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We present a complete and independent list of the dimension-nine operator basis in the Standard Model
effective field theory by an automatic algorithm based on the amplitude-operator correspondence.
A complete basis (Y-basis) is first constructed by enumerating the Young tableau of an auxiliary
SUðNÞ group and the gauge groups, with the equation-of-motion and integration-by-part redundancies
all removed. In the presence of repeated fields, another basis (P-basis) with explicit flavor symmetries
among them is derived from the Y-basis, which further induces a basis of independent monomial operators
through a systematic process called desymmetrization. Our form of operators has advantages over the
traditional way of presenting operators constrained by flavor relations, in the simplicity of both eliminating
flavor redundancies and identifying independent flavor-specified operators. We list the 90456 (560)
operators for three (one) generations of fermions, all of which violate baryon number or lepton number
conservation; among them we find new violation patterns asΔB ¼ 2 andΔL ¼ 3, which only appear at the
dimensions d ≥ 9.
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I. INTRODUCTION

Being the most successful theory of particle physics to
date, the standard model (SM) still leaves many questions
about the nature of matter unanswered, which motivates
direct and indirect experimental searches on new physics
(NP). For instance, the baryon asymmetry of the universe
and nonzero neutrino masses may indicate that the baryon
number ΔB and the lepton number ΔL should be violated
via additional new degrees of freedom. The absence of
signals of physics beyond the SM at the Large Hadron
Collider (LHC) suggests that new particles are either very
weakly coupled or much heavier than the electroweak
scale. Assuming that new particles live at high energies, Λ,
well above the electroweak scale, their effects at

experimental energies much below Λ can be systematically
described under the effective field theory (EFT) framework.
The Standard Model effective field theory (SMEFT)

provides a systematic approach to describe the effects of
heavy particles at low energy in a model-independent way.
The SMEFT Lagrangian can be systematically organized
by the dimension of effective operators in inverse powers of
the heavy scale Λ, as follows:

L SMEFT ¼ L SM þ 1

Λ
L 5 þ

1

Λ2
L 6 þ

1

Λ3
L 7 þ

1

Λ4
L 8

þ 1

Λ5
L 9 þ � � � ; L d ¼

X
i

cðdÞi OðdÞ
i ; ð1:1Þ

where each OðdÞ
i denotes a Lorentz- and gauge-invariant

operator of canonical mass dimension d with SM degrees

of freedom only and its Wilson coefficient cðdÞi parametrizes
the size of possible deviations from SM predictions. For

each dimension d, the OðdÞ
i construction follows that one

writes all the possible Lorentz and gauge invariants using
SM fields solely. Although it is possible to find a set of
operators with Lorentz and gauge invariance for a given
mass dimension d, these sets might be redundant due to
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possible relations between different operators. By means of
equations of motion (EOM), Fierz identities, and integration
by parts (IBP), one can eliminate redundancies for each
dimension and obtain a complete and also independent
operator basis. The operators up to dimension seven have
been listed in this way in Refs. [1–8]. At dimension eight and
higher, the number of such operators increases tremendously,
whichmakes the task very tedious and prone to error. Instead,
we provided a systematic and automated method [9] to write
a complete and independent basis directly, which has been
applied to listing the complete dimension-eight operators in
the SMEFT. At the same time, the authors of Ref. [10]
utilizing the traditional way to treat the EOM and IBP
redundancies alsowrite down the dimension-eight operators.
Compared toRef. [10], sincewe started from the operators in
which the EOM is absent and the IBP is treated in the
beginning, the correctness of our result is theoretically
guaranteed from the first principle. It is also pointed out
[9] that our method provides a relatively simple way to
enumerate all the independent flavor-specified operators,
while the traditional method has not.
Both the origin of the matter-antimatter asymmetry and

the Majorana origin of the neutrino masses are tied to the
baryon number violation (BNV) or lepton number viola-
tions (LNV), which only arise at the nonrenormalizable
level of the SM Lagrangian. Therefore, the ΔB- and
ΔL-violating processes, such as nucleon decay, neutron-
antineutron oscillation, and neutrinoless double beta decay,
could be parametrized systematically in the SMEFT. The
SMEFT systematically classifies effective operators with
the fact that (a) baryon and lepton number violation (BLV)
has to occur with integer units and (b) ðΔB;ΔLÞ ¼
ðodd; oddÞ or (even, even), and (c) the ΔB − ΔL number
violation satisfies

jΔB − ΔLj ¼
�
0; 4; 8;…; for d ¼ even;

2; 6;…; for d ¼ odd;
ð1:2Þ

based on the requirement that the operator is invariant
under the weak hypercharge symmetry and the Lorentz
symmetry [11–13]. Therefore, from above we learn that
operators at odd dimensions must have BNV or LNV, and
that jΔB − ΔLj ¼ 2 up to dimension 15.1 At the odd
dimensions, the LNV processes with ΔL ¼ 2, relevant to
the leptogenesis mechanism, the neutrinoless double beta
decay, and the neutrino masses, exist [14,15]. For example,
if the leptogenesis or baryogenesis occurs at temperatures

above the weak scale, B − L violation is required to avoid
the washout effect by the electroweak sphalerons and, at
the same time, constraints from proton two-body decays
(which conserves B − L) are not applicable. At dimen-
sion five, the only operator is the Weinberg operator [1]
with ðΔB;ΔLÞ ¼ ð0; 2Þ, while at dimension seven, all
the operators have BLV with possibilities ðΔB;ΔLÞ ¼
ð0;�2Þ; ð�1;∓ 1Þ [7], which either break the lepton
number by 2 or induce proton two-body decay.
Starting from dimension nine, besides the operators with

ðΔB;ΔLÞ ¼ ð0;�2Þ; ð�1;∓ 1Þ, there are new violation
patterns in the operators with ðΔB;ΔLÞ ¼ ð�1;�3Þ;
ð�2; 0Þ. First, operators relevant forΔB ¼ 2 processes, such
as neutron-antineutron oscillations, appear first at d ¼ 9
[16],which are directly connected to the low-scale realization
of the baryogenesiswithout the need for sphaleron processes.
Second, the ΔL ¼ 3 processes can only arise from dimen-
sion nine and higher operators [17,18]. The lepton number
violated only in three units implies the proton decay final
states must be at least three-body and the new physics
associatedwith a scale could be as low as 1 TeV,which opens
the possibility of searching for such processes not only in
proton decay experiments but also at the LHC [18]. Finally,
operators withΔL ¼ 2 are supposed to be subdominate over
the ones at dimension-five and -seven levels. However, if the
ΔL ¼ 2 operators start to appear at the dimension-nine level,
the new physics effect could be as low as 1 TeVand thus can
be tested at the LHC in the near future. For example, typically
the operators for the Majorana neutrino masses, such as
Weinberg operators, are related to the tree-level seesaw, and
thus the new physics scale is quite high. However, if the
Majorana neutrino masses are generated from the tree-level
mechanisms at dimension nine, the related new physics is
around the TeV scale [19]. Thus one expects that the LHC
experiment will start to explore these kinds of models in the
near future. In the neutrinoless double beta decay processes,
if the dominant contributions originate from the dimension-
nine operators [20,21], one expects the new physics scale
should be around TeV, and thus collider experiments could
also shed light on such kinds of new physics in the near
future. Hence, listing a complete set of dimension-nine
operatorswill set up the framework for these phenomenology
studies.
We adopt the method in [9] to list the dimension-nine

operators in the SMEFT. While the method is elaborated in
[9], we present in this paper more details about its
motivation stemming from the so-called amplitude-oper-
ator correspondence. By establishing the one-to-one cor-
respondence between the effective operators and the local
amplitudes they generate, we first categorize them in terms
of the external states in the scattering—a certain collection
of particles in the EFT. A category of operators thus found
is called a type. For a given type of operators, we define a
couple of bases for various uses as follows:

(i) Y-basis: Our algorithm utilizes the group theory
technique to enumerate an independent and com-

1On the other hand, for the dimension-even operators, we have
jΔB − ΔLj ¼ 0 and ðΔB;ΔLÞ ¼ ð0; 0Þ; ð�1;�1Þ at the dimen-
sion-six and -eight levels. These operators with ðΔB;ΔLÞ ¼
ð�1;�1Þ cause proton decay in modes such as grand unifica-
tions, and thus are highly constrained by proton two-body decay
searches. Starting from dimension ten, we have jΔB − ΔLj ¼ 0,
4 with additional BLV possibilities ðΔB;ΔLÞ ¼ ð−1; 3Þ; ð0; 4Þ
(dim 10), and ðΔB;ΔLÞ ¼ ð−2; 2Þ; ð2; 2Þ (dim 12), etc.
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plete basis as a collection of the Young tableau for
each factor of the operators, thus named the Young
tableau basis or Y-basis. For the Lorentz factor, the
basis is obtained as the semistandard Young tableau
(SSYT) of an auxiliary SUðNÞ group, whereN is the
number of fields; for the gauge groups, the basis is
given by the Young tableau constructed from the
Littlewood-Richardson (L-R) rule.

(ii) m-basis: For practical purposes, the operator basis
had better be monomials, while the Y-basis oper-
ators, after transforming to the usual convention,
are often long polynomials. By a systematic reduc-
tion to the Y-basis, we can select a set of monomial
operators that have independent coordinates with
respect to the Y-basis. A complete basis of mono-
mial operators selected this way is called anm-basis,
which is highly nonunique.

(iii) P-basis: Even the Y-basis is not enough when
repeated fields are present, as explained in [9]
from the operator viewpoint. In this paper, we also
illustrate this extra constraint from the amplitude
viewpoint, which introduces the symmetric permu-
tation basis, or P-basis, as the symmetrized flavor-
blind amplitude basis and the corresponding oper-
ators. The symmetrization procedure provides a full-
rank conversion matrix from the Y-basis to the P-
basis, which guarantees its independence and com-
pleteness. The P-basis operators when viewed as
flavor tensors of a group of repeated fields, the ones
that form a basis of an irrep of the symmetric group,
are related by certain permutations.

(iv) Reduced P-basis: To reduce the lengths of operators
in the usual notation, while keeping the flavor
symmetries manifest, we develop a systematic pro-
cedure, the desymmetrization, to obtain a series of
m-basis operators that symmetrize to independent
combinations of the P-basis with the same flavor
symmetry. The procedure is especially important if
multiple representation spaces of the same symmetry
exist. This is a new part of our method that was not
developed in [9].

The resulting operator basis we obtain with the above
method is listed in terms of various levels of categories:

(i) Class: A (Lorentz) class includes types of operators
with a given number of fields under each Lorentz
irreducible representation (irrep) and the same number
of covariant derivatives, such that they may share the
sameLorentz structures. It is different from the concept
of operator “class” in other literature, because we
distinguish the chiralities of the fields as their corre-
sponding particles have definite helicities. In particu-
lar, fermions and gauge bosons should be written on
the chiral basis in our notation. The list of possible
classes at a given dimension is model independent, as
we show in the tables at dimension nine, though not all
of them show up in specific models.

(ii) Type: The definition is given previously. All the
types are obtained by plugging field content of the
SMEFT into the dimension-nine classes, making
sure that the representations of them could form
singlets for each symmetry group. We emphasize
that our “type” has more rigorous definitions than
those in the other literature, as we specify the way to
eliminate the EOM redundancy so that the type of
operators we define only corresponds to local
amplitudes they can generate for a given collection
of external particles.

(iii) Term: The P-basis and reduced P-basis are operators
with free flavor indices, which contract with Wilson
coefficient tensors to form a (Lagrangian) term. The
corresponding amplitude basis is flavor-blind. Our
“terms” are irreducible flavor tensors with a specific
flavor symmetry λ, different from the concept of
terms in other literature [10,22] where flavor tensors
with different symmetries may merge into a reduc-
ible tensor. We compare the form of our terms to the
traditional form of operators with flavor relations
[3,11,23] to show their equivalence, and explain the
privileges of our form.

(iv) Operator: The number of (flavor-specified) opera-
tors per term can be understood as the independent
entries in the Wilson coefficient tensor, constrained
by the flavor symmetry. One can also view the
independent operators as the P-basis contracted with
an independent flavor tensor basis, labeled by the
flavor Young tableau.

The paper is organized as follows. In Sec. II, we discuss
the principle to find independent and complete operators
with the amplitude-operator correspondence. In Sec. III, we
describe the general ideas of how to obtain a complete set of
independent operators with free flavor indices in Y, m, and
P bases and how to convert them to each other. In Sec. IV,
we take a concrete example to show how to obtain a set of
independent terms for a given type of operators and
demonstrate the advantages of listing operators in the level
of terms with definite flavor permutation symmetry. In
Sec. V, we list all the independent terms for dimension nine
in the SMEFT with different categories. We reach our
conclusion in Sec. VI. Additionally, in Appendix A, we list
useful formulas transforming operators between two- and
four-component spinor notations, and in Appendix B we
provide a list of subclasses up to dimension nine.

II. ON-SHELL CONVENTION FOR
EFFECTIVE OPERATORS

The Lagrangian of the SMEFT consists of the SM fields

Fermion∶ Lαi; eCα; Qαai; uaCα; d
a
Cα; ð2:1Þ

Boson∶GA
μν;WI

μν; Bμν; Hi; ð2:2Þ
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and their covariant derivatives Dμ along with the following
group factors:

Lorentz∶σμναβ; σ̄
μν

_α _β
; σμα _α; σ̄

μ _αα; ϵαβ; ϵ̃ _α _β; ð2:3Þ

SUð2Þ∶ϵIJK; δIJ; ðτIÞji ; ϵij; ϵij; ð2:4Þ

SUð3Þ∶fABC; dABC; δAB; ðλAÞba; ϵabc; ϵabc; ð2:5Þ

which result in the invariant operators under the Lorentz
group SLð2;CÞ ¼ SUð2Þl × SUð2Þr and the SM gauge
group SUð3ÞC × SUð2ÞW ×Uð1ÞY . Here the indices for
the fundamental representation of the SUð2Þl and SUð2Þr
groups are denoted by ðα; β; γ; δÞ and ð _α; _β; _γ; _δÞ. The
indices for the fundamental and adjoint representations
of the SUð3ÞC are ða; b; c; dÞ and ðA;B;C;DÞ while those
for the SUð2ÞW are ði; j; k; lÞ and ðI; J; K; LÞ, respectively.
These are conventional notations for the effective operators,
which we use to represent our final result—the complete set
of dimension nine (dim-9) operators in the SMEFT—
in Sec. V.
Although operators in this notation are more familiar to

phenomenologists, it is hard to systematically define an
independent basis for them, given the redundancies due to
the EOM and the IBP relation. The usual way to achieve
this goal is to write down an overcomplete basis and
derive their dependencies manually [3,8,10,22,24,25].
However, this has to be done model by model, and becomes
extraordinarily cumbersome at higher dimensions. In
Refs. [26–30], it was pointed out that independent oper-
ators could be enumerated in terms of their corresponding
local on-shell amplitudes, dubbed the amplitude basis.
Reference [31] further proposed an algorithm to enumerate
independent amplitude basis subject to momentum con-
servation, which is equivalent to the IBP redundancy as we
will explain shortly. In Ref. [9], an integrated algorithm
using the correspondence was proposed and applied to
the enumeration of the dimension-eight operators in the
SMEFT. In this section, we would like to elaborate the
amplitude-operator correspondence and prove its appli-
cability to the task of operator enumeration.

A. Amplitude-operator correspondence

The correspondence is in particular about operators as
Lagrangian terms, which are Lorentz singlets, so that they
directly contribute to scattering amplitudes. Among the
amplitudes they contribute, the set of local amplitudes or
“amplitude basis”2 span a linear space isomorphic to the

operator space. To prove the isomorphism, we first inves-
tigate the general structure of amplitude basis, which we
express in terms of the spinor helicity variables λiα; λ̃

_α
i ,

defined as

pμ
i ¼ λαi σ

μ
α _αλ̃

_α
i ; ð2:6Þ

up to the little group transformations3λi → e−iφ=2λi,
λ̃i → eiφ=2λ̃i, while the spinor indices are raised and
lowered by the Levi-Civita tensor ϵ12 ¼ −ϵ21 ¼ þ1. The
number of constituting spinors is constrained by the little
group representations of the external particles, e.g., the
helicities for massless particles. The amplitude basis B
should respect the little group representations of all the
external particles. For example, under the little groupUð1Þi
for the ith massless particle, it should gain a phase
B → eihiφB. Therefore in general, the massless particle
of helicity hi contributes a factor λri−hii λ̃riþhi

i that has the
correct little group weight, where ri ≥ jhij is a free (half-)
integer parameter. The general form of the amplitude basis
reads

Bðϕa1
1 ðp1Þ;…;ϕaN

N ðpNÞÞ ¼ Ta1;…;aNMðh1;…; hNÞ;

Mðh1;…; hNÞ ∼
YN
i¼1

λri−hii λ̃riþhi
i ; ð2:7Þ

where ϕi; i ¼ 1;…; N are the external particle multiplets
with momenta pi and ai are the collections of group indices
for them. The mass dimension of the amplitude is deter-
mined as ½B�≡ r ¼Pi ri. The kinematic factor M is a
function of the spinor variables that only depends on the
helicities hi of the external particles and characterizes
the energy dependency and the angular distribution of
the amplitude. Global Lorentz invariance demands that all
spinor indices are contracted, which are conventionally
denoted as

λαi λjα ≕ hiji; λ̃i _αλ̃
_α
j ≕ ½ij�; ð2:8Þ

thus M must consist of the n ¼ r−h
2

number of h·i type
brackets and the ñ ¼ rþh

2
number of ½·� type brackets, h ¼P

i hi being the total helicity. The group factor T is the
product of tensors for each group under which the
multiplets ϕa transform. For symmetry groups, such as
the gauge group or some global symmetry group, T has to
be invariant tensors. The index a can also include the flavor
degree of freedom, which not necessarily has a symmetry,2More specifically, the amplitude basis is featured as being

“unfactorizable,” in the sense that they do not have poles or
branch cuts in the kinematic space where they should factorize
due to the unitarity. This feature makes them the building blocks
of any amplitudes, because the factorizable ones should ulti-
mately factorize to them at a particular kinematic configuration.

3The definition can be extended for massive particles, whose
little group is SUð2Þ and hence the spinor variables have an extra
SUð2Þ index I; J;…. In this paper we only enumerate amplitude
bases for massless particles.

LI, REN, XIAO, YU, and ZHENG PHYS. REV. D 104, 015025 (2021)

015025-4



while the tensor in charge does not have to be invariant
tensors. We can define the subspace of local amplitudes
with the same set of external particles ϕa1

1 ;…;ϕaN
N and the

same mass dimension r as a “type,” in which various
amplitude bases are specified by the group tensors T, the
partition ri, and the structure of spinor contractions.
Furthermore, the types with the same tuple ðh1;…;hN ;rÞ
form a class that shares the same bases of the kinematic
factorsM. Note that we do not have to specify the division
between the initial and final states because different
divisions are simply related by crossing symmetry and
analytic continuation.
Here we take a simple example to illustrate: the ampli-

tude basis for four left-handed fermions. Each of them
contributes a factor λriþ1=2

i λ̃ri−1=2i where ri is a positive half
integer. The lowest mass dimension is when ri ¼ 1=2 and
r ¼ 2, and we have the following possible contractions:

M1ð−1=2;−1=2;−1=2;−1=2; r ¼ 2Þ ¼ h12ih34i;
M2ð−1=2;−1=2;−1=2;−1=2; r ¼ 2Þ ¼ h13ih42i;
M3ð−1=2;−1=2;−1=2;−1=2; r ¼ 2Þ ¼ h14ih23i: ð2:9Þ

The Schouten identity indicates that M1 þM2 þ
M3 ¼ 0, which reduces the number of independent ampli-
tude bases by 1. This redundancy is equivalent to the Fierz
identity for operators, which we will solve systematically
later. For higher mass dimension r ¼ 3 where one of the ri
takes 3=2, there is only one λ̃ that cannot form a Lorentz
singlet. Thus the next available dimension is r ¼ 4, for
instance, r1 ¼ r2 ¼ 3=2 and r3 ¼ r4 ¼ 1=2, and one pos-
sible amplitude basis is

M1ð−1=2;−1=2;−1=2;−1=2; r ¼ 4Þ ¼ h12i2h34i½12�:
ð2:10Þ

Later in Sec. II B, we will derive the full constraints on
these parameters, so that we can enumerate the valid classes
ðh1;…; hN ; rÞ that could form the Lorentz singlet.
To find the operator that generates such an amplitude

basis, one simply does the following translation:

λri�1
i λ̃ri∓1

i ⇔ Dri−1FL=Ri;

λri�1=2
i λ̃ri∓1=2

i ⇔ Dri−1=2ψ ð†Þ
i ;

λrii λ̃
ri
i ⇔ Driϕi; ð2:11Þ

where FL=R ¼ 1
2
ðF ∓ iF̃Þ are the chiral bases of the gauge

bosons and ψ denotes left-handed Weyl spinors. For a
unified notation, right-handed Weyl spinors are denoted as

conjugates of some left-handed spinors ψ _α
R ¼ ϵ _α _βðψ†

LÞ _β.
All the spinor indices for the operators on the right-hand

side are made totally symmetric, among dotted and
undotted indices, respectively, the same as those on the
left-hand side. These indices are contracted between such
building blocks according to how the spinor variables are
contracted. Thus the Lorentz structure corresponding to the
kinematic factor in Eq. (2.7) is given by

MðΦ1;…;ΦNÞa1;…;aN

¼ ðϵαiαjÞ⊗nðϵ̃ _αi _αjÞ⊗ñ
YN
i¼1

ðDri−jhijΦi;aiÞ
_α
riþhi
i

α
ri−hi
i

; ð2:12Þ

and the operator corresponding to the full amplitude basis B
is given by

O ¼ Ta1;…;aNMðΦ1;…;ΦNÞa1;…;aN ; ð2:13Þ

where T is the same group tensor as that in Eq. (2.7). Up to
linear combinations, this is the general form of operator
basis. The notion of taking the power of spinor indices is
made possible by the total symmetry among them, while
the ϵ’s and the ϵ̃’s exactly correspond to the h·i and ½·�
brackets in the amplitudes. The type of operators can be
defined similar to that of the amplitudes, as the operators
consisting of the same group of fieldsΦ1;…;ΦN and at the
same dimension d ¼ rþ N. It is easy to verify that, among
the local amplitudes, these operators indeed generate, and
only generate, the corresponding one. One may question
the possibility of generating other local amplitudes with
more gauge bosons when covariant derivatives are present,
because in the Feynman rules the covariant derivatives
indeed generate extra vertices with more gauge bosons.
However, these vertices are not gauge invariant, and the
final gauge invariant amplitudes with contributions from
these operators are nonlocal. Consider an operator OμDμΨ
contributing to an amplitude with an extra photon γ from
the covariant derivative of the charged field Ψ:

ð2:14Þ

where JΨ is the chargedΨ current that minimally couples to
the photon field A. The first term is the local but gauge
dependent vertex contribution, while the sum is gauge
invariant but contains a mass pole for Ψ, at which the
amplitude factorizes into an amplitude basis without the
photon and an amplitude basis for the minimal coupling.
Do the operators in Eq. (2.12) exhaust all the possible

forms of gauge invariant operators? The only caveat
comes from the requirement of total symmetries among
the spinor indices. It turns out that if they are not totally
symmetric, indicating their corresponding amplitude (of the
given type) contains antisymmetric spinors from the same
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particle, the resulting amplitude basis must vanish due to
the on-shell condition λi½αλiβ� ¼ hiiiϵαβ ¼ 0. It follows
from the relations

D½α _αDβ� _β ¼DμDνσ
μ
½α _ασ

ν
β� _β ¼−D2ϵαβϵ _α _βþ

i
2
½Dμ;Dν�ϵαβσ̄μν_α _β;

D½α _αψβ� ¼Dμσ
μ
½α _αψβ� ¼−ϵαβð=DψÞ _α;

D½α _αFLβ�γ ¼DμFνρσ
μ
½α _ασ

νρ
β�γ ¼ 2DμFμνϵαβσ

ν
γ _α; ð2:15Þ

where D2 ¼ DμDμ and =D ¼ γμDμ ¼
�

0 Dμσ
μ
α _α

Dμσ̄
μ _ββ 0

�
,

together with the identity i½Dμ; Dν� ¼
P

Fμν and the
EOM that these operators would be convertible to
operators of other types, where we are supposed to have
obtained a complete basis. Therefore, from the on-shell
point of view, these operators of different forms from
Eq. (2.12) belong to, or contain ingredients from, other
types of operators, which are not independent. It is
important to stick to this self-consistent definition of
type for the operator basis to prevent overcounting, each
type forming a subspace of operators that do not overlap
with each other. After this clarification, the EOM
redundancy is automatically taken care of, and we do
not need to worry about the interchange between types of
operators due to EOMs at all.
Up to this point, the correspondence has been set up

between polynomials of spinor helicity variables4 and
Lorentz singlet operators. Moving forward to on-shell
amplitudes and Lagrangian terms, the extra constraint
for both are the momentum conservation and the IBP
redundancy, which are exactly isomorphic to each other:
equal amplitudes due to the momentum conservation
exactly correspond to equivalent operators related by the
IBP. For example, the following equality holds for four-
point amplitudes:

h12i½23� ¼ h1jp2j3� ¼ −h1jðp1 þ p3 þ p4Þj3�
¼ −h14i½43�;

which corresponds to the operator equivalence

ðψ1σ
μψ̄3ÞDμϕ2ϕ4 ∼ −ðψ1σ

μψ̄3Þϕ2Dμϕ4:

Terms that convert to other types by EOM are omitted,
which stems from h11i ¼ ½33� ¼ 0. In sum, taking
momentum conservation into account, the amplitude
basis corresponds to an IBP nonredundant basis of oper-
ators. Inspired by this correspondence, our strategy of

operator enumeration is essentially the enumeration of
amplitude basis.
The physical reason for such correspondence is that

the free parameters of the theory should count the same
in both the Lagrangian formalism and the on-shell formal-
ism. While it is straightforward to define them in a
Lagrangian as the independent Wilson coefficients,
the free parameters in the on-shell formalism should
be encoded in local amplitudes because they are the
ultimate outcome of the cascade of unitarity factoriza-
tion of any amplitudes. Building a quantum field theory
from the operator basis and their Wilson coefficients is
already a textbook technique, but building a theory from
the corresponding amplitude basis has not been as
successful, though we show that they contain the same
amount of information. The recursion relations devel-
oped in the past decade [33] are only applicable to
certain “on-shell constructible” theories [34], whereas a
more general on-shell formalism from the amplitude
basis is still waiting to be discovered.

B. On-shell building blocks and Lorentz classes

In light of the amplitude-operator correspondence
Eq. (2.11), we adopt the chiral basis of the fields and
derivatives, all with spinor indices, which are in the
irreducible representations ðjl; jrÞ of the Lorentz group
SUð2Þl × SUð2Þr,

ϕ ∈ ð0; 0Þ; ψα ∈ ð1=2; 0Þ; ψ†
_α ∈ ð0; 1=2Þ; ð2:16Þ

FLαβ ¼
i
2
Fμνσ

μν
αβ ∈ ð1; 0Þ; FR _α _β ¼ −

i
2
Fμνσ̄

μν

_α _β
∈ ð0; 1Þ;

ð2:17Þ

Dα _α ¼ Dμσ
μ
α _α ∈ ð1=2; 1=2Þ; ð2:18Þ

Dμ ¼ ∂μ − igsGA
μTA − igWa

μτ
a − ig0QYBμ; ð2:19Þ

with the SUð3Þ and SUð2Þ generators TA and τa as well as
the Uð1ÞY charge QY determined by the fields it acts on,
and gs, g, and g0 are coupling constants for the SUð3ÞC,
SUð2ÞW , and Uð1ÞY gauge groups, respectively. In this
notation, we have the SMEFT field content as in Table I,
where the conjugate fields with conjugating representations
and opposite helicities and charges are omitted.
To enumerate the valid Lorentz classes at a given

dimension d, denoted by Fn−1
L ψn−1=2ϕn0ψ†n1=2Fn1

R DnD, cor-
responding to classes of amplitudes5Mðh1;…; hN ; rÞ, one
may adopt the steps described in [9], where the following
constraints are considered:

4Such polynomial functions are regarded as form factors of
operators [32] which characterize the state generated by an
operator from the vacuum F ¼ hψ jOj0i, which is not a physical
process and does not satisfy momentum conservation.

5The tuple ðn−1; n−1=2; n0; n1=2; n1; nDÞ and the tuple
ðh1;…; hN; rÞ record the same information, and can be easily
converted to each other.

LI, REN, XIAO, YU, and ZHENG PHYS. REV. D 104, 015025 (2021)

015025-6



ñþ n ¼
X
i

ri ¼ r ¼ d − N; ñ − n ¼
X
i

hi ≡ h;
XN
i¼1

ni ¼ N;

2n−1 þ n−1=2 ¼
X
i

jhij − h ¼ 2n − nD; 2n1 þ n1=2 ¼
X
i

jhij þ h ¼ 2ñ − nD;

minð2n; 2ñÞ ≥ nD ≥ max

0
BBBBB@

h −
P
i
jhij;mod 2

4jmin hij −
P
hi<0

2jhij

4jmaxhij −
P
hi>0

2jhij

1
CCCCCA: ð2:20Þ

At dimension nine, we list all the classes in Table II, which is model independent. The types of operators are thus obtained
by substituting the SMEFT field content from Table I into Eq. (2.12) with a varying number of derivatives and spinor

TABLE I. The field content of the standard model, along with their representations under the Lorentz and gauge
symmetries. The representation under the Lorentz group is denoted by ðjl; jrÞ, while the helicity of the field is given
by h ¼ jr − jl. The number of fermion flavors is denoted as nf , which is 3 in the standard model. We also list their
global charges, the baryon number B, and the lepton number L. All of the fields are accompanied with their
Hermitian conjugates that are omitted, ðFLαβÞ† ¼ FR _α _β for gauge bosons, ðψαÞ† ¼ ðψ†Þ _α for fermions, and H† for
the Higgs, which are under the conjugate representations of all the groups.

Fields SUð2Þl × SUð2Þr h SUð3ÞC SUð2ÞW Uð1ÞY Flavor B L

GA
Lαβ (1,0) −1 8 1 0 1 0 0

WI
Lαβ (1,0) −1 1 3 0 1 0 0

BLαβ (1,0) −1 1 1 0 1 0 0

Lαi ð1
2
; 0Þ − 1

2
1 2 − 1

2
nf 0 1

eCα ð1
2
; 0Þ − 1

2
1 1 1 nf 0 −1

Qαai ð1
2
; 0Þ − 1

2
3 2 1

6
nf 1

3
0

uaCα ð1
2
; 0Þ − 1

2 3̄ 1 − 2
3

nf − 1
3

0
daCα ð1

2
; 0Þ − 1

2 3̄ 1 1
3

nf − 1
3

0

Hi (0,0) 0 1 2 1
2

1 0 0

TABLE II. All the Lorentz classes at dimension nine. Classes in gray do not appear in the SMEFT due to global
symmetries, such as the odd parity for all the SUð2ÞW doublets that forbids quite a few of the Lorentz classes with an
odd number of scalars.

N ðn; ñÞ Classes

4 (4,1) F2
Lψ

2D2 þ H:c: F3
LϕD

2 þ H:c:
(3,2) ψ3ψ†D3 þ H:c: ψ2ϕ2D4 þ H:c: FLFRϕ

2D2 þ H:c:
F2
Lψ

†2D2 þ H:c: F2
LFRϕD2 þ H:c: FLψψ

†ϕD3 þ H:c: FLϕ
3D4 þ H:c:

5 (4,0) F3
Lψ

2 þ H:c: F4
Lϕþ H:c:

(3,1) FLψ
3ψ†Dþ H:c: ψ4ϕD2 þ H:c: FLψ

2ϕ2D2 þ H:c:
F3
Lψ

†2 þ H:c: F2
Lψψ

†ϕDþ H:c: F2
Lϕ

3D2 þ H:c
(2,2) FRψ

3ψ†Dþ H:c: ψ2ψ†2ϕD2 FRψ
2ϕ2D2 þ H:c: ψψ†ϕ3D3

FLF2
Rψ

2 þ H:c: F2
LF

2
Rϕ FLFRψψ

†ϕD FLFRϕ
3D2

ϕ5D4

6 (3,0) ψ6 þ H:c: FLψ
4ϕþ H:c: F2

Lψ
2ϕ2 þ H:c: F3

Lϕ
3 þ H:c:

(2,1) ψ4ψ†2 þ H:c: FLψ
2ψ†2ϕþ H:c: F2

Lψ
†2ϕ2 þ H:c: ψ3ψ†ϕ2Dþ H:c:

FLψψ
†ϕ3Dþ H:c: ψ2ϕ4D2 þ H:c: FLϕ

5D2 þ H:c:

(Table continued)
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contractions, while the representations of the constituting
fields under gauge groups should be able to form singlets
[Uð1Þ charges should add up to zero]. The classes colored
in gray are those ruled out by this condition, and thus they
do not appear in the SMEFT. In the next section, we show
the details of obtaining a complete basis for a given type of
operators/amplitudes, as well as how to convert an arbitrary
operator (basis) to our basis.

III. COMPLETE BASIS FOR A TYPE
OF OPERATORS

A. The Y-basis: A complete basis
from the Young tableau

In this section, we briefly summarize the algorithm to
obtain a complete basis for a type of local amplitudes/
operators, which we elaborated in [9]. As explained pre-
viously, a type of local amplitudes are given by the same
external particle species at certain mass dimension r, which
consists of the kinematic factor M that describes the
energy dependency and the angular distribution, and the
gauge group factor T ¼QG TG that describes the gauge
group representations. Given the helicities hi and gauge
representations rGi of the external particles, the two factors
span linear spaces of dimensionNM andN G, respectively,
whose outer product is the linear space of the amplitude
basis. The spin statistics of identical particles will put extra
constraints on this product space, which we postpone to
investigate at the end of this section. According to the
amplitude-operator correspondence, the space of operators
with the same type should have the same structure, which
has total dimension

N ¼ NM ×
Y
G

N G: ð3:1Þ

Therefore our first task is to enumerate the NM basis for a
given class ofMðh1;…; hN ; rÞ and theN G basis for group
G given the representations rGi .
For the kinematic factor, since the EOM redundancies

are removed by construction, the remaining redundancies
are the momentum conservation and the Schouten identity,
both mentioned in the previous section. We utilize an
SUðNÞ transformation introduced in [31], under which the
total momentum (all-outgoing convention) that vanishes

due to the momentum conservation is invariant. This
transformation is reformulated in terms of operators and
is further developed in [9]. The nonredundant amplitudes/
operators thus form a particular irreducible representation
space of the SUðNÞ group, the basis of which is given by
the SUðNÞ SSYT. Specifically, the shape of the Young
diagram (YD) for this particular irrep, called primary YD,
is determined by a tuple of three numbers ðN; n; ñÞ, where
n and ñ are the parameters introduced in the previous
section, as the numbers of h·i type and ½·� type brackets in
the amplitude. They can be derived from the constraints of
Eq. (2.20). The primary YD is given by

ð3:2Þ

which is translated to amplitudes column by column as

ð3:3Þ

where the E is the Levi-Civita tensor of the SUðNÞ group.
As shown in Table II, where classes are organized in terms
of the tuple ðN; n; ñÞ, there are typically more than one
class that share the same primary YD. It is proved in [9] that
the classes are in one-to-one correspondence with the
collection of labels to be filled in the YD. For a given
class, the number of the label i in the collection is given by

#i ¼ ñ − 2hi: ð3:4Þ

With the collection of labels and the YD, it is not hard to
enumerate all the SSYTs and translate them into amplitudes
via Eq. (3.3), or further into operators using the amplitude-
operator correspondence. One can also count the number of
the SSYT’s NM without the label filling, as is pointed out

TABLE II. (Continued)

N ðn; ñÞ Classes

7 (2,0) ψ4ϕ3 þ H:c: FLψ
2ϕ4 þ H:c: F2

Lϕ
5 þ H:c:

(1,1) ψ2ψ†2ϕ3 ψψ†ϕ5D ϕ7D2

8 (1,0) ψ2ϕ6 þ H:c:

9 (0,0) ϕ9
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in [9] that NM could be regarded as the multiplicity of the
primary YD in the direct product decomposition of the one-
row sub-YD for each label,

ð3:5Þ

The direct product decomposition is carried out by the
famous L-R rule. A concrete example for the Lorentz class
FLψ

3ψ†D is given in Eq. (4.6).
The gauge group sectors TG are also given by Levi-

Civita tensors that contract with the fundamental indices of
the fields, those of which in nonfundamental irrep (e.g., the
gauge field in the adjoint rep) provide multiple fundamental
indices with particular symmetries. As we only have adjoint
and antifundamental representation for the SM fields, their
conversion is listed below:

ð3:6Þ

The corresponding Y-basis group factors are obtained by
constructing the singlet Young tableaux following the L-R

rules with the corresponding indices filled in as discussed
in Ref. [9]. The singlet Young tableaux for SUð2ÞW and
SUð3ÞC constructed are in the following forms:

ð3:7Þ

where nbox is the total number of boxes in the YD, equal to
the total number of fundamental indices of the fields. As an
example, we illustrate the way to construct such singlet
Young tableaux with the type GLd3Ce

†
CD, which we will

discuss in detail in Sec. IV. The SUð2ÞW group is trivial
for this type of operators, and we thus focus on only the
SUð3ÞC part. The conversion of the nonfundamental
indices in this case generates correspondence:

ð3:8Þ

ð3:9Þ

from which we can construct the singlet Young tableaux in
the following with the L-R rule in the following order:

ð3:10Þ

ð3:11Þ

The complete basis of group factors is obtained by contracting the products of the ϵ’s obtained from the Young tableau with
those prefactors converting the nonfundamental indices in Eq. (3.6), which yields tensors with exactly the conjugating
indices of the fields,

Ty
SU3;1 ¼ 8ϵacdðλAÞdb; Ty

SU3;2 ¼ 4ðϵacdðλAÞdb − ϵabdðλAÞdcÞ; ð3:12Þ

so that they contract with the fields to form gauge singlets. The number of the complete basis can, again, be given by the
direct product decomposition

⊗
N

i¼1
rGi ⊃ N G1: ð3:13Þ
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In the above example we derive through the L-R rule as

ð3:14Þ

reproducing the number of basis we enumerated.
Since the basis obtained for both M and the gauge

groups G are given by the Young tableau, we entitle the
outer product of them as the Young tableau basis, or
Y-basis, of local amplitudes/operators. The Y-basis oper-

ators are denoted as OðyÞ
i , i ¼ 1;…;N .

B. Operators reducing to Y-basis

For operators, the Y-basis defined above may not be of
the most convenient form illustrated at the beginning of
Sec. II. However, as a complete basis, the Y-basis can be
used to uniquely identify any operator in the EFT, either
from other literatures in some conventional form or in some
particular computations such as the covariant derivative
expansion (CDE) [35], as a coordinate in the space of
operators. To achieve this goal, it is demanded to expand an
arbitrary operator in terms of the Y-basis.
For the Lorentz structure, one should first convert it into

the standard form Eq. (2.12) with the following steps:
(i) Decompose Dirac fermions into chiral/Weyl fer-

mions

Ψ ¼
�
ψα

χ† _α

�
; γμ ¼

�
0 σμ

σ̄μ 0

�
: ð3:15Þ

As we only deal with massless fields, the two Weyl
components are actually independent; thus one can
easily do the decomposition.

(ii) Convert the covariant derivatives Dμ and the gauge
fields Fμν into the SUð2;CÞ basis, with dotted or
undotted spinor indices

Dμ ¼ σα _αμ Dα _α; Fμν ¼ FLαβσ
αβ
μν þ FR _α _βσ̄

_α _β
μν :

ð3:16Þ

All the Lorentz indices μ; ν;… are on σμ matrices
now, which contract with each other and reduce to
the ϵ and ϵ̃’s

σα _αμ σμβ _β ¼ 2ϵαβϵ̃ _α _β: ð3:17Þ

(iii) Using the ½D;D� identity or the EOM to convert the
parts of the operator with antisymmetric spinor
indices to other types of operators, as illustrated
in Sec. II, until the remaining part has totally
symmetric spinor indices in every building block.
The different types of operators shall be dealt with
separately.

In the standard form, the spinor contraction structure
can be translated into an SUðNÞ Young tableau, though
not necessarily SSYT. The group theory proves that the
SSYTs are an independent and complete basis of all the
Young tableaux, given the Fock conditions that relate them.
The Fock conditions for the primary YD Eq. (3.2) are
exactly equivalent to the momentum conservation (the IBP
relation for operators) and the Schouten identities, the
redundancy relations that we removed to obtain the Y-basis.
Therefore, we need a systematic replacement rule to apply
these relations to the arbitrary Young tableau operator
obtained above, until we get a combination of the inde-
pendent Y-basis

M ¼
X
i

miMðyÞ: ð3:18Þ

We want to emphasize here that the process is not for
obtaining the complete basis, but for reducing any Lorentz
structure to the basis that we define. The replacement rule is
described below:

(i) Remove all derivatives on the first field Φ1 by the
IBP relation:

ðDr1−jh1jΦ1Þ � � � ≃ −Φ1ðDr1−jh1j � � �Þ: ð3:19Þ

The derivatives are distributed among the rest of the
building blocks by the Leibniz rule. Corresponding
to the conversion of the spinor helicity formula is

hi1i½1j� ¼ −
XN
k¼2

hiki½kj�: ð3:20Þ

In the sum, the term with k ¼ i or k ¼ j would
vanish, which in the corresponding operator
amounts to a self-contracting building block that
should be converted to other types of operators. We
omit these terms and thus use the ≃ for the relation,
which should be understood for the following two
steps as well.

(ii) Remove derivatives on Φ2 (or Φ3) when the two
spinor indices on them contract with those in
building blocks 1 and 2, such as

Φ1;α;…ðDα
_αD

n2−1Φ2Þ������ � � � ≃ −Φ1;α;…ðDn2−1Φ2Þ������ðDα
_α � � �Þ;

Φ1;α;…Φ _α;…
2 ðDα

_αD
n2−1Φ3Þ������ � � � ≃ −Φ1;α;…Φ _α;…

2 ðDn2−1Φ3Þ������ðDα
_α � � �Þ: ð3:21Þ
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The corresponding replacement rule for amplitudes are

½1jp2jii ¼ −
XN
k¼3

½1jpkjii; h1jp2ji� ¼ −
XN
k¼3

h1jpkji�;

½1jp3j2i ¼ −
XN
k¼4

½1jpkj2i; h1jp3j2� ¼ −
XN
k¼4

h1jpkj2�: ð3:22Þ

(iii) Remove pairs of derivatives acting on Φ2 and Φ3, with indices contracting with each other, by using the following
identity:

Φ1D2ðΦ2Φ3 � � �Þ ¼ Φ1ðD2Φ2ÞΦ3 � � � þΦ1Φ2ðD2Φ3Þ � � �
þΦ1Φ2Φ3ðD2 � � �Þ þ 2Φ1ðDΦ2ÞðDΦ3Þ � � � þ 2Φ1ðDΦ2ÞΦ3ðD � � �Þ þ 2Φ1Φ2ðDΦ3ÞðD � � �Þ;

ð3:23Þ

where the terms in the first line are all convertible to
other types via the EOM. It corresponds to the
following relation among Mandelstam variables:

p2
1 ¼ 2

X
i;j≠1

pi · pj ¼ 0: ð3:24Þ

(iv) The Schouten identity can be applied to any pair of
ϵ’s with all-different indices (contracting with four
different building blocks i < j < k < l)

ϵαiαjϵαkαl þ ϵαiαkϵαlαj þ ϵαiαlϵαjαk ¼ 0: ð3:25Þ

In spinor helicity language, it reads

hijihkli þ hikihlji þ hilihjki ¼ 0: ð3:26Þ

The rule is that whenever the third term (specified by
the order of the labels) shows up in the operator/
amplitude, replace it by the other two terms.

(v) Apply the Schouten identity for the ϵ̃’s in the same
manner,

ϵ̃ _αi _αj ϵ̃ _αk _αl þ ϵ̃ _αi _αk ϵ̃ _αl _αj þ ϵ̃ _αi _αl ϵ̃ _αj _αk ¼ 0;

þ½ik�½lj� þ ½il�½jk� ¼ 0: ð3:27Þ

For the gauge group tensor TG, one can convert any
bases to each other with the help of an inner product
defined for the tensors:

ðT1; T2Þ≡
X

a1;a2;…

Ta1a2���
1 Ta1a2���

2 ; ð3:28Þ

as TðyÞ
G are all products of Levi-Civita tensors and their

contractions are easily calculated algebraically. Then
using the Gram-Schmidt process, one can obtain a set of

orthogonal tensors TðoÞ
G that span the same space of the

Y-basis. Therefore the coordinates of any group tensor T in
this orthogonal basis can be obtained as

TG ¼
X
i

tiT
ðoÞ
G i; ti ¼ ðT; TðoÞ

G iÞ: ð3:29Þ

With Eqs. (3.18) and (3.29), we can reduce any operator
to our Y-basis

O ¼ TGM ¼
XN G

i¼1

XNM

j¼1

timjT
ðyÞ
G iM

ðyÞ
j ¼

X
i;j

timjO
ðyÞ
i;j :

ð3:30Þ

In particular, we can use the reduction to build other
complete bases, such as a basis with conventional notation.
We define such a basis of conventional monomial operators
generally as an m-basis. Given an overcomplete set of

monomial operators OðmÞ
i , we can reduce them all to our

Y-basis and obtain a coefficient matrix

OðmÞ
i ¼

XN
j¼1

K̄my
ij O

ðyÞ
j ; i ¼ 1;…;N ;…: ð3:31Þ

The m-basis is thus constructed by selecting N indepen-
dent rows in the matrix K̄my that form a full-rank square
matrixKmy, which serves as the conversion matrix between
the Y-basis and the m-basis. Note that the m-basis is highly
nonunique, which not only depends on the notation but also
depends on the selection of rows in K̄.

C. The P-basis: In the presence of repeated fields

There is one more redundancy that is not yet considered
for the N -dimensional space of type, which is when there
are repeated fields/identical particles in the operator/
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amplitude. While it is explained in [9] in terms of operators,
we present here a derivation of the constraint from the
amplitude point of view.
In the actual physical amplitude, identical particles

should be subject to the spin statistics, which picks out

certain linear combinations of the amplitude basis [i.e., they
may not be factorizable as in Eq. (2.7)]. These combina-
tions are totally symmetric or totally antisymmetric under
the permutations of the bosonic or fermionic identical
particles, and are thus called a P-basis:

BðpÞðϕa1ðp1Þ;…;ϕamðpmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

;…Þ ¼ DϕðπÞBðpÞðϕaπð1Þ ðp1Þ;…;ϕaπðmÞ ðpmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

;…Þ;

DϕðπÞ ¼
�
1 bosonϕ

ð−1Þπ fermionϕ
; π ∈ Sm; ð3:32Þ

whereDϕðπÞ is the representation of the permutation π for the particle ϕ, and ð−1Þπ denotes the signature of π. It is reflected
in the amplitude-operator correspondence by the Feynman rule that sums up all possible contractions between repeated
fields and the external legs in the vertex function. According to the dictionary Eq. (2.11), such an amplitude basis would
correspond to an operator basis, also called the P-basis, with explicit permutation symmetries among the repeated fields.
We would like to clarify that the notions of identical particles are for particle multiplets, which include the gauge group

and even the flavor degrees of freedom. In general, the permutation symmetry of the function B stems from the inner
product of the permutation symmetries of M and T. To explicitly show the constraint of spin statistics on the amplitude
basis for particles with flavors, we take the flavor index out of the collection a, and denote the flavor part of the tensor as κ,
such that

Bðϕf1;a1ðp1Þ;…;ϕfm;amðpmÞÞ ¼ κf1;…;fmTa1;…;amMðh1;…; hm;…Þ; ð3:33Þ

where we omit the other possible particles and only focus on the m identical particles (multiplets) ϕ. The permutation
symmetries of them are denoted by the irreducible representations of the symmetric group Sm, which are labeled by
partitions λ of the integer m, such as λ ¼ ½2; 1�⊢m ¼ 3. They are also denoted by Young diagrams with m boxes; for

instance, [2, 1] is denoted by . Therefore, the spin-stat requires

λκ ⊙ λother ⊃
� ½m� ⇒λκ ¼ λother bosonϕ;

½1m� ⇒λκ ¼ λTother fermionϕ;
ð3:34Þ

where we use the shorthand notation ½1;…; 1|fflfflffl{zfflfflffl}
m

� ¼ ½1m� for

the total antisymmetry and the superscriptT indicates the
transpose of the Young diagram.
In the following, λ without a subscript is short for λκ by

default, and the P-basis will be organized in terms of λ.
First, we find the N -dimensional space of the flavor-
blind amplitudes T ⊗ M and combine the Y-basis into λ
representation spaces, each being a dλ-dimensional sub-
space of amplitudes. Suppose the number of representation
spaces for each λ is given by nλ, such that

N ¼
X
λ⊢m

nλdλ; ð3:35Þ

and all the P-basis amplitudes are labeled by λ,
x ¼ 1;…; dλ, and ξ ¼ 1;…; nλ. We will describe the
derivation of the full-rank conversion matrixKpy defined as

OðpÞ
ðλ;xÞ;ξ ≡OðpÞ

i ¼
XN
j¼1

Kpy
ij O

ðyÞ
j ; ð3:36Þ

in the next section. In the meantime, the generic rank-m
flavor tensor κ with flavor number nf can be decomposed
into tensor bases that form the Sðλ; nfÞ number of λ
representation spaces for the group Sm, such that the total
degrees of freedom match

N κ ¼ nmf ¼
X
λ⊢m

Sðλ; nfÞdλ: ð3:37Þ

The function Sðλ; nfÞ is known as the Hook content
formula, which also counts the number of SSYT. For
example, with λ ¼ ½3� and nf ¼ 2, we have Sðλ; nfÞ ¼ 4,
and the four-flavor tensor bases are given by (normalization
not relevant in this paper)
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ð3:38Þ

Finally, from the nλ representation spaces for the flavor-
blind amplitudes, and the Sðλ; nfÞ representation spaces for
the κ tensor, the Sm inner product of an arbitrary pair of
them contains a totally symmetric amplitude basis. Hence
the total number of the flavor-specified amplitude basis is
given by

N̄ ¼
X
λ

nλSðλ; nfÞ: ð3:39Þ

They are labeled by λ, together with ξ ¼ 1;…; nλ labeling
each representation space of the flavor-blind amplitudes,
and the flavor SSYT denoting the flavor tensor basis that
also specifies the flavors of the identical multiplets in
the amplitudes, all of which are explicitly derivable. The
amplitude-operator correspondence translates the flavor-
blind amplitude basis to operators with free flavor indices,
which we define as term, while the flavor tensor κ multi-
plied by the Wilson coefficient becomes the Wilson
coefficient flavor tensor. The symmetry among its indices,
also known as the flavor relations, is exactly given by λ as
the representation of κ.

IV. TERMS: OPERATORS ORGANIZED AS
IRREDUCIBLE FLAVOR TENSORS

A. Workflow and the master formulas

As discussed in Sec. III C, when repeated fields appear in
a given type of operator, the dimension of the subspace may
be less then N calculated in Eq. (3.1) due to the certain
permutation symmetry among the flavor indices. Therefore,
in this subsection we shall demonstrate the workflow to
obtain the P-basis operator which is what we called terms
for a given type of operator, and in the next three sub-
sections we shall illustrate the whole procedure obtaining
the P-basis operator concretely with a dim-9 example:
GLd3Ce

†
CD.

As studied in detail in Ref. [9] and discussed in Sec. III
C, the permutation symmetry of the flavor structure is
related to that of the gauge and Lorentz structure indicated
in Eq. (3.10) of Ref. [9]:

π∘Offk;…g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
permute flavor

¼ðπ∘Tfgk;…g
SU3 Þðπ∘Tfhk;…g

SU2 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
permute gauge

ðπ∘Mffk;…g
fgk;…g;fhk;…gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

permute Lorentz

;

ð4:1Þ

where fk, gk, and hk are the flavor and SUð3ÞC and SUð2ÞW
are gauge group indices for different sets of repeated fields,
respectively. Equation (4.1) tells thatOffk;…g can be viewed
as a direct product representation of the symmetric group Sk
permuting the repeated fields; hence it is easier to construct
an operator with the definite flavor permutation symmetry
from a set of symmetrized gauge group factors Tλ

x and
Lorentz structures Mλ

x that transform as irrep λ of Sk
such that

π ∘Tλ
x ¼

X
y

Tλ
yDλðπÞyx;

π ∘Mλ
x ¼

X
y

Mλ
yDλðπÞyx; for π ∈ Sk; ð4:2Þ

where λ is the partition of k corresponding to a certain
irrep of the symmetric group, x labels the basis vector
of the irrep, and DλðπÞ is the matrix representation of the
symmetric group for this irrep. Having introduced the
concept of the Y-basis and m-basis in Sec. III, we shall
name Tλ

x and Mλ
x the P-basis for gauge group factors and

Lorentz structures, respectively. With these ingredients in
hand one can construct OðpÞ of the flavor symmetry λ with
Clebsch-Gordon coefficients (CGCs) of the symmetric

group Cðλ1;x1Þ;ðλ2;x2Þ;ðλ3;x3Þ
ðλ;xÞ;j :

Oðλ;xÞ;j¼
X

x1;x2;x3

Cðλ1;x1Þ;ðλ2;x2Þ;ðλ3;x3Þ
ðλ;xÞ;j Mλ1

x1 ⊗Tλ2
SU3;x2

⊗Tλ3
SU2;x3

;

ð4:3Þ

where λ, λ1, λ2, λ3 are irreps of Sk for flavor, Lorentz
structure, SUð3ÞC and SUð2ÞW group factors, respectively,
x with and without subscripts correspond to the labels of
the basis vector for each irrep of Sk, and j is the multiplicity
of the resulting irreps from the decomposition.
In Fig. 1, we show our workflow obtaining all the terms

of the operator for a given dimension in a flowchart and
describe each step as follows:

1. Enumerate tuples of the numbers of fields for
different helicities and the number of derivatives
following the constraints in Eq. (2.20). Each tuple
corresponds to a class of operators.

2. For each class of operators, one can replace the
abstract fields of definite helicities with concrete SM
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fields and only retain combinations of fields that can
form the gauge singlet as types of operators.

3. For a given type of operators, one can enumerate the
Y-basis for Lorentz and gauge group structures with
the corresponding SSYT.

4. For each Y-basis, one can convert it to an m-basis
with some group identities, the form of which is
more familiar to the phenomenology community.

5. After obtaining the Y-basis and m-basis, one can
symmetrize them by acting on the corresponding
group algebra symmetrizer bλx to obtain the P-basis
for the Lorentz and gauge group structures. The
appropriate irreps of the symmetric group λ is
obtained by the plethysm technique in advance.

6. With the P-basis Lorentz and gauge group structures
one can construct the P-basis operators, the terms,
with the inner product decomposition of the sym-
metric group related to the repeated fields.

7. Finally, to shorten our notations for the terms, we
perform a subtle recombination of the P-basis
operators for a given type called “desymmetrization”
to arrive at the form of operators presented in Sec. V.

B. Lorentz and gauge bases

1. Lorentz structure

As discussed in Sec. 3.2 of Ref. [9], the Y-basis of the
Lorentz structure is enumerated by the SSYT of the
corresponding primary Young diagram of the auxiliary
SUðNÞ group determined by the tuple of three numbers
ðN; n; ñÞ for the given type of the operator, where N is the
number of field building blocks and n and ñ are the number

of ϵ tensors with undotted and dotted spinor indices that
used to contract all the spinor indices in the building blocks.
Given the operator type GLd3Ce

†
CD, N is obviously equal

to 5, while n ¼ 3 and ñ ¼ 1 can be obtained by [9]

2n−1 þ n−1=2 ¼ 2n − nD; 2n1 þ n1=2 ¼ 2ñ − nD;

ð4:4Þ

where nD ¼ 1 is the number of derivatives and n−1, n−1=2,
n1=2, n1 are numbers of the fields with helicities equal to
−1;−1=2; 1=2; 1, respectively. The next step is to find the
numbers of field labels #i for i from 1 to 5 that need to be
filled in the primary YD. Following Eq. (3.51) of Ref. [9],

#i ¼ ñ − 2hi; ð4:5Þ

where hi is the helicity of the corresponding fields. This
leads to #1 ¼ 3, #2 ¼ #3 ¼ #4 ¼ 2, #5 ¼ 0 where we have
already arranged the fields in the order of increasing
helicities. From the direct product decomposition

ð4:6Þ

we know in advance the number of SSYT should be 4. The
corresponding SSYTs with the numbers filled in are

ð4:7Þ

FIG. 1. Flow chart for finding all the independent terms at a given dimension. The content above the first dash-dotted line is model
independent and can be applied to any EFT. The content below the second dash-dotted line are our main contributions in this work. We
automatize the whole procedure in a Mathematica code.
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which correspond to a set of y bases,

− ϵ̃ _α3 _α5ϵ
α1α3ϵα1α3ϵα2α4 ; ϵ̃ _α4 _α5ϵ

α1α3ϵα1α4ϵα2α4 ;

− ϵ̃ _α3 _α5ϵ
α1α2ϵα1α3ϵα3α4 ; ϵ̃ _α4 _α5ϵ

α1α2ϵα1α4ϵα3α4 ; ð4:8Þ

with operator forms from the correspondence

My
1 ¼ −ðGAαβ

L DdaγC β_δpd
b
Cαrd

c
Cγse

†_δ
C tÞ; ð4:9Þ

My
2 ¼ ðGAαβ

L daγC pd
b
CαrDdcCβγ _δse

†_δ
C tÞ; ð4:10Þ

My
3 ¼ −ðGAαβ

L daCαpDdbγC β_δrd
c
Cγse

†_δ
C tÞ; ð4:11Þ

My
4 ¼ ðGAαβ

L daCαpd
bγ
C rDdcCγβ_δse

†_δ
C tÞ: ð4:12Þ

In the above equations, prst represent the flavor indices;
abc and A represent color indices for the antifundamental
representation and the adjoint representation, respectively.
One can obtain them-basis Lorentz structures by conver-

ting GLαβ to GLμν in Eqs. (4.9)–(4.12) and finding indepen-
dent monomials with the method discussed in Sec. III C:

Mm
1 ¼ iGAμ

L νðdapCdcsÞðDμētγνdbÞ; ð4:13Þ

Mm
2 ¼ iGAμ

L νðdapCDμdcsÞðētγνdbr Þ; ð4:14Þ

Mm
3 ¼ iGAμ

L νðētγνdapÞðDμdbrCdcsÞ; ð4:15Þ

Mm
4 ¼ iGAμ

L νðētγνdapÞðdbrCDμdcsÞ; ð4:16Þ

wherewe have already converted the two component spinors
to the corresponding four component ones with the formulas
in Appendix A.
Now we are ready to obtain the symmetrized Lorentz

factor for the repeated field dC in the P-basis and express it
in terms of the m-basis. As discussed in Sec. III A and
Ref. [9], one can view the procedure to obtain the SSYT
as constructing the primary YD of SUðNÞ group with the
Littlewood-Richardson rule from the outer product of
totally symmetric representations of one row YD for
each field label. Here we have and

(#5 ¼ 0 does not contribute),
and the allowed irreps of S3 for dC are those resulting in
primary YD after taking plethysm with . In our
example we have

ð4:17Þ

ð4:18Þ
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ð4:19Þ

after taking into account the subtleties related to the
Grassmann nature of the fermion fields and the odd number
of the presence of the E tensors of the SUðNÞ group
converting the antifundamental indices of the ϵ̃ to the
fundamental ones [9], the allowed symmetries remain the
same (no transposition for the YDs needed). The total
number of the resulting primary Young diagrams should
multiply the dimension of the corresponding irrep of the
symmetric group dλ, which leads to 1þ 2þ 1 ¼ 4 distinct
Lorentz structures consistent with the result in Eq. (4.6)
given that d½2;1� ¼ 2 and d½3� ¼ d½13� ¼ 1. We shall obtain

the P-basis Mλ;ξ
x (ξ label the multiplicity of the irrep λ of

the symmetric group) by acting with the corresponding
group algebra projector bλx on elements in Eq. (4.8) until the
number of multiplicity of that λ reaches the demanding
value. Since the multiplicity equals 1 for each λ in our case,
we simply omit the label ξ in what follows. We finally
obtain the matrices Kpm relating the P-basis and m-basis:

0
BBBBBB@

M½3�
1

M½2;1�
1

M½2;1�
2

M½13�
1

1
CCCCCCA ¼

0
BBB@

−2 2 2 4

1 2 −1 1

−2 −1 −1 −2
−2 −2 −2 0

1
CCCA
0
BBB@

Mm
1

Mm
2

Mm
3

Mm
4

1
CCCA: ð4:20Þ

2. Gauge group

The treatment of the gauge group is similar to that of the
Lorentz group, but the usage of the Young diagram and
Young tableaux are different. First of all, one needs to find
the Y-basis for each gauge group by finding the singlet

Young tableaux constructed by the ordinary L-R rule with
the corresponding gauge group indices of each field filled in
provided that each field is expressed in terms of fundamental
indices only. If a field is not in the fundamental representa-
tion, then one can perform the conversion by contractingwith
the Levi-Civita tensor and the group generators. We have
already worked out the Y-basis group factors in Sec. III A in
Eq. (3.12), and we list them here again:

Ty
SU3;1 ¼ 8ϵacdðλAÞdb;

Ty
SU3;2 ¼ 4ðϵacdðλAÞdb − ϵabdðλAÞdcÞ:

To obtain the m-basis we investigate each monomial in the
above equations, and select two independent monomials as
our m-basis:

Tm
SU3;1 ¼ ϵacdðλAÞdb; ð4:21Þ

Tm
SU3;2 ¼ ϵabdðλAÞdc: ð4:22Þ

In practice, the independence of the monomial can be
checked numerically by flattening the Tm’s into a one-
dimensional (1D) vector with components corresponding
to specific tuples of ða; b; c; AÞ in a fixed order. The next step
is to find the proper permutation symmetry among the
SUð3ÞC indices a, b, c of the group factors that contract
with the repeated fields dC and to obtain the symmetrized
group factors in theP-basis by actingwith the corresponding

bλx on T
ðmÞ
SU3’s. In our example the only possible permutation

symmetry is [2, 1], since only the plethysm of with [2, 1]

can generate the singlet:

ð4:23Þ

ð4:24Þ

ð4:25Þ
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Therefore one can obtain the P-basis in terms of them-basis
in the following formula: 
T ½2;1�
SU3;1

T ½2;1�
SU3;2

!
¼
 
b½2;1�1 ∘Tm

SU3;1

b½2;1�2 ∘Tm
SU3;1

!
¼
 

4
3

− 2
3

− 2
3

4
3

! 
Tm
SU3;1

Tm
SU3;2;

!
;

ð4:26Þ

where the conversion matrix is obtained by the method
mentioned in Sec. III B.

C. Flavor basis from inner product decomposition

As we have obtained the symmetrized gauge group
factors and Lorentz structures, we shall construct the P-
basis through Eq. (4.3). In our example, the SUð2ÞW gauge
group factor is trivial, so we only need to focus on the inner
product decomposition from the Lorentz and SUð3ÞC parts:

ð4:27Þ

The CGCs for each decomposition are listed
in Table III.
As an example, we explicitly show how to generate

Oð½13�;1Þ;1 from ½2; 1� ⊙ ½2; 1�:

Oð½13�;1Þ;1 ¼ Cð½2;1�;1Þ;ð½2;1�;1Þ
ð½13�;1Þ;1 M½2;1�

1 T ½2;1�
SU3;1 þ Cð½2;1�;1Þ;ð½2;1�;2Þ

ð½13�;1Þ;1 M½2;1�
1 T ½2;1�

SU3;2

þ Cð½2;1�;2Þ;ð½2;1�;1Þ
ð½13�;1Þ;1 M½2;1�

2 T ½2;1�
SU3;1 þ Cð½2;1�;2Þ;ð½2;1�;2Þ

ð½13�;1Þ;1 M½2;1�
2 T ½2;1�

SU3;2 ð4:28Þ

¼ 1

2
M½2;1�

1 T ½2;1�
SU3;2 −

1

2
M½2;1�

2 T ½2;1�
SU3;1 ð4:29Þ

¼ 1

2
ðMm

1 þ 2Mm
2 −Mm

3 þMm
4 Þ
�
4

3
Tm
SU3;1 −

2

3
Tm
SU3;2

�

−
1

2
ð−2Mm

1 −Mm
2 −Mm

3 − 2Mm
4 Þ
�
−
2

3
Tm
SU3;1 þ

4

3
Tm
SU3;2

�

¼ −
4

3
ðMm

1 T
m
SU3;1 þMm

2 T
m
SU3;2 þMm

3 T
m
SU3;1 −Mm

3 T
m
SU3;2 þMm

4 T
m
SU3;1Þ; ð4:30Þ

TABLE III. The relevant CGCs of S3 inner product decomposition.

Product sym Target sym Relevant CGCs

½3� ⊙ ½2; 1� [2, 1]
Cð½3�;1Þ;ð½2;1�;1Þ
ð½2;1�;1Þ;1 ¼ 1 Cð½3�;1Þ;ð½2;1�;2Þ

ð½2;1�;1Þ;1 ¼ 0

Cð½3�;1Þ;ð½2;1�;1Þ
ð½2;1�;2Þ;1 ¼ 0 Cð½3�;1Þ;ð½2;1�;2Þ

ð½2;1�;2Þ;1 ¼ 1

½2; 1� ⊙ ½2; 1�

[3]
Cð½2;1�;1Þ;ð½2;1�;1Þ
ð½3�;1Þ;1 ¼ 2

3
Cð½3�;1Þ;ð½2;1�;2Þ
ð½3�;1Þ;1 ¼ 1

3

Cð½2;1�;2Þ;ð½2;1�;1Þ
ð½3�;1Þ;1 ¼ 1

3
Cð½2;1�;2Þ;ð½2;1�;2Þ
ð½3�;1Þ;1 ¼ 2

3

[2, 1]

Cð½2;1�;1Þ;ð½2;1�;1Þ
ð½2;1�;1Þ;1 ¼ 1

3
Cð½3�;1Þ;ð½2;1�;2Þ
ð½2;1�;1Þ;1 ¼ − 1

3

Cð½2;1�;2Þ;ð½2;1�;1Þ
ð½2;1�;1Þ;1 ¼ − 1

3
Cð½2;1�;2Þ;ð½2;1�;2Þ
ð½2;1�;1Þ;1 ¼ − 2

3

Cð½2;1�;1Þ;ð½2;1�;1Þ
ð½2;1�;2Þ;1 ¼ − 2

3
Cð½3�;1Þ;ð½2;1�;2Þ
ð½2;1�;2Þ;1 ¼ − 1

3

Cð½2;1�;2Þ;ð½2;1�;1Þ
ð½2;1�;2Þ;1 ¼ − 1

3
Cð½2;1�;2Þ;ð½2;1�;2Þ
ð½2;1�;2Þ;1 ¼ 1

3

½13�
Cð½2;1�;1Þ;ð½2;1�;1Þ
ð½13�;1Þ;1 ¼ 0 Cð½3�;1Þ;ð½2;1�;2Þ

ð½13�;1Þ;1 ¼ 1
2

Cð½2;1�;2Þ;ð½2;1�;1Þ
ð½13�;1Þ;1 ¼ − 1

2
Cð½2;1�;2Þ;ð½2;1�;2Þ
ð½13�;1Þ;1 ¼ 0

½13� ⊙ ½2; 1� [2, 1]
Cð½13�;1Þ;ð½2;1�;1Þ
ð½2;1�;1Þ;1 ¼ − 1

3
Cð½13�;1Þ;ð½2;1�;2Þ
ð½2;1�;1Þ;1 ¼ − 2

3

Cð½13�;1Þ;ð½2;1�;1Þ
ð½2;1�;2Þ;1 ¼ 2

3
Cð½13�;1Þ;ð½2;1�;2Þ
ð½2;1�;2Þ;1 ¼ 1

3
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where we deliberately change the final expression into them-basis operator obtained by the direct product ofm-bases of the
Lorentz structures and the gauge group factors, i.e., fOðmÞg ¼ fMmg ⊗ fTm

SU3g. Similarly, one can express each term in

fOðpÞ
ðλ;xÞ;ξg as a linear combination of the basis vectors in fOðmÞg:0

BBBBBBBBBBBBBBBBBBBBB@

OðpÞ
ð½2;1�;1Þ;1

OðpÞ
ð½2;1�;2Þ;1

OðpÞ
ð½2;1�;1Þ;2

OðpÞ
ð½2;1�;2Þ;2

OðpÞ
ð½2;1�;1Þ;3

OðpÞ
ð½2;1�;2Þ;3

OðpÞ
ð½3�;1Þ;1

OðpÞ
ð½13�;1Þ;1

1
CCCCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

0 4
3

0 4
3

0 4
3

0 0

− 4
3

0 − 4
3

0 − 4
3

0 0 0

− 4
9

− 4
9

− 8
9

4
9

4
9

− 8
9

− 4
9

− 4
9

− 4
9

8
9

4
9

4
9

− 8
9

4
9

− 4
9

8
9

− 8
3

4
3

8
3

− 4
3

8
3

− 4
3

16
3

− 8
3

4
3

− 8
3

− 4
3

8
3

− 4
3

8
3

− 8
3

16
3

2
3

− 4
3

4
3

− 2
3

− 2
3

− 2
3

2
3

− 4
3

− 4
3

0 0 − 4
3

− 4
3

4
3

− 4
3

0

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

Mm
1 T

m
SU3;1

Mm
1 T

m
SU3;2

Mm
2 T

m
SU3;1

Mm
2 T

m
SU3;2

Mm
3 T

m
SU3;1

Mm
3 T

m
SU3;2

Mm
4 T

m
SU3;1

Mm
4 T

m
SU3;2

1
CCCCCCCCCCCCCCCA

: ð4:31Þ

There are two subtleties remaining in the above notation.

First, the meaning of subscript ξ in fOðpÞ
ðλ;xÞ;ξg is different

from that of the subscript j in fOðλ;xÞ;jg as in Eq. (4.3). The
j represents the label of multiplicity of the resulting irrep
for a general inner product decomposition, while ξ is the
label of multiplicity of irrep of the flavor permutation
symmetry for a certain type of operator. This multiplicity
may originate from the same resulting irreps from different
inner product decompositions, which is illustrated by our
example: the three [2, 1]’s come from ½3� ⊙ ½2; 1�,
½2; 1� ⊙ ½2; 1�, and ½13� ⊙ ½2; 1�, respectively. The second

subtlety is that the fOðpÞ
ðλ;xÞ;ξg is overcomplete, as discussed

in Refs. [9,22] for λ with a dimension larger than the one
the flavor space spanned by each basis vector is the same,
so we only retain the first basis vector for these irreps.
Finally we arrived at the complete set of independent terms
of operator for GLd3CeCD:

fOðpÞ
ð½2;1�;1Þ;1;O

ðpÞ
ð½2;1�;1Þ;2;O

ðpÞ
ð½2;1�;1Þ;3;O

ðpÞ
ð½3�;1Þ;1;O

ðpÞ
ð½13�;1Þ;1g:

ð4:32Þ

D. Desymmetrization: Reduction to monomials

As one can see from the above section the P-basis
operators with particular flavor symmetry are often very

long expressions. For instance, the OðpÞ
ð½2;1�;1Þ;2 in Eq. (4.31)

has eight monomial terms and cannot be simplified. It
would be convenient though to have a simpler expression,
single monomial if possible, for the operator basis, either
for presenting the basis or for future applications. To keep
track of the permutation symmetries, which is crucial as we

have shown, we propose operators of the form Y½λ�
x ∘OðmÞ

i

as our final result, called reduced P-basis, in that they are
nothing but some recombination of the P-basis due to the
symmetry imposed by the Young projection:

Oðp0Þ
ðλ;1Þ;i ≡

1

dλ
Y½λ�

1 ∘OðmÞ
i ¼

Xnλ
ξ¼1

ciξO
ðpÞ
ðλ;1Þ;ξ; i ¼ 1;…;N ;

ð4:33Þ

where nλ is the number of λ representation spaces in the
operator type. This process is to look for a certain subset of
m-basis operators that need not have any permutation
symmetries itself symmetrizing to independent combina-
tions of the P-basis; hence we call it desymmetrization.
With the action of the Young symmetrizer, this form of
operator is still intrinsically a polynomial. Another inter-
pretation is to apply the symmetrizer to the Wilson
coefficient tensor instead of the operators, so that the
whole term is indeed a monomial as a singlet under the
flavor group SUðnfÞ,X

pi

Cp1p2���pn
ðY½λ�Op1p2���pnÞ

¼
X
pi

ðY−1½λ�Cp1p2���pn
ÞOp1p2���pn ; ð4:34Þ

where Y−1½λ� is defined by taking the inverse of each
constituting permutation in Y½λ�. The action of the sym-
metrizer ðY−1½λ�Cp1p2���pn

Þ will project out the λ symmetric
irreducible component of the Wilson coefficient tensor
Cp1p2���pn

, which is exactly spanned by the κ tensor basis we
introduced in Sec. III C. Therefore by keeping the Young
symmetrizer, we actually recover the necessary information
of flavors we derive for the amplitude basis.
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We have to pick out the nλ number of independent
operators from theN projections for a given λ in Eq. (4.33).
It is nontrivial to guarantee the independence, unless nλ ¼
1 when we only need to find a nonvanishing projection. In
general, we need to obtain the coefficient matrix c in
Eq. (4.33), from which we simply pick out nλ rows to form
a full-rank submatrix cζξ, where ζ takes values from an nλ-
size subset of 1 through N . Instead of directly inspecting
the matrix representation of the Young symmetrizers for the
m-basis, it is easier to see how they act on the P-basis,
because the P-basis already has specific symmetries. Due
to the following property:

bλx · bλ
0
y ¼ δλλ

0
δx1δy1bλ1; bλ1 ¼

1

dλ
Y½λ�

1 ; ð4:35Þ

we have

1

dλ
Y½λ�

1 ∘OðpÞ
ðλ0;xÞ;ξ ¼ δλλ

0
δ1xO

ðpÞ
ðλ;1Þ;ξ; ξ ¼ 1;…; nλ: ð4:36Þ

Thus we obtain the matrix representation of the symmetr-
izer for the P-basis

1

dλ
Y½λ�

1 ∘OðpÞ ¼
�
1nλ×nλ 0

0 0

�
N×N

OðpÞ; ð4:37Þ

where we set the first nλ P-basis to be OðpÞ
ðλ;1Þ;ξ for conven-

ience. Therefore we first convert the m-basis operator to the
P-basis using the matrix Kmp ¼ ðKpmÞ−1 and obtain

1

dλ
Y½λ�

1 ∘OðmÞ
i ¼ 1

dλ

XN
j¼1

Kmp
ij Y

½λ�
1 ∘OðpÞ

j

¼
XN
j;k¼1

ð c c̄ Þij
�
1nλ×nλ 0

0 0

�
jk

OðpÞ
k

¼
Xnλ
ξ¼1

ciξO
ðpÞ
ðλ;1Þ;ξ; ð4:38Þ

where the matrix ciξ is identified as the nλ columns in Kmp

that correspond to theOðpÞ
ðλ;1Þ;ξ basis. As explained above, we

only need to select independent rows in c that form our
reduced P-basis for λ.
As an example, we demonstrate the desymmetrization

for the λ ¼ ½2; 1� representation in Eq. (4.31), for which we
find the inverse matrix

ð4:39Þ

where the highlighted columns correspond to the P-basis OðpÞ
ð½2;1�;1Þ;ξ, ξ ¼ 1; 2; 3, in which the rows with red color are the

selectedm-basis that symmetrize to the reduced P-basis. The red submatrix cζξ sets the full-rank conversion matrix between
the P-basis and the reduced P-basis in the λ ¼ ½2; 1� section. Therefore the final operators we get are

ð4:40Þ

ð4:41Þ

ð4:42Þ
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where we express the Young symmetrizer by explicitly showing the Young tableau with flavor indices filled in, so that we

do not have to keep track of the order of the flavor indices. Recall that Y½2;1�
1 acts on the flavor tensor Oprst as

ð4:43Þ

We implement the same process for all of the λ’s, as in the previous example we have for λ ¼ ½3�; ½13�:

ð4:44Þ

ð4:45Þ

As one may notice, an m-basis may be selected multiple
times, such as the Mm

2 T
m
SU3;2 in the above case. When that

happens, the final result contains terms that could merge
into a single Lagrangian term in the traditional sense,

ðY½λ1�
1 ⊕ Y½λ2�

1 ⊕ � � �Þ ∘OðmÞ
i ; ð4:46Þ

which belongs to the reducible representation of the flavor
group SUðnfÞ. This notation is equivalent to the flavor
relations in the traditional operator enumeration [3,23,36],
while the crucial difference is that in the traditional treat-
ment, the flavor relations need to be worked out specifically
for each type of operators, involving all of the operator
redundancy relations such as the EOM, the IBP relation,
and the Fierz identities for both Lorentz and gauge groups.
At higher dimensions, it may even be necessary to work out
relations among different operators of the same type.

Suppose we have two monomial terms OððmÞ
1;2 , which have

intrinsic flavor relations that imply the following reduced
P-basis that are independent within each merged term

ðY½λ1�
1 ⊕ Y½λ2�

1 Þ ∘OðmÞ
1 ; ðY½λ1�

1 ⊕ Y½λ2�
1 ⊕ Y½λ3�

1 Þ ∘OðmÞ
2 :

ð4:47Þ

Also suppose that in our treatment we find nλ1 ¼ 2 and

nλ2 ¼ nλ3 ¼ 1; thus the two terms Y½λ2�
1 OðmÞ

1;2 are actually
equivalent, which is translated into a flavor relation
between the two operators. Such flavor relations did not
show up at dim-7 or lower, but are inevitable at higher
dimensions when the subspaces of type become larger and
are quite tricky to work out systematically. Therefore, our
method of operator enumeration has the privilege that we
do not need to work out these relations explicitly, but rather
provide an equivalent notation to represent the flavor
information. In the following, we use a dim-7 example

to show the equivalence between our Young symmetrizer
notation and the traditional flavor relations.

E. Flavor tensor versus flavor relation

To demonstrate the advantage of our notation with
Young symmetrizers we take the operator Otrps

L̄dddH
6 as an

example and compare our result to those obtained in
Ref. [8] with flavor relations:

Otrps þ p ↔ s ¼ 0; ð4:48Þ

Otrps þOtpsr þOtsrp ¼ 0: ð4:49Þ

Since only the flavor indices of repeated fields d are
relevant for the symmetrization, we temporally neglect
the index t and treat the operator as a tensor of the flavor
indices p, r, s. To make the description of the symmetric
group more convenient and transparent, we change the
indices p, r, s to those with subscripted indices f1, f2, f3,
and the above equations are equivalent to

Of2f1f3 þOf2f3f1 ¼ ½ð12Þ þ ð123Þ� ∘Of1f2f3 ¼ 0; ð4:50Þ

Of2f1f3 þOf1f3f2 þOf3f2f1

¼ ½ð12Þ þ ð23Þ þ ð13Þ� ∘Of1f2f3 ¼ 0: ð4:51Þ

On the other hand, the identity in the group algebra S̃3 can
be written as a summation of the four distinct primitive
idempotents that are proportional to the four Young
symmetrizers of different SSYT:

E ¼ Y½3�
1 þ 1

2
Y½2;1�

1 þ 1

2
Y½2;1�

2 þ Y½13�
1 ; ð4:52Þ

6We have changed the order of the flavor indices in the
superscripts to match our notation.
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where Y½2;1�
1 ¼ 2b½2;1�1 is the Young symmetrizer of the

normal Young diagram we mentioned in the above

subsection, and Y½2;1�
2 ¼ 2b½2;1�2 . (23) is the Young symmetr-

izer of the other SSYT . Acting with the identity on an

arbitrary tensor yields the original tensor indicates that a
third rank tensor can be decomposed to four distinct
subspaces with the corresponding permutation symmetry.
This is essentially the underlining reason that we have the
decomposition 3 ⊗ 3 ⊗ 3 ¼ 10 ⊕ 8 ⊕ 8 ⊕ 1 for SUð3Þ.
Therefore we can insert an identity E in front of the

Of1f2f3 in Eqs. (4.50) and (4.51), using the results of the
group algebra multiplications:

½ð12Þ þ ð123Þ� · Y½13�
1 ¼ 0; ð4:53Þ

½ð12Þ þ ð23Þ þ ð13Þ� · Y½2;1�
1;2 ¼ 0; ð4:54Þ

we convert the flavor relations into

½ð12Þ þ ð123Þ� ∘
�
Y½3�

1 þ 1

2
Y½2;1�

1 þ 1

2
Y½2;1�

2

�
∘Of1f2f3 ¼ 0;

ð4:55Þ

½ð12Þ þ ð23Þ þ ð13Þ� ∘Y½3�
1 ∘Of1f2f3

¼ −½ð12Þ þ ð23Þ þ ð13Þ� ∘Y½13�
1 ∘Of1f2f3 : ð4:56Þ

Using the properties of the Young symmetrizer7

Yλ0
i rY

λ
j ¼ 0 for any r ∈ S̃ if λ0 ≠ λ; ð4:57Þ

Yλ
iY

λ
i ∝ Yλ

i ; ð4:58Þ

and acting with Y½3�
1 and Y½13�

1 on both sides of Eq. (4.56)
one can deduce that

Y½13�
1 ∘Of1f2f3 ¼ Y½3�

1 ∘Of1f2f3 ¼ 0; ð4:59Þ

which means that we do not have a totally symmetric or an
antisymmetric subspace for the operator Otrps

L̄dddH regarding
the permutation of the flavor indices r, p, s of three down

quark fields. As Y½3�
1 ∘Of1f2f3 ¼ 0, Eq. (4.55) becomes

½ð12Þ þ ð123Þ� ∘Y½2;1�
1 ∘Of1f2f3

¼ −½ð12Þ þ ð123Þ� ∘Y½2;1�
2 ∘Of1f2f3 ; ð4:60Þ

which indicates that the subspaces spanned by these

two tensors with [2, 1] symmetry Y½2;1�
1 ∘Of1f2f3 and

Y½2;1�
2 ∘Of1f2f3 are linearly dependent. So there is only one

[2, 1] symmetric basis left, which coincides with
our result:

ð4:61Þ

Moreover, our result enable one to directly write down the
independent flavor-specified components of the operator by

enumerating corresponding SSYTs for :

ðp; r; sÞ ¼ ðf1; f2; f3Þ ¼ ð1; 1; 2Þ; ð1; 1; 3Þ; ð1; 2; 2Þ;
ð1; 2; 3Þ; ð1; 3; 3Þ; ð1; 3; 2Þ; ð2; 2; 3Þ; ð2; 3; 3Þ:

ð4:62Þ
If one starts from the flavor relation, then finding out the
corresponding flavor-specified operators may be difficult.

V. LISTS OF THE DIM-9 OPERATORS

A. Preview of the result

In this section, we summarize our main results for the
dimension-nine operators in the SMEFT. Table V is a
summary of the numbers of operators at different levels of
categories in our result. In the second column we list all
the possible classes characterized by the numbers of
derivatives and fields in various Lorentz irreps. We explic-
itly separate the numbers of types with ΔL ¼ 0, 1, 2, 3 in
the third column, and a total of 296 different types are
obtained. In the fourth column we present the numbers of
terms with definite flavor symmetry for each class and get
1262 independent terms. In the fifth column we express
the numbers of flavor-specified operators as functions of
the number of generations of fermions nf, and the total
numbers of flavor-specified operators for nf ¼ 1 and 3 are
560 and 90456, respectively. Again we have separated
these total numbers into the sum of the numbers of
operators with ΔL ¼ 0, 1, 2, 3. We also list all the
dimension-seven operators in Table IV for a comparison
with the result in Refs. [7,8].
We find that there are 122 types with ðΔB;ΔLÞ ¼

ð�1;∓ 1Þ in dimension-nine that are relevant for the
B − L violation process needed for leptogenesis while
subjecting to strong proton decay constraints. There are
also 164 types with ðΔB;ΔLÞ ¼ ð0;�2Þ in dimension-
nine that potentially contribute neutrinoless double
beta decay, and the Majorana neutrino masse with a new
physics scale possibly testable at future LHC experiments.
We also find that the two-fermion operators must have
ðΔB;ΔLÞ ¼ ð0;�2Þ, while four-fermion operators can
be either ðΔB;ΔLÞ ¼ ð�1;∓ 1Þ or ðΔB;ΔLÞ ¼ ð0;�2Þ.
The new violation patterns ðΔB;ΔLÞ ¼ ð�1;�3Þ and

7The relation in Eq. (4.58) holds for the symmetric group Sn
for n ¼ 1–4; however, starting from n ¼ 5 the Young symmetr-
izers are no longer orthogonal. Instead, we can construct a set of
orthogonal primitive idempotents by decorating the Young
symmetrizers with group algebra elements.
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ðΔB;ΔLÞ ¼ ð�2; 0Þ starting at dimension-nine only
appear in the six-fermion operators. The types u2d4,
d2q4, ud3q2 and their conjugates with ðΔB;ΔLÞ ¼
ð�2; 0Þ will contribute to the neutron-antineutron oscilla-
tion. The types l3u2q, el2u3, and their conjugates with
ðΔB;ΔLÞ ¼ ð�1;�3Þ will contribute to the BLV process
without stringent constraints from the proton two-body
decay experiments.
Based on the reduced P-basis, we further perform a few

conversions for the convenience of phenomenologists.
First, we have transferred the field strength tensors from
the chiral basis FL;R to the usual form F and F̃. Although
the chiral basis is a more natural choice from the helicity
amplitudes prospect, the F, F̃ basis has many privileges
such as its Hermiticity and definite CP. Moreover, a lot of
mature techniques are also implemented in terms of the F,
F̃ basis, such as the program of Feynman rule calculations.
We summarize the conversion rules between the two bases
as follows8:

F̃μν ¼ 1

2
ϵμνρηFρη; FL=R ¼ 1

2
ðF ∓ iF̃Þ; ð5:1Þ

from which we can easily deduce the following useful
identities:

F̃1μρF2
ρν ¼ −F1

νρF̃2ρμ −
1

2
ðF1F̃2Þδνμ; ð5:2Þ

F̃1μρF̃2
ρν ¼ F1

νρF2ρμ þ
1

2
ðF1F2Þδνμ: ð5:3Þ

After the conversion, we do not distinguish types
with F or F̃, as they are sometimes not independent
of each other. Therefore the types we present in the
following sections do not count the same as the numbers
in Table V.
Second, we also present the operators in the four-

component form and retain the relationship to the
two-component form in Appendix A. In the SM, the
four-component chiral fermions are related to the two-
component fermions by the following formulas:

TABLE IV. List of dimension-seven operators in SMEFT.

8Note that there might be further linear combinations among
the converted operators to finally obtain simple monomial
operators, which has been carefully done to keep the independ-
ence of the operator basis.
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qL ¼
�
Q

0

�
; uR ¼

�
0

u†C

�
; dR ¼

�
0

d†C

�
;

lL ¼
�
L

0

�
; eR ¼

�
0

e†C

�
; ð5:4Þ

q̄L ¼ ð0; Q†Þ; ūR ¼ ðuC; 0Þ; d̄R ¼ ðdC; 0Þ;
l̄L ¼ ð0; L†Þ; ēR ¼ ðeC; 0Þ: ð5:5Þ

The conversion rules of the fermion bilinears in the SM are
obtained by substituting these fields into the relations in
Eq. (A2), such as

ūq ¼ uCQ; q̄u ¼ Q†u†C;

ūγμd ¼ uCσμd
†
C; q̄γμq ¼ Q†σ̄μQ;

ūσμνq ¼ uCσμνQ; q̄σμνu ¼ Q†σ̄μνu†C;

uTCd ¼ u†Cd
†
C; qTCq ¼ QQ;

uTCγμq ¼ u†Cσ̄
μQ; qTCγμu ¼ Qσμu†C;

uTCσμνd ¼ u†Cσ̄
μνd†C; qTCσμνq ¼ QσμνQ;

ūCd̄T ¼ uCdC; q̄Cq̄T ¼ Q†Q†;

ūγμCq̄T ¼ uCσμQ†; q̄γμCūT ¼ Q†σ̄μuC;

ūσμνCd̄T ¼ uCσμνdC; q̄σμνCq̄T ¼ Q†σ̄μνQ†: ð5:6Þ

TABLE V. We present complete statistics of dimension-nine SMEFT operators here. N in the leftmost column shows the number of
particles. ðn; ñÞ are the numbers of ϵ and ϵ̃ in the Lorentz structure. N type, N term, and N operator show the number of types, terms, and
Hermitian operators, respectively (independent conjugates are counted), while the numbers under N type and the last line of N operator

describe the sum of each possible jΔLj types/operators with N ¼ N ðjΔLj ¼ 0Þ þN ðjΔLj ¼ 1Þ þN ðjΔLj ¼ 2Þ þN ðjΔLj ¼ 3Þ.
Note that term in our definition is different from the other literature, so the numbers are larger than those in, for instance, [22]. That is not
surprising since they did an extra step of merging before the counting. However, the number of operators are exactly the same as in
[22,37]. The links in the rightmost column refer to the list(s) of the terms in given classes.

N ðn; ñÞ Classes N type N term N opetator Equations

4 (3,2) ψ3ψ†D3 þ H:c: 0þ 4þ 2þ 0 10 2
3
n2fð7n2f − 1Þ (5.50)(5.51)

ψ2ϕ2D4 þ H:c: 0þ 0þ 2þ 0 6 3nfðnf þ 1Þ (5.21)

5 (3,1) FLψ
3ψ†Dþ H:c: 0þ 10þ 6þ 0 72 32n4f (5.59)(5.60)

ψ4ϕD2 þ H:c: 0þ 4þ 4þ 0 100 40n4f (5.45)–(5.48)
FLψ

2ϕ2D2 þ H:c: 0þ 0þ 4þ 0 34 17n2f − nf (5.28)(5.29)
(2,2) FRψ

3ψ†Dþ H:c: 0þ 10þ 6þ 0 54 4n3fð6nf þ 1Þ (5.59)(5.60)

ψ2ψ†2ϕD2 0þ 4þ 4þ 0 84 n3fð49nf þ 1Þ (5.45)–(5.48)
FRψ

2ϕ2D2 þ H:c: 0þ 0þ 4þ 0 20 2nfð5nf − 1Þ (5.28)(5.29)
ψψ†ϕ3D3 0þ 0þ 2þ 0 6 6n2f (5.19)

6 (3,0) ψ6 þ H:c: 2þ 4þ 6þ 0 116 1
24
n2fð415n4f þ 53n3f þ 59n2f þ 139nf þ 6Þ (5.63)–(5.70)

FLψ
4ϕþ H:c: 0þ 12þ 10þ 0 102 2n3fð21nf þ 1Þ (5.54)–(5.56)

F2
Lψ

2ϕ2 þ H:c: 0þ 0þ 8þ 0 20 2nfð5nf þ 2Þ (5.32)
(2,1) ψ4ψ†2 þ H:c: 4þ 26þ 20þ 4 244 1

6
n3fð382n3f − 9n2f þ 2nf þ 21Þ (5.63)–(5.69)

FLψ
2ψ†2ϕþ H:c: 0þ 24þ 24þ 0 92 52n4f (5.54)–(5.56)

F2
Lψ

†2ϕ2 þ H:c: 0þ 0þ 8þ 0 12 2nfð3nf þ 2Þ (5.32)
ψ3ψ†ϕ2Dþ H:c: 0þ 12þ 18þ 0 186 2

3
n2fð146n2f þ 1Þ (5.39)–(5.42)

FLψψ
†ϕ3Dþ H:c 0þ 0þ 8þ 0 12 12n2f (5.25)

ψ2ϕ4D2 þ H:c: 0þ 0þ 4þ 0 24 2nfð6nf þ 1Þ (5.17)

7 (2,0) ψ4ϕ3 þ H:c: 0þ 6þ 6þ 0 32 4
3
n2fð10n2f − 1Þ (5.35)–(5.37)

FLψ
2ϕ4 þ H:c: 0þ 0þ 4þ 0 8 2nfð2nf − 1Þ (5.23)

(1,1) ψ2ψ†2ϕ3 0þ 6þ 10þ 0 24 14n4f (5.35)–(5.37)
ψψ†ϕ5D 0þ 0þ 2þ 0 24 14n4f (5.35)–(5.37)

8 (1,0) ψ2ϕ6 þ H:c: 0þ 0þ 2þ 0 2 n2f þ nf (5.9)

Total 42 6þ 122þ 164þ 4 1262 8þ 204þ 348þ 0 (nf ¼ 1)
2862þ 42234þ 44874þ 486 ðnf ¼ 3Þ
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Bilinears involving leptons can be converted similarly. It
should be noted that the transpose symbol T is left implicit
in this section. Derivatives, if any, do not change the spinor
contraction structures.
Finally, unlike the dimension-eight basis in [9], types are

all complex here. We only present the operators without its
Hermitian conjugate. The Hermitian conjugates of four-
component spinor bilinears can be converted using the
following relations:

ðΨ̄1Ψ2Þ† ¼ Ψ̄2Ψ1;

ðΨ̄1γ
μΨ2Þ† ¼ Ψ̄2γ

μΨ1;

ðΨ̄1σ
μνΨ2Þ† ¼ Ψ̄2σ

μνΨ1;

ðΨT
1CΨ2Þ† ¼ Ψ̄2CΨ̄T

1 ;

ðΨT
1Cγ

μΨ2Þ† ¼ Ψ̄2γ
μCΨ̄T

1 ;

ðΨT
1Cσ

μνΨ2Þ† ¼ Ψ̄2σ
μνCΨ̄T

1 : ð5:7Þ

B. Classes involving two fermions

The classification of different types is based on the
number of fermions, as there is no operator without fermion
fields. We first list the operators involving two fermions, in
which all operators describe ΔL ¼ 2 processes, since only
the lepton bilinear is allowed to appear. The type l2H4H†2

can contribute to the neutrino Majorana mass. The type
Wl2H3H† and Bl2H3H† may contribute to the neutrino
anomalous magnetic moment. The type W2l2H2 contains
the operators contributing to the neutrinoless double beta
decay at tree level.

1. No gauge boson involved

In this subsection, we deal with the classes ψ2ϕnDD6−nD .
Note that for even nD we have operators with fermions of

opposite helicities, or chirality conserving, while for odd
nD we have operators with fermions of the same helicities
or chirality violating.
Class ψ2ϕ6: The only Lorentz structure of this class is

ψ1
αψ2αϕ3ϕ4ϕ5ϕ6ϕ7ϕ8: ð5:8Þ

This class involves the Weinberg operator with additional
Higgses:

ð5:9Þ

After taking all the Higgs vacuum expectation value
(VEV), it can give rise to additional contributions to the
Majorana neutrino masses.
Class ψ2ϕ5D: The class has to be ψψ†ϕ5D, which has

the following Lorentz structures:

ψ1
αϕ2ðDϕ3Þα _αϕ4ϕ5ϕ6ψ

†
7
_α; ψ1

αϕ2ϕ3ðDϕ4Þα _αϕ5ϕ6ψ
†
7
_α;

ð5:10Þ

ψ1
αϕ2ϕ3ϕ4ðDϕ5Þα _αϕ6ψ

†
7
_α; ψ1

αϕ2ϕ3ϕ4ϕ5ðDϕ6Þα _αψ†
7
_α:

ð5:11Þ

Considering the conservation of hypercharge, the only
operator in this class is

OelH4H†DjϵikϵlmðlpiCγμerÞHkHlDμHmðH†HÞ: ð5:12Þ

Class ψ2ϕ4D2: The class ψ2ϕ4D2 contains 12 new
Lorentz structures that are all absent at lower dimensions:

ψ1
αψ2βðDϕ3Þ _ααðDϕ4Þβ_αϕ5ϕ6; ψ1

αψ2βðDϕ3Þ _ααϕ4ðDϕ5Þβ_αϕ6; ψ1
αψ2βðDϕ3Þ _ααϕ4ϕ5ðDϕ6Þβ_α; ð5:13Þ

ψ1
αψ2βϕ3ðDϕ4Þ _ααðDϕ5Þβ_αϕ6; ψ1

αψ2βϕ3ðDϕ4Þ _ααϕ5ðDϕ6Þβ_α; ψ1
αψ2βϕ3ϕ4ðDϕ5Þ _ααðDϕ6Þβ_α; ð5:14Þ

ψ1
αψ2αðDϕ3Þβ_αðDϕ4Þ _αβϕ5ϕ6; ψ1

αψ2αðDϕ3Þβ_αϕ4ðDϕ5Þ _αβϕ6; ψ1
αψ2αðDϕ3Þβ_αϕ4ϕ5ðDϕ6Þ _αβ; ð5:15Þ

ψ1
αψ2αϕ3ðDϕ4Þβ_αðDϕ5Þ _αβϕ6; ψ1

αψ2αϕ3ðDϕ4Þβ_αϕ5ðDϕ6Þ _αβ; ψ1
αψ2αϕ3ϕ4ðDϕ5Þβ_αðDϕ6Þ _αβ: ð5:16Þ

The following two types are allowed in this class and the operators are listed below:
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ð5:17Þ

The superscripts of the O’s label the terms in particular type, in the order from left to right and from top to bottom.
Class ψ2ϕ3D3: With three derivatives, we have 10 independent Lorentz structures as follows:

ψ1
αðDϕ2Þβ_αðDϕ3Þα _βðDϕ4Þ _αβψ†

5

_β; ψ1
αðDϕ2Þβ_αðDϕ3Þα _βϕ4ðDψ†

5Þ _α
_β

β ; ψ1
αðDϕ2Þβ_αϕ3ðD2ϕ4Þ _α_βαβψ

†
5

_β;

ψ1
αðDϕ2Þβ_αϕ3ðDϕ4Þα _βðDψ†

5Þ _α
_β

β ; ψ1
αϕ2ðD2ϕ3Þβα _α _β

ðDϕ4Þ _αβψ†
5

_β; ψ1
αϕ2ðD2ϕ3Þβα _α _β

ϕ4ðDψ†
5Þ _α

_β
β ;

ψ1
αϕ2ðDϕ3Þβ_αðD2ϕ4Þ _α_βαβψ

†
5

_β; ψ1
αϕ2ðDϕ3Þβ_αðDϕ4Þα _βðDψ†

5Þ _α
_β

β ; ψ1
αϕ2ðDϕ3Þα _αðDϕ4Þβ_βðDψ†

5Þ _α
_β

β ;

ψ1
αϕ2ϕ3ðD2ϕ4Þβα _α _β

ðDψ†
5Þ _α

_β
β : ð5:18Þ

The Lorentz structures are also new here. There is only one possible type for these Lorentz structures:

Oð1∼3Þ
elH3D3

���� ϵijϵkmðlpiCγνDμerÞHmDμHjDνHk; ϵijϵkmðlpiCγνerÞDμHjDνHkDμHm;

ϵikϵjmðlpiCγνDμerÞHmDμHjDνHk:
ð5:19Þ

Class ψ2ϕ2D4: With four derivatives, we have three independent Lorentz structures as follows:

ψ1
αðDψ2Þβγ_α ðDϕ3Þα_βðD2ϕ4Þ _α _β

βγ ; ψ1
αψ2

βðD2ϕ3Þγα _α _β
ðD2ϕ4Þ _α _β

βγ ; ψ1
αψ2αðD2ϕ3Þβγ_α _β

ðD2ϕ4Þ _α _β
βγ : ð5:20Þ

Still there is only one possible type:

ð5:21Þ

2. One gauge boson involved

Class Fψ2ϕ4: The class has to be FLψψϕ
3, which has only one Lorentz structure

FL1
αβψ2αψ3βϕ4ϕ5ϕ6ϕ7: ð5:22Þ

There are two possible types, the antisymmetric flavor representations of which contribute to the neutrino anomalous
magnetic moment:

ð5:23Þ

The fermion bilinear terms here are always chirality violating.

COMPLETE SET OF DIMENSION-NINE OPERATORS IN THE … PHYS. REV. D 104, 015025 (2021)

015025-25



Class Fψ2ϕ3D: In this class, the gauge boson contracts with the fermion current and the Higgs current. There are three
independent Lorentz structures as follows:

FL1
αβψ2αðDϕ3Þβ _αϕ4ϕ5ψ

†
6
_α; FL1

αβψ2αϕ3ðDϕ4Þβ _αϕ5ψ
†
6
_α; FL1

αβψ2αϕ3ϕ4ðDϕ5Þβ _αψ†
6
_α: ð5:24Þ

Two types are written as follows:

Oð1∼4Þ
WelH3D

���� ϵikϵjnðτIÞmn WI
μνðlpiCγνerÞHkHmDμHj; ϵikϵjnðτIÞmn W̃I

μνðlpiCγνerÞHkHmDμHj;

ϵinϵjkðτIÞmn WI
μνðlpiCγνerÞHkHmDμHj; ϵinϵjkðτIÞmn W̃I

μνðlpiCγνerÞHkHmDμHj;

Oð1;2Þ
BelH3D

jϵikϵjmBμ
νðlpiCγνerÞHkHmDμHj; ϵikϵjmB̃μ

νðlpiCγνerÞHkHmDμHj: ð5:25Þ

Class Fψ2ϕ2D2: There are two classes of this form. One is FLψ
2ϕ2D2, a dimension-seven class FLψ

2ϕ2 with two
additional derivatives, which has seven independent Lorentz structures:

FL1
αβψ2

γðDψ3Þαβ _αðDϕ4Þ _αγϕ5; FL1
αβψ2

γðDψ3Þαβ _αϕ4ðDϕ5Þ _αγ ; FL1
αβψ2

γψ3αðDϕ4Þβ _αðDϕ5Þ _αγ ;
FL1

αβψ2αðDψ3Þγβ _αðDϕ4Þ _αγϕ5; FL1
αβψ2αðDψ3Þγβ _αϕ4ðDϕ5Þ _αγ ;

FL1
αβψ2αψ3

γðDϕ4Þβ _αðDϕ5Þ _αγ ; FL1
αβψ2αψ3βðDϕ4Þγ_αðDϕ5Þ _αγ : ð5:26Þ

The other class is FRψ
2ϕ2D2, where the flip of helicity for the gauge boson is made possible by the presence of the two

additional derivatives. The Lorentz structures of this class are

ψ1
αψ2

βðD2ϕ3Þαβ _α _βϕ4FR5
_α _β; ψ1

αψ2
βðDϕ3Þα _αðDϕ4Þβ _βFR5

_α _β;

ψ1
αψ2

βϕ3ðD2ϕ4Þαβ _α _βFR5
_α _β; ψ1

αψ2αðDϕ3Þβ_αðDϕ4Þβ _βFR5
_α _β: ð5:27Þ

After converting to the F, F̃ basis, these two classes mix together:

ð5:28Þ
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ð5:29Þ

3. Two gauge boson involved

Class F2ψ2ϕ2: Two classes are involved, with the same and opposite helicities for the gauge bosons and fermions. For the
class F2

Lψ
2ϕ2, we obtained two independent Lorentz structures,

FL1
αβFL2αγψ3βψ4

γϕ5ϕ6; FL1
αβFL2αβψ3

γψ4γϕ5ϕ6: ð5:30Þ
while for F2

Rψ
2ϕ we have only one independent Lorentz structure,

ψ1
αψ2αϕ3ϕ4FR5

_α _βFR6 _α _β: ð5:31Þ
After converting to the F, F̃ basis, the terms with the second Lorentz structure in Eq. (5.30) and those with the Lorentz
structure in Eq. (5.31) combine to the form as theWeinberg operator with an extra F2 or FF̃. The terms with the first Lorentz
structure in Eq. (5.30) are left as they are as follows:

ð5:32Þ

C. Classes involving four fermions

In this subsection, quarks begin to appear in opera-
tors, and jB − Lj is always equal to 2, such that only
ðΔB;ΔLÞ ¼ ð�1;∓ 1Þ and ðΔB;ΔLÞ¼ð0;2Þ are allowed.
The classes involve three quarks and one lepton, or two
quarks and two leptons, or four leptons. The operators with
ðΔB;ΔLÞ ¼ ð�1;∓ 1Þ usually contribute to the proton
two-body decay processes, while the ΔL ¼ 2 operators
could give rise to a contribution to the neutrinoless
double beta decay processes, such as the operator type
Wud̄l2D at tree level. We are going to present the operators
in terms of the number of quarks. Operators with ΔB ¼ −1

or ΔL ¼ −2 are taken conjugate to make them look a bit
neater.

1. No gauge boson involved

Class ψ4ϕ3: There are two classes in this form: ψ2ψ†2ϕ3

and ψ4ϕ3, and the independent Lorentz structures are

ψα
1ψ2αϕ3ϕ4ϕ5ψ

†
6 _αψ

†
7
_α; ð5:33Þ

ψα
1ψ

β
2ψ3αψ4βϕ5ϕ6ϕ7; ψα

1ψ2αψ
β
3ψ4βϕ5ϕ6ϕ7: ð5:34Þ
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Operators of this class contribute to the four-fermion interactions if the Higgs fields take their VEV, and operators involving
two or three l’s are relevant to the neutrino nonstandard interactions.

1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1:

ð5:35Þ

2. Operators involving two leptons and two quarks with ΔL ¼ 2:

ð5:36Þ

3. Operators involving only leptons with ΔL ¼ 2:

ð5:37Þ

Class ψ4ϕ2D: The class of this form must contain three spinors of the same helicities and one spinor of the opposite
helicity, namely ψ3ψ†ϕ2D. A total of five independent Lorentz structures exist in this class:

ψα
1ψ

β
2ðDψ3Þαβ _αϕ4ϕ5ψ

†
6
_α; ψα

1ψ
β
2ψ3αðDϕ4Þβ _αϕ5ψ

†
6
_α;

ψα
1ψ

β
2ψ3αϕ4ðDϕ5Þβ _αψ†

6
_α; ψα

1ψ2αψ
β
3ðDϕ4Þβ _αϕ5ψ

†
6
_α; ψα

1ψ2αψ
β
3ϕ4ðDϕ5Þβ _αψ†

6
_α: ð5:38Þ
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1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1:

ð5:39Þ

2. Operators involving two leptons and two quarks with ΔB ¼ 0 and ΔL ¼ 2:

ð5:40Þ
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ð5:41Þ

3. Operators involving only leptons with ΔL ¼ 2:

ð5:42Þ
Class ψ4ϕD2: This form involves two classes: ψ4ϕD2 with ten Lorentz structures:

ψα
1ðDψ2Þβγ_α ψ3αðDψ4Þ _αβγϕ5; ψα

1ðDψ2Þβγ_α ψ3αψ4βðDϕ5Þ _αγ ; ψα
1ψ

β
2ðDψ3Þγα _αðDψ4Þ _αβγϕ5;

ψα
1ψ

β
2ðDψ3Þγα _αψ4βðDϕ5Þ _αγ ; ψα

1ψ
β
2ψ

γ
3ðDψ4Þαβ _αðDϕ5Þ _αγ ; ψα

1ψ
β
2ðDψ3Þαβ _αψγ

4ðDϕ5Þ _αγ ;
ψα
1ψ

β
2ψ3αðDψ4Þγβ _αðDϕ5Þ _αγ ; ψα

1ψ2αðDψ3Þβγ_α ðDψ4Þ _αβγϕ5; ψα
1ψ2αðDψ3Þβγ_α ψ4βðDϕ5Þ _αγ ;

ψα
1ψ2αψ

β
3ðDψ4Þγβ _αðDϕ5Þ _αγ ; ð5:43Þ
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and ψ2ψ†2ϕD2 with seven independent Lorentz structures:

ψα
1ψ

β
2ðD2ϕ3Þ _α _β αβψ

†
4
_αψ†

5

_β; ψα
1ψ

β
2ðDϕ3Þα _αðDψ†

4Þ _αβ _βψ
†
5

_β; ψα
1ψ

β
2ðDϕ3Þα _αψ†

4 _βðDψ†
5Þ _α

_β
β ;

ψα
1ψ

β
2ϕ3ðDψ†

4Þα _α _βðDψ†
5Þ _α

_β
β ; ψα

1ψ2αðDϕ3Þβ _αðDψ†
4Þ _αβ _βψ

†
5

_β; ψα
1ψ2αðDϕ3Þβ_αψ†

4 _βðDψ†
5Þ _α

_β
β ;

ψα
1ψ2αϕ3ðDψ†

4Þβ_α _β
ðDψ†

5Þ _α
_β

β : ð5:44Þ

1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1:

ð5:45Þ

2. Operators involving two leptons and two quarks with ΔL ¼ 2:

ð5:46Þ
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ð5:47Þ

3. Operators involving only leptons with ΔL ¼ 2:

ð5:48Þ

Class ψ4D3: There is only one class here: ψ3ψ†D3, with independent Lorentz structures

ψα
1ðDψ2Þβγ _αðDψ3Þαβ _βðDψ†

4Þ _α _β
γ ; ψα

1ψ
β
2ðD2ψ3Þγ_α _β αβ

ðDψ†
4Þ _α _β

γ : ð5:49Þ

1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1:

ð5:50Þ

2. Operators involving two leptons and two quarks with ΔL ¼ 2:

ð5:51Þ
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2. One gauge boson involved

Class Fψ4ϕ: There are two class involved: FLψ
4ϕ and FLψ

2ψ†2ϕ, and the independent Lorentz structures are

FL1
αβψ2

γψ3αψ4βψ5γϕ6; FL1
αβψ2αψ3

γψ4βψ5γϕ6; FL1
αβψ2αψ3βψ4

γψ5γϕ6; ð5:52Þ

FL1
αβψ2αψ3βϕ4ψ

†
5 _αψ

†
6
_α: ð5:53Þ

Via a simple relation FRμνσ
μν
αβ ¼ 0, Fμνσ

μν
αβ ¼ FLμνσ

μν
αβ, we replace all FL with F. All types follow this replacing rule.

1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1: 9

ð5:54Þ
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2. Operators involving two leptons and two quarks with ΔL ¼ 2:

ð5:55Þ

3. Operators involving only leptons with ΔL ¼ 2:

ð5:56Þ
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Class Fψ4D: The classes have to be either FRψ
3ψ†D with three Lorentz structures,

ψα
1ψ

β
2ðDψ3Þαβ _αψ†

4 _βFR5
_α _β; ψα

1ψ
β
2ψ3αðDψ†

4Þβ _α _βFR5
_α _β; ψα

1ψ2αψ
β
3ðDψ†

4Þβ _α _βFR5
_α _β; ð5:57Þ

or FLψ
3ψ†D with four independent Lorentz structures,

FL1
αβψγ

2ðDψ3Þαβ _αψ4γψ
†
5
_α; FL1

αβψγ
2ψ3αðDψ4Þβγ _αψ†

5
_α;

FL1
αβψ2αðDψ3Þγβ _αψ4γψ

†
5
_α; FL1

αβψ2αψ
γ
3ðDψ4Þβγ _αψ†

5
_α: ð5:58Þ

After converting to the F, F̃ basis, these two classes mix together.
1. Operators involving three quarks with ΔB ¼ 1 and ΔL ¼ −1:

ð5:59Þ
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2. Operators involving two leptons and two quarks with ΔL ¼ 2; the typeWud̄l2D contains the operators contributing
the neutrinoless double beta decay at tree level:

ð5:60Þ

D. Classes involving six fermions

All the Lorentz structures in this section are new. This
class of Lorentz structures contains both processes with
ðΔB;ΔLÞ ¼ ð�1;∓ 1Þ and ðΔB;ΔLÞ ¼ ð0; 2Þ that are
already present at a lower dimension, and with ΔB ¼ 2
or ΔL ¼ 3 that are absent at lower dimensions and relevant

for the neutron-antineutron oscillation or the proton
three-body decay processes. Meanwhile, jB − Lj is still
equal to 2. Only two classes involve six fermions. In the
first class, six fermions with the same helicities contract
with each other, ψ6, producing five independent Lorentz
structures

ψ1
αψ2

βψ3
γψ4αψ5βψ6γ; ψ1

αψ2
βψ3αψ4

γψ5βψ6γ; ψ1
αψ2

βψ3αψ4βψ5
γψ6γ;

ψ1
αψ2αψ3

βψ4
γψ5βψ6γ; ψ1

αψ2αψ3
βψ4βψ5

γψ6γ: ð5:61Þ

In the second class, two of them have opposite helicities,
ψ4ψ†2, giving two other Lorentz structures:

ψ1
αψ2

βψ3αψ4βψ
†
5 _αψ

†
6
_α; ψ1

αψ2αψ3
βψ4βψ

†
5 _αψ

†
6
_α:

ð5:62Þ
Similarly, we present the operators in terms of the
number of quarks and conjugate those operators with

ΔB < 0 or ΔL ¼ 2. The only type relevant for the
proton three body decay is l3qu2, while for the neutron-
antineutron oscillation, two types d2q4 and d3q2u are
relevant.

1. Operators involving only quarks with ΔB ¼ 2,
only two types d2q4 and d3q2u contain operators
involving the neutron-antineutron oscillation:
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ð5:63Þ
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2. Operators involving five quarks and one lepton with ΔB ¼ 1 and ΔL ¼ −1:

ð5:64Þ
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3. Operators involving four quarks and two leptons with ΔB ¼ 0 and ΔL ¼ −2. Except for the last two types dl̄2uū2

and d2d̄l̄2ū, all the types contain operators contributing the neutrinoless double beta decay at tree level:

ð5:65Þ

COMPLETE SET OF DIMENSION-NINE OPERATORS IN THE … PHYS. REV. D 104, 015025 (2021)

015025-39



Compared with [20], after taking flavor symmetries of the fermion into account, operators we listed are more complete
than theirs. Some basis here could change into their form using the Fierz identities ðλAÞabðλAÞcd ¼ δadδ

c
b −

1
3
δabδ

c
d,

ϵαβδγκ þ ϵβγδακ þ ϵγαδβγ ¼ 0. For example,

ð5:66Þ

In most cases, the Fierz identities will not help us simplify the operators any further or put them in more familiar forms.
4. Operators involving three quarks and three leptons with ΔB ¼ 1 andΔL ¼ −1 or 3, the type l3qu2 is relevant for the

proton three body decay:

ð5:67Þ

5. Operators involving two quarks and four leptons with ΔB ¼ 0 and ΔL ¼ −2:

ð5:68Þ
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ð5:69Þ

6. Operators involving six leptons with ΔL ¼ −2:

ð5:70Þ

VI. CONCLUSION

In this paper, we provided the full result of the inde-
pendent dimension-nine operator basis in the SMEFT.
The numbers of operators at different levels are summa-
rized in Table V. According to our study, we find a total of
1262 terms, in which the total number of flavor-specified
operators for three fermion generations is 90456, while
that for one fermion generation is 560, agreeing with
the previous counting9 [22,37]. A complete list of dim-9
SMEFT operators is very meaningful, because new oper-
ators with ðΔB;ΔLÞ ¼ ð�1;�3Þ; ð�2; 0Þ start to appear
at dimension nine, which signal the phenomenologies of
the neutron-antineutron oscillations and the proton three-
body decays with new physics scale reachable for the future
LHC experiments.
Our operator enumeration method starts from the ampli-

tude-operator correspondence, where we one-to-one map
effective operators to local amplitudes. The correspon-
dence provides a natural way to unambiguously divide
the operator space into subspaces that we call types, each
consisting of operators at a given dimension that only
generates local amplitudes for a given set of external
particles. Our categorization of types makes use of the
EOM and is more rigorous than the old definition that only
counts the apparent numbers of fields and derivatives in the
operator. Moreover, the repeated field issue for operators
that becomes important at higher dimensions also has exact
correspondence with the spin-statistic constraint for ampli-
tudes. The correspondence thus provides a novel path
toward operator enumeration—by enumerating the ampli-
tude basis. We claim that the correspondence has a deep
physical reason, as both sides are a complete basis of
input for effective theories—on the amplitude side, it is

interesting to see how the same amount of input could be
used to construct the whole theory in an on-shell way.
To enumerate independent flavor-specified operators

for a given type, we introduce the concepts of the Y-basis,
m-basis, and P-basis operators. We develop the algorithm
to enumerate the Y-basis with the help of the auxiliary
SUðNÞ group for the Lorentz structures and the novel
L-R procedure technique for the gauge groups, whose
completeness and independence are guaranteed by group
theory. Based on the Y-basis, the m-basis is obtained by
converting Y-basis operators into a set of independent
monomials that are familiar to the phenomenology com-
munity. TheP-basis of Lorentz structures and gauge group
tensors of an operator are obtained from either Y-basis or
m-basis by acting on them with a set of symmetrizers,
which are the basis of the left ideal in the symmetric group
algebra for the repeated fields. Combining the factors by
the inner product decomposition, we build the terms as
irreducible flavor tensors of operators.
The P-basis operators are usually combinations of

multiple monomials as a result of symmetrization, which
makes them lengthy to express. In this work we provided a
systematical way that we call desymmetrization to solve the
problem by expressing our final result in the form of a
Young symmetrizer acting on a monomial operator. The
algorithm was not discussed in detail in our previous paper.
The subtlety was to guarantee the independence among the
operators with the same symmetrizer acting on different
monomials, which is necessary only when nλ, the number
of certain representation space in a given type, is greater
than one. The desymmetrization procedure results in
independent combinations of the P-basis, thus named
reduced P-basis, which have quite concise expressions
with the Young symmetrizer denoting the flavor symmetry.
One may also make the Young symmetrizer to act on

the Wilson coefficient tensor with which the monomial
9The number of terms does not match that in [22] because we

have slightly different definitions of the concept of term.
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operator contracts, so that the operator becomes a mono-
mial genuinely while the Young symmetrizer only serves as
a reminder of the symmetry of the Wilson coefficients. It is
equivalent to the flavor relations that the traditional method
of operator enumeration applies to solve the repeated field
issue. We summarize the advantages of our method and
final notation over the traditional method and notation:

(i) The completeness and independence are guaranteed
by the underlining mathematical principle. The
flavor symmetries among the Wilson coefficients
are given systematically, unlike in the traditional
treatment where flavor relations should be found
manually.

(ii) It enables one to directly write down the flavor-
specified operators by enumerating the flavor
SSYTs of the corresponding flavor symmetry. This
is the most important reason that we insist on
expressing our final result as the irreducible flavor
tensors, as it is tricky to list the independent
operators from the flavor relations accompanied
by the traditional form of the operators.

(iii) We provide a systematic way to convert any basis
into our Y-basis without any ambiguity, or, by using
the conversion matrices that we also obtained, into
any other basis that we provide here. Therefore, our
basis could serve as the standard basis of operators.

The last point will in principle benefit a lot of studies
about effective field theory. For example, in matching
between the UV new physics and the SMEFT operators,
an independent and complete basis of operators is neces-
sary for an unambiguous result. Therefore we need to
identify the operator generated after integrating out heavy
particles as a unique coordinate with respect to an inde-
pendent and complete operator basis. Note that in reducing
such an operator to our Y-basis, terms eliminated by the
EOM or the ½D;D� identity in this paper should be kept in
the form of other types of operators. We will leave it for our
future work.
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Note added.—To our knowledge, Ref. [38] also presents a
list of the dimension-nine operators in the standard model
effective field theory which uses the traditional method,
imposing the constraints of EOM and IBP and finding the
flavor relations after obtaining an overcomplete set of

operators to eliminate the redundancies. Our method
compared to theirs guarantees the independence and
completeness with mathematical principles and separates
different flavor permutation symmetries of the operators or
the Wilson coefficients as independent irreducible flavor
tensors enabling readers to directly writing down the
independent flavor components via enumerating certain
semistandard Young tableau.

APPENDIX A: NOTATIONS AND CONVERSIONS
AMONG BASES

In this Appendix, we present conversion relations of
Lorentz structures between different notations for users’
convenience. Relevant notations are Weyl spinors vs Dirac
spinors and SLð2;CÞ spinor indices vs SOð3; 1Þ Lorentz
indices.

1. Converting four-component to
two-component spinor

In this part, Ψ and Ψ̄ denote four-component spinors, ξ
and χ denote two-component left-handed spinors, and their
Hermitian conjugates ξ† and χ† denote two-component
right-handed spinors. Generally, a four-component spinor
consists of a two-component left-handed spinor ξα and a
two-component right-handed spinor χ† _α,

Ψ ¼
�

ξα

χ† _α

�
; Ψ̄ ¼ Ψ†γ0 ¼ ðχα; ξ†_αÞ: ðA1Þ

Here we provide some conversion relations for the follow-
ing spinor bilinears:

Ψ̄1Ψ2 ¼ χα1ξ2α þ ξ†1_αχ
† _α
2 ;

Ψ̄1γ
μΨ2 ¼ χα1σ

μ
α _αχ

† _α
2 þ ξ†1_ασ̄

μ _ααξ2α;

Ψ̄1σ
μνΨ2 ¼ χα1ðσμνÞαβξ2β þ ξ†1_αðσ̄μνÞ _α _βχ

_β
2;

ΨT
1CΨ2 ¼ ξα1ξ2α þ χ†1_αχ

† _α
2 ;

ΨT
1Cγ

μΨ2 ¼ ξα1σ
μ
α _αχ

† _α
2 þ χ†1_ασ̄

μ _ααξ2α;

ΨT
1Cσ

μνΨ2 ¼ ξα1ðσμνÞαβξ2β þ χ†1_αðσ̄μνÞ _α _βχ†
_β

2 ;

Ψ̄1CΨ̄T
2 ¼ ξ†1_αξ

† _α
2 þ χα1χ2α;

Ψ̄1γ
μCΨ̄T

2 ¼ χα1σ
μ
α _αξ

† _α
2 þ ξ†1_ασ̄

μ _ααχ2α;

Ψ̄1σ
μνCΨ̄T

2 ¼ ξ†1_αðσ̄μνÞ _α _βξ†
_β

2 þ χα1ðσμνÞαβχ2β; ðA2Þ

where in the chiral representation C ¼ iγ0γ2 ¼	 ϵαβ 0

0 ϵ _α _β



¼
	−ϵαβ 0

0 −ϵ _α _β



, γμ ¼

	 0 σμ
α _β

σ̄μ _αβ 0



, and

σμν ¼ i
2
½γμ; γν� ¼

� ðσμνÞαβ 0

0 ðσ̄μνÞ _α _β

�
.
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The Hermitian conjugates of two-component spinor
bilinears mentioned above are given by

ðχξÞ† ¼ ξ†χ†;

ðχσμξ†Þ† ¼ ξσμχ†;

ðχ†σ̄μξÞ† ¼ ξ†σ̄μχ;

ðχσμνξÞ† ¼ ξ†σ̄μνχ†; ðA3Þ
and the Hermitian conjugates of four-component spinor
bilinears mentioned above are given by

ðΨ̄1Ψ2Þ† ¼ Ψ̄2Ψ1;

ðΨ̄1γ
μΨ2Þ† ¼ Ψ̄2γ

μΨ1;

ðΨ̄1σ
μνΨ2Þ† ¼ Ψ̄2σ

μνΨ1;

ðΨT
1CΨ2Þ† ¼ Ψ̄2CΨ̄T

1 ;

ðΨT
1Cγ

μΨ2Þ† ¼ Ψ̄2γ
μCΨ̄T

1 ;

ðΨT
1Cσ

μνΨ2Þ† ¼ Ψ̄2σ
μνCΨ̄T

1 : ðA4Þ

2. σ techniques

The key of conversions between spinor indices and
Lorentz indices is at the reduction of σ products. We
employ the following definitions: the metric gμν ¼
diagðþ1;−1;−1;−1Þ; the Levi-Civita tensors ϵ0123 ¼
−ϵ0123 ¼ þ1 and ϵ12 ¼ ϵ21 ¼ þ1; the sigma matrices
σμα _α ¼ ð1α _α; τiα _αÞμ, σ̄μ _αα ¼ ð1 _αα;−τi _ααÞμ, with identity 1
and Pauli matrices τi; i ¼ 1, 2, 3. σμα _α and σ̄μ _αα are related
by raising and lowering indices with the ϵ tensor

σ̄μ _αα ¼ ϵαβϵ _α _βσμ
β _β
:

We also define

ðσμνÞαβ ¼
i
2
ðσμσ̄ν − σνσ̄μÞαβ; ðA5Þ

ðσ̄μνÞ _α _β ¼
i
2
ðσ̄μσν − σ̄νσμÞ _α _β; ðA6Þ

from which we can directly obtain the decomposition of
two σ products:

ðσμσ̄νÞαβ ¼ gμνδβα − iðσμνÞαβ; ðA7Þ
ðσ̄μσνÞ _α _β ¼ gμνδ _α_β − iðσ̄μνÞ _α _β: ðA8Þ

For a σ chain consists of three or more σ’s, and we may use
the following three σ decomposition:

ðσμσ̄νσρÞα _β ¼ gμνσρ
α _β

− gμρσν
α _β

þ gνρσμ
α _β

þ iϵμνρλσλα _β;

ðA9Þ

ðσ̄μσνσ̄ρÞ _αβ ¼ gμνσ̄ν _αβ − gμρσ̄ν _αβ þ gνρσ̄μ _αβ − iϵμνρλσ̄ _αβ
λ ;

ðA10Þ

to recursively reduce it toward a linear combination of
1; σμ; σ̄μ; σμν, and σ̄μν.
To compute the trace of a σ chain, one can simply reduce

the chain to the basic forms above and use the following
equations:

Tr 1 ¼ 2; Trσμ ¼ Trσ̄μ ¼ Trσμν ¼ Trσ̄μν ¼ 0: ðA11Þ

At last we give a frequently used example of a four σ’s
chain and its trace

σμσ̄νσρσ̄κ ¼ ðgμνgρκ − gμρgνκ þ gνρgμκ þ iϵμνρκÞ1
− iðgμνσρκ − gμρσνκ þ gνρσμκ þ iϵμνρλσλκÞ;

Trðσμσ̄νσρσ̄κÞ ¼ 2gμνgρκ − 2gμρgνκ þ 2gνρgμκ þ 2iϵμνρκ;

Trðσ̄μσνσ̄ρσκÞ ¼ 2gμνgρκ − 2gμρgνκ þ 2gνρgμκ − 2iϵμνρκ:

ðA12Þ

APPENDIX B: LIST OF CLASSES UP TO
DIMENSION NINE

We list all the classes of Lorentz structures from
dimension five to dimension nine in Tables VI–X, where
ψ and ψ† represent particles with helicity −1=2 and 1=2,
respectively; FL and FR represent gauge bosons with
helicity ∓ 1; and ϕ represents scalar fields. The gray
operators in each class are those not possible to form by
SM Uð1ÞY singlets.

TABLE VI. All the subclasses of Lorentz structures at dimen-
sion five.

N ðn; ñÞ Classes

3 (2,0) FLψ
2 þ H:c: F2

Lϕþ H:c:
4 (1,0) ψ2ϕ2 þ H:c:
5 (0,0) ϕ5

TABLE VII. All the subclasses of Lorentz structures at di-
mension six.

N ðn; ñÞ Classes

3 (3,0) F3
L þ H:c:

4 (2,0) ψ4 þ H:c: F2
Lψ

2ϕþ H:c: F2
Lϕ

2 þ H:c:
(1,1) ψ2ψ†2 ψψ†ϕ2D ϕ4D2

5 (1,0) ψ2ϕ3 þ H:c:
6 (0,0) ϕ6
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TABLE VIII. All the subclasses of Lorentz structures at dimension seven.

N ðn; ñÞ Classes

4 (3,0) F2
Lϕ

2 þ H:c: F3
Lϕþ H:c:

(2,1) ψ3ψ†Dþ H:c: ψ2ϕ2D2 þ H:c:
F2
Lψ

†2 þ H:c: FLψψ
†ϕDþ H:c: FLϕ

3D2 þ H:c:
5 (2,0) ψ4ϕþ H:c: FLψ

2ϕ2 þ H:c: F2
Lϕ

3 þ H:c:
(1,1) ψ2ψ†2ϕ ψψ†ϕ3D ϕ5D2

6 (1,0) ψ2ϕ4

(0,0) ϕ7

TABLE IX. All the subclasses of Lorentz structures at dimension eight.

N ðn; ñÞ Classes

4 (4,0) F4
L þ H:c:

(3,1) F2
Lψψ

†Dþ H:c: ψ4D2 þ H:c: FLψ
2ϕD2 þ H:c: F2

Lϕ
2D2 þ H:c:

(2,2) F2
LF

2
R FLFRψψ

†D ψ2ψ†2D2 FRψ
2ϕDþ H:c:

FLFRϕ
2D2 ψψ†ϕ2D3 ϕ4D4

5 (3,0) FLψ
4 þ H:c: F2

Lψ
2ϕþ H:c: F3

Lϕ
2 þ H:c:

(2,1) FLψ
2ψ†2 þ H:c: F2

Lψ
†2ϕþ H:c: ψ3ψ†ϕDþ H:c: FLψψ

†ϕ2Dþ H:c:
ψ2ϕ3D2 þ H:c: FLϕ

4D2 þ H:c:
6 (2,0) ψ4ϕ2 þ H:c: FLψ

2ϕ3 þ H:c: F2
Lϕ

4 þ H:c:
(1,1) ψ2ψ†2ϕ2 ψψ†ϕ4D ϕ6D2

7 (1,0) ψ2ϕ5 þ H:c:
8 (0,0) ϕ8

TABLE X. All the subclasses of Lorentz structures at dimension nine.

N ðn; ñÞ Classes

4 (4,1) F2
Lψ

2D2 þ H:c: F3
LϕD

2 þ H:c:
(3,2) ψ3ψ†D3 þ H:c: ψ2ϕ2D4 þ H:c: FLFRϕ

2D2 þ H:c:
F2
Lψ

†2D2 þ H:c: F2
LFRϕD2 þ H:c: FLψψ

†ϕD3 þ H:c: FLϕ
3D4 þ H:c:

5 (4,0) F3
Lψ

2 þ H:c: F4
Lϕþ H:c:

(3,1) FLψ
3ψ†Dþ H:c: ψ4ϕD2 þ H:c: FLψ

2ϕ2D2 þ H:c:
F3
Lψ

†2 þ H:c: F2
Lψψ

†ϕDþ H:c: F2
Lϕ

3D2 þ H:c:
(2,2) FRψ

3ψ†Dþ H:c: ψ2ψ†2ϕD2 FRψ
2ϕ2D2 þ H:c: ψψ†ϕ3D3

FLF2
Rψ

2 þ H:c: F2
LF

2
Rϕ FLFRψψ

†ϕD FLFRϕ
3D2

ϕ5D4

6 (3,0) ψ6 þ H:c: FLψ
4ϕþ H:c: F2

Lψ
2ϕ2 þ H:c: F3

Lϕ
3 þ H:c:

(2,1) ψ4ψ†2 þ H:c: FLψ
2ψ†2ϕþ H:c: F2

Lψ
†2ϕ2 þ H:c: ψ3ψ†ϕ2Dþ H:c:

FLψψ
†ϕ3Dþ H:c: ψ2ϕ4D2 þ H:c: FLϕ

5D2 þ H:c:
7 (2,0) ψ4ϕ3 þ H:c: FLψ

2ϕ4 þ H:c: F2
Lϕ

5 þ H:c:
(1,1) ψ2ψ†2ϕ3 ψψ†ϕ5D ϕ7D5

8 (1,0) ψ2ϕ6 þ H:c:
9 (0,0) ϕ9
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