D−1
λ ðπÞjiUðπÞ; ðB16Þ

where dλ is the dimension of the λ representation, m! is the
order of the Sm group, and DλðπÞji is the matrix repre-
sentation of π in irrep λ:UðπÞ is the representation of Sm on
V defined by

UðπÞ
�
⊗
i
vkiλi

�
¼

X
ji

�
⊗
i
vjiλi

�Y
i

DλiðπÞjiki ; ðB17Þ

where vjiλi is the jith basis vector of λi irrep.
The Theorem 4.2 in Ref. [39] states that for any v ∈ V,

fPj
λiv; i ¼ 1;…; dλg transform as irrep λ if they are not null

such that

UðπÞðPj
λivÞ ¼

X
k

ðPj
λkvÞDλiðπÞki: ðB18Þ

In practice, we chose j ¼ 1 and generated invariant sub-
spaces of irrep λ by iterating v for different basis vector
⊗ vkiλi until we get the number of the linear independent
subspaces equal to the number of multiplicity of irrep λ in
the inner product decomposition ⊙ λi. The CGCs can be
extracted from the coefficient of basis vectors of the
resulting invariant subspaces of irrep λ.
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