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We present a complete and independent list of the dimension-nine operator basis in the Standard Model
effective field theory by an automatic algorithm based on the amplitude-operator correspondence.
A complete basis (Y-basis) is first constructed by enumerating the Young tableau of an auxiliary
SU(N) group and the gauge groups, with the equation-of-motion and integration-by-part redundancies
all removed. In the presence of repeated fields, another basis (P-basis) with explicit flavor symmetries
among them is derived from the Y-basis, which further induces a basis of independent monomial operators
through a systematic process called desymmetrization. Our form of operators has advantages over the
traditional way of presenting operators constrained by flavor relations, in the simplicity of both eliminating
flavor redundancies and identifying independent flavor-specified operators. We list the 90456 (560)
operators for three (one) generations of fermions, all of which violate baryon number or lepton number
conservation; among them we find new violation patterns as AB = 2 and AL = 3, which only appear at the

dimensions d > 9.
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I. INTRODUCTION

Being the most successful theory of particle physics to
date, the standard model (SM) still leaves many questions
about the nature of matter unanswered, which motivates
direct and indirect experimental searches on new physics
(NP). For instance, the baryon asymmetry of the universe
and nonzero neutrino masses may indicate that the baryon
number AB and the lepton number AL should be violated
via additional new degrees of freedom. The absence of
signals of physics beyond the SM at the Large Hadron
Collider (LHC) suggests that new particles are either very
weakly coupled or much heavier than the electroweak
scale. Assuming that new particles live at high energies, A,
well above the electroweak scale, their effects at
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experimental energies much below A can be systematically
described under the effective field theory (EFT) framework.

The Standard Model effective field theory (SMEFT)
provides a systematic approach to describe the effects of
heavy particles at low energy in a model-independent way.
The SMEFT Lagrangian can be systematically organized
by the dimension of effective operators in inverse powers of
the heavy scale A, as follows:

1 1 1 1
XSMEFT:-ZSM+K-$5 +F'$6+Fg7+ﬁgg

1
clgh - Y00, )

where each Ogd) denotes a Lorentz- and gauge-invariant
operator of canonical mass dimension d with SM degrees
of freedom only and its Wilson coefficient cl(-d) parametrizes

the size of possible deviations from SM predictions. For

each dimension d, the Ol(d) construction follows that one
writes all the possible Lorentz and gauge invariants using
SM fields solely. Although it is possible to find a set of
operators with Lorentz and gauge invariance for a given
mass dimension d, these sets might be redundant due to
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possible relations between different operators. By means of
equations of motion (EOM), Fierz identities, and integration
by parts (IBP), one can eliminate redundancies for each
dimension and obtain a complete and also independent
operator basis. The operators up to dimension seven have
been listed in this way in Refs. [ 1-8]. Atdimension eight and
higher, the number of such operators increases tremendously,
which makes the task very tedious and prone to error. Instead,
we provided a systematic and automated method [9] to write
a complete and independent basis directly, which has been
applied to listing the complete dimension-eight operators in
the SMEFT. At the same time, the authors of Ref. [10]
utilizing the traditional way to treat the EOM and IBP
redundancies also write down the dimension-eight operators.
Compared to Ref. [10], since we started from the operators in
which the EOM is absent and the IBP is treated in the
beginning, the correctness of our result is theoretically
guaranteed from the first principle. It is also pointed out
[9] that our method provides a relatively simple way to
enumerate all the independent flavor-specified operators,
while the traditional method has not.

Both the origin of the matter-antimatter asymmetry and
the Majorana origin of the neutrino masses are tied to the
baryon number violation (BNV) or lepton number viola-
tions (LNV), which only arise at the nonrenormalizable
level of the SM Lagrangian. Therefore, the AB- and
AL-violating processes, such as nucleon decay, neutron-
antineutron oscillation, and neutrinoless double beta decay,
could be parametrized systematically in the SMEFT. The
SMEFT systematically classifies effective operators with
the fact that (a) baryon and lepton number violation (BLV)
has to occur with integer units and (b) (AB,AL) =
(odd, odd) or (even, even), and (c) the AB — AL number
violation satisfies

0,4,8,...,for d = even,

(1.2)
2,6,...,for d = odd,

|AB — AL| :{

based on the requirement that the operator is invariant
under the weak hypercharge symmetry and the Lorentz
symmetry [11-13]. Therefore, from above we learn that
operators at odd dimensions must have BNV or LNV, and
that [AB— AL| =2 up to dimension 15." At the odd
dimensions, the LNV processes with AL = 2, relevant to
the leptogenesis mechanism, the neutrinoless double beta
decay, and the neutrino masses, exist [14,15]. For example,
if the leptogenesis or baryogenesis occurs at temperatures

'On the other hand, for the dimension-even operators, we have
|[AB—AL| =0 and (AB,AL) = (0,0),(£1,=+1) at the dimen-
sion-six and -eight levels. These operators with (AB,AL) =
(+1,+1) cause proton decay in modes such as grand unifica-
tions, and thus are highly constrained by proton two-body decay
searches. Starting from dimension ten, we have |AB — AL| = 0,
4 with additional BLV possibilities (AB,AL) = (—1,3),(0,4)
(dim 10), and (AB,AL) = (=2,2),(2,2) (dim 12), etc.

above the weak scale, B — L violation is required to avoid
the washout effect by the electroweak sphalerons and, at
the same time, constraints from proton two-body decays
(which conserves B — L) are not applicable. At dimen-
sion five, the only operator is the Weinberg operator [1]
with (AB,AL) = (0,2), while at dimension seven, all
the operators have BLV with possibilities (AB,AL) =
(0,£2),(£1,F 1) [7], which either break the lepton
number by 2 or induce proton two-body decay.

Starting from dimension nine, besides the operators with
(AB,AL) = (0,+2),(£1,F 1), there are new violation
patterns in the operators with (AB,AL) = (+1,+£3),
(£2,0). First, operators relevant for AB = 2 processes, such
as neutron-antineutron oscillations, appear first at d =9
[16], which are directly connected to the low-scale realization
of the baryogenesis without the need for sphaleron processes.
Second, the AL = 3 processes can only arise from dimen-
sion nine and higher operators [17,18]. The lepton number
violated only in three units implies the proton decay final
states must be at least three-body and the new physics
associated with a scale could be as low as 1 TeV, which opens
the possibility of searching for such processes not only in
proton decay experiments but also at the LHC [18]. Finally,
operators with AL = 2 are supposed to be subdominate over
the ones at dimension-five and -seven levels. However, if the
AL = 2 operators start to appear at the dimension-nine level,
the new physics effect could be as low as 1 TeV and thus can
be tested at the LHC in the near future. For example, typically
the operators for the Majorana neutrino masses, such as
Weinberg operators, are related to the tree-level seesaw, and
thus the new physics scale is quite high. However, if the
Majorana neutrino masses are generated from the tree-level
mechanisms at dimension nine, the related new physics is
around the TeV scale [19]. Thus one expects that the LHC
experiment will start to explore these kinds of models in the
near future. In the neutrinoless double beta decay processes,
if the dominant contributions originate from the dimension-
nine operators [20,21], one expects the new physics scale
should be around TeV, and thus collider experiments could
also shed light on such kinds of new physics in the near
future. Hence, listing a complete set of dimension-nine
operators will set up the framework for these phenomenology
studies.

We adopt the method in [9] to list the dimension-nine
operators in the SMEFT. While the method is elaborated in
[9], we present in this paper more details about its
motivation stemming from the so-called amplitude-oper-
ator correspondence. By establishing the one-to-one cor-
respondence between the effective operators and the local
amplitudes they generate, we first categorize them in terms
of the external states in the scattering—a certain collection
of particles in the EFT. A category of operators thus found
is called a type. For a given type of operators, we define a
couple of bases for various uses as follows:

(1) Y-basis: Our algorithm utilizes the group theory

technique to enumerate an independent and com-
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plete basis as a collection of the Young tableau for
each factor of the operators, thus named the Young
tableau basis or Y-basis. For the Lorentz factor, the
basis is obtained as the semistandard Young tableau
(SSYT) of an auxiliary SU(N) group, where N is the
number of fields; for the gauge groups, the basis is
given by the Young tableau constructed from the
Littlewood-Richardson (L-R) rule.

(i1) m-basis: For practical purposes, the operator basis
had better be monomials, while the Y-basis oper-
ators, after transforming to the usual convention,
are often long polynomials. By a systematic reduc-
tion to the Y-basis, we can select a set of monomial
operators that have independent coordinates with
respect to the Y-basis. A complete basis of mono-
mial operators selected this way is called an m-basis,
which is highly nonunique.

(iii) P-basis: Even the Y-basis is not enough when
repeated fields are present, as explained in [9]
from the operator viewpoint. In this paper, we also
illustrate this extra constraint from the amplitude
viewpoint, which introduces the symmetric permu-
tation basis, or P-basis, as the symmetrized flavor-
blind amplitude basis and the corresponding oper-
ators. The symmetrization procedure provides a full-
rank conversion matrix from the Y-basis to the P-
basis, which guarantees its independence and com-
pleteness. The P-basis operators when viewed as
flavor tensors of a group of repeated fields, the ones
that form a basis of an irrep of the symmetric group,
are related by certain permutations.

(iv) Reduced P-basis: To reduce the lengths of operators
in the usual notation, while keeping the flavor
symmetries manifest, we develop a systematic pro-
cedure, the desymmetrization, to obtain a series of
m-basis operators that symmetrize to independent
combinations of the P-basis with the same flavor
symmetry. The procedure is especially important if
multiple representation spaces of the same symmetry
exist. This is a new part of our method that was not
developed in [9].

The resulting operator basis we obtain with the above

method is listed in terms of various levels of categories:

(i) Class: A (Lorentz) class includes types of operators
with a given number of fields under each Lorentz
irreducible representation (irrep) and the same number
of covariant derivatives, such that they may share the
same Lorentz structures. Itis different from the concept
of operator “class” in other literature, because we
distinguish the chiralities of the fields as their corre-
sponding particles have definite helicities. In particu-
lar, fermions and gauge bosons should be written on
the chiral basis in our notation. The list of possible
classes at a given dimension is model independent, as
we show in the tables at dimension nine, though not all
of them show up in specific models.

(i) Type: The definition is given previously. All the
types are obtained by plugging field content of the
SMEFT into the dimension-nine classes, making
sure that the representations of them could form
singlets for each symmetry group. We emphasize
that our “type” has more rigorous definitions than
those in the other literature, as we specify the way to
eliminate the EOM redundancy so that the type of
operators we define only corresponds to local
amplitudes they can generate for a given collection
of external particles.

(iii) Term: The P-basis and reduced P-basis are operators
with free flavor indices, which contract with Wilson
coefficient tensors to form a (Lagrangian) term. The
corresponding amplitude basis is flavor-blind. Our
“terms” are irreducible flavor tensors with a specific
flavor symmetry 4, different from the concept of
terms in other literature [10,22] where flavor tensors
with different symmetries may merge into a reduc-
ible tensor. We compare the form of our terms to the
traditional form of operators with flavor relations
[3,11,23] to show their equivalence, and explain the
privileges of our form.

(iv) Operator: The number of (flavor-specified) opera-
tors per term can be understood as the independent
entries in the Wilson coefficient tensor, constrained
by the flavor symmetry. One can also view the
independent operators as the P-basis contracted with
an independent flavor tensor basis, labeled by the
flavor Young tableau.

The paper is organized as follows. In Sec. II, we discuss
the principle to find independent and complete operators
with the amplitude-operator correspondence. In Sec. 111, we
describe the general ideas of how to obtain a complete set of
independent operators with free flavor indices in Y, m, and
P bases and how to convert them to each other. In Sec. IV,
we take a concrete example to show how to obtain a set of
independent terms for a given type of operators and
demonstrate the advantages of listing operators in the level
of terms with definite flavor permutation symmetry. In
Sec. V, we list all the independent terms for dimension nine
in the SMEFT with different categories. We reach our
conclusion in Sec. VI. Additionally, in Appendix A, we list
useful formulas transforming operators between two- and
four-component spinor notations, and in Appendix B we
provide a list of subclasses up to dimension nine.

II. ON-SHELL CONVENTION FOR
EFFECTIVE OPERATORS

The Lagrangian of the SMEFT consists of the SM fields

Fermion: L, ecq Quais Ud, d,. (2.1)

Boson:G4,, W/,.B,,.H;. (2.2)
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and their covariant derivatives D, along with the following
group factors:

Lorentz: 027)” 52’!2’ sz, 5#('1(1’ €(l/37 é(’l/}, (23)
SU(2):eK, 81 ()], €5, €Y, (2.4)
SU(3) :fABC’ dABC’ 5AB’ (iA)Z’ €abes eabc’ (25)

which result in the invariant operators under the Lorentz
group SL(2,C) =SU(2), x SU(2), and the SM gauge
group SU(3)- x SU(2)y, x U(1)y. Here the indices for
the fundamental representation of the SU(2), and SU(2),
groups are denoted by (a,f,7,8) and (&, ﬁ 7, 5). The
indices for the fundamental and adjoint representations
of the SU(3) are (a, b, c,d) and (A, B, C, D) while those
for the SU(2)y, are (i, j, k,1) and (I,J, K, L), respectively.
These are conventional notations for the effective operators,
which we use to represent our final result—the complete set
of dimension nine (dim-9) operators in the SMEFT—
in Sec. V.

Although operators in this notation are more familiar to
phenomenologists, it is hard to systematically define an
independent basis for them, given the redundancies due to
the EOM and the IBP relation. The usual way to achieve
this goal is to write down an overcomplete basis and
derive their dependencies manually [3.,8,10,22,24,25].
However, this has to be done model by model, and becomes
extraordinarily cumbersome at higher dimensions. In
Refs. [26-30], it was pointed out that independent oper-
ators could be enumerated in terms of their corresponding
local on-shell amplitudes, dubbed the amplitude basis.
Reference [31] further proposed an algorithm to enumerate
independent amplitude basis subject to momentum con-
servation, which is equivalent to the IBP redundancy as we
will explain shortly. In Ref. [9], an integrated algorithm
using the correspondence was proposed and applied to
the enumeration of the dimension-eight operators in the
SMEFT. In this section, we would like to elaborate the
amplitude-operator correspondence and prove its appli-
cability to the task of operator enumeration.

A. Amplitude-operator correspondence

The correspondence is in particular about operators as
Lagrangian terms, which are Lorentz singlets, so that they
directly contribute to scattering amplitudes. Among the
amplitudes they contribute, the set of local amplitudes or
“amplitude basis™ span a linear space isomorphic to the

*More specifically, the amplitude basis is featured as being
“unfactorizable,” in the sense that they do not have poles or
branch cuts in the kinematic space where they should factorize
due to the unitarity. This feature makes them the building blocks
of any amplitudes, because the factorizable ones should ulti-
mately factorize to them at a particular kinematic configuration.

operator space. To prove the isomorphism, we first inves-
tigate the general structure of amplitude basis, which we
express in terms of the spinor helicity variables /1,»(,,;1?‘,
defined as

(2.6)

up to the little group transformations3/1,~ — e70/2),,
J; = €%/2];, while the spinor indices are raised and
lowered by the Levi-Civita tensor €!> = —e,; = +1. The
number of constituting spinors is constrained by the little
group representations of the external particles, e.g., the
helicities for massless particles. The amplitude basis B
should respect the little group representations of all the
external particles. For example, under the little group U(1);
for the ith massless particle, it should gain a phase
B — e"i¢3. Therefore in general, the massless particle

of helicity /; contributes a factor 277" that has the
correct little group weight, where r; > |h;| is a free (half-)
integer parameter. The general form of the amplitude basis
reads

B(#7' (p1). - d3 (pn)) = T M(hy, ... hy).

N
M(hl,'_"hN)NH/I;i—hij:r‘rhi’ (27)
i=1

where ¢;,i =1, ..., N are the external particle multiplets
with momenta p; and q; are the collections of group indices
for them. The mass dimension of the amplitude is deter-
mined as [B] =r =), r;. The kinematic factor M is a
function of the spinor variables that only depends on the
helicities h; of the external particles and characterizes
the energy dependency and the angular distribution of
the amplitude. Global Lorentz invariance demands that all
spinor indices are contracted, which are conventionally
denoted as

Wdja=(if),  Aiak =[ij]; (2.8)
thus M must consist of the n = 5" number of (-) type

brackets and the 7i = 5 number of [-] type brackets, h =

> ;i h; being the total helicity. The group factor T is the
product of tensors for each group under which the
multiplets ¢¢ transform. For symmetry groups, such as
the gauge group or some global symmetry group, T has to
be invariant tensors. The index a can also include the flavor
degree of freedom, which not necessarily has a symmetry,

>The definition can be extended for massive particles, whose
little group is SU(2) and hence the spinor variables have an extra
SU(2) index 1, J, .... In this paper we only enumerate amplitude
bases for massless particles.
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while the tensor in charge does not have to be invariant
tensors. We can define the subspace of local amplitudes
with the same set of external particles @7, ..., $3* and the
same mass dimension r as a “type,” in which various
amplitude bases are specified by the group tensors 7', the
partition r;, and the structure of spinor contractions.
Furthermore, the types with the same tuple (hy,...,/hy;r)
form a class that shares the same bases of the kinematic
factors M. Note that we do not have to specify the division
between the initial and final states because different
divisions are simply related by crossing symmetry and
analytic continuation.

Here we take a simple example to illustrate: the ampli-
tude basis for four left-handed fermions. Each of them
contributes a factor 2, /237" where r; is a positive half
integer. The lowest mass dimension is when r; = 1/2 and
r =2, and we have the following possible contractions:

M, (=1/2,-1/2,=1/2,—-1/2;r = 2) = (12)(34),
My(=1/2,-1/2,=1/2,-1/2;r = 2) = (13)(42),

M;(=1/2,-1/2,-1/2,-1/2;r =2) = (14)(23). (2.9)
The Schouten identity indicates that M 4+ M, +
M3 = 0, which reduces the number of independent ampli-
tude bases by 1. This redundancy is equivalent to the Fierz
identity for operators, which we will solve systematically
later. For higher mass dimension r = 3 where one of the r;
takes 3/2, there is only one A that cannot form a Lorentz
singlet. Thus the next available dimension is r» = 4, for
instance, r; = r, = 3/2 and r; = r, = 1/2, and one pos-
sible amplitude basis is

M (=1/2,=1/2,=1/2,=1/2; r = 4) = (12)2(34)[12].
(2.10)

Later in Sec. II B, we will derive the full constraints on
these parameters, so that we can enumerate the valid classes
(hy, ..., hy; r) that could form the Lorentz singlet.

To find the operator that generates such an amplitude
basis, one simply does the following translation:

1

iE13rFl —
ﬂ(' /1;’::!: < D IFL/Riv

/lf"ﬂ/z;lf"]“/z @Dri—l/ZW(ﬂ

A7 & Drigy, (2.11)
where Fy ;g =1 (F F iF) are the chiral bases of the gauge
bosons and y denotes left-handed Weyl spinors. For a
unified notation, right-handed Weyl spinors are denoted as

conjugates of some left-handed spinors yé = e"’f’(wz)ﬁ.
All the spinor indices for the operators on the right-hand

side are made totally symmetric, among dotted and
undotted indices, respectively, the same as those on the
left-hand side. These indices are contracted between such
building blocks according to how the spinor variables are
contracted. Thus the Lorentz structure corresponding to the
kinematic factor in Eq. (2.7) is given by

ri+h;

N .
= (e%%)® (s, )87 H(Dri_‘hi‘(bisai):’i’hi’ (2.12)

and the operator corresponding to the full amplitude basis B
is given by

O = Taa M(Dy, ..., By),. (2.13)

..... ay’
where T is the same group tensor as that in Eq. (2.7). Up to
linear combinations, this is the general form of operator
basis. The notion of taking the power of spinor indices is
made possible by the total symmetry among them, while
the €’s and the &’s exactly correspond to the (-) and []
brackets in the amplitudes. The type of operators can be
defined similar to that of the amplitudes, as the operators
consisting of the same group of fields @y, ..., @, and at the
same dimension d = r + N. It is easy to verify that, among
the local amplitudes, these operators indeed generate, and
only generate, the corresponding one. One may question
the possibility of generating other local amplitudes with
more gauge bosons when covariant derivatives are present,
because in the Feynman rules the covariant derivatives
indeed generate extra vertices with more gauge bosons.
However, these vertices are not gauge invariant, and the
final gauge invariant amplitudes with contributions from
these operators are nonlocal. Consider an operator O*D,¥
contributing to an amplitude with an extra photon y from
the covariant derivative of the charged field W:

A(OT) = (O[O (~igA,) ¥|Tn) + (O](0"0,T)(JA,) [ T7)

= (0]0"0, W) x (9] T4 A, W)
(2.14)

where Jy is the charged W current that minimally couples to
the photon field A. The first term is the local but gauge
dependent vertex contribution, while the sum is gauge
invariant but contains a mass pole for ¥, at which the
amplitude factorizes into an amplitude basis without the
photon and an amplitude basis for the minimal coupling.

Do the operators in Eq. (2.12) exhaust all the possible
forms of gauge invariant operators? The only caveat
comes from the requirement of total symmetries among
the spinor indices. It turns out that if they are not totally
symmetric, indicating their corresponding amplitude (of the
given type) contains antisymmetric spinors from the same

015025-5
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particle, the resulting amplitude basis must vanish due to
the on-shell condition A;j,Ap = (ii)eqs = 0. It follows
from the relations

DDy = DuD,cley —Dzeaﬁed/}+%[D,,,Dy]eaﬁag;j,
Do) = Dy01oi ) = —€ap(DY) s
Dy Frg, =D,F, o-”(mo;ﬁ; =2DMF ,€4507;, (2.15)
where D* = D¥D,, and P = y*D,, = < (3/-3/3 D"Gﬁ"’>,
D,o" 0

together with the identity i[D,,.D,] =3 F,, and the
EOM that these operators would be convertible to
operators of other types, where we are supposed to have
obtained a complete basis. Therefore, from the on-shell
point of view, these operators of different forms from
Eq. (2.12) belong to, or contain ingredients from, other
types of operators, which are not independent. It is
important to stick to this self-consistent definition of
type for the operator basis to prevent overcounting, each
type forming a subspace of operators that do not overlap
with each other. After this clarification, the EOM
redundancy is automatically taken care of, and we do
not need to worry about the interchange between types of
operators due to EOMs at all.

Up to this point, the correspondence has been set up
between polynomials of spinor helicity variables® and
Lorentz singlet operators. Moving forward to on-shell
amplitudes and Lagrangian terms, the extra constraint
for both are the momentum conservation and the IBP
redundancy, which are exactly isomorphic to each other:
equal amplitudes due to the momentum conservation
exactly correspond to equivalent operators related by the
IBP. For example, the following equality holds for four-
point amplitudes:

(12)[23] =

(1p2I3] = =(1(p1 + p3 + p4)I3]

—(14)[43],

which corresponds to the operator equivalence

(w16"73)Dypocps ~ —(y16"3) oDy

Terms that convert to other types by EOM are omitted,
which stems from (11) =[33] =0. In sum, taking
momentum conservation into account, the amplitude
basis corresponds to an IBP nonredundant basis of oper-
ators. Inspired by this correspondence, our strategy of

*Such polynomial functions are regarded as form factors of
operators [32] which characterize the state generated by an
operator from the vacuum F = (y|0|0), which is not a physical
process and does not satisfy momentum conservation.

operator enumeration is essentially the enumeration of
amplitude basis.

The physical reason for such correspondence is that
the free parameters of the theory should count the same
in both the Lagrangian formalism and the on-shell formal-
ism. While it is straightforward to define them in a
Lagrangian as the independent Wilson coefficients,
the free parameters in the on-shell formalism should
be encoded in local amplitudes because they are the
ultimate outcome of the cascade of unitarity factoriza-
tion of any amplitudes. Building a quantum field theory
from the operator basis and their Wilson coefficients is
already a textbook technique, but building a theory from
the corresponding amplitude basis has not been as
successful, though we show that they contain the same
amount of information. The recursion relations devel-
oped in the past decade [33] are only applicable to
certain “on-shell constructible” theories [34], whereas a
more general on-shell formalism from the amplitude
basis is still waiting to be discovered.

B. On-shell building blocks and Lorentz classes

In light of the amplitude-operator correspondence
Eq. (2.11), we adopt the chiral basis of the fields and
derivatives, all with spinor indices, which are in the
irreducible representations (j;, j,) of the Lorentz group
SU(2), x SU(2),,

¢ €(0,0), w,€(1/2,0), w,e(0,1/2), (2.16)
FLaﬁ = 2F,w0'ﬁl/} ( ) FR&/}’ 2F/w0”y ( )

(2.17)

D :Dﬂ i € (1/2,1/2), (2.18)

D, =0, —ig,GAT* — igWir* — ig QyB,.  (2.19)

with the SU(3) and SU(2) generators 7" and z¢ as well as
the U(1), charge Qy determined by the fields it acts on,
and g, g, and ¢ are coupling constants for the SU(3),
SU(2)y, and U(1), gauge groups, respectively. In this
notation, we have the SMEFT field content as in Table I,
where the conjugate fields with conjugating representations
and opposite helicities and charges are omitted.

To enumerate the valid Lorentz classes at a given
dimension d, denoted by F|~'y"- 1/2¢"01//T”'/2F§‘ D", cor-
responding to classes of amphtudes M(hy, ..., hy; 1), one
may adopt the steps described in [9], where the following
constraints are considered:

The tuple (n_y.n_yp.ng.nypp,ny.np) and the tuple
(hy,...,hy, r) record the same information, and can be easily
converted to each other.
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TABLE I. The field content of the standard model, along with their representations under the Lorentz and gauge
symmetries. The representation under the Lorentz group is denoted by (j;, j,), while the helicity of the field is given
by h = j, — j;. The number of fermion flavors is denoted as n;, which is 3 in the standard model. We also list their
global charges, the baryon number B, and the lepton number L. All of the fields are accompanied with their
Hermitian conjugates that are omitted, (Fi,5)" = Fy, ; for gauge bosons, (wo)" = (y), for fermions, and H' for
the Higgs, which are under the conjugate representations of all the groups.

Fields SU(2), x SU(2), h SU(3)¢ SUQ2)w U(l)y Flavor B L
Gy (1,0) 1 8 1 0 | 0 0
Wi, (1,0) -1 1 3 0 1 0 0
Byo (1,0) -1 1 1 0 | 0 0
Ly (3.0) -1 1 2 -1 ny 0 1
s ¢.0) 1 1 1 1 n 0 -1
Quai (2.0 -1 3 2 ! ny L 0
. 10 S i S o
. 40 S i S B
H; (0,0) 0 1 2 % 1 0 0

=

ﬁ+n:Zri:r:d—N, ﬁ—nzzhiEhv i=N,

i i=1

271_1 —|—I’l_1/2 = ZV’Z,‘ —h=2n —np, 2”11 —I—n1/2 = Zlh,| +h = 2]71—I’ZD,

L 1

h—=>"|h;|,mod 2

4| min k| — > 2|hy]
h; <0

4| max h;| — > 2|h;]
h;>0

min(2n, 2i1) > np > max (2.20)

At dimension nine, we list all the classes in Table II, which is model independent. The types of operators are thus obtained
by substituting the SMEFT field content from Table I into Eq. (2.12) with a varying number of derivatives and spinor

TABLE II.  All the Lorentz classes at dimension nine. Classes in gray do not appear in the SMEFT due to global
symmetries, such as the odd parity for all the SU(2),, doublets that forbids quite a few of the Lorentz classes with an
odd number of scalars.

N (n, 1) Classes
4 “,1) Fiy’D* + H.c. F{¢D* + H.c.
(3.2) vy D3 +H.ec. w>¢*D* +H.c. F Fr¢®D* +H.c.
F?y™2D? + H.c. F?Fr¢pD* + Hec. Fiyyw ¢pD? + H.c. FL.¢>D* +H.c.
5 4,0) Fiy®+H.c. Fi¢+H.ec.
(3.1 Foyly'D + Hec. wioD? +H.c. FLy*¢*D? +H.c.
F}y'™? 4+ He. Fiyy'¢pD + H.c. F}¢*D? + He
2,2) Fryy'D +H.c. w2 D? Fry?¢*D?> +H.c. yy' > D3
FLFy® + H.c. FiF%o Fy Fryy' D F Fr¢*D?
¢5D4
6 (3,0) w° +H.c. Fuy*¢g +He. F2y’¢* + Hec. F}¢® +Hec.
2,1 vy + Hee. Fiy*y2¢ + H.c. Fiy¢? + H.c. w3 ywig?D + H.c.
Fiyyw'¢’D +H.c. w2¢p*D? 4+ H.c. FL¢’D?> +H.c.

(Table continued)
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TABLE 1I. (Continued)

N (n, ) Classes

7 (2,0 y*¢® +He. Fry’¢* +H.c. F?¢® + H.c.
(1,1) VAR wy'$D ¢'D?

8 (1,0) w2¢® + Hec.

9 0,0) e

contractions, while the representations of the constituting
fields under gauge groups should be able to form singlets
[U(1) charges should add up to zero]. The classes colored
in gray are those ruled out by this condition, and thus they
do not appear in the SMEFT. In the next section, we show
the details of obtaining a complete basis for a given type of
operators/amplitudes, as well as how to convert an arbitrary
operator (basis) to our basis.

III. COMPLETE BASIS FOR A TYPE
OF OPERATORS

A. The Y-basis: A complete basis
from the Young tableau

In this section, we briefly summarize the algorithm to
obtain a complete basis for a type of local amplitudes/
operators, which we elaborated in [9]. As explained pre-
viously, a type of local amplitudes are given by the same
external particle species at certain mass dimension r, which
consists of the kinematic factor M that describes the
energy dependency and the angular distribution, and the
gauge group factor T = [[; T that describes the gauge
group representations. Given the helicities /#; and gauge
representations rl-G of the external particles, the two factors
span linear spaces of dimension N ,, and N, respectively,
whose outer product is the linear space of the amplitude
basis. The spin statistics of identical particles will put extra
constraints on this product space, which we postpone to
investigate at the end of this section. According to the
amplitude-operator correspondence, the space of operators
with the same type should have the same structure, which
has total dimension

N =Ny x[[Ve. (3.1)
G

Therefore our first task is to enumerate the A/ 4 basis for a
given class of M(hy, ..., hy; r) and the N basis for group
G given the representations r¢.

For the kinematic factor, since the EOM redundancies
are removed by construction, the remaining redundancies
are the momentum conservation and the Schouten identity,
both mentioned in the previous section. We utilize an
SU(N) transformation introduced in [31], under which the

total momentum (all-outgoing convention) that vanishes

due to the momentum conservation is invariant. This
transformation is reformulated in terms of operators and
is further developed in [9]. The nonredundant amplitudes/
operators thus form a particular irreducible representation
space of the SU(N) group, the basis of which is given by
the SU(N) SSYT. Specifically, the shape of the Young
diagram (YD) for this particular irrep, called primary YD,
is determined by a tuple of three numbers (N, n, 1), where
n and 71 are the parameters introduced in the previous
section, as the numbers of (-) type and [-] type brackets in
the amplitude. They can be derived from the constraints of
Eq. (2.20). The primary YD is given by

n
—

(3.2)

N-2
|

YNnn =

n

which is translated to amplitudes column by column as
T k2l

(! y . ki kn—2ijf;

~ (i), ~ EM N=2[4 ,

(i) 1]

find 3

kx>

(3.3)

where the £ is the Levi-Civita tensor of the SU(N) group.
As shown in Table II, where classes are organized in terms
of the tuple (N, n, i), there are typically more than one
class that share the same primary YD. It is proved in [9] that
the classes are in one-to-one correspondence with the
collection of labels to be filled in the YD. For a given
class, the number of the label i in the collection is given by

#i = —2h,. (3.4)
With the collection of labels and the YD, it is not hard to
enumerate all the SSYTs and translate them into amplitudes
via Eq. (3.3), or further into operators using the amplitude-
operator correspondence. One can also count the number of
the SSYT’s '\, without the label filling, as is pointed out
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in [9] that AV 4 could be regarded as the multiplicity of the
primary YD in the direct product decomposition of the one-
row sub-YD for each label,

N
& (-0 | 2 VuYama-
i1 T

(3.5)

The direct product decomposition is carried out by the
famous L-R rule. A concrete example for the Lorentz class
Foyy'D is given in Eq. (4.6).

The gauge group sectors T are also given by Levi-
Civita tensors that contract with the fundamental indices of
the fields, those of which in nonfundamental irrep (e.g., the
gauge field in the adjoint rep) provide multiple fundamental
indices with particular symmetries. As we only have adjoint
and antifundamental representation for the SM fields, their
conversion is listed below:

Ad~A alb
6acd>\ bG :Gach ‘7

GachT,c = Qj;b ~ 7
CjkTIi-CWI = Wij ~ ,

EinT’j = HZ ~ .

(3.6)

The corresponding Y-basis group factors are obtained by
constructing the singlet Young tableaux following the L-R
|

rules with the corresponding indices filled in as discussed
in Ref. [9]. The singlet Young tableaux for SU(2)y and
SU(3) constructed are in the following forms:

SU(2)w : @B SUB)e : EE (3.7)

nbox/2 nbox/g

where ny,, is the total number of boxes in the YD, equal to
the total number of fundamental indices of the fields. As an
example, we illustrate the way to construct such singlet
Young tableaux with the type GLdgeZD, which we will
discuss in detail in Sec. IV. The SU(2)y, group is trivial
for this type of operators, and we thus focus on only the
SU(3)c part. The conversion of the nonfundamental
indices in this case generates correspondence:

£ €dejes ()\A)gg Gf

e ealazadgpa And eblbzbdg’l‘a A4 eclcgcdgsa
(3.9)

(3.8)

from which we can construct the singlet Young tableaux in
the following with the L-R rule in the following order:

€1 62‘%‘ €1 €2 Cll‘ €1 €201
€1 62‘ b2 C2 ~ c€1€302 esb1by aicics (310)
€3 ? €3 bl ? €3 b1 (&) € € € )
€3
— a9 a2 | by az|ba|ca
o
e1 e e1 e b1‘ . e1lea|b
€1 62‘ az C2 ~ c€lesaz esar1bs _bicics (311)
. €3 |aq *les|as *leslai|ci |~ € € € :
3
ag az | by az| by |ca

The complete basis of group factors is obtained by contracting the products of the ¢’s obtained from the Young tableau with
those prefactors converting the nonfundamental indices in Eq. (3.6), which yields tensors with exactly the conjugating

indices of the fields,

T)SU3,1 = 8€acd(/1A)g’

TSusn = Heaca(X)§ = €apa(A*)2),

(3.12)

so that they contract with the fields to form gauge singlets. The number of the complete basis can, again, be given by the

direct product decomposition

=

N G
r; :)NGI.
=1

(3.13)
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In the above example we derive through the L-R rule as

®H®H®HDQX )

reproducing the number of basis we enumerated.

Since the basis obtained for both M and the gauge
groups G are given by the Young tableau, we entitle the
outer product of them as the Young tableau basis, or
Y-basis, of local amplitudes/operators. The Y-basis oper-

i=1,...,N.

(3.14)

ators are denoted as (’)

B. Operators reducing to Y-basis

For operators, the Y-basis defined above may not be of
the most convenient form illustrated at the beginning of
Sec. II. However, as a complete basis, the Y-basis can be
used to uniquely identify any operator in the EFT, either
from other literatures in some conventional form or in some
particular computations such as the covariant derivative
expansion (CDE) [35], as a coordinate in the space of
operators. To achieve this goal, it is demanded to expand an
arbitrary operator in terms of the Y-basis.

For the Lorentz structure, one should first convert it into
the standard form Eq. (2.12) with the following steps:

(i) Decompose Dirac fermions into chiral/Weyl fer-

mions
0 o
. 3.15
(27) o

¥= <WZ> =
X

As we only deal with massless fields, the two Weyl
components are actually independent; thus one can
easily do the decomposition.

Convert the covariant derivatives D, and the gauge
fields F,, into the SU(2,C) basis, with dotted or

undotted spinor indices

(i)

D, = 0" Dy Fu = Frapojiy + F Rzz/s?fffuﬂ :

(3.16)

All the Lorentz indices y,v, ... are on ¢* matrices
now, which contract with each other and reduce to
the € and €’s

ot oHP = 2e b, (3.17)

.....

(iii) Using the [D, D] identity or the EOM to convert the
parts of the operator with antisymmetric spinor
indices to other types of operators, as illustrated
in Sec. II, until the remaining part has totally
symmetric spinor indices in every building block.
The different types of operators shall be dealt with
separately.

In the standard form, the spinor contraction structure
can be translated into an SU(N) Young tableau, though
not necessarily SSYT. The group theory proves that the
SSYTs are an independent and complete basis of all the
Young tableaux, given the Fock conditions that relate them.
The Fock conditions for the primary YD Eq. (3.2) are
exactly equivalent to the momentum conservation (the IBP
relation for operators) and the Schouten identities, the
redundancy relations that we removed to obtain the Y-basis.
Therefore, we need a systematic replacement rule to apply
these relations to the arbitrary Young tableau operator
obtained above, until we get a combination of the inde-
pendent Y-basis

M= "mM (3.18)

We want to emphasize here that the process is not for
obtaining the complete basis, but for reducing any Lorentz
structure to the basis that we define. The replacement rule is
described below:
(1) Remove all derivatives on the first field ®; by the
IBP relation:
(D=l - > = (DRI, (3.19)
The derivatives are distributed among the rest of the
building blocks by the Leibniz rule. Corresponding
to the conversion of the spinor helicity formula is

N
(i)[1j] = Z (ik)[kj].
k=2

In the sum, the term with k =i or k = j would
vanish, which in the corresponding operator
amounts to a self-contracting building block that
should be converted to other types of operators. We
omit these terms and thus use the ~ for the relation,
which should be understood for the following two
steps as well.

Remove derivatives on @, (or ®;) when the two
spinor indices on them contract with those in
building blocks 1 and 2, such as

(3.20)

(i)

' ~-z—d>1,a,...(D”2'1d>z):::(Dg-~'),

& @y, O (Dm7IDs) (DY ). (3.21)
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The corresponding replacement rule for amplitudes are

[1paliy = =D [1peli),
=
N

[1psl2) = = [1lpel2),

T
A

N
(1 pali] Z
Z 1|pi[2].

k=

=

(11psl2] = (3.22)

(iii) Remove pairs of derivatives acting on @, and @5, with indices contracting with each other, by using the following

identity:

QD (D) D5 - - -) = Dy (D*D,) D5 - --

+ @D, D4(D? -

where the terms in the first line are all convertible to
other types via the EOM. It corresponds to the
following relation among Mandelstam variables:

P% = ZZPi ‘P = 0.

ij#1

(3.24)

(iv) The Schouten identity can be applied to any pair of
e’s with all-different indices (contracting with four
different building blocks i < j < k < [)

ea,-a,-eaka, =+ eaiakea,a, + €aia1€a_,ak =0. (325)
In spinor helicity language, it reads
(i) (kl) + (ik)(lj) + (il) (jk) = 0. (3.26)

The rule is that whenever the third term (specified by
the order of the labels) shows up in the operator/
amplitude, replace it by the other two terms.

(v) Apply the Schouten identity for the €’s in the same
manner,

Cai,€iniy T € Cina; T €xaniyiy, = 0,

+[ik][1]] + [il][jk] = 0. (3.27)

For the gauge group tensor T, one can convert any
bases to each other with the help of an inner product
defined for the tensors:

T17T2

Z Ta|a2 Tu]az

ap.ay,...

(3.28)

as Tg) are all products of Levi-Civita tensors and their
contractions are easily calculated algebraically. Then

using the Gram-Schmidt process, one can obtain a set of

(0)

orthogonal tensors T';" that span the same space of the

+ @0y (D’ Ds) - --
) + 20 (DD,)(DDs) - - -

420, (DD,)D5(D - - -) + 20, D, (DD3)(D - - -),

(3.23)

Y-basis. Therefore the coordinates of any group tensor 7 in
this orthogonal basis can be obtained as

T = ztiT(GO)i’
;

With Egs. (3.18) and (3.29), we can reduce any operator
to our Y-basis

L= (T.TY).  (3.29)

Na N

O=TeM = ZZ;

i=1 j=

i.j
(3.30)

In particular, we can use the reduction to build other
complete bases, such as a basis with conventional notation.
We define such a basis of conventional monomial operators
generally as an m-basis. Given an overcomplete set of

monomial operators 05““, we can reduce them all to our
Y-basis and obtain a coefficient matrix

N -
Z/Cmyoy i=1,...N.... (331

The m-basis is thus constructed by selecting N indepen-
dent rows in the matrix K™ that form a full-rank square
matrix K™, which serves as the conversion matrix between
the Y-basis and the m-basis. Note that the m-basis is highly
nonunique, which not only depends on the notation but also
depends on the selection of rows in K.

C. The P-basis: In the presence of repeated fields

There is one more redundancy that is not yet considered
for the V-dimensional space of type, which is when there
are repeated fields/identical particles in the operator/
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amplitude. While it is explained in [9] in terms of operators,
we present here a derivation of the constraint from the

amplitude point of view.
In the actual physical amplitude, identical particles
should be subject to the spin statistics, which picks out
|

certain linear combinations of the amplitude basis [i.e., they
may not be factorizable as in Eq. (2.7)]. These combina-
tions are totally symmetric or totally antisymmetric under
the permutations of the bosonic or fermionic identical
particles, and are thus called a P-basis:

BO (¢ (p1). ... (pyn). ...) = Dy(m)BP (§* (p1). ... g™ (p,n). ...,

m

Dy(n) = {

m

1 boson ¢

. , TES,,
(=1)* fermion ¢

(3.32)

where D, () is the representation of the permutation 7 for the particle ¢, and (—1)” denotes the signature of 7. It is reflected
in the amplitude-operator correspondence by the Feynman rule that sums up all possible contractions between repeated
fields and the external legs in the vertex function. According to the dictionary Eq. (2.11), such an amplitude basis would
correspond to an operator basis, also called the P-basis, with explicit permutation symmetries among the repeated fields.

We would like to clarify that the notions of identical particles are for particle multiplets, which include the gauge group
and even the flavor degrees of freedom. In general, the permutation symmetry of the function B stems from the inner
product of the permutation symmetries of M and 7. To explicitly show the constraint of spin statistics on the amplitude
basis for particles with flavors, we take the flavor index out of the collection a, and denote the flavor part of the tensor as «,
such that

B (1) cers 7 (py)) = STt My, B ), (3.33)

where we omit the other possible particles and only focus on the m identical particles (multiplets) ¢. The permutation
symmetries of them are denoted by the irreducible representations of the symmetric group §,,, which are labeled by
partitions A of the integer m, such as A = [2, 1]Fm = 3. They are also denoted by Young diagrams with m boxes; for

instance, [2, 1] is denoted by Hj Therefore, the spin-stat requires

[m]

/IK O /10 er )
. { 1]

where we use the shorthand notation [1, ..., 1] = [1"] for
m

the total antisymmetry and the superscript’ indicates the

transpose of the Young diagram.

In the following, A without a subscript is short for 4, by
default, and the P-basis will be organized in terms of A.
First, we find the A/-dimensional space of the flavor-
blind amplitudes 7 ® M and combine the Y-basis into A
representation spaces, each being a d;-dimensional sub-
space of amplitudes. Suppose the number of representation
spaces for each 4 is given by n,, such that

N = Znﬂdﬂ’

Am

(3.35)

and all the P-basis amplitudes are labeled by A4,
x=1,....,d;, and £=1,....,n;. We will describe the
derivation of the full-rank conversion matrix KCP¥ defined as

> = Adother  DOSON P, (3.34)
=>4 = ALy, fermion ¢, '
(p) (p) S (¥)
O e=0" = > Koy, (3.36)
=1

in the next section. In the meantime, the generic rank-m
flavor tensor x with flavor number n, can be decomposed
into tensor bases that form the S(A,n;) number of A
representation spaces for the group S,,, such that the total
degrees of freedom match

NK = n;’f = ZS(&, nf)dl

AFm

(3.37)

The function S(4,n;) is known as the Hook content
formula, which also counts the number of SSYT. For
example, with 4 = [3] and n; = 2, we have S(4,n;) = 4,
and the four-flavor tensor bases are given by (normalization
not relevant in this paper)
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:

(1) 17
1[1[2]:  (k5HM2 = (s}
[12]2]: (k5122 = (k}
N R

Finally, from the n, representation spaces for the flavor-
blind amplitudes, and the S(4, ny) representation spaces for
the « tensor, the S, inner product of an arbitrary pair of
them contains a totally symmetric amplitude basis. Hence
the total number of the flavor-specified amplitude basis is
given by

N = "nS(ny). (3.39)
A

They are labeled by 4, together with £ = 1, ..., n; labeling
each representation space of the flavor-blind amplitudes,
and the flavor SSYT denoting the flavor tensor basis that
also specifies the flavors of the identical multiplets in
the amplitudes, all of which are explicitly derivable. The
amplitude-operator correspondence translates the flavor-
blind amplitude basis to operators with free flavor indices,
which we define as term, while the flavor tensor x multi-
plied by the Wilson coefficient becomes the Wilson
coefficient flavor tensor. The symmetry among its indices,
also known as the flavor relations, is exactly given by 4 as
the representation of «.

IV. TERMS: OPERATORS ORGANIZED AS
IRREDUCIBLE FLAVOR TENSORS

A. Workflow and the master formulas

As discussed in Sec. III C, when repeated fields appear in
a given type of operator, the dimension of the subspace may
be less then N calculated in Eq. (3.1) due to the certain
permutation symmetry among the flavor indices. Therefore,
in this subsection we shall demonstrate the workflow to
obtain the P-basis operator which is what we called terms
for a given type of operator, and in the next three sub-
sections we shall illustrate the whole procedure obtaining
the P-basis operator concretely with a dim-9 example:
G d3elD.

As studied in detail in Ref. [9] and discussed in Sec. III
C, the permutation symmetry of the flavor structure is
related to that of the gauge and Lorentz structure indicated
in Eq. (3.10) of Ref. [9]:

R {9k} {h {fis
70O },*(”OTSIE J(moTgys ™ )(”OM{gf }{hk,.i.})’
permute flavor permute gauge permute Lorentz

(4.1)

[3])121

[3])212

otherwise 0,

= ()M =1,
_ (%3])221 -1,

otherwise 0,

(3.38)

otherwise 0,

otherwise 0.

|
where f, gi, and hy, are the flavor and SU(3) and SU(2),
are gauge group indices for different sets of repeated fields,
respectively. Equation (4.1) tells that OU/+-} can be viewed
as a direct product representation of the symmetric group S
permuting the repeated fields; hence it is easier to construct
an operator with the definite flavor permutation symmetry
from a set of symmetrized gauge group factors 7% and
Lorentz structures MY that transform as irrep 4 of S

such that
ZTfVlDA(”)yx’
y

=Y MiDi(n),,. forz€eS,,

y

goTh =

mo Mt (4.2)

where A is the partition of k corresponding to a certain
irrep of the symmetric group, x labels the basis vector
of the irrep, and D*(x) is the matrix representation of the
symmetric group for this irrep. Having introduced the
concept of the Y-basis and m-basis in Sec. III, we shall
name 7% and M? the P-basis for gauge group factors and
Lorentz structures, respectively. With these ingredients in
hand one can construct O'P) of the flavor symmetry A with

Clebsch-Gordon coefficients (CGCs) of the symmetric

group CEM X]) (/12~,Xz)»(/13;x3):

§ : (4 xl J(A2.%2),(43,%3) A3
C M ® TSU3 X ® TSUZ.x3’

X1.X2,X3

(4.3)

where 4, 4y, 4,, A3 are irreps of S, for flavor, Lorentz
structure, SU(3) and SU(2)y, group factors, respectively,
x with and without subscripts correspond to the labels of
the basis vector for each irrep of Sy, and j is the multiplicity
of the resulting irreps from the decomposition.

In Fig. 1, we show our workflow obtaining all the terms
of the operator for a given dimension in a flowchart and
describe each step as follows:

1. Enumerate tuples of the numbers of fields for
different helicities and the number of derivatives
following the constraints in Eq. (2.20). Each tuple
corresponds to a class of operators.

2. For each class of operators, one can replace the
abstract fields of definite helicities with concrete SM
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SU(N) Irrep

Lorentz
. Cl
Dim Invariance i
= Gauge
| Model Symmetry
Types ‘l’
R Rulg™> Gauge ( Lorentz
y-basis . y-basis

\_Fields /

Gauge p-basis ‘

"hepeaﬁd\"_—_)TI Symmetrization I
bi

Lorentz p-basis

FIG. 1.

~_Inner Product Decomposition

¥

Flavor p-basis

v

—— Desymmetrization ——

¥

Flavor p'-basis (Term)

Flow chart for finding all the independent terms at a given dimension. The content above the first dash-dotted line is model

independent and can be applied to any EFT. The content below the second dash-dotted line are our main contributions in this work. We

automatize the whole procedure in a Mathematica code.

fields and only retain combinations of fields that can
form the gauge singlet as types of operators.

3. For a given type of operators, one can enumerate the
Y-basis for Lorentz and gauge group structures with
the corresponding SSYT.

4. For each Y-basis, one can convert it to an m-basis
with some group identities, the form of which is
more familiar to the phenomenology community.

5. After obtaining the Y-basis and m-basis, one can
symmetrize them by acting on the corresponding
group algebra symmetrizer b’ to obtain the P-basis
for the Lorentz and gauge group structures. The
appropriate irreps of the symmetric group A is
obtained by the plethysm technique in advance.

6. With the P-basis Lorentz and gauge group structures
one can construct the P-basis operators, the terms,
with the inner product decomposition of the sym-
metric group related to the repeated fields.

7. Finally, to shorten our notations for the terms, we
perform a subtle recombination of the P-basis
operators for a given type called “desymmetrization”
to arrive at the form of operators presented in Sec. V.

B. Lorentz and gauge bases

1. Lorentz structure

As discussed in Sec. 3.2 of Ref. [9], the Y-basis of the
Lorentz structure is enumerated by the SSYT of the
corresponding primary Young diagram of the auxiliary
SU(N) group determined by the tuple of three numbers
(N, n, i) for the given type of the operator, where N is the
number of field building blocks and n and 7 are the number

of ¢ tensors with undotted and dotted spinor indices that
used to contract all the spinor indices in the building blocks.

Given the operator type G, dgeZD, N is obviously equal
to 5, while n = 3 and 2 = 1 can be obtained by [9]

2]1_1 + i’l_l/z =2n— np, 2”1 + }'l|/2 =20 — np,

(4.4)

where np, = 1 is the number of derivatives and n_j, n_y,,
ns, ny are numbers of the fields with helicities equal to
—1,-1/2,1/2, 1, respectively. The next step is to find the
numbers of field labels #i for i from 1 to 5 that need to be
filled in the primary YD. Following Eq. (3.51) of Ref. [9],

#i =10 —2h;, (4.5)
where £; is the helicity of the corresponding fields. This
leadsto #1 = 3, #2 = #3 = #4 = 2, #5 = 0 where we have

already arranged the fields in the order of increasing
helicities. From the direct product decomposition

[T e[ T o4x te o (46)

we know in advance the number of SSYT should be 4. The
corresponding SSYTs with the numbers filled in are

1112
31314},

1]1]2
3414,

1]1]3
21314},

1]1]3
2|24},

(4.7)
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which correspond to a set of y bases,

= Cgyas €M1 €N BN iy €M1 NP g2
3¢5 ’ 4Qs ’
— éd & 60610260!1063€03a4 éd & €a]a2€a1a4€a3a4 (4 8)
305 ’ 405 ’ :
with operator forms from the correspondence
Y — _(GAY pagr b
Ml - ( DdC /jﬁpdCardEyseC z) (49)
M = (Gi7dY db,, D, s el 5y, (4.10)
2 L Car Cpyss€cCt .
y A(lﬁ by
M3 - ( d%adeC ﬂ&rdéys C t) (411)
y Aaﬁ by 5
M4 ( d%ap Dd&yﬁéf C t) (412)

In the above equations, prst represent the flavor indices;
abc and A represent color indices for the antifundamental
representation and the adjoint representation, respectively.
One can obtain the m-basis Lorentz structures by conver-
ting G4 to Gy, in Egs. (4.9)—(4.12) and finding indepen-
dent monomials with the method discussed in Sec. III C:

M =iG} (d4CD,dS) (e db), (4.14)
MP =Gy (2,4"d8)(D,dbCdS), (4.15)
M =Gy (27d3)(d2CD, ). (4.16)

where we have already converted the two component spinors
to the corresponding four component ones with the formulas
in Appendix A.

Now we are ready to obtain the symmetrized Lorentz
factor for the repeated field dc in the P-basis and express it
in terms of the m-basis. As discussed in Sec. II A and
Ref. [9], one can view the procedure to obtain the SSYT
as constructing the primary YD of SU(N) group with the
Littlewood-Richardson rule from the outer product of
totally symmetric representations of one row YD for
each field label. Here we have [#1] =| | | | and
[#2] = [#3] = [#4] =11 #5 = 0 does not contribute),
and the allowed irreps of S; for d¢ are those resulting in
primary YD after taking plethysm with [ [ |. In our

M= iGQ#"(d?’Cdg)(Dﬂéfyydb)’ (4.13) example we have
|
[Te(JeB) = IIIITIITT]+2x EEEEEEEEEEES N EEEEE
1] = ‘ IO 11
2 - * — O @)
| 1]
+ +
[T TTTT], 9 T
TOe (Oek1) = HI T HHHEJ+2X o
EENEEN [T1] 1] L]
+ + 3 x +2 % +
- [0 [] O
+2 % [ + - NusnMEEEE
(4.18)
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(T e (el = [0 S ‘+

[ [T
+ + 2 X

o [
+

(4.19)

after taking into account the subtleties related to the
Grassmann nature of the fermion fields and the odd number
of the presence of the &£ tensors of the SU(N) group
converting the antifundamental indices of the € to the
fundamental ones [9], the allowed symmetries remain the
same (no transposition for the YDs needed). The total
number of the resulting primary Young diagrams should
multiply the dimension of the corresponding irrep of the
symmetric group d;, which leads to 1 + 2 + 1 = 4 distinct
Lorentz structures consistent with the result in Eq. (4.6)
given that djp ;) = 2 and dj3; = d|j3y = 1. We shall obtain

the P-basis M%¢ (£ label the multiplicity of the irrep A of
the symmetric group) by acting with the corresponding
group algebra projector b%- on elements in Eq. (4.8) until the
number of multiplicity of that 1 reaches the demanding
value. Since the multiplicity equals 1 for each 4 in our case,
we simply omit the label £ in what follows. We finally
obtain the matrices KP™ relating the P-basis and m-basis:

’;
M 2 2 2 4N\ /MD
MP! 12 -1 1 || M
[‘2” = 2|, (20
ME -2 -1 -1 =2 || Mz
M[lﬁ] -2 -2 -2 0 Mj

2. Gauge group
The treatment of the gauge group is similar to that of the
Lorentz group, but the usage of the Young diagram and
Young tableaux are different. First of all, one needs to find
the Y-basis for each gauge group by finding the singlet
|

o ([ots) -

Ly o+

Young tableaux constructed by the ordinary L-R rule with
the corresponding gauge group indices of each field filled in
provided that each field is expressed in terms of fundamental
indices only. If a field is not in the fundamental representa-
tion, then one can perform the conversion by contracting with
the Levi-Civita tensor and the group generators. We have
already worked out the Y-basis group factors in Sec. Il A in
Eq. (3.12), and we list them here again:

y Ayd
Tgus1 = 8€aca(A)5,
T§U3$2 = 4<€acd</1A)tbi = €apa(X)Y).
To obtain the m-basis we investigate each monomial in the

above equations, and select two independent monomials as
our m-basis:

TSys, = €acd(/1A)Z’ (4.21)
T8y = €apa(A1)L. (4.22)

In practice, the independence of the monomial can be
checked numerically by flattening the 7™’s into a one-
dimensional (1D) vector with components corresponding
to specific tuples of (a, b, ¢, A) in a fixed order. The next step
is to find the proper permutation symmetry among the
SU(3). indices a, b, ¢ of the group factors that contract
with the repeated fields d¢ and to obtain the symmetrized
group factors in the P-basis by acting with the corresponding

b% on T(SIELS In our example the only possible permutation
symmetry is [2, 1], since only the plethysm of H with [2, 1]

can generate the singlet:

o (el 1) =1+

. n - ‘, (4.23)
}-&- + - ‘+2>< } ‘, (4.24)
— \®<H@[g]) _ } ‘. (4.25)
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TABLE IIL

The relevant CGCs of S5 inner product decomposition.

Product sym Target sym Relevant CGCs
(BlD(211.1) _ 4 ~(BLD.(2.1]2)
3o 1] 2. 1] Cnni  =1Cayns — =0
L =0 el
CEF]]])I)([ZI].]) _2 CEﬂ,I;,([Z.]]Z) _1
3] 30,1),1 3 S (@) 3
R < e e g
A0 _ 1 ~(BLD.(21).2)
C([Z.l],l).l - % C([z.1].1).1 - _%
CEF,I%.Z;,([Z]],]) __1 CE{z.l{.zg.([z,l],z) __2
2.1],1),1 3 2.1],1),1 3
2.1] 0 [2,1] (2, 1] DR _ 2 BRI _ )
([2.1].2).1 - 73 ([21]2)1 - 73
C([21]2 M2 1 CEF 1}2;,([2,1]-2) _1
, 3 2,1],2),1 3
([ ])([21]1)_ BLD.(2.112) _ 1
) 5“13]1 i | CEP}]JUSIQ o
2,12 1 A212.(20)2)
i = =2 G =0
((P].0).(2.10.1) 1 A(PLD(2:11.2) 2
C = —= C 2
3 (21,11 3 (2100 3
1’ o[2,1] (2. 1] P20 _ 2 S(PLD(2002) _ )
(2.1]2 3 S (21]2).1 3
Therefore one can obtain the P-basis in terms of the m-basis Lorentz SU(3)c¢ Flavor

in the following formula:

2.1] [2.1]
Tsizn\ (b oTsusn) § - Tgus.
ngl’JlS],z b[zz’l] o Trsnu3,1 _% % T?Us,zv

(4.26)

W[

where the conversion matrix is obtained by the method
mentioned in Sec. III B.

C. Flavor basis from inner product decomposition

As we have obtained the symmetrized gauge group
factors and Lorentz structures, we shall construct the P-
basis through Eq. (4.3). In our example, the SU(2),, gauge
group factor is trivial, so we only need to focus on the inner
product decomposition from the Lorentz and SU(3) - parts:
|

(2.11.)
O = Ciy
(2. 1] 2), [2 11.1)

+ €

L, 221
Ly,

[\) |

wl-b N\

[2 11.1) M[N TSU31 +C([2,1],1),([2,1],2)M[12 1 pf2.1]

4
(Mm+2Mm Mm+M4)< Tsus1 =
Lo - M;“—Mg“—2M2‘)<

=3 MPTus, + METSy3, + METSus,

[TTe [ = x|

| o [T

Il
—_
X
52
—
X

@@ | _ [T

The CGCs for
in Table III.

As an example, we explicitly show how to generate
Oy from [2,1] © [2,1]:

(4.27)

each decomposition are listed

(1)1 T3,
2.1 2.1]2) ¢ 21021
L a2
S MET, (4.29)
2 m
3 TSU3,2
2 - 4
3 zTsus) T3 3 TSyu32
= METgy3, + MPTS3,4), (4.30)
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where we deliberately change the final expression into the m-basis operator obtained by the direct product of m-bases of the
Lorentz structures and the gauge group factors, i.e., {O™} = {M™} ® {T%,;}. Similarly, one can express each term in

{OEE?X)’ ¢} as a linear combination of the basis vectors in {Om)}:

(]
O win
|

|
©loo Ll

|
Wioo Ol& Olh Wik
Wik ol
[=IEN
Wico Ol&
Ol Ol O Wik

Wl

W LI
Wl Wloo
Wl
Wloo

|
Wl
(]
O wis

There are two subtleties remaining in the above notation.
First, the meaning of subscript ¢ in {(’)EEL)’ 5} is different
from that of the subscript j in {O, ) ;} as in Eq. (4.3). The
Jj represents the label of multiplicity of the resulting irrep
for a general inner product decomposition, while & is the
label of multiplicity of irrep of the flavor permutation
symmetry for a certain type of operator. This multiplicity
may originate from the same resulting irreps from different
inner product decompositions, which is illustrated by our
example: the three [2, 1]'s come from [3] © [2,1],
[2,1] ® [2,1], and [1°] ® [2, 1], respectively. The second
subtlety is that the {OEE)X)- 5} is overcomplete, as discussed

in Refs. [9,22] for A1 with a dimension larger than the one
the flavor space spanned by each basis vector is the same,
so we only retain the first basis vector for these irreps.
Finally we arrived at the complete set of independent terms
of operator for Gy d}ecD:

O(P)

(p)
o GRIAE

(p) (p)
{o O ([2.1,1).3°

Lot
(2. C 22 (RRINES

(4.32)

D. Desymmetrization: Reduction to monomials

As one can see from the above section the P-basis

operators with particular flavor symmetry are often very

long expressions. For instance, the OEE) 112 in Eq. (4.31)

has eight monomial terms and cannot be simplified. It
would be convenient though to have a simpler expression,
single monomial if possible, for the operator basis, either
for presenting the basis or for future applications. To keep
track of the permutation symmetries, which is crucial as we

have shown, we propose operators of the form yﬁ?] o O§m>

WA WY

e
]
]

M Tgus,
M Tsu30
M T3,
% M3 Tsu30
ME T3,
METSy3,
% METSu3,

mm
M4 TSU3,2

|

TS
oS Wik
(@]

Ol

\Oloo

(4.31)

w]oo

WA WY Wi

|
as our final result, called reduced P-basis, in that they are
nothing but some recombination of the P-basis due to the
symmetry imposed by the Young projection:

1 m “ .
= WO =3 e O i= 1N,
&=1

®)
0(5,1),1-

(4.33)

where n, is the number of A representation spaces in the
operator type. This process is to look for a certain subset of
m-basis operators that need not have any permutation
symmetries itself symmetrizing to independent combina-
tions of the P-basis; hence we call it desymmetrization.
With the action of the Young symmetrizer, this form of
operator is still intrinsically a polynomial. Another inter-
pretation is to apply the symmetrizer to the Wilson
coefficient tensor instead of the operators, so that the
whole term is indeed a monomial as a singlet under the
flavor group SU(ny),

Zcplpz--p,, (Y[A]OP1P2Pa)
Pi

=Y VT AC,, pyp, JOPPEP (4.34)
Pi

where V~1[1] is defined by taking the inverse of each
constituting permutation in Y[4]. The action of the sym-
metrizer (V'[2]C,, ,,..,,) Will project out the 2 symmetric
irreducible component of the Wilson coefficient tensor
Cp, py--p,» Which is exactly spanned by the k tensor basis we
introduced in Sec. III C. Therefore by keeping the Young
symmetrizer, we actually recover the necessary information
of flavors we derive for the amplitude basis.
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We have to pick out the n; number of independent
operators from the N projections for a given 4 in Eq. (4.33).
It is nontrivial to guarantee the independence, unless n; =
1 when we only need to find a nonvanishing projection. In
general, we need to obtain the coefficient matrix ¢ in
Eq. (4.33), from which we simply pick out n; rows to form
a full-rank submatrix c;¢, where ¢ takes values from an n,-
size subset of 1 through A. Instead of directly inspecting
the matrix representation of the Young symmetrizers for the
m-basis, it is easier to see how they act on the P-basis,
because the P-basis already has specific symmetries. Due
to the following property:

! ! 1
bbbt =875,6,bt, bi= - W (4.35)
A
we have
LIV IRy 1o D)
djy‘ o0 e =818.00) . E=1 . m.  (436)

Thus we obtain the matrix representation of the symmetr-
izer for the P-basis

i 1 _1 _
0 0 -3 4 6
101 1
0 0 -3 3 —1m
_3 1 1 L
0 § 1 2 12
3 0 1 1 1
omp 8 2 1 24
o -3 1 _1 1
8 1 1 12
3 ~1 1 1
8 0 1 2 21
3 1 _1 1
0 8 2 4 12
3 11 1
-5 0 -1 1 m

where the highlighted columns correspond to the P-basis (’)E

I~ &l

Sl Bl S B sl 2=

lmxm O) O(p)’
0 0/

where we set the first n; P-basis to be (’)EE_)]) £ for conven-

1
L yilo o = ( (4.37)
A

ience. Therefore we first convert the m-basis operator to the
P-basis using the matrix ™ = (KP™)~! and obtain

N
Ui om 1 mp~;[4] _ ~(p)
— 07 =— E K O:
d,{ yl o dﬂ j=1 Y yl ’ /

N
Ly, 0O
:Z(c E)ij< 101 0) (’),((p)
jk=1 Jk
n
= 0P . (4.38)
&=l

where the matrix c;; is identified as the n; columns in ™
that correspond to the (925)1 ) basis. As explained above, we
only need to select independent rows in ¢ that form our
reduced P-basis for A.

As an example, we demonstrate the desymmetrization
for the 4 = [2, 1] representation in Eq. (4.31), for which we
find the inverse matrix

1
0 -3
1 1
1 3
11
i 8 1 1
1 et R
4 8 3 1 1
11 | T s 2 m (4.39)
T4 08 3 _1 1
1 8 4 24
U
1
0 -3
11
1 g
‘[)2).1] ne &§=12.3, in which the rows with red color are the

selected m-basis that symmetrize to the reduced P-basis. The red submatrix ¢, sets the full-rank conversion matrix between
the P-basis and the reduced P-basis in the 4 = [2, 1] section. Therefore the final operators we get are

d

/ 1 . L a C = v

OEE,)l],l),l = 53){271]/\4111111%%3,1 = y{g T‘J 1€qcd ()\A)b G v (dyCdg)(Dyery d*), (4.40)
! 1 mm . d a c 2

Oy = VI METE 5 = Y [21icasa (A1), G, (d50dS) (D d), (4.41)
’ 1 m m . d a C = v

O = g ME T = Y [ iewca O, G2 (43O DD 0 D), (442)
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where we express the Young symmetrizer by explicitly showing the Young tableau with flavor indices filled in, so that we

do not have to keep track of the order of the flavor indices. Recall that y[f’” acts on the flavor tensor OP™" as

y | Oprst — Op'rst 4 O'r‘pst o Osrpt o Osprt. (443)
We implement the same process for all of the A’s, as in the previous example we have for A = [3],[1%]:
! : mm ; d a e SV
O = VWM T 5 = VIl Tslicuca (V) 1% (d5CaE) (D), (4.44)
(»") [13] mm m . A\d Ap a c — v b 4.4
O([13]71)71 - yl M2 TSU3,2 = y 1€qcd (A )b GL U(dedS)(Duet’y d ) ( . 5)

As one may notice, an m-basis may be selected multiple
times, such as the M7%'T¢;;; , in the above case. When that
happens, the final result contains terms that could merge
into a single Lagrangian term in the traditional sense,

(y[l/ll] @ y[llZ] @ . ) o Ogm), (446)

which belongs to the reducible representation of the flavor
group SU(ns). This notation is equivalent to the flavor
relations in the traditional operator enumeration [3,23,36],
while the crucial difference is that in the traditional treat-
ment, the flavor relations need to be worked out specifically
for each type of operators, involving all of the operator
redundancy relations such as the EOM, the IBP relation,
and the Fierz identities for both Lorentz and gauge groups.
At higher dimensions, it may even be necessary to work out
relations among different operators of the same type.

Suppose we have two monomial terms ngrzn), which have
intrinsic flavor relations that imply the following reduced
P-basis that are independent within each merged term

(y[l/ll] D y[liz] D y[f{}]) o Ogm).
(4.47)

O ey eor.

Also suppose that in our treatment we find n, =2 and

, =ny, = 1; thus the two terms y?z]oﬁf‘;) are actually
equivalent, which is translated into a flavor relation
between the two operators. Such flavor relations did not
show up at dim-7 or lower, but are inevitable at higher
dimensions when the subspaces of type become larger and
are quite tricky to work out systematically. Therefore, our
method of operator enumeration has the privilege that we
do not need to work out these relations explicitly, but rather
provide an equivalent notation to represent the flavor
information. In the following, we use a dim-7 example

n,

to show the equivalence between our Young symmetrizer
notation and the traditional flavor relations.

E. Flavor tensor versus flavor relation

To demonstrate the advantage of our notation with

. trps 6
YOlll’lg symmetrizers we take the operator O LdddH as an

example and compare our result to those obtained in
Ref. [8] with flavor relations:

O"PS 4 p <> 5 =0, (4.48)

Otrps + Otpsr + Otsrp =0. (449)
Since only the flavor indices of repeated fields d are
relevant for the symmetrization, we temporally neglect
the index ¢ and treat the operator as a tensor of the flavor
indices p, r, s. To make the description of the symmetric
group more convenient and transparent, we change the
indices p, r, s to those with subscripted indices f1, f5, f3,
and the above equations are equivalent to

O s 1 O3/ = [(12) + (123)] 0 Ofif2fs = (4.50)
Off1fs 1 O fafa 1 OFsfaf
= [(12)+(23)—|—(13)]00f‘f2f3 =0. (4.51)

On the other hand, the identity in the group algebra S; can
be written as a summation of the four distinct primitive
idempotents that are proportional to the four Young
symmetrizers of different SSYT:

1 1 3
E=Y 4oy e oot el (4s2)

®We have changed the order of the flavor indices in the
superscripts to match our notation.
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where y[f’” = Zb[lz’l] is the Young symmetrizer of the
1[2]
3]

= 2b[22'1]. (23) is the Young symmetr-

normal Young diagram we mentioned in the above

subsection, and y[j’”

izer of the other SSYT {* | Acting with the identity on an

arbitrary tensor yields the original tensor indicates that a
third rank tensor can be decomposed to four distinct
subspaces with the corresponding permutation symmetry.
This is essentially the underlining reason that we have the
decomposition 3® 33 =108 8 & 1 for SU(3).

Therefore we can insert an identity £ in front of the
O1/2f5 in Egs. (4.50) and (4.51), using the results of the
group algebra multiplications:

[(12) + (123)] - VI =0, (4.53)

21 _

[(12) + (23) + (13)] - Vi3 =0, (4.54)

we convert the flavor relations into

1 1
[(12) + (123)] o | V)" + 507" 4505 0 O = 0,

(4.55)
[(12) + (23) + (13)] 0 V" 0 0N
= —[(12) + (23) + (13)] o W T o ON2S5. (4.56)
Using the properties of the Young symmetrizer7
VErYi=0 forany re8 if X #4. (457
VIVt o« V4, (4.58)

and acting with y[f] and y[f] on both sides of Eq. (4.56)
one can deduce that

y[113] 0 Of1fafs — y[ﬁ] o ONf2fs =, (4.59)

which means that we do not have a totally symmetric or an
antisymmetric subspace for the operator (’)'gg’; y fegarding
the permutation of the flavor indices r, p, s of three down
quark fields. As y[f] o ON/2fs = 0, Eq. (4.55) becomes

[(12) + (123)] 0 Y2 0 OF 11215

= —[(12) + (123)] o W0 O 2S5 (4.60)

"The relation in Eq. (4.58) holds for the symmetric group S,
for n = 1-4; however, starting from n = 5 the Young symmetr-
izers are no longer orthogonal. Instead, we can construct a set of
orthogonal primitive idempotents by decorating the Young
symmetrizers with group algebra elements.

which indicates that the subspaces spanned by these
two tensors with [2, 1] symmetry y[lz’l]o(’)flfzfs and

y[j” o O/112/5 are linearly dependent. So there is only one
[2, 1] symmetric basis left, which coincides with
our result:

(4.61)

o r trps
Opin =V {p ‘J OLddan-

Moreover, our result enable one to directly write down the
independent flavor-specified components of the operator by

enumerating corresponding SSYTs for :

(p.r.s) = (f1.f2. f3) = (1,1,2),(1,1,3),(1,2,2),
(1,2,3).(1.3.3),(1.3,2).(2,2.3), (2.3,3).
(4.62)

If one starts from the flavor relation, then finding out the
corresponding flavor-specified operators may be difficult.

V. LISTS OF THE DIM-9 OPERATORS

A. Preview of the result

In this section, we summarize our main results for the
dimension-nine operators in the SMEFT. Table V is a
summary of the numbers of operators at different levels of
categories in our result. In the second column we list all
the possible classes characterized by the numbers of
derivatives and fields in various Lorentz irreps. We explic-
itly separate the numbers of types with AL =0, 1, 2, 3 in
the third column, and a total of 296 different types are
obtained. In the fourth column we present the numbers of
terms with definite flavor symmetry for each class and get
1262 independent terms. In the fifth column we express
the numbers of flavor-specified operators as functions of
the number of generations of fermions ny, and the total
numbers of flavor-specified operators for ny = 1 and 3 are
560 and 90456, respectively. Again we have separated
these total numbers into the sum of the numbers of
operators with AL =0, 1, 2, 3. We also list all the
dimension-seven operators in Table IV for a comparison
with the result in Refs. [7,8].

We find that there are 122 types with (AB,AL) =
(£1,F 1) in dimension-nine that are relevant for the
B — L violation process needed for leptogenesis while
subjecting to strong proton decay constraints. There are
also 164 types with (AB,AL) = (0,42) in dimension-
nine that potentially contribute neutrinoless double
beta decay, and the Majorana neutrino masse with a new
physics scale possibly testable at future LHC experiments.
We also find that the two-fermion operators must have
(AB,AL) = (0,+£2), while four-fermion operators can
be either (AB,AL) = (£1,F 1) or (AB,AL) = (0, £2).
The new violation patterns (AB,AL) = (£1,+3) and

015025-21



LI, REN, XIAO, YU, and ZHENG

PHYS. REV. D 104, 015025 (2021)

TABLE IV. List of dimension-seven operators in SMEFT.

¥ret

i
Ovsons V] €€ (UpiClry) Hon Hr (H1H) Odetun €7 (d2ly;) (epCura) H;

WD Oy | VE o™ (@h) (iCaiar) Hrn
Ocimsp e (1,,Cyte,) HyH,, D, Hy Ogqu Y[ evebm (Elej) (1:iCqtar) Hp,
Of{?qu Y [ et el (Ezlsj) (1riCtar) Hp
Y?¢*D? O((iqu Y [ €9 ebm (E“zsj) (1:Cqrar) Hm
O s Y e %™ (1,;Cat*1,5) Dy Hy Dy Hyp oLl Y [t €7 €™ (epls;) (1:iClig) Hom
Oy Y [t €™ (1 Clyj) Dy Hy D Hy, ol | YEH ek (eyls;) (10iClix) Hi

(’)Sg).H Y Il e*el™ (eyls;) (1iClyy) H,

5 e Oty | VI (@) U Clin)
O | V)" () Wi (i Cor ) il o) |y o cm (gin) (1l
Owippgs | V[ elkejln (T ) W/fu ((piCot¥l,;) HyH,y, O;)z’um (B) | Y e (Tidye) (ureCiyy) H”
Opmns | Ve By U Co ) Bt 0™ o v (1140 (o)

WD O(f;m(@ Y [E) ete (lidrs) (dpaClse) H |

O Y (@) (mC D) ngm B |y [] z; (Tdsc ) (@paiCarns) Hh

OpigB) | V] (D) (" Ca) et P Y (1d-c) (pas ) '

Owen(B) | Vi) e ey (dryCDpdse) et B | Y € @ptras) (dspCele) HT
(AB,AL) = (£2,0) starting at dimension-nine only v

appear in the six-fermion operators. The types u’d*,
d*q*, ud’q®> and their conjugates with (AB,AL) =
(+2,0) will contribute to the neutron-antineutron oscilla-
tion. The types Pu’q, el>u®, and their conjugates with
(AB,AL) = (+1, i3) w111 contribute to the BLV process
without stringent constraints from the proton two-body
decay experiments.

Based on the reduced P-basis, we further perform a few
conversions for the convenience of phenomenologists.
First, we have transferred the field strength tensors from
the chiral basis /| g to the usual form F and F. Although
the chiral basis is a more natural choice from the helicity
amplitudes prospect, the F, F basis has many privileges
such as its Hermiticity and definite CP. Moreover, a lot of
mature techniques are also implemented in terms of the F,
F basis, such as the program of Feynman rule calculations.
We summarize the conversion rules between the two bases
as follows®:

®Note that there might be further linear combinations among
the converted operators to finally obtain simple monomial
operators, which has been carefully done to keep the independ-
ence of the operator basis.

(F ¥ iF), (5.1

1
EGWMF o Frr =

| =

from which we can easily deduce the following useful
identities:

- - 1 -
Fr By = —=F\"'F,,, _§(F1F2)5Z’ (5.2)

- . 1
Fi,,F)" = F\""F,,, +§(F1F2)5Z- (5.3)

After the conversion, we do not distinguish types
with F or F, as they are sometimes not independent
of each other. Therefore the types we present in the
following sections do not count the same as the numbers
in Table V.

Second, we also present the operators in the four-
component form and retain the relationship to the
two-component form in Appendix A. In the SM, the
four-component chiral fermions are related to the two-
component fermions by the following formulas:
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TABLE V. We present complete statistics of dimension-nine SMEFT operators here. N in the leftmost column shows the number of

particles. (n, i)

are the numbers of € and ¢ in the Lorentz structure. N ype, N,

term»> @nd N gperaor Show the number of types, terms, and

Hermitian operators, respectively (independent conjugates are counted), while the numbers under Ny, and the last line of NV gperaior
describe the sum of each possible |AL| types/operators with ' = N (|AL| = 0) + N(JAL| = 1) + N(JAL| = 2) + N (JAL| = 3).
Note that term in our definition is different from the other literature, so the numbers are larger than those in, for instance, [22]. That is not
surprising since they did an extra step of merging before the counting. However, the number of operators are exactly the same as in

[22,37]. The links in the rightmost column refer to the list(s) of the terms in given classes.

N  (n,n) Classes Nigpe N erm N opetator Equations
4 (32 wywiD + He. 0+4+2+0 10 2n3(Tn3 - 1) (5.50)(5.51)
w2¢*D* + H.c. 0+0+2+0 6 3np(ng +1) (5.21)
5 (3.1 Fuy’y'D +He. 0+10+6+0 72 32n} (5.59)(5.60)
w*¢pD? + H.c. 0+4+4+0 100 40n} (5.45)—(5.48)
FLy?¢?D* +H.c. 0+0-+4+0 34 17n% — ny (5.28)(5.29)
(2,2) Frydy'D 4+ Hec. 0+10+64+0 54 4n3(6n, +1) (5.59)(5.60)
wly2pD? 0+4+4+0 84 n3(49n; + 1) (5.45)—(5.48)
Fry?¢*D* + H.c. 0+0+4+0 20 2ns(5n;— 1) (5.28)(5.29)
wy't g’ D? 0+0+2+0 6 6n? (5.19)
6 G0 w® 4+ H.c. 2+4+6+0 116 in%(415n} + 5307 +59n% + 1390, +6)  (5.63)~(5.70)
Fiy*¢ + He. 0+12+10+0 102 2n3(21n; + 1) (5.54)~(5.56)
F}y2¢* + Hec. 0+0+8+0 20 2ns(5np +2) (5.32)
2.1) w'y™ + He. 4+26+20+4 244 §17(382n3 = 9n7 + 2 +21) (5.63)~(5.69)
Foyw'?¢ +He. 0-+24+24+0 92 52n4 (5.54)—(5.56)
Fiy™¢* + He. 0+0+8+0 12 2n_f(3n_ff+ 2) (5.32)
wyi¢?D + Hec. 0+12+18+0 186 $n3(146n% +1) (5.39)-(5.42)
Foyw ¢’D +H.c 0+0+840 12 12n]2c (5.25)
w2¢*D?> + Hec. 0+0+4+40 24 2np(6n; 4+ 1) (5.17)
7 (2,0) w*¢’ + Hee. 0+6+6+0 32 $n3(10n3 — 1) (5.35)-(5.37)
Fy¢* +He. 0+0+4+0 8 2n;(2n; — 1) (5.23)
(1,1) Wy 23 0+6+10+0 24 14n4 (5.35)-(5.37)
ar/a)) 0+0+2+0 24 14n4 (5.35)-(5.37)
8 (1,0 w2¢® +H.c. 0+0+2+0 2 n} +ng (5.9
Total 42 6+122+164+4 1262 8+204+348+0 (n; = 1)
2862 + 42234 + 44874 + 486 (n; = 3)
qL:<Q> UR:<2> dR:<O_> ﬁq:uCQa QMZQTMTC,
0 e de ay'd = uco'dl.  qr'q = Q76" Q,
0 .
- (5) (2 sS4 Eewe0. aou— Qe
e
. u'Cd = uldl,  4'Cq= 00,
. - TOyhg — 4t 5t TOvhy — Oty
GL=0.0").  ix=(uc.0). dg=1(dc.0), L;Cy 7= e e fy u = Qoluc.
— V717 RN ~UU WY 4 UV
I =(0.LY), & =/(ec.0). (55) W Covd=ucsde. g Co*q=Q0"Q,
uCd" = ucde, gCq" = 0’0",
The conversion rules of the fermion bilinears in the SM are iy Cq" = uco"Qt, gy'Ci" = Q5 ue,
obtained by substituting these fields into the relations in =~ _. ) T At
Eq. (A2), such as ot Cd' = uco"de, go"'Cq' = Q6" Q". (5.6)
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Bilinears involving leptons can be converted similarly. It
should be noted that the transpose symbol T is left implicit
in this section. Derivatives, if any, do not change the spinor
contraction structures.

Finally, unlike the dimension-eight basis in [9], types are
all complex here. We only present the operators without its
Hermitian conjugate. The Hermitian conjugates of four-
component spinor bilinears can be converted using the
following relations:

(P1¥)" = W%,
(1Y) = Py,
(P,6"%,)" = P,0M¥,,
(PfCY,)" = ¥,C¥],
(PTCrp,)" = Wy  CYY,

(PTCo™W,)" = P, CP]. (5.7)

B. Classes involving two fermions

The classification of different types is based on the
number of fermions, as there is no operator without fermion
fields. We first list the operators involving two fermions, in
which all operators describe AL = 2 processes, since only
the lepton bilinear is allowed to appear. The type [>H*H >
can contribute to the neutrino Majorana mass. The type
WPHH' and BI’H3H' may contribute to the neutrino
anomalous magnetic moment. The type W2[>H? contains
the operators contributing to the neutrinoless double beta
decay at tree level.

1. No gauge boson involved

In this subsection, we deal with the classes y?¢"> D0,
Note that for even np we have operators with fermions of
|

ll/1a1//2ﬂ(D¢3 )Z (D¢4)§¢5 Pe.
WlaW2ﬂ¢3 (D¢4)3(D¢5 )gff?e’
W1 W (Dp3)5(Dbs)schsdb.

W1 Waas (D¢4)§, (Dés )g(ﬁs’

w1 *was(Dh3) s (Deps Vb
l/’lallfz/}% (D¢4>2¢5(D¢6),ﬁ-,,
W1 W, (D¢3)§¢4 (D¢5 )gflﬁs,

W1 Waaps (D¢4)§¢5 (Dd)e,);;’,

opposite helicities, or chirality conserving, while for odd
np we have operators with fermions of the same helicities
or chirality violating.

Class y*¢°®: The only Lorentz structure of this class is

V1W2aP3045Ds 7103 (5.8)

This class involves the Weinberg operator with additional
Higgses:

OZQH“HT? y [] Gikejl (lpiClrj) HkHl (I{TH)2 (59)

After taking all the Higgs vacuum expectation value
(VEV), it can give rise to additional contributions to the
Majorana neutrino masses.

Class w>¢’D: The class has to be yy ¢’ D, which has
the following Lorentz structures:

W1%hr3(Dy) qabsdow s’
(5.10)

W12 (D3) ababsdews”.

W1P20p3pabs(Dpe) witrs".
(5.11)

W19 hrp3ps(Ds) wabeirs .

Considering the conservation of hypercharge, the only
operator in this class is

Omrgiple™e™(1,,Cy e, )HH,D*H,,(H H).  (5.12)

Class y*¢*D?: The class y?¢*D? contains 12 new
Lorentz structures that are all absent at lower dimensions:

Y1 “Wop(Dbs)idads (Do), (5.13)
V1 Wpbsba(Des)i(De)s.  (5.14)
V1V2a(D$3)spatps (D). (5.15)
W1 Waah3ha(Debs)s (Deps ). (5.16)

The following two types are allowed in this class and the operators are listed below:

015025-24



COMPLETE SET OF DIMENSION-NINE OPERATORS IN THE ... PHYS. REV. D 104, 015025 (2021)

| emein (1,;Cotl,;) HoDyHy, (HID,H) Y [H] €mel™ (1,:Clyy) HoD*Hy (HTD, H) |

| €% e (1, Cotly;) Hy Dy Hy (D,HTH) Y [E] €*ei™ (1,Clyj) Hy Dy Hy (DFHVH)

| emein (1,,CotVln;) HyHy (DyHI D, H) Y [5m) €6el™ (1,,Clyy) Dy Hy DM Hyy, (HTH)

[ e (L CotV 1) HyDy Hy, (HI Dy H) - Y o] €™ (1 Clyj) Hy D" Hy, (H'D,H) (5. 17)
| e*ei™ (1,;Cotl,;) HyaDyHy (D,HYH) Y [l €™ el (1, Clyy) Hy Hy, D* (HT D, H) |

] ¢%el™ (1, Clyj) Hy Dy Hy (DFHTH)

— e

k] 5R] BE]

v
Y

- Y
Ol(QlH;}}JVD2 y
y

Y

Y

Bl R
EEEY

=

Ocprip: | Vo] €™ (e,Ce,) Hy D, H; DV H;

The superscripts of the O’s label the terms in particular type, in the order from left to right and from top to bottom.
Class y*¢*>D?: With three derivatives, we have 10 independent Lorentz structures as follows:

1“<D¢2>§<D¢3>aﬁ<D¢4>zw§"’, w1 (D)D) ojba (DY) (D¢2>,1¢3<D2¢4>,,aﬂw5 ,

W (D)3 (D) (DWL)S . v a (D) (Dg)iwl) . wi“ga(D2¢s)., pa(DWL)).
i (DEUD2Ga)% Wil i ha (D) (D)y (DU yha(Dbs) (Db (DY),
v bads (D)., (DY) (5.18)

aaﬂ

The Lorentz structures are also new here. There is only one possible type for these Lorentz structures:

o éliekn(1,,Cy*Dre,)H,,D,H;D,Hy, €€ (1,.Cy*e,)D,H,;D,HD"H,,,

5.19
<MD | cikgim(] . CyDre,)H,,D,H D, H. (5.19)

Class y*¢*D*: With four derivatives, we have three independent Lorentz structures as follows:

(Dll/2>a (D¢3) (D ¢4)ﬂ77 w1y (D2¢3)aaﬁ(D2¢4)ﬂy’ wl"l//za(D2¢3)§}(D2¢4)§f- (5.20)

Still there is only one possible type:

o~ | VEE ™ (1, Co" Dylyy) Dy H DD  Hy, YV [a] 4™ (1yiC Dyly;) Dy Hy DY D* Hy, (521)
BHDY | y) (517 €9 k™ (1,,Co¥* D,ly ;) D, HyDyD" H,y, '
2. One gauge boson involved
Class Fy’¢*: The class has to be Fyyw¢>, which has only one Lorentz structure
FLlaﬂW2aU/3ﬁ¢4¢5¢6¢7- (5-22)

There are two possible types, the antisymmetric flavor representations of which contribute to the neutrino anomalous
magnetic moment:

V[ emet (71), Wi, (1, Cotly;) Hy Hy Hy HY,
O | V1 . | éimeil (7Y W , (1y:Cotl,) Hy H, (HTH)
y zm kl (TI) lplCO' lrj) HkaHnHTj (523)

Opppspt | Y [E] €™ By (1iCo™l,5) Hy H, (HTH)

The fermion bilinear terms here are always chirality violating.
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Class Fy*¢’D: In this class, the gauge boson contracts with the fermion current and the Higgs current. There are three
independent Lorentz structures as follows:

FLlaﬁWZa(D¢3)ﬁd¢4¢5WZd, FLlaﬁW2a¢3(D¢4)ﬂd¢5ng’ FLlaﬁW2a¢3¢4<D¢5)ﬂd‘//gd- (5.24)
Two types are written as follows:

O~ ke (e \mWl (1,,Cye,)HH,,D'H;,  e*e" (2 )m Wl (1,;Cy*e,)H H,,D'H,,
WelHD | cingik (ymw! (1,,Cy*e,)H H,,D'H;,  enel (1 )nW! (1,,Cy’e,)H H, D*H,,

B lH; le*e/mB¥,(1,,Cy*e,)HH,,D'H;, e*empBr (1,,Cy’e,)HH,,D'H . (5.25)

Class Fy’¢*D?: There are two classes of this form. One is Fjy?¢>D?, a dimension-seven class Fyy’¢> with two
additional derivatives, which has seven independent Lorentz structures:

FLlaﬂl//2y(DWS)(I/X&(D¢4)?¢S’ FLlaﬂWZY(DV/3)a/)’&¢4(D¢5)?v FL1aﬁlllzyl//3a(D¢4)/1(-,(D¢5)?v
FLiPya(Dy3)}, (Da)fps. FLiPya(Dy3)}, ¢4 (Des)
FLiPyoap3 (Deps) g (Dps )2, FLiPyoa35(Deba))y (Dps )% (5.26)

The other class is Fry?¢?>D?, where the flip of helicity for the gauge boson is made possible by the presence of the two
additional derivatives. The Lorentz structures of this class are

llflall’zﬂ(D2¢3),,/,’g,/;¢4FR5dﬁ, l//1aWzﬂ(D¢3)aa(D¢4)ﬁ,§st&ﬁ,
V/law2ﬂ¢3(D2¢4)aﬁ{1ﬁFR5dﬂv W1QW2a(D¢3)g(D¢4)/5ﬁFR5dﬂ- (5-27)

After converting to the F, F basis, these two classes mix together:

Y [ emetm (rf);wl # (1,;Co* Dyly;) Hy Dy Hy,
Y [E] ek (r1) WAk (1,;Co™ Dylys) Hy Dy Hy,
y .] ekerm (7)™ WfA (1piCo™ Dyly;) Hy Dy Hy,
Y [E] e (+) " Wb (1,;C0™ D) H Dy i
Y .] ek (TI) WIy\# (lmC’U D lr]) H,,D, Hy,
Yy .] einelk (7’1) wi )\“ (l Co™v Dulm) H,,D, Hy,
0 Wl (1,;Co"*D,l,;) Hy, D*Hy,

y]fﬂ" (), W

3

m
n
m
n
m
n,

=

o(1~16) ) el (TI):: W » (1piCo"*Dyly;) Hyp D" Hy, (5.28)
WIRHED? y [] enekm ()] Wt (1iCoN Dyly) Hyn Dy Hy,
Y o] 9™ (TI>n Wi (lpiC(T/\VD lrj) H,,D,H,,
Vs e*em (71) " Wit (1,:Co* Dylyj) Hy Dy Hy,
Y e €F el (7‘1): W1\H (lmCO' ]) H,,D,H,
Y e € el® (TI)ZL Wik (1,,Ca*' D lr]) H,,D,H,,
Y [eE] et (r1) " W (1iCo Dylys) Hin Dy Hy,
Y [ ek (7)) W (1,;Co*>D,ul,;) Hy D" Hy,
Y e ekl (TI): Wl (1,;Co¥*D,l,;) Hy, D" Hy,
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Y [E] e*e™m B\t H,p Dy Hy, (1,iCo** Dylyj) - Y [E] €86 Byt H,p Dy Hy, (1,iCo™? D5
V[ €9k B\t H,,, Dy Hy, (1,;Co** D,ly5), Y [2] €9eb™ B+ H,,, Dy Hy, (1,;Co™" Dl 5)
oty | Y] R BusHp DM (1iCo¥ Dylys) Y [B] €9 By Hyn D Hy (1 Co® D,le), (5.29)
BEHAD? | y) (5] €k ed™ By H,, Dy, Hy, (1iCo* Dylyy) , Y [5] €%e™ By Hy D, Hy, (1,iCo™ Dylyy)
Y [&=] €9 k™ ByP H,,, D, Hy, (zmcaMD L), Y[z elemBy\tH,,D, Hy (1,;Co™ D zm),
Y [5] €%€/™ B,y H,,, D" Hy, (1yiCo?*Dl,5)

3. Two gauge boson involved

Class F?y?¢*: Two classes are involved, with the same and opposite helicities for the gauge bosons and fermions. For the
class F2y?¢?, we obtained two independent Lorentz structures,

FLi P Frog s s’ hsihs. Fii P Frapws"wa, dsds. (5.30)
while for F3y?¢ we have only one independent Lorentz structure,
WlaW2a¢3¢4FR5dﬂFR6&[}- (5.31)

After converting to the F, F basis, the terms with the second Lorentz structure in Eq. (5.30) and those with the Lorentz
structure in Eq. (5.31) combine to the form as the Weinberg operator with an extra F2 or FF. The terms with the first Lorentz
structure in Eq. (5.30) are left as they are as follows:

Ocripmz | Y [em] %™ GG (1 Clyg) HyHyy Y [25] €46 G GAMY (1 Clyg) Hy Ho,
Y [ X IWL W (1 Clij) Hy o, Y [ 5™ Wi, W (1) HiHo,
Y [E] emetnet I (r K WIWH, (1,iCo¥ M) HiHp,

Ot | V1] 47 (51, (7)) W22 (5, ) Hi,
Y e neme (1) (7)) WL, Wi (1 Clyj) Hy Ho,
b () (WA 1) B, (532
Y [[2] etk ein (TI)ZL BuyWhey (1,iCo¥ ;) HyHp,

oo |V EL RS () Bl W (iCley) HiHyn, Y [H] €4 (7)) B W (1iCly;) Hi o,

BWEH? | 3) (o) eihein ()" By Wt (1,iCo" ,y5) HyHp,,

Y [ ekein (TI): B,u,uWI”" (lpiClrj) HyH,,, Y] ehein (TI): B,IWWIHU (lpiClTj) HyHp,

Opepgre | V[ €%6™ B, BY (1,;Cly;) HyHp, Y [55] €™ B, BRY (1, Cly;) Hy, Hp,

C. Classes involving four fermions or AL = -2 are taken conjugate to make them look a bit

In this subsection, quarks begin to appear in opera-  neater.

tors, and |B — L| is always equal to 2, such that only

(AB, AL) = (:I:l, + l) and (AB,AL) = (0,2) are allowed. 1. No gauge boson involved
The classes involve three quarks and one lepton, or two
quarks and two leptons, or four leptons. The operators with
(AB,AL) = (+1,F 1) usually contribute to the proton
two-body decay processes, while the AL =2 operators )
could give rise to a contribution to the neutrinoless W7W2a¢3¢4¢51l/g dl//;“, (5.33)
double beta decay processes, such as the operator type

WudPD at tree level. We are going to present the operators g

in terms of the number of quarks. Operators with AB = —1 ‘//?‘/’/2‘/’3a‘//4ﬂ¢5¢6¢7’ ‘/’?‘/’2a‘/’§‘»‘/4/3¢5¢6¢7' (5.34)

Class y*¢>: There are two classes in this form: y2y2¢>
and y*¢3, and the independent Lorentz structures are
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Operators of this class contribute to the four-fermion interactions if the Higgs fields take their VEV, and operators involving
two or three [’s are relevant to the neutrino nonstandard interactions.
1. Operators involving three quarks with AB =1 and AL = —1:
OqSEHT?’ ‘ Y [ eabc (épQSbj) (QTaithck) HVHTIHTE
Opuimrs | Y [E] €eno (Zium) (4paiCaro;) HIHY HT™

01~ Y [ e (Zf d55> (9paiCrog) HRHTH'Y, Y [F] eote (Zid“) (@paiCares) HHITHTE,
2dIHHT? —i ;
‘ Y[z € (Lde) (apaiCapns) HyHHT* (5.35)

(quZEHHJr2 ‘ Y [] eabe (EpQTai) (dstdtc) HJHTZHTJ

o2 | Ve et (Z’;dpa) (ureCdyy) HyHITHTE Y [E] eabec,, (ngpa) (ugeCdyy) HHTIHTF

Opipzpr | Y [ eabe (Zidrb) (dschpa)HiHjH”

2. Operators involving two leptons and two quarks with AL = 2:
OqEZeH3 ‘ emeln (@fkea) (l;m'CQTaj) H.H,, H,
0Ly | V[E] ememer (@glny) (lpiCasan) HinHoHo, Y [@5] €™ R (a1,5) (1yi Cisar) Hin Hy Hy

v | VEEE (G ura) (eoClg) HHGHY, Y 1] €7 (G5 tra) (lioClsi) HiHm Y,
QUEHEHT | ) [E]) ko (g, ) (1oClyy ) Hy HyH'

Y[ emen (s ) (riCarar) HuHaH®, Y [ e (dls; ) (riCatian) H Ho ™,
(1N6) .. —a ; ; —a
Ozt | ¥ [ €16 (dls; ) (1riCaear) HnHoHI™, - Y] em e (il ) (1riCoran) HonHo H',
Yy [} etkein (Eza)léj) (lricqu) HmHnHTm7 Yy [] €t ekn E;llsj (l'r'icqu:) HmHnHTm
Oﬁdl2H3 y [} ekoemn (ﬁﬁidpa) (ltoClsn) HinHm

OualeHzHT ‘ Ekm (Ezltm) (Uracep) HZH]CHTZ

(5.36)
3. Operators involving only leptons with AL = 2:
(1~4) Y [E] €mein (epls;) (1:iCliw) Hy Ho H™*, Y [E] €med™ (eplyi) (1s;Cluy) Hi Ho HTF,
BeH?HT |y o] eimei™ (€ly;) (1riClig) Hm Ho HT® Y || €mei™ (e,ls;) (1piClyg) Hy H, HTF (5.37)

Opio s \ Yl mein (Tfes) (1iCly) HiHy H,

Class w*¢*D: The class of this form must contain three spinors of the same helicities and one spinor of the opposite
helicity, namely y3yf¢?D. A total of five independent Lorentz structures exist in this class:

WA (DY3) pahabswi®s WD) s,
V/?V/gl//3a¢4(D¢5)ﬁall/gd’ V/Tlllza'/fg(D%)ﬁaﬁbs‘l'g&’ l//?l//2all//3}¢4(D¢5)/3all/gd- (5.38)
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1. Operators involving three quarks with AB =1 and AL = —

(1~9)
¢3lH2D

(1~5)
OqszH“D

(1~5)
qudlHt2D

(1~10)
qd2IHH'D

(1,2)
OudzeH”D

(1~3)
OdSEHHT D

Y 5] € (I Yutpai ) (@i CD o) HIHTT, 3 1] € (I yudpas ) (a5 C D" o) HY HTE,
D ] € (195 ) (apai Caser) VD HTE, Y [ €0 (19,0p00 ) (gr0iC D gucr) HIHI,
Y [] eabe Zi%me‘) (@ro;CD"quer) HVHTF Y [[E] eabe (lﬂuqmi) (qrb;CD*qger) HUEHTE,
Y [ e (17" arns ) (@paiCaser) HIDLHT, Y [E] e (Tupai ) (a0 CD guer) HHTE,
Y } eabe <va“qrbj) (4paiCser) H D, HT

V[T € (@ yudie) (4raiC D agey) HUHTT, Y [715] € (8,050 ) (¢raiCy dye) HI D, HT,

Y [5] € (€pqsty) (GraiCy*dee) H' D, HT YV [H] €t (€,7udic) (4raiC D qsp;) HTPHTI,

Y [ € (@pasbs) (araiCrPdee) HI D, HT?

Ezk (l DHU‘Sb) (thjcf)’udpa) HTJ'HT]C’ Eabceik Z:”Y”thj) (ustdpa) HTkDuHTja
Eabceij lrlyuqtck) (ustdpa) HTkD;LHTj7 6abceik Z:«dpa) (qtcjc’yuusb) HTkD,uHTja
€abc€ij Zidpa) (qtch'yHqu) HTkDMHTk

5]

Yy
Y [ €t (Todpa ) (qrey Cy*dyy) Hi D, H'I,

] eabc Dﬂzidrb) (qtcjcf)/udpa) HiHTja

=
5]

eabe Dﬂzidrb) (thicryudpa) HjHTja
eabe Zidpa (thicrylldrb) HjDuHTja
eabe Zldm (qeiCy*dyy) HY D, Hj,

]
5]

S
5]

Y [ e Zidpa (qee;Cy"dyy) H; D, H'I,

[

KIS

y
y
Y [z € (Todpa ) (qrejCy*dyy) HYI D, H;, Y
Yy ]Ech ldpa (qeiCy"dyy) H; D, H1I,
Y [ e (Tdpa) (@re;Cr ) HID, Hyy Y [E] € (Lodpa ) (g1iCy*dr) HY D, H;

IE

| V] iy (€67 diy) (useClpa) HYI DL HT Y [E] €ei; (€7 drs) (uscClya) HI D, HT?

Y [} abe (et’YMdpa) (D”dschrb) HiHTi, y [ eabe (Et'Vudpa) (Dudschrb) HiHTi’
Yy I e (eyyd,y) (dscCdpa) HiD#H“

(5.39)

2. Operators involving two leptons and two quarks with AB =0 and AL = 2:

(1~13)
OqﬁlQHzD

Y [H] eimein (qt 'Yu pt) (1l,jCD qsar) HnHyy D[] €™ (@™ yulpi) (1o C D" qsar) Hy Ha,
VY [[ef] eimein ( Tj) (1piCqsak) Hn Dy Hy,y Y m etkeim ( am’y“lm) (1piCqsa) Hn D Hy,
Y [E] éikeim (g ww) (1piCsak) HuDyHp, Y [E] €7€4 (@5 1,) (1piCqaak) Ho Dy Ho,
y €ij€km 'Y#lrj) (lmcq%k) H,D,Hy, Y (] eheln (a; "V m) (lerD#ank) Hy Hy,

( ’y“lrj) (1piCqsak) Hn Dy Hyyy Y (] ekein (go "y ) (piCsar) Hp Dy Hp,
y[ r] 6““6””( ") UpiCsa) HuDpHp, Y [2E] €€ (@79 15) (lyiCsan) Hn Dy Hum,
Y ] €7 ™ (g5 ") (1piCasan) Hn Dy Hyy

(5.40)
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ek'm @?D”Usa) (lth'Yp,ep) Hin:, Ekm (@?l’y”ltm) (usacep) HkDMHi7
Ogi;;2D e/t @gwulti) (usaCep) HyDyHj, €™ (Q?iep) (ltmCyptisa) H DM H;,
e* (q?iep) (ltic’}/uusa) HkD“Hj

) ekelm E;*yl,,et> (1iCD"qsq;) HHpny  €*el™ Equj) (l;;C~y"er) HyD, Hy,

Oticrrzp | e (dqu0; ) (1riC¥er) HuDuHy, €™ (dylyi) (@sas Cruce) Hin D" i,

€4 ghm E;l”) (¢sa;Cyper) Hyy DM Hy,

Yy ekeim (D*uly;) (LpiCypuee) HeHp,, Y ¢heim (@llyi) (I ;Cy*uye) Hy D, Hy,

o5 V[ €7eb™ (usly) (1jCy use) Hn Dy Hy, Y [ €Fed™ (uly;) (I Cy ura) Hy Dy Hy,

Y [ €9 (@81) (s Oy tisg) Hon D, Hi

(5.41)

.ﬁ
ﬂ
=

Y [ e (dpmtia) (€D ) BT,
arg | YEIE doly; ) (LiCy ue) HYI D, Hy,, [ ¢id dizsj) (1iCMuge) HY* D,y Hy,
v D yeik E;l“"j (1riCy"ure) Hy Dy HY, Y [o12] € (E;’Yuum> (1;CD"lg;) H H'I
Yl e Ezv“um) (1;;CDMj) HeH™*, Y[em] € (dyls; ) (1. Cy use) HT Dy, Hy,
Y[z € (dyl ) (1€ wa) H* Dy Hy, Y [e1s] € (il ) (1riCyPua) Hy Dy H'

e (dyvutina ) (1 C D Loy) HHT™,

Hma

O'I(L%:2)H2D Y e (8?'7“&) (usaCep) HjDyH;, Y [ €' (d?VNGT) (usaCep) H;Dy H;

. Y [E] etkeim E‘;%dw) (1,;CDPl;) HyH,,, Y [] eiheim (E;lsj) (1ysCy¥dyq) Ho D, Hy,
1~5 g . N

OdalQHzD y €U€km dplSj) (lricfyudta) HmDqum y [} 61k6]7n (dpwudta) (lriCDMlsj) Hkay
Y [] eikejm (E;lsj) (lriOVMdta) HmDqu

3. Operators involving only leptons with AL = 2:

™m

Y [E] emein (Butpi) (s OO HinH 9 [E] e (1) (s CD k) Hy o,
Lk
s |l l} emem (11471, ) (lpiClug) HaDyHi, ¥ T €m0 (Il ) (L C D) Hy H,
LD y .. elkejn ( t Tu Pl) lTJOD#lSk) Hman y ] Zjekn (7t Tu pZ) (ZTJCD#lsk) anHna
Y [ emen ( W“lm) (lpiClo) HnDyHy, Y [T €F6l™ (Zt Vi pl) (lrjCD"lsy,) H Hy,
y [] e (1415 ) (lpiCla) Ho Dy Hop

y etheam (epyuer) (L;CD"lg;) H Hy,, Y etheam (€pls;) (17iCy"ey) Hy D, Hy,
0. | VIE e (8yl) (1iCy¥er) HuDyuHy, Y [ R ™ (@,7,60) (1iCDPl;) HyHo,
V[ €% el™ (eyls;) (1iCy*er) Him D, Hy,

(5.42)
Class w*¢D?: This form involves two classes: y*¢$D? with ten Lorentz structures:
W?(Dll/z)gy%a(Dl//Ugy(f’s’ W?(Dllfz)gy%al//w(Dﬁbs)?’ W?Wg(DW3)£a(DW4)Z,,¢57
l//‘llllfg(Dl/@)Zal//w(DCi’s)?v AT (DW4) ope (D), ll/(fll/g(D%)aﬁall/zyx(D%)?,
l/’?‘lf/zj%a DW4)2{,(D¢5>?’ l/"fllfza(Dl//3)§y(D’//4)Zy¢5’ l/’?‘/’za(D%)gyvlw(D%)?,
wiwaawh (D)} (Dehs ), (5.43)
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and w2y 2¢D? with seven independent Lorentz structures:

73 SRY B 3 j a
VD) wi vl WA DV v (D)l (DWD);

Wb (DWL) iy (DWE)s" . wivau (D) (D) wll WSwau( D)ol (DY )P,
l//1'//20&153(Dl//4) (Dl//5)aﬁ~ (5~44)

1. Operators involving three quarks with AB =1 and AL = —1:

J e (17" ar15 ) (@paiC¥doc) DDy H, Y] € (1157 0y ) (apaiC" Dode) Dy HT
Y o] e 717”%@) (4paiCY*Dydse) D HY, P[] € éD ljdacg (4paiCo"" qros) Dy H™,
] eabe D“szsc> (2paiCarj) D HY, Y ] e (D LD dsc) (@paiCo™” qruy) HTY,
J e (DT Dudse ) (apaiCarn) T, Y [E] € (157 05 ) (apaiC*duc) DD HT,
Y [ et (17" rts ) (apaiC1" Dudse) DyHE, Y [B] € (177 Grs; ) (apaiCy* Do) Dy H,
Y [ e (D dye ) (apaiCot” aruy) D H, Y [H] et D“Zidsc) (4paiCarj) Dy HT,
Y [ e (Dol Dydse ) (ayaiCo™arns) HIE, Y [B] e (DM Dy ) (apaiCag) HI'

(1~14) Y [
q2dIHt D2 Y [

Y [ €% (87" dsp) (GraiCY die) DDy HY, Y [EH] €27 (€57 Dydsp) (¢raiCy” die) Dy HY,
o~ Y [Em] €7 (€0 Grai) (dsyCDydye) D, HTY, Y 18] €8¢ (8,01 ¢rai) (D,dsyC'Dydye) HYY,

ad?eHID? 1y [ et (e,y* Dyydg) (qraiCy die) DpHT, YV [E] €% (80" @rai) (dsy O Dy dye) Dy HY,
Yy eabe (qu“u') (DudstD'udtc) HT?

Y [] e%be;; Zidpa) (DFugCDydyy) HYI Y [a1] €@y (7id,,a) (teCD,ydyy) DFHTI,
gy |V D#ZiDyutC) (dryCodpe) HT, Y [a] ee;; (D d a) (ueCdlyy) DFHT,
Wit D2 | Y ] ety (oo Vd,,a) (DyuscCdyp) D, HY Y [E] e, (z dpa) (DFuCDyydyy) H
Y [E] eatee;; (1 dpa) (uteC'Dydyy) DAEYT Y [E] eei; (D, D”utc) (dvyCilpe) HI,

Y [E] eee; Duzédpa) (ureCly) DEHY, Y [E] ebee; (oot d,,a) (D uzeCdyy) Dy HI

Y [Ta] eabe (D,jiDMdsc) (dryCo™dpg) Hy, Y [oiT] €20 (Zidrb) (DyudscClye) DPH;,
ot~n | Y[ET e (DD drb) (doeCdye) Hy, Y [EF] eate (ZZD drb) (dyeCdyq) D* H;,
m 7 e (D1, Dude) (drsCo™ dp) Hiy Y [E] €% (DM D,y ) (dueCidya) Hi,

v P

V| m 0 (1D ) (dscCilya) D H;

(5.45)

2. Operators involving two leptons and two quarks with AL = 2:

Y E) €™ (@' 4"1si) (emCy” ura) DDy Hy, Y [E] €™ (@3 4" Dulsi) (limCy” ura) Dy Hj,

Y [5] ek (q‘”’v”D lsk) (lemCy” ura) DuHi, Y [E] €™ (@3 0" tura) (DylimClsi) Dy Hy,

y ™ (G4 0" ura) (DylemClsk) Dy Hy, Y [B] €™ (g3 0" tra) (Dulim CDylsi) Hj,
O((IilN?l:;DQ Ejm (qp um) D“lthD lSl) Hja y[ }ejm (7p ’Y”sz) (lth'YV“m) DuDl’Hj7 (5’46)
| €™ (4" Dylsi) (limCy¥ ura) DpHy, Y [510] €™ (4 Dylk) (lim Cy” ura) Dy Hs,

Jm (q‘”o“”um) (DylimClsi) Dy Hy, Y [EE] €™ (@4 0 trg) (Dylim Clsi) Dy Hs,

Im (8o Upg) (Dylim CDyls) Hy, Y [50] €™ (q% tra) (D*liyn CDyilsi) H

m

('h

E
=
15
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Y[ erer™ (dyls; ) (DulriCD grar) Hiny Y [H] €96 (dols; ) (DpulyiC D qrar) Hun,
V[ e*e™ (dols; ) (DulriCatar) DF Hyyy Y [H] €9€™ (dols; ) (DplyiCrar) D" Hy,
Y [ e*em (4o 1) (DulegCDotrar) Hmy Y l i (dyo,; ) (DuleyCDotear) Ho
v [ VB (D) 0 Coy D, Y 0 (£0,1) 0.Cot) D
Ogarzrp | Y [ eteim dza’“’lsj) (1;iCDyugtar) Dy Hum, ye”e’“" (d:cr“”lsj) (1:iCDygtar) Dy Hpm,

€ Ez'y”ep) (l4;CY urq) D, Dy Hyy €9 (Dugz'y“ep> (l4;Cy"urq) D, H;,
o~ | € E‘jpyztj) (tyaCoe,) D, H;, €l aZDuztj) (tyaCe,) D, H;,
udle H D? » . .
I Dud:Dyltj) (uroCot¥ey,) Hy, Dud:D“ltj> (uraCep) H
€ (DFdLl; ) (uraCey) Dy H;

3. Operators involving only leptons with AL = 2:

Y [EE] eheim (8,14;) (DyulriC D i) Hyp, Y [EE] %™ (2,10;) (DulniClir) DFHy,
YV B €9k (8plss) (DulyiCly) DFHpy Y [ €%68™ (€07 1) (Dyuls;CDylyi) Hop,
ll €€k (8,07 1,:) (Dyula;CDyly) Hy, Y [EE] %™ (&y1,4) (Dpls;C D 1yy,) H
Ol 3’[ eliehm (@

Y [55] €6 (pl7) (DyulyiCles) DP Hyy Y 5518 €965 (,147) (DyulyiClygs) D* o,
y eikeﬂ'm (@pls;) (DuleiCDPy) Hyyy Y [H] €™ (€,145) (Dl Cly) DFHyp,

y I ik (8,1,;) (Dl Cly) DI Hy,

Class w*D3: There is only one class here: >y D3, with independent Lorentz structures

Wi (D)1 (Dyr) iy (DL)EP. yiwh (D)), (DY)

1. Operators involving three quarks with AB =1 and AL = —1:

1,2 abc 7t v p|] ~abc 7 v
Oc(zdﬁ)D% y [] € b (DvlsD,udrb) (DMth'C’Y dpa)v y € b (DulsD,udrb) (D”thiCW’ dpa)
Ogszps | V [BF] € (DFey”dy) (D DydseCllpg)

2. Operators involving two leptons and two quarks with AL = 2:

(1,2)
udl? D3

Y [] € (EZVVD“um) (DulyiCD, L), Y [E] ¢ (EZ’}/VDMUM) (Dul,:CD, L)

015025-32

Ves] e*e™ (doly; ) (DuleiC D qrar) Hiny Y 6] €965 (d) ;) (DylriC D ran) Hin,
V] €e™ (dpls; ) (DulriCrak) D Hyy Y [515] €9 €™ (dyls; ) (DpuleiCrar) DFH,
y[] ezkejm dzo-ll”l”,) (DulstDuqtak)Hm7 y[] eijek'm (EZO'#DIM‘) (DulstDl/qtak) Hma
Y e (@Dl ) (riCatar) D" Hy Y [555] €965™ (Dl ) (i Car) D Hi,
Y [ ekeim d‘;awzsj) (loiCDpttar) Dy Hyo, Y [13] €9 b (8‘;auylsj) (1;4C'Dyuqrar) Dy Hi,

20" k) (1iCDyls;) Dy Hpy,, Y [E51m) €9 €E™ (€,l55) (D,ulyiC D k) Hyp,

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)
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2. One gauge boson involved

Class Fy*¢: There are two class involved: F,y*¢ and F;y*y?¢, and the independent Lorentz structures are
FLlaﬂl//2yW3al//4ﬂl//57¢6’ FLlaﬁWZaW3yl//4ﬂl//5y¢6’ FLlaﬂWZaW3/3W4yWSy¢6v (5.52)
Fri Py pbaws . (5.53)

Via a simple relation Fgy,0,; =0, F,,0,; = Fi,,0, we replace all Fi, with F. All types follow this replacing rule.

1. Operators involving three quarks with AB =1 and AL =—-1: 9
Yl e (V) G, (Tdae) (@paiCo™ aun) HY, - Ve (M) G, (Ldse ) (aaiCot” apog) HY,
1~8) | Ve e (M) G4, ta””dm) (@resCapni) HYT, V[ e (M) G4, fia"”dsa) (@reiCapn;) HI,
Gq2dlHT 3 _
V[ o ) G () (aps ) BV 9 [B] % (00! G (T ) (@) Y
y eee (AA): Gﬁy Zzo-'uudsa) (QTc]quln) HTJ, y el (AA)Z Gﬁl’ lJLtO'uudsa) (qmiC’qpbj) HTJ

Vi et (1), Wiy (e ) (GuiCo arug) B, Y] e (7)), W, (I duc) (GpuiC guny) HY,

(1~6) . i =
quzdeT Yy [] eabe ( ) Wl{l/ (l ot dsa) (QTcmCQpbi) HJ”7 y [} eabe ( I)] WI ltdsc) (qpaicaﬂyqrbj) HTk7
Y [ et (+1)" W1, (l oh dsa) (@remCapi) HY, Y [E] e (1) WI l;a“”dsa) (@remCapy;) HI

(1~4) y[ ] abCB;w (Zjdsc) (Qpaico'uy%“bj) HTi Yy [] Each,uy (Zzguudsa) (qrchQpbi) HU’
Bqg2dlHT = .
! y . ach,ul/ ( ) QpazCU” %-bg) HT y Each,uV (lto-uudsa) (chijpri) HTJ

eace b i ace b = 2 A
O~ ()\A . G (€507 qrai) (dspCldye) HY Y[ e ()\A)e G;ll, (€pGrei) (dpCotVdg,) HT?,

Gqd?eHt y . 6(1(‘? (}\A)b (epa, VQTaz) ( Sdetc) H“, y [ eace ()\A): G;lz/ (qurci) (dtbCU””dsa) HTi

€

ON i \ V[ e (r )j W, (€0 Grai) (dspCelye) HI, Y [ € (77)] W, (€pres) (dpCot  dya) HT?

(3

O(B}ziilEHT ‘ y Each;u/ (Epo_uuqra,i) (dstdtC) H“a y [] EabCB;u/ (qurci) (dtbCO'MVdsa) H“

Y [ ewceis (W) Gty (R0 dpn) (weeClpa) B, Y [B] eei; (M2 G, (Lot diy ) (wieCidya) HI,
Omrt | ¥ [E] eeeis (V)" G4, Ltie) (drpCom¥dya) HTI, Y] evei; (M), G, (Lo dny) (ueeCely) HT,
V[ eees; (M) G4, (Zlafwdrb) (ureCldpa) HT, Y [a] ey (M)’ G4, (Z;utc) (dyCot¥d,yy) HI

(1~3) y [] Gabcﬁjk ( I)k . (Ziauudrb) (Utccdpa) HJU, y[] abc €ik (TI),]; W;{V (Z’;Utc) (drbCO'MVdpa) HTJ’
WudilH? | 4) ey, ( ) WI (lio””drb) (ucCdya) H'?

pv

Y [ G“bcquW (Zia‘“’drb) (ucCldpq) HY Y[ eab”eijBW (Ziutc) (drCot¥dyg,) HYI,

0(1’\‘3)
2 7t j
Bud?lH*t y EabceijBMl/ (ZSO'uydrb) (utccdpa) HT]
o Y [ eoee ()\A)’; aa, (Zidpa) (dseCo ) Hy, Y [B] €% (AA)S G, (Z:dpa> (dseCovd,y) H;,
Gd3lH

V[ e (A4)° G4, (Zﬁdw) (dyeCoP¥dyy) Hy, Y H eace (A4 g4, (Zjdpa) (dyeCod,y) H;
05‘1,’33111 ‘ Y ] e (7! )J Wy, (Zi’dpa,) (dscCotvdyy) Hy, Y [[F] e (71 )J wl, (Zidm) (dseCoVdyy) H

ol ‘y[] By, (Tidpa ) (docCoVdry) Hy, Y [ € By, (Tidpa ) (doeCo™ dy) H

(5.54)
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2. Operators involving two leptons and two quarks with AL = 2:

0~ Y [em] €™ (>\A) GA ( fotury) (imCls;) Hy, Y [EE) ¢tk ()\A)b GA (7 Tupp) (LsiCot ;) Hy,
GQuitH | y) ] eim ()\A) A (@ o um) (mClei) Hy, Y [ €* ()\A) GA (@7 ur) (1siCo™¥115) Hy,

Y [ Fn (TI) ( U’“’um) (l;iClsy) Hy, Y [Em] €F (TI): W;{V (q;ia‘”’um) (legm Clsk) Hy,
Oy | Vi) (1Y W (q5iura) (iCor*ty) Ha 3 [ (1 Wi (@20 ) (o) By,
Y [l e (1), W;fu (@'ura) UsiCo™ ) i, Y [El] € (77),, Wi, (@3 ura) (1iCotley) H

0(1:4) y [-] 63 B ( U’“’um) (lthlm) Hj, y [-} ikB @Z-um) (lsiCa“”ltj) Hk,
Bqul?2H y [] 63 BNV (qp O'l“’ura) (lthls,) It y [-} 6 Bwj (qp um) (lsiCO'“’/ltj) Hk

Y[ e (A1) G, Equk) (1riCo 1) Hy, YV [E] €F™ (M) G, (EZO—ILVZSJ') (lriCaur) H.
(1~6) g _—a o -
OGqEZQH y [‘ ezyekm )\A)b GA dpo'uulsj) (lm'thbk) Hm7 Yy [] 51k€]m ()\A)b GA ( pqtbk) (lricaﬂylsj) Hm;
y [] ZkE]m (AA) GA (dzoﬁulsj) (lricqtbk) Hm» y [] eijEkm (AA) GA (dZO’uulsj) (lricqtbk) Hm

B e (), W §d;:qu) @O Ho 3 ) 0" (1) W (Ti) 001 o

Y
[ et (1), Wik,
[2]

) W,
a1 d;a,wzsj) (1:iCqtar) Hum, [l ekedn (1) W, (dyoy SJ) (1riCqtar) H
wearH | Y emeak( n"wi, (daa,“, sj) (1:iCrar) Hpny Y [ €™ (71" W1, (pqu) (1,:Cot” 4)Hm,
Y [l e (r ’) o (@olss) (0Caa) Hos V] 0 (1) b (@0utss ) (iCaar) H
Y [z eme® (r (d T S,) ZMthak)Hm
0591;5311 [I | eebm B, Ed ouvls; ) (lqumk) Hp, Y[ €™ B, (Equk) (17:Co"" 1) Hp,
Y [5E] €*e™ B,,, (dpa,wzsj) (14iCata) H, Y [ €9ekmB,,, (Eﬁouulsj) (1riCarar) H.
(1.2)

€l (A4 GA, (E’;ltj) (uraCotey) Hyy € (X)) G4, (E:a””lti) (epCury) H;

OS/’%MH ik (TI)Z Wi, (Ethj) (uraCotey) Hy,  e* (TI)Z Wi, (E:O'”Vln) (epCura) H;
(1,2)

- eijBW (EZZU) (urqCot¥ep) Hy, eijBW (ESIU“"ZM) (epCurq) H;

(5.55)

3. Operators involving only leptons with AL = 2:

m

y I Gm km i #v (epltk) (lriCot” ZSJ) Hy, y I chm )n W;{u (Epltk) (lriCUMVZSj) Hy,
(1~6) m
OWZS&H y ] eJnekm ( )n W/fz/ (epltk) (lrzCU“VZSJ) my YV [} etkeln ( I)n W;fu (Epltk) (l”‘ca“ylsj) H
Y[ emett (7)WL, (@plir) (1niCotlsj) Hyy, Y [atem] eFei™ (71) " W, (@plur) (1riCot ;) Hpn
O(1N4) ‘ y JmB;u/ epltk) (lricaﬂulsj) Hy,, Y I €ij€kmBuu (Epltk) (lrico'ﬂylsj) Hp,
Bl3eH ik ik i =
Yy [] ! €JmBuy (epltk) (l”‘CO'/“/lsj) Hy, Y €' €JmBuV (epltk) (lrical“/lsj) H

(5.56)
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Class Fy*D: The classes have to be either Fryy D with three Lorentz structures,

4 I af a, P 2 af
l//{fl///z (DWS)(xﬁal//j;/;FRs W2, l//fl///zl//3a(Dl//I)ﬁaﬁFR5aﬂ’ l//{fllfzalI/g(DlI/I)ﬂd/;FRs b, (5.57)

or FLy*y'D with four independent Lorentz structures,

Fu“ﬂwé(l)%)aﬂawngd, Fry aﬂV/ZWSG(DW‘*)ﬂmWEd’
FLlaﬁl//2a(DlI/3)/ymll/4yl//gd, FLlaﬂ‘//2aW§ (DW4)/3;/&W§&' (5.58)

After converting to the F, F basis, these two classes mix together.
1. Operators involving three quarks with AB =1 and AL = —1:

(1~14)
Gqd?1D

(1~7)
Wqd21D

(1~7)
Bqd?1D

(1~9)
OGd3eD

(1~5)
OBd3€D

Y [E] e (M), G4, (Tudpa ) (@O D), [ € (V) G, (i) (a11C* D),
Y [ e (/\A)ZGA“V D,l.d, )(qtcin”dm)a Y[ e (A4) G, Dﬂidpa) (g1eiCY dr) ,
Y [ e (AA)Z; YW (Dulld, )(thic’yydpa)v Y [E] evee (AA)! GAn, iidpa) (DpteiCy"drs) ,
Y [ e (A4 ‘(1 dpa) (DpqreiCyYdry) ;Y [olr]] €2 (/\A)b GAK, (Zidpa) (qteiCY" Dydry)

S
5]

)Z G Ml/ l dpa) (qtciC’YVDudrb) 3 y [] e ()\A)b GA# D,uzzgdpa) (thiC’YVdrb) 5
Y [ e (A4)E GAn, D#lsdpa) (@riCV¥dpy) . V[ oo (AL)) GAn D#Z;dTb) (41eiCY" dpa)
)b AHV l‘lgdpa) (Duqtcic’yydrb) 3 y [] Ebce ()\A)a GAH lzdpa) (DMthiC’YVdrO

e

<
=)
]

3

VieE) e (eI, Wirs Zidp“) (617" Dy, Y ] et (1) Wk, D;Jidpa) (q1e;C" drpy)
y““”“”““Df%NMOMM,ymwwﬂwwn&%ﬁm%pwm,
VI e (TI) win, a) (21;CY" Dydry) , Y [ e (TI)Z wie, (Duzidpa) (qte; CYVdrs)
Y [ et (1), Wik, E (DuGte; CyY dry)

Yl B, (Tudpa ) (@Y Dudyo) ;Y [ B2, ( Dulldpa ) (@i C7 )
ymw@%&ﬁ%y%m%m’MWW@%&%MMMM%w
Y [ e B, (Idpa ) (@0eiC* Dydn) . Y [H] B2, (Dulldya) (@1eiCr" )
Y [ e*<Br, Elidpag (DpqieiCyYdry)

ace ()\A : GAMV (Et’YVDMdrb) (dschpa) ; y I 6abe ()\A)e GAM et'yudrb) (Dydschpa) ;
c — b
e CE'AMV (et'yydpa) (dscCDp,drb) B y ] e (AA)P GAM et7 dpa) (D dschrb) )
ZGAMV (Et’}/ydpa) (Dudsccdrb) ’ y [] eabe ()‘A)z GAH 6t’y "D dTb) (dschPa) ’
) b

Y [z €0 (\)° GA1, (€77 dya) (DpdseCldrs), Y [ erce (A GAR,, (87" Dyydyy) (doeCelpa)
y etee (AA)E GA“V (Et’yydpa) (Dudschrb)

(@)}

Yy [] each/‘u (ét’y’/drb) (D/Ldschpa) .Y [] Eabcéﬂu (ét'YVdpa) (DHdSCCdrb) ’
Y [ e BY, (@7 Dydr) (dseCllpa) ;- Y ] €2 B2, (17" dpa) (DpudscCelyy)
N% e?* B, (€7 Dyudrt) (dsecCdpa)

(5.59)
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2. Operators involving two leptons and two quarks with AL = 2; the type WudI?D contains the operators contributing

the neutrinoless double beta decay at tree level:

(1~7)
OGuEﬁD b

Y[ ()
Y [E e ()

Y[ e (1),

A
G*H,

~A
G*H,

o

a

(1~7)
OWUEZZD

Y [ e (1)) W

(1~7)
OBudl"’D

Y[ 78",
Y[ eiBr,

Eﬁymm) (1,:CD,ls;)

D. Classes involving six fermions

All the Lorentz structures in this section are new. This
class of Lorentz structures contains both processes with
(AB,AL) = (+1,F 1) and (AB,AL) = (0,2) that are
already present at a lower dimension, and with AB = 2
or AL = 3 that are absent at lower dimensions and relevant
|

W’ W3 WaalspWey
WlaWZaWSﬂl//4yl//5/7’l//6y»

In the second class, two of them have opposite helicities,

why 2, giving two other Lorentz structures:

l//1al//2all/3ﬂ 1//4/,1//;,1//2&.
(5.62)

Y P e e

Similarly, we present the operators in terms of the
number of quarks and conjugate those operators with

), Wik, (E;zsj) (DplriCy"wa), Y [E] &% (7). Wi, (
Yy cik (Tl)j Wlu (EZ'y”um) (1:CD,lsj), Y ik 7_I i , (
(a;lsj) (DulriCy*uta), Y [ € (TI

Y [z €% (TI) win, (EZ'y"um> (1r:CD,ls;)

ll/lallfzﬂl//&zwﬂl//sp’l//w,
l//la‘//2al/’3ﬂl//4ﬁl//57l//6y'

Y= e (M)! GAr, agzsj) (DulriCyu) . Y[ €9 (A4)! GAr, agpuzsj) 1Oy ugy )
VI e (M), G4, (G ) (15CDulsy) . Y [l (M), GA%, (83 ) (1 Cr* Dyy).
3§zsj) (DulriCrum), Y [E] €1 (M) Gan, (E;‘Dstj) (1sCy um)
Ezfyuutb) (lm'CD/Llsj)

Dyl ) (17iCY"Ua) ,
Lij ) (1riC7” Dygtaa)
W, (4Dl ) (1 €y tea)

Ip

V) 9B, () (DulriCy wa) - V1] B2, (4, Dlsy ) (107" usa).
Y [ €9 B, EZ'}/”um) (1L,;CD,ly;), Y [em] B, Egzsj) (1;sCY” Dyyusa)
a‘;zsj) (DulriCy"ura), Y [E] €9 Bn,, (EZDNZSJ-) (1O ua)

(5.60)

for the neutron-antineutron oscillation or the proton
three-body decay processes. Meanwhile,
equal to 2. Only two classes involve six fermions. In the
first class, six fermions with the same helicities contract
with each other, w®, producing five independent Lorentz
structures

llllallfzﬂ W3(1W4ﬂl//5yl//6ya
(5.61)

[
AB <0 or AL =2. The only type relevant for the
proton three body decay is *qu?, while for the neutron-
antineutron oscillation, two types d’q* and d*q’u are
relevant.
1. Operators involving only quarks with AB =2,
only two types d’>g* and d>q*u contain operators
involving the neutron-antineutron oscillation:
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V [BFE [ 96 bd (dpy Odyg) (11e Oy (g Clae)
[ I] eadf gbee (dpaCdia) (UueCdrp) (U Cdse)

Y [ E] e (dpaCllua) (e Cr) (s Cllsc)

Y [EE] et e (dpuCllua) (e Cry) (w0 Cllse)

O | Y [zetste, @3] € (dp Calya) (ttue Cerp) (s Cilac)
YV [eEnm, w5 €6 (dpa Cdia) (wueCdps) (1 Cdse)
Y [, aml] e e (o Cdya) (waeCdrp) (uprCdse)
| aml] €2t (dpaCdia) (uueCdi) (uppClse)
)] €% €€ (dyyq Cdya) (wueCdrp) (uypCdse)
Y [ ] e (dpuCia) (e Cay) (1001 Clls)

(
(
Y [ort, o] €“¢€P¥ €k e ™ (dye Cdyf) (qpaiCsck) (arv Cram) »

[ lal| €€’ €T eF™ (dye Cdyf) (0paiCser) (@rvi Ctam)
| esbeecdf e ei™ (dyeCdy 5 ) (paiCser) (arvCdtam) » (5.63)
| ercceb e ei™ (dyeCdy 5 ) (4paiCarns) (4sekCram) »
o) eaceebdf etk edim (d,oCdys) (qpaiCscr) (ariCaram) »
o) ercdebel etk el™ (dyye Cdyg) (GpaiCscr) (@rb Cram) »
e T e (dyeCdyr) (GpaiCser) (Grb; Cram)
ercdebel ik ™ (dye Cdy ) (qpaiCser) (i Cram)

[=[=] [=
]
i

5]

t

o4

] ] [ofe] [«
5] =]
B

=]
]
=]

[~ =]
]
[]g]

5]

e

=[]
[=]g]

=, [] e29eeb €9 (dpe Cdse) (drpCuta) (queiCauyss)
[, fef] eaet ebdee’d (dypo Cdise) (drpCita) (queiCuy;)
y , } e b€l (d,,, Cdge) (drpCira) (queiCauyy)
Olin |y [ty ] enef bedeis (d,, Cde) (doCitga) (quesCoss)
Y [H, mm] e*ef ebede’d (dpo Cdse) (drpCira) (queiCauys)
Y [, mw| edeebel €9 (dpoCdse) (drpCuta) (queiCauss)

y|:l :| acf ebedeiy (dpaCdsc)( rbcutd) (QueiCQ'ufj)

—
F]
5]

<<
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2. Operators involving five quarks and one lepton with AB =1 and AL =

(1~10)
d3lgu

(1~8)
dlg3a

O(1~6)

d2eq2u

0(1"‘4)

d3eqq

O(1~12)

d?lq%q

(1~4)
d3eun

(1~6)
d2lqua

Y B e*eces; (I3
y ] EabeQ-7 (
]

y Ebceezj (l drb) (qu
J/ [] bceelj (lldpa) (qu]drb) (uveCdsc) 5

pa) (@ dr

va) (@

u

) (
dr) (
Uye)

u?)PCdG(' 9

.SC?

(UpeCdse)
dpaCdsc )

y I ebceeij

—1:

(lidpa) (@27 drs) (uveClse)
Y [ e*ecei; (lidys) (327 1ve) (dpaClse)
Y o] €% (lidpa) (3% drp) (uveClse)
Y [T €€ (lidpa) (75 dro) (wpeCldse)

V] e*ei; (lidpa) (@27 dry) (ueCdse), Y [ eei; (lidpa) (2 drp) (upeCldse)

y m-- bee ”C (ut QTbj) (Zf;due) (q;DaiCqsck) y [ ] bee ” (u quj
y ] Gbceelk ut qrbj) (l:{;due) (QPaiCQSck)v y ] bee lj ut quy
Y [

y ] e (ﬂ?q”?j) (Zidm’) (QpaiCQSck)a
y Gbcegik (ﬂ?qrbj) (zz;due) (QpaiCQSck)v y |: bce ZJ taqrbj (l due) qpazCQSck

y [ H] bde ij (E?QTM’) (épQSbj) (dudCdve) P

Y[

] abe z_] ’U/tq'rai) (épQSbj) (duchve) 5

y !7 Eade g (ut QT(M') (EpQSbj) (dudCdve) )

Y [ € (qfidrs) (Euguei) (dpaClse)
y ] Gbce (q?idT'b) (éuQUei) (dpaCdsc) )

y . m Ebde
y I . Eabe
Y (B e

y [ bde

y [ abe

el

ade( jdrb)

_aj b)

i drb)

Y [am, I ade( Jdrb)

Y 2] €4 (8, Ctiya) (dpaCdse) (drpCuza)

Y [ et (€, Ciy) (dpaCldse) (drpCluiza)

y . EaCd (_?JQudz) (l_idpa) (drbcutc)a
1;Qudz (Zédpa) (drbcutc) y
y [] abc( yqudz) (lzdpa) (drboutc);

y. bcd

lid,
lydpa

(

(led
(tsd
(iid

a)
a)

y
y

y [7 €ade€ij (ﬂgqrai) (EpQSbj) (dudCdve) )
Y [7 ebdeeis (E?Qrai) € qu]) ( udCdve) ,

bce zk (

a
Uy

0%
sck) (J

(
Y [, ] €€ (U5 grai)

due) (@paiCsek) »

) QpaiCQSck)y
ue) (meCQer) )

(6pqsbj ) (duchve)

[ eace (*bidrb> (éuQUei) (dpaCdsC) ,
eace ( 1d7b) (éuqvei) (dpacdsc)

( pa QudiCQUej) y 7 €ade <Qi)jdrb> (Zédpa) (QudiCQ'uej) 3

o 3

Qumc%zej) Y 7 ] ehde (qgjdrb) (l_?;dpa) (Qudic%iej)v
qudchvJEJ) y 7 ] Gabe (qudrb) (l_idpa) (QuciCQUej) )

Qudicqvej) ) y [a } eade ((jfjdrb> (lzdpa> (qudicqvej) )

Quci CQUej)
QudicQUeJ )

Y (1]

Y [B] ebed (€,Cd2) (dpaCdse) (drpClia) ,

N% [] ebee (Edrb) (Jz%zei) (dpacdsc) ,

Yy [, ebde (qgjdrb) (Zdea) (Q'udiCQ'uej)a
Y [’ eabe ((jfjdrb> (l_édpa) (quciC’qvej)

y [ €de (éucava) (dpaCdsc) (drbcutd) 5

y Ede (éucava) (dpaCdsc) (drbcutd)

Y [ e (alquas) (lidpa) (drpCuge)

eaCd ( qudi) (Z;dpa) (drbOUtc) ,
ebed ( gqui) (lzdpa) (drbcutc)

Y [z

(o]
Y

ebed (EUCCZZ) (dpaCdSC> (drdetd)

] o () () (dpuCi).

y ] Ebce (l_zdrb) (gzqvei) (dpaCdsc) ) y |: € (lldrb) (duQUei) (dpaCdsc)
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3. Operators involving four quarks and two leptons with AB = 0 and AL = —2. Except for the last two types dI’uii’
and d?dI*#, all the types contain operators contributing the neutrinoless double beta decay at tree level:

Y BEE eneim (Bdpa ) (@dn) GCR™) Y [Bem 6] nejm (Bdpa ) (a2d
dy

By (@20n) (ECE™) . BB cigeion () (3250

J’Il-] civcim (Hdpa ) (@Fdo) (LOG™), Y [BLEE] cijerm (Hdpa ) (a8
Ot | Y BLem & esveym (Bdpa ) (25dss) O™, Y [, ] esyerm (Bdpa) (@
Y [Bmm ] einejm (Hdpa) (@Fdrs) (2CG2™) Y [BL @Bl eserm (1 dpa ) (@2Fdry

Y [ 5 eineim (Bdpa ) (@@ des) CTE™) Y [0 5L E] cijerm (Edpa) (a2

[-all%ejm [dya ) (@Fdr) (ILCT™) 3’[-7II]6u6km ldpa (

(:
Y [, = | €ik€jm gl dpa; g

*d,
(Eegm™), Y [om, 5, b €5em (Hdpa ) (75F
v dpa A dpa ( bL

) (lie
) llc—gm) ’ y[- - €ij€km

Y eI, G180, [lel] €5 €,

i

y . ], B, e -] (U Gpai) (utCIer
( l

) ( %) N [I’ f’-] (72%111) (uf (Irbj) (l Cl]
O(1~8) [-a! . U Qpaz uf‘]rbj) ( %) y [- I I] ( qum) Uy qrb]) (luCl%) N

b CZ ) y [’ o2, b ] (Usq;om) (ﬂgQTbj) (Z;C[%) ’

)

B), Y EEnR] (4ape) (@) (1.CH)

[l (@aras) (Thdw) (005,
[ ] (utq“u) (iLdub) (épCﬂ?)

v Cl
i Cl
PEE Y [, B, 5] (08 4pai) (074005 (7
y . l U Gpai) (ther (7 L.CH,
(~ay | Y[ (@ Gras) (liduw) (€,Cu),
delaw® | Y (72 (@8 Gras) (lidw) (e,Cul),

ot | Y E e (@0dn) Bdpa) (@0) . Y [E e (qf* Tb) (z d, ) (euCut),
et Y [er] €ij (‘It drb) (lzdpa) (éuCﬂg) ) 51] (

Y
y
euC'u

)

(£~8) y . ka uQucj (l%dpa) (lzc_ak) , y . 61] UQHPk d a) (ll _ak)
APaqt | Y [15] €4y, (@ i) (Bdpa) (LCTY) YV [e] €i (@qunn) (Hdpa) (ILCTF)

Y [ € (@qu) (Hdpa) (GCT") 5 Y [ € (@que) (Hpa) (5:CT)
(12 C
— —. ) — —

Y EE € (@5 ducs) (Hdpa) (CGE") s VEE] €5 (@5auck) (Hdpa) (1:CG")

O(1N4)

)
)
)
)
)
dry)
b)

) (LCatm),
y[,] €ikEim (ifd,m) (a5 dww) (BCR™) s [0, 18] e (Hdpa ) (@35

b) (LOT™)
Eed),
(Legem),
(fCgm) .
(Leqm),
(Leg )
(’Cq
dpy l7Cq*””")
dy

g

)

y 7 7 ] (duaCdvb) (épCﬂ‘;) (érca?) 5 y 7, (duaCd'Ub) (épCﬂg) (érca?) )

@@ Y (o, 610, 6] (dyeCdoy) (6,Ca2) (6,Cal) , Y [, ELH] (duaCdup) (6,Ca?) (e,Cab)
o~ | Y] e (Udp) (Guw) (@00) Y [ ] e (Hdpa) (Gun) (25C0)

Wt | Y e e (Hdpa) (uw) (@50a0), Y B 6 (dpa) (uw) (3500
Ez; ; (), Ve exl e (Tdpa) (Bdn) (dC02),

(@ca), VR e (Ed) (Hdn) (dCat)

pa)
o~ Y 7] €ij ( )
d2di2a

y [a €ij ( )

77
t
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Compared with [20], after taking flavor symmetries of the fermion into account, operators we listed are more complete
than theirs. Some basis here could change into their form using the Fierz identities (A%)4(A%)G = 8485 — 1545,

€ + el152 + e”"éﬂ 0. For example,

[y ) (@25 dn) (I:C™) Y [ B cineim (@dy) (3@ >Ez‘zcz‘g§
Bdpa ) (@) (LCT™) Y [, ] cisenm (ady) (aSd,) (BCT

By ) (g2 d,y) (ILCg™™) Y [0 5 ] einesm (@A) (@EAAd,) (ILCE
Hdpa ) (@ do) (ECTE™) Y [ B ] eierm (@ Ady) (5Ad,) Ez‘zcz‘z

; (5.66)

In most cases, the Fierz identities will not help us simplify the operators any further or put them in more familiar forms.
4. Operators involving three quarks and three leptons with AB = 1 and AL = —1 or 3, the type [*qu? is relevant for the

proton three body decay:

(’)((;:,—2)“ Y el eei; (Hdry) (lhuwe) (€sCdpa), Y [Emm] e (Hdps) (luve) (esCdpa)
Y B 5 e*¢eij (lidpa) (Hidrp) (e5Ctue)
Yy [ H ebeetiehm (uubcuw) (lpiClsk) (lrjcqtam) )

Ol(filqwu?;) y I] abe lkejm (wabCive) (1piClsk) (lrjCram) ,
{I I} abe Zkejm uubCuvc) (lpiClsk> (erCC]tmn)

Oel2u3 ‘ Yy a ] abeeli (uracutc) (epcusb) (luiClvj)
Ogsenr | V [FF) € (€ului) (lidrt) (dpaCllisc)

Oprecz | Y [H2. @] €2 (6,C8,) (dpaClse) (dryCey)

(1~4)
Od2ll2

y [7 ] eabc (szpa) Edrb (luiCQch) ’ y [a ] eabc (lzdpa) (EdTb) (ZUiCqUCj) ’
Yy 7 ] eabe (Z_dea) l_ngb (luic%zcj) N 7 erbe (l_;dpa) (l_rszb) (luiOQch)

1 2) ‘ y abc (l drb) (éuQUCi) (estpa) ) y eabc (l_édrb) (éuqvci) (estpa)

d2eelq
(1~4) y I H abe (ljer) (lz.dpa) (QubiCQch)a Y [7 ] eabe (E&) (szpa) (Qubicqucj) s
del?q?

Y [mm B e (er) (Edpa) (@uiCaves) Y Bomm] e (Bev ) (Tidpa) (uniCaves)

5. Operators involving two quarks and four leptons with AB =0 and AL = -2:

5] einesm (Tier) (l'{ dpa) @cgmy, Y E eerm (e (lﬂdm) (icgam)
B eiveim (Ber) (dpa) (HOqem) . ¥ (] eimegm (Bey) (Hdpa) (RCT™).
[Erte] €ijenm (Ler) (lt pa) (Leqem™), V|| eneim (Iher) (Z{dpa) (Lcgem) ,

€ijerm ((ey) (ltdpa> (eaym)

(1~7)

Y
Odeﬁ”q Y
Yy
Y
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Y [z 3 (g lur) (Hdpa) (ICTF)

oll~3) - ~
A Y B e (alu;) (Hdpa) (LCTF) y I €ik ( (Hdy,) (ILCIY)
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VI. CONCLUSION

In this paper, we provided the full result of the inde-
pendent dimension-nine operator basis in the SMEFT.
The numbers of operators at different levels are summa-
rized in Table V. According to our study, we find a total of
1262 terms, in which the total number of flavor-specified
operators for three fermion generations is 90456, while
that for one ferrnlon generation is 560, agreeing with
the previous countlng [22,37]. A complete list of dim-9
SMEFT operators is very meaningful, because new oper-
ators with (AB,AL) = (£1,4£3),(£2,0) start to appear
at dimension nine, which signal the phenomenologies of
the neutron-antineutron oscillations and the proton three-
body decays with new physics scale reachable for the future
LHC experiments.

Our operator enumeration method starts from the ampli-
tude-operator correspondence, where we one-to-one map
effective operators to local amplitudes. The correspon-
dence provides a natural way to unambiguously divide
the operator space into subspaces that we call types, each
consisting of operators at a given dimension that only
generates local amplitudes for a given set of external
particles. Our categorization of types makes use of the
EOM and is more rigorous than the old definition that only
counts the apparent numbers of fields and derivatives in the
operator. Moreover, the repeated field issue for operators
that becomes important at higher dimensions also has exact
correspondence with the spin-statistic constraint for ampli-
tudes. The correspondence thus provides a novel path
toward operator enumeration—by enumerating the ampli-
tude basis. We claim that the correspondence has a deep
physical reason, as both sides are a complete basis of
input for effective theories—on the amplitude side, it is

“The number of terms does not match that in [22] because we
have slightly different definitions of the concept of term.

er) (LCLMY,

er) (ILCLT)

Y [0, B €in€jm (ffep) (%

interesting to see how the same amount of input could be
used to construct the whole theory in an on-shell way.

To enumerate independent flavor-specified operators
for a given type, we introduce the concepts of the Y-basis,
m-basis, and P-basis operators. We develop the algorithm
to enumerate the Y-basis with the help of the auxiliary
SU(N) group for the Lorentz structures and the novel
L-R procedure technique for the gauge groups, whose
completeness and independence are guaranteed by group
theory. Based on the Y-basis, the m-basis is obtained by
converting Y-basis operators into a set of independent
monomials that are familiar to the phenomenology com-
munity. TheP-basis of Lorentz structures and gauge group
tensors of an operator are obtained from either Y-basis or
m-basis by acting on them with a set of symmetrizers,
which are the basis of the left ideal in the symmetric group
algebra for the repeated fields. Combining the factors by
the inner product decomposition, we build the terms as
irreducible flavor tensors of operators.

The P-basis operators are usually combinations of
multiple monomials as a result of symmetrization, which
makes them lengthy to express. In this work we provided a
systematical way that we call desymmetrization to solve the
problem by expressing our final result in the form of a
Young symmetrizer acting on a monomial operator. The
algorithm was not discussed in detail in our previous paper.
The subtlety was to guarantee the independence among the
operators with the same symmetrizer acting on different
monomials, which is necessary only when n,, the number
of certain representation space in a given type, is greater
than one. The desymmetrization procedure results in
independent combinations of the P-basis, thus named
reduced P-basis, which have quite concise expressions
with the Young symmetrizer denoting the flavor symmetry.

One may also make the Young symmetrizer to act on
the Wilson coefficient tensor with which the monomial

015025-41



LI, REN, XIAO, YU, and ZHENG

PHYS. REV. D 104, 015025 (2021)

operator contracts, so that the operator becomes a mono-
mial genuinely while the Young symmetrizer only serves as
a reminder of the symmetry of the Wilson coefficients. It is
equivalent to the flavor relations that the traditional method
of operator enumeration applies to solve the repeated field
issue. We summarize the advantages of our method and
final notation over the traditional method and notation:

(i) The completeness and independence are guaranteed
by the underlining mathematical principle. The
flavor symmetries among the Wilson coefficients
are given systematically, unlike in the traditional
treatment where flavor relations should be found
manually.

(ii) It enables one to directly write down the flavor-
specified operators by enumerating the flavor
SSYTs of the corresponding flavor symmetry. This
is the most important reason that we insist on
expressing our final result as the irreducible flavor
tensors, as it is tricky to list the independent
operators from the flavor relations accompanied
by the traditional form of the operators.

(iii) We provide a systematic way to convert any basis
into our Y-basis without any ambiguity, or, by using
the conversion matrices that we also obtained, into
any other basis that we provide here. Therefore, our
basis could serve as the standard basis of operators.

The last point will in principle benefit a lot of studies
about effective field theory. For example, in matching
between the UV new physics and the SMEFT operators,
an independent and complete basis of operators is neces-
sary for an unambiguous result. Therefore we need to
identify the operator generated after integrating out heavy
particles as a unique coordinate with respect to an inde-
pendent and complete operator basis. Note that in reducing
such an operator to our Y-basis, terms eliminated by the
EOM or the [D, D] identity in this paper should be kept in
the form of other types of operators. We will leave it for our
future work.
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Note added.—To our knowledge, Ref. [38] also presents a
list of the dimension-nine operators in the standard model
effective field theory which uses the traditional method,
imposing the constraints of EOM and IBP and finding the
flavor relations after obtaining an overcomplete set of

operators to eliminate the redundancies. Our method
compared to theirs guarantees the independence and
completeness with mathematical principles and separates
different flavor permutation symmetries of the operators or
the Wilson coefficients as independent irreducible flavor
tensors enabling readers to directly writing down the
independent flavor components via enumerating certain
semistandard Young tableau.

APPENDIX A: NOTATIONS AND CONVERSIONS
AMONG BASES

In this Appendix, we present conversion relations of
Lorentz structures between different notations for users’
convenience. Relevant notations are Weyl spinors vs Dirac
spinors and SL(2,C) spinor indices vs SO(3,1) Lorentz
indices.

1. Converting four-component to
two-component spinor

In this part, ¥ and ¥ denote four-component spinors, &
and y denote two-component left-handed spinors, and their
Hermitian conjugates &' and 4 denote two-component
right-handed spinors. Generally, a four-component spinor
consists of a two-component left-handed spinor &, and a
two-component right-handed spinor %,

Y= < i’;), P =0 = (y2,&).  (Al)

X

Here we provide some conversion relations for the follow-
ing spinor bilinears:

YY) = xi&a + Cﬂa)(;d’
W = 20l + E145" "
¥, 6y, :;(7(0'””)0,/352/3 + 54{5,(5”)&/})(?’
WICW, = & + 113"
T?CV’“IQ = ‘570”@%;& ‘*‘ﬂa‘_’ma@m

a

—una B
WIComW, = E1(0™) P&y + 214(6") 1.
P,CY] = ﬂdfzd + XX 2as
q’l?’” Clp; = )((110':;('1520! + ﬂd&ﬂ&(lﬂ(zm

¥0C¥] = £14(6") 58 + 210"y (A2)

where in the chiral representation C = iy’y? =

(e(a)ﬂ egﬁ) - <_gaﬂ —2,1/.})’ = (5/?o':ﬁ Gg’b), and
(o"),F 0 )

0””=z[r",7”]=< 0 (@)
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The Hermitian conjugates of two-component spinor
bilinears mentioned above are given by

(x&)" = &y,
(yo"ENT = Eot'yT,
(xf6"&)" = Eavy,
(10" 8) = Eamy, (A3)

and the Hermitian conjugates of four-component spinor
bilinears mentioned above are given by

(P ¥,)" = P, 0,.

(P y"¥,)" = WY,
(‘i'lgﬂyle)T = li’zﬂ’wlph
(WICW,)" = B, C],
(PTCrp,)" = Wy O,
(PTCo™W,)" = P,0 CP]. (A4)

2. o techniques

The key of conversions between spinor indices and
Lorentz indices is at the reduction of ¢ products. We
employ the following definitions: the metric g,, =
diag(+1,—1,—1,-1); the Levi-Civita tensors ¢"1?* =
—€013 = +1 and €'> =¢,; = +1; the sigma matrices
ot = (Vg 7l y)#, 6% = (199, i) with identity 1
and Pauli matrices 7, = 1, 2, 3. o‘Z{-l and %% are related

by raising and lowering indices with the e tensor
spaa . ~aff ('1/.36//’..
7 e¥etlo,

We also define

i
(). =5 (05" — 0*5"), /.

(AS)

(A6)

((—yul/)dﬂ — % (6[461/ _ 5.1/6/4)d[3’

from which we can directly obtain the decomposition of
two ¢ products:

(0"5")) = "6 — i(a™), /. (A7)
(507 = g8 — (™)1, (A8)

For a o chain consists of three or more ¢’s, and we may use
the following three o decomposition:

( o'V Glj)aﬁ — g;w O.Zﬂ _ gu/) 6;5 + gw) gl;ﬂ + i €/wpi Giaﬁ ,
(A9)

(5#GV5ﬂ)dﬁ — gﬂvgvdﬁ _ gﬂpgvdﬁ 4 gw);;/u'lﬂ —_ ieﬂvﬂi(}j‘ﬁ ,

(A10)

to recursively reduce it toward a linear combination of
1,06",6", 0", and 6.

To compute the trace of a ¢ chain, one can simply reduce
the chain to the basic forms above and use the following
equations:
Tr1 =2, Tro*=Tro" = Tre" =Tro" =0. (All)
At last we give a frequently used example of a four o’s
chain and its trace

FFT = (g~ g + g+ i)
— i(gV o — oK+ Pt i P o),
Tr(0*5 07 5%) = 29" — 2g0 ¢ + 20 ¢ + 2iel*,
Tr(5#0"570%) = 20" " — 29 ¢ + 2g7 g — 2ie"V*.
(A12)

APPENDIX B: LIST OF CLASSES UP TO
DIMENSION NINE

We list all the classes of Lorentz structures from
dimension five to dimension nine in Tables VI-X, where
w and ' represent particles with helicity —1/2 and 1/2,
respectively; F; and Fjy represent gauge bosons with
helicity F 1; and ¢ represents scalar fields. The gray
operators in each class are those not possible to form by
SM U(1), singlets.

TABLE VI. All the subclasses of Lorentz structures at dimen-

sion five.

N (n, i) Classes

3 2,0) Fry? 4+ H.c. quﬁ + H.c.

4 (1,0) w2¢® +H.c.

5 (0,0) P

TABLE VII. All the subclasses of Lorentz structures at di-

mension Six.

N (n, 1) Classes

3 (3,0) F' E + H.c.

4 (2,0 w* +H.c. Fiy*p+He  F}¢p? +He.
(1,1) I)1121//1‘2 V/W+¢2D ¢4D2

5 (1,0) w2¢® +Hec.

6 (0,0) P°
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TABLE VIII. All the subclasses of Lorentz structures at dimension seven.

N (n, 1) Classes
4 (3.0) Fi¢? + Hec. Fi¢+H.c.
2,1) ww'D +H.c. w2 ¢*D* +He.
Fiy™ + He. Fyy gD +H.c. FL¢*D> +H.c.
5 (2,0) w*¢ +H.c. FLy?¢* +Hec. Fi¢® + Hec.
(1,1) vy wy' $*D ¢’ D?
6 (1,0) w2
(0,0) Y

TABLE IX. All the subclasses of Lorentz structures at dimension eight.

N (n, 1) Classes
4 4,0 F{ +H.c.
3.1 Fiyy'D + H.c. w*D? +Hec. FLy*¢pD* +H.c. F?¢*D* + H.c.
(2,2) F}F% Fy Fryy' D w2 D? Fry?>¢pD + H.c.
FLFr$?D? yy'p* D’ ¢*D*
5 (3,0) FLy* +Hec. F?y’¢ + He. F}¢* + H.c.
2,1 Fioy*y'™ + He. Fiy¢ + He. v ywipD + H.c. Foyy'¢?D + H.c.
w2$*D?> +H.c. FL¢*D?> +H.c.
6 (2,0 wt¢? + H.c. FLy*¢® +H.c. F?¢* + Hec.
(1,1) wryg? wy' $*D ¢°D?
7 (1,0) ¢’ + H.c.
8 (0,0 P

TABLE X. All the subclasses of Lorentz structures at dimension nine.

N (n, ) Classes
4 4,1) Fiy’D* + H.c. F{¢D* + H.c.
(3.2) w3y D3 +H.c. w2 ¢*D* +H.c. F Fr¢*D* +H.c.
F?y™2D? + H.c. F}FrpD? + H.c. Foyw ¢D? +He. FL.¢>D* +H.c.
5 (4,0) Fiy? +H.c. Fl¢ + H.c.
3.1 Fioy*y'D +H.c. w*¢D* +H.c. Fy*¢*D* +He.
Fiy™ +He. Fiyw' D + H.c. F?¢’D? + H.c.
(2,2) Fryy'D +Hec. w2 D? Fry?¢*D*> + H.c. yy' 3 D3
F Fy? + Hec. F}F%g FLFryy' D F Frd®D?
¢5D4
6 (3,0 v+ H.c. Fiy*¢ +H.c. Fiy*d? + Hec. Fi¢® + He.
@,1) vy + Hee. Fuy*y?¢ +H.c. Fy2¢* + Hec. wy'i¢?D + Hee.
Foyy'¢’D + H.c. w2¢*D* + H.c. F ¢°D> +H.c.
7 (2,0 we? + Hee. FLy?¢* + H.c. F}¢® +H.c.
(1,1) 1//21//”453 V/V/T¢5D ¢7D5
8 (1,0) w2¢® + H.c.
9 (0,0) °
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