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In this work, we investigate the dynamical breakdown of Lorentz symmetry in 4 dimensions by the
condensation of a fermionic field described by a Dirac lagrangean with a four-fermion interaction. Using
the Keldysh formalism we show that the Lorentz symmetry breaking modifies the Dyson-Schwinger
equations of the fermionic propagator. We analyze the nonperturbative solutions for the Dyson-Schwinger
equations using the combination of the rainbow and quenched approximations and show that, in
equilibrium, the Lorentz symmetry breakdown can occur in the strong coupling regime and new features
arise from this approach. Finally, we analyze the contributions of temperature and chemical potential and
find the respective phase diagram of the model and analyze the dependence of the critical temperature and
chemical potential as functions of the coupling constant.

DOI: 10.1103/PhysRevD.104.015022

I. INTRODUCTION

Based on the fact that the standard model of particle
physics (SM) is, despite its great success, unable to fully
explain the phenomenology of particle physics, several
models have been proposed to improve the knowledge
about the quantum realm of fundamental particles, as
supersymmetry, extra-dimensions, among others [1–3].
An attempt to extend the SM is to analyze extensions of

the standard model with the introduction of Lorentz
symmetry violation. In Ref. [4] the authors shown that
in string theory could be possible that a spontaneous
Lorentz symmetry breaking could occur and some phe-
nomenological implications could arise in particle physics.
This approach became a paradigm in Lorentz symmetry
breaking. In particular, the simpler extension of the SM can
be done by introducing new sectors where a vector field
acquires a non-null expectation value in the vacuum. This
background vector can be coupled with the standard model
currents minimally or nonminimally and, in principle,
could make contributions to the charge-parity (CP) sym-
metry violation or even to CPT symmetry violation [5–12].
Beyond the well-known works searching for LSV in

particle physics, the approach of dynamical (instead of
spontaneous) Lorentz symmetry breakingwas implemented.

In particular, a perturbative approach of dynamical Lorentz
symmetry breaking (DLSB) is used to shed light on how this
breakdown could occur in 4 and 3 dimensions [13–18]. The
main idea is that in analogy with the models of chiral
symmetry breaking [19], the breakdown of the Lorentz
symmetry appears from a fermion condensation through a
four-fermion interaction.
An example of this subject can be seen in Ref. [13],

where a model with a vector four-fermion interaction
ðψ̄γμψÞ2 is proposed and the dynamical symmetry breaking
is analyzed. When the DLSB occurs, the vector acquires a
non-null vacuum expectation value hψ̄γμψi ≠ 0, such way,
if this DLSB generates a timelike constant vector, we can
interpret this result as an effective chemical potential and its
implications are well discussed in the paper.
In the present work, we analyze the DLSB of an axial (or

pseudovector) fermionic current starting from the following
action proposed first by Ref. [14]:

S ¼
Z

dx

�
ψ̄ðiγμ∂μ −mÞψ −

G
2
ðψ̄γμγ5ψÞ2

�
; ð1:1Þ

where G is the coupling constant and G > 0 in order to
maintain an attractive interaction and provide the fermionic
condensation. We can introduce an auxiliary field Aμ such
that the action can be rewritten as:

S ¼
Z

dx

�
ψ̄ðiγμ∂μ − gγμAμγ5 −mÞψ þ g2

2G
AμAμ

�
: ð1:2Þ

In general, the g parameter is introduced to expand the
physical quantities and find quantum corrections. Although
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this is not our intention, we maintain g explicitly to
compare with the perturbative implementation.
As can be seen in [14,15], in this perturbative approach

the fermionic condensation can be calculated by a gap
equation and it gives us the result αμ ¼ hAμi ∝ G−1=2

showing that for a strong coupling constant G we find a
small value of DLSB parameter, and vice-versa. For
instance, if G ∝ M−2, with M representing some mass
scale, αμ ∝ M. As we will see in this paper, the non-
perturbative approach gives us a very different result, and a
phase transition will occur. Although we will discuss this
result in our conclusions, we can already affirm that instead
of a contribution for the chemical potential such can be seen
in Ref. [13], our results can be interpreted as a chiral
chemical potential μ5 above some critical coupling con-
stant. The validity of calling μ5 a true chemical potential
will be discussed in the conclusions.
This work is organized as follows: In Sec. II we

introduce the Keldysh formalism and through the generat-
ing functional we find the proper Dyson-Schwinger (DS)
equations with the inclusion of Lorentz symmetry breaking.
In Sec. III we focus on the DS equations of the full fermion
propagator and show the approximations made. In Sec. IV
we look for equilibrium solutions in some physical limits.
In Sec. V we present our final comments and perspectives.

II. GENERATING FUNCTIONAL IN KELDYSH
FORMALISM

In this work we adopt the real-time formalism in
order to evaluate the contribution of the chemical
potential and temperature. In this formalism, known as
the Keldysh formalism [20], we must double the fields
(ψ → fψþ;ψ−g,ψ̄ → fψ̄þ; ψ̄−g, Aμ → fAþ; A−g), and the
new action can be written as S ¼ Sþ − S− and, applying
the Keldysh rotations [20,21] we can write the action
S½ψ̄ ;ψ ; A� ¼ S0½ψ̄ ;ψ ; A� þ Sint½ψ̄ ;ψ ; A�, where:

S0½ψ̄ ;ψ ; A� ¼
Z

dxdy

�
ψ̄aðxÞðS−10 Þabðx; yÞψbðyÞ

þ 1

2
Aa
μðxÞðD−1

0 Þμνabðx; yÞAb
μðyÞ

�
; ð2:1Þ

Sint½ψ̄ ;ψ ; A� ¼ −g
Z

dxψ̄aðxÞγμc;abψbðxÞAc
μðxÞ ð2:2Þ

with ðS−10 Þabð∂Þ ¼ ðiγμ∂μ −mÞσ̂clab, γμc;ab ¼ 1ffiffi
2

p γμγ5ðσ̂cÞab,
ðD−1

0 Þμνabðx; yÞ ¼ g2

G δðx − yÞσ̂qabημν, with σ̂cl ¼ ð1
0

0
1
Þ and

σ̂q ¼ ð0
1

1
0
Þ, where a; b; c ¼ fcl; qg. We also have

Acl¼ 1ffiffi
2

p ðAþþA−Þ, Aq¼ 1ffiffi
2

p ðAþ−A−Þ, ψcl ¼ 1ffiffi
2

p ðψþþψ−Þ,
ψq ¼ 1ffiffi

2
p ðψþ − ψ−Þ, ψ̄cl ¼ 1ffiffi

2
p ðψ̄þ − ψ̄−Þ and ψ̄q ¼

1ffiffi
2

p ðψ̄þ þ ψ̄−Þ. We emphasize that the index structure (with

Latin indexes a, b, c) is due to the doubling of the fields in

the Keldysh formalism, very similar to the closed-time-path
(CTP) formalism [22], is necessary to construct the out-of-
equilibrium QFT action. A very instructive review of
Keldysh formalism can be seen in Ref. [21]. The generating
functional is defined as follows [23]:

Z½η̄; η; J� ¼
Z

D½ψ̄ ;ψ ; A�eiS½ψ̄ ;ψ ;A� ð2:3Þ

where D½ψ̄ ;ψ ; A� ¼ Πa;b;cdψ̄adψbdAc
μ. Since A is not a

gauge field, the necessity of the introduction of Faddeev-
Popov ghosts is absent. We can define the generating
functional of connected green functions as usual, i.e.,
W ¼ LnZ. We can write the quantum version of the field
equations of motion (e.o.m.) of the fields as follows:

Z
dy

�
ðD−1

0 Þabμνðx;yÞ
δW

δJbνðyÞ
−gδðx−yÞ δW

δηbðxÞγ
μ
c;ab

δW
δη̄cðyÞ

−gδðx−yÞ δ

δηbðxÞγ
μ
c;ab

δW
δη̄cðyÞ

�
þJaμðxÞ¼ 0 ð2:4Þ

from the Aa
μðxÞ e.o.m., and:

Z
dy

�
ðS−10 Þcdðx;yÞ

δW
δη̄dðyÞ−gδðx−yÞ δW

δη̄dðxÞγ
μ
a;cd

δW
δJμaðyÞ

−gδðx−yÞ δ

δη̄dðxÞγ
μ
a;cd

δW
δJμaðyÞ

�
þηcðxÞ¼ 0 ð2:5Þ

from ψ̄cðxÞ. Through (2.4) we can show an identity that
will be important to our analysis that is the following:

δW
δJaμðyÞ

����
J¼0

¼hAμ
aðxÞi

¼−ig
Z

dzTr½γνb;cdScdðz;zÞ�ðD0Þμνabðz;xÞ;

ð2:6Þ

where Sbcðx; yÞ ¼ δ2W
δηdðxÞδη̄cðyÞ jJ¼0 the full fermion propaga-

tor and we use J ¼ 0 meaning Jaμ ¼ η̄a ¼ ηa ¼ 0. We also
use Tr as the trace over the Dirac matrices space. Therefore,
the Aμ

a field can assume a nonvanishing vacuum expect-
ation value αμaðxÞ ¼ hAμ

aðxÞi, i.e., a dynamical Lorentz
symmetry breakdown can occur. Is important to highlight
that in the Keldysh formalism the Lorentz symmetry
breaking parameter acquire x-dependence. Going further,
by the use of the effective action Γ½ψ̄ ;ψ ; A� defined as
follows:

Γ½ψ̄ ;ψ ; A� ¼ W½η̄; η; J� þ
Z

dx½η̄cðxÞψcðxÞ þ ψ̄cðxÞηcðxÞ

þ Aa
μðxÞJμaðxÞ�; ð2:7Þ
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in such a way that the DS equation for the full bosonic
propagator is given by

ðD−1Þμνabðx; yÞ − ðD−1
0 Þμνabðx; yÞ ¼ Πμν

abðx; yÞ; ð2:8Þ

where ðD−1Þμνabðx; yÞ ¼ δ2Γ
δAa

μðxÞδAb
ν ðyÞ jΦ¼0 is the inverse of the

full bosonic propagator, Φ ¼ 0 means Aa
μ ¼ αaμ and

ψ̄a ¼ ψa ¼ 0. We also have that Πμν
abðx; yÞ, the polarization

tensor, is given by:

Πμν
abðx; yÞ ¼ −ig

Z
dx0dy0

× Tr½γμa;cdSdd0 ðx; y0ÞΓν
b;c0d0 ðy; x0; y0ÞScc0 ðx; x0Þ�;

ð2:9Þ
where Γν

b;c0d0 ðy; x0; y0Þ ¼ δ3Γ
δAν

bðyÞδψc0 ðx0Þδψ̄d0 ðy0Þ jΦ¼0 is the full

interaction vertex. The DS equation for the full fermionic
propagator is the following:

S−1cd ðx; yÞ − ðS−10 Þcdðx; yÞ
¼ Ξcdðx; yÞ − gδðx − yÞγμa;cdαaμðxÞ; ð2:10Þ

where S−1cd ðx; yÞ ¼ δ2Γ
δψcðxÞδψ̄dðyÞ jΦ¼0, and the fermionic self-

energy is given by:

Ξcdðx; yÞ ¼ −ig
Z

dzdw½γμa;cfSfgðx; zÞ

× Γν
b;dgðw; y; zÞDab

μνðx; wÞ�; ð2:11Þ

Finally, the 3-point vertex respects the Bethe-Salpeter
equation involving the 4-point vertex [19] and so on. As
usual, we need to truncate the DS equations in some n-point
vertex, and our choice will be clarified in the following
section.

III. NONPERTURBATIVE APPROACH TO DLSB

Starting from the DS equation for the retarded compo-
nent of the full fermion propagator:

S−1clclðx;yÞ¼ ðSRÞ−1ðx;yÞ
¼ ðSR0 Þ−1ðx;yÞþΞRðx;yÞ−gδðx−yÞγμγ5αμðxÞ;

ð3:1Þ

where αμ ¼ αclμ (and αqμ ¼ 0). Now we need to choose the
truncation of the vertex expansion, and we choose to use
the so-called rainbow approximation, given by:

Γν
b;dgðw; y; zÞ ≈ −gγνb;dgδðw − yÞδðz − yÞ; ð3:2Þ

which means that we are ignoring the contribution of
the 4-point vertex. In QED this truncation violates the

Ward-Takahashi identity of gauge invariance. But, due to
the fact that our model does not have a gauge symmetry,
this approximation good enough to our proposal.
Therefore, from Eq. (2.11) the retarded component of
the fermionic self-energy can be rewritten as follows:

ΞRðx; yÞ ¼ ig2γμγ5SKðx; yÞγνγ5DR
μνðy; xÞ

þ ig2γμγ5SRðx; yÞγνγ5DK
μνðx; yÞ: ð3:3Þ

Assuming DR
μνðx;yÞ¼ G

g2 ημνδðx−yÞþOðg2Þ, DK
μνðx; yÞ ¼

0þOðg2Þ (the so-called quenched approximation [24])
and applying the Wigner transformation (see Appendix A)
we can rewrite the retarded component of the fermionic
self-energy as:

ΞRðX; pÞ ≈ iG
Z

dkγμγ5SKðX; kþ pÞγμγ5; ð3:4Þ

with dk ¼ d4k
ð2πÞ4, X ¼ xþy

2
and we assume a weak depend-

ence in X-coordinates for all functions of the model, which
means a small nonlocal character. Going further, we
propose the following ansatz for the inverse of the full
propagator:

ðSRÞ−1ðX; pÞ ¼ AðX; pÞ=p − ΣðX; pÞ − =BðX; pÞγ5; ð3:5Þ

where AðX; pÞ is called renormalization function, ΣðX; pÞ
is the position-dependent mass function and BμðX; pÞ is
introduced here in order to include the corrections to the
parameter αμ. Therefore, can be shown that the exact full
fermion propagator can be written as follows [25]:

SR ¼ ðA=p − =Bγ5 þ ΣÞðp2A2 − Σ2 − B2 þ A½=p; =B�γ5Þ
ðp2A2 − Σ2 − B2Þ2 þ 4A2ðp2B2 − ðp · BÞ2Þ þ iϵ

;

ð3:6Þ

where we omit that SR; A; B, and Σ are functions of X and p
for the sake of clarity. From the DS equation for the full
fermionic propagator we reach:

ðSRÞ−1ðX; pÞ ¼ =p −mþ ΞRðX; pÞ − gγμγ5αμðXÞ; ð3:7Þ

where

gαμðXÞ ¼ −iG
Z

dpTr½γμγ5SKðX; pÞ�

¼ 2GIm
Z

dpTr½γμγ5SRðX; pÞFðX; pÞ�; ð3:8Þ

where we use that SK is the Keldysh component
of the full propagator and is given by SKðX; pÞ ¼
2iIm½SRðX; pÞFðX; pÞ� up to some ∂X contribution which
we discard due to the small nonlocal approximation. The
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function FðX; pÞ is called Wigner function (or Wigner
quasiprobability distribution) and in our case is related to a
generalization of the Fermi-Dirac distribution in out-of-
equilibrium systems (see Appendix B for details).
With the appropriate traces over the Dirac matrices, we

can find equations for the components of the full fermionic
propagator and we can see that due to the quenched
approximation the p-dependence of Bμ and Σ disappears.
Lastly, assuming that the fermionic Wigner function
FðX; pÞ is a real function and a scalar in the Dirac space
and therefore SKðX; pÞ ≈ 2iIm½SRðX; pÞ�FðX; pÞ, we can
write the equations for the components of the full fermion
propagator as follows:

Aðp;XÞ−1

¼−
G
2p2

Im
Z

dkfTr½=pγμγ5SRðX;kÞγμγ5�FðX;kÞg; ð3:9Þ

BλðXÞ−gαλðXÞ

¼−
G
2
Im

Z
dkfTr½γλγ5γμγ5SRðX;kÞγμγ5�FðX;kÞg;

ð3:10Þ

and

ΣðXÞ −m ¼ G
2
Im

Z
dkfTr½γμγ5SRðX; kÞγμγ5�FðX; kÞg;

ð3:11Þ

IV. EQUILIBRIUM SOLUTIONS

The results we achieve in the previous section are general
and can be applied in a variety of physical contexts. The
out-of-equilibrium QFT can be analyzed in a temperature
gradient or chemical potential environment, or the presence
of external fields and until in the cosmological context. The
advantage of this approach is that it contains naturally the
equilibrium as a solution and it will be our background
from now on.
The equations which we find in the quenched and

rainbow approximations are simplified since A, Bμ and
Σ are independent of p and in a special case can also be
local configurations (i.e., independent of X). This is already
the case of equilibrium systems. Therefore, in this regime
we find that:

AðpÞ − 1 ¼ −
4G
p2

Im
Z

dk
AðkÞðk:pðAðkÞ2k2 − 3B2 − Σ2Þ þ 2B:kB:pÞ

ðAðkÞ2k2 − Σ2 − B2Þ2 þ 4AðkÞ2ðk2B2 − ðk · BÞ2Þ þ iϵ
FðkÞ; ð4:1Þ

where in equilibrium FðkÞ ¼ FeqðkÞ ¼ tan hððk0 − μÞ=2TÞ
(see Appendix B). Since AðpÞ − 1 ∝ 1

p and using the fact
that the integrand is an odd function of kμ we will assume
AðpÞ ¼ 1 from now on. Using this assumption we reach:

Bμ ¼ 4GIm
Z

dk
BμðB2 − 3k2 þ Σ2Þ þ 2kμðk · BÞ

Dðk;Σ; BÞ þ iϵ
FðkÞ;

ð4:2Þ

Σ −m ¼ 8ΣGIm
Z

dk
ðB2 − k2 þ Σ2Þ
Dðk;Σ; BÞ þ iϵ

FðkÞ; ð4:3Þ

where Dðk;Σ; BÞ ¼ ðk2 − Σ2 − B2Þ2 þ 4ðk2B2 − ðk · BÞ2Þ.
It is important to note that the DLSB parameter respects the
identity gαμ ¼ 2Bμ. Going further, we study in the follow-
ing subsections some special cases where the above
equations have manageable solutions.

A. T = 0 and μ= 0

In the limit T, μ → 0, F → 1 and is useful to apply the
Euclidean rotation given by k0 ¼ ik4, B0 ¼ iB4 such that
k2 ¼ −k2E, B2 ¼ −B2

E and k:B ¼ −kE:BE. The gap equa-
tions can be rewritten as:

ðBEÞ2 þ 4GRe
Z

d4kE
ð2πÞ4

×

�ðB2
EÞðB2

E − 3k2E − Σ2Þ þ 2ðkE · BEÞ2
DðkE;Σ; BEÞ þ iϵ

�
¼ 0; ð4:4Þ

and

Σ−mþ8ΣGRe
Z

d4kE
ð2πÞ4

� ðk2E−B2
EþΣ2Þ

DðkE;Σ;BEÞþ iϵ

�
¼ 0; ð4:5Þ

where DðkE;Σ;BEÞ¼ðk2EþΣ2−B2
EÞ2þ4ðk2EB2

E−ðkE ·BEÞ2Þ
and we contract Eq. (4.2) with Bμ after the Euclidean
rotation. Using spherical coordinates in 4D Euclidean
space as k1 ¼ jkEj cos β, k2 ¼ jkEj sin β cos θ, k3 ¼
jkEj sin β sin θ cosϕ and k4 ¼ jkEj sin β sin θ sinϕ, fixing
BE such that BE · kE ¼ jBEjjkEj cos β and integrating
over β ∈ ½0; π�, θ ∈ ½0; π�, ϕ ∈ ½0; 2π�, jkEj ∈ ½0;Λ�, where
we introduce the cutoff parameter Λ, and d4kE ¼
dθ sin θdϕdβsin2βdjkEjjkEj3, we find the following set
of gap equations:

b̃2 þ G̃F1ðb̃; Σ̃Þ ¼ 0 ð4:6Þ

and
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Σ̃ − m̃þ G̃ Σ̃F2ðb̃; Σ̃Þ ¼ 0 ð4:7Þ

where b ¼ jBEj, and G̃ ¼ GΛ2, b̃ ¼ jBEjΛ−1, Σ̃ ¼ ΣΛ−1,
m̃ ¼ mΛ−1 and omit the structure of F1;2 for the sake of
simplicity. In Fig. 1 we can see the solution of (4.6) for
some values of Σ̃ and in Fig. 2 we can see the solution of
(4.7) for some values of b̃.
If we assume b̃ ¼ 0, Eq. (4.7) reduces to

Σ̃ − m̃þ G
2π2

Σ̃ðΣ̃2 lnð Σ̃2

Σ̃2þ1
Þ þ 1Þ ¼ 0, and its solutions is

shown by the black curve of Fig. 2. In the case of massless
fermions (m ¼ 0), the solution Σ̃ ¼ 0 is possible and in this
case we find the following gap equation for b̃:

1

G̃
−
ð15þ b̃2ð48 ln 2 − 31þ 24 lnð b̃2

b̃2þ1
ÞÞÞ

24π2
¼ 0: ð4:8Þ

As we can see in Fig. 3, the solution is very different of the

(massless) perturbative result [14,15] given by b ¼
ffiffiffiffiffi
3π2

jGj
q

,

which goes to infinity where G approaches to zero, and
goes to zero in the limit G → ∞. Our result has (in the
massless case) a critical coupling G̃c ¼ 24π2

15
≈ 15.8, and for

values of G̃ > G̃c the Lorentz symmetry breaking occurs. Is
important to highlight that we only find timelike solutions,
i.e., solutions where b̃2 > 0.
We can improve our result for b̃ assuming that Σ ≈m.

This approximation is valid for G̃ < 1. In this approxima-
tion the gap equation is given by b̃2 þ G̃F1ðb̃; m̃Þ ¼ 0

and we can see in Fig. 4 the plot of b̃ in function of
m̃ for G̃ ¼ 10−2 and the perturbative result b2 ¼
3π2ð 1

jGj þ m2

2π2
lnðm2

μ2
ÞÞ from Ref. [14]. In the limit m̃ → 0

the DLSB parameter b vanishes, whereas the perturbative
result is given by b2 ¼ 3π2

jGj.

FIG. 2. Normalized solution of Σ̃ in Eq. (4.7) and b̃ ¼ 0 (black
curve) and for b̃ ¼ 0.7 (dashed curve), in units of m.

FIG. 1. Solution for b̃ in equation (4.6) for b̃2 > 0; for Σ̃ ¼ 0

(black curve) and for Σ̃ ¼ 0.7 (dashed curve), in units of b.
FIG. 3. Plot of the gap equation solution for m ¼ 0 given by
Eq. (4.8) (black curve) and the perturbative solution b̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

3π2=G
p

[14,15] (dashed curve).

FIG. 4. Plot of the gap equation solution b̃2 þ G̃F1ðb̃; Σ̃Þ ¼ 0

for Σ ≈m and for log10G̃ ¼ −2 (black), and the perturbative
solution for log10 G̃ ¼ −2, normalized in units of μ (black and
dashed).
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B. T = 0 and μ ≠ 0

As we have shown in the previous section, the vector Bμ

can acquire a non-null vacuum expectation value hBi ¼ b
at zero temperature and chemical potential, even in the
nonperturbative regime. In the case where we consider the
global U(1) symmetry of the action in eq. (1.1), a chemical
potential must be added and this is achieved applying
the shift in the equilibrium fermionic function Fðk0Þ →
Fðk0 − μÞ where μ is the chemical potential. Explicitly, the
fermionic function will be given as follows:

Fðk0 − μÞ ¼ 1þ
�

1

eβðk0−μÞ þ 1
þ 1

eβðk0þμÞ þ 1

	
Θðk0Þ

ð4:9Þ
where β ¼ T−1 and ΘðxÞ is defined as ΘðxÞ ¼ 1 for x > 0
andΘðxÞ ¼ 0 for x < 0. In the regime where T is negligible
(T ≪ μ) we can use the Sommerfeld expansion as follows.
Let H a function of k0, therefore:

IðμÞ ¼
Z

∞

−∞
dk0Hðk0ÞFðk0 − μÞ

¼ Ið0Þ þ 2

Z
μ

0

dk0Hðk0Þ: ð4:10Þ

Therefore, the gap equation for B can be rewritten as
follows:

B2ðμÞ ¼ b2 − 8πgG

�
2

Z
μ

0

dk0Hðk0Þ
	
; ð4:11Þ

where

Hðk0Þ¼
Z

d3k⃗
ð2πÞ4 ½B

2ðB2−3k2þΣ2Þþ2ðk ·BÞ2�δðDðkÞÞ;

ð4:12Þ

with DðkÞ ¼ ðk2 − Σ2 − B2Þ2 þ 4ðk2B2 − ðk · BÞ2Þ.1 In the
case of timelike DLSB parameter we can choose a
reference frame such that Bν ¼ δν0B (also bν ¼ δν0b),
and in the massless case we can assume Σ ¼ 0, and using
the minimal subtraction scheme (MS) in the divergent
component Bðμ ¼ 0Þ ¼ bþ ðdivergent termsÞ, with b
finite, we find:

B2 − b2 þ BGμð15B2 þ μ2Þ
6π2

¼ 0; if B > μ; ð4:13Þ

B2−b2þB2Gð3B2 lnðμBÞþ5B2þ3μ2Þ
3π2

¼ 0; if B< μ:

ð4:14Þ

The solution of the gap equation is given by B ¼
Fðμ; GÞ (with Fð0; GÞ ¼ b), can be find numerically and
is shown in Fig. 5. As can be seen in Fig. 5 and Fig. 6 the
effect of the chemical potential is to decrease the value of B.

C. T ≠ 0 and μ ≠ 0

Finally, from Eq. (4.2) we can explicitly find the phase
diagram through Bðμ; T;GÞ ¼ 0 in the massless case, and
the solutions are shown in Fig. 7. We can see that the
critical temperature depends upon the magnitude of the
DLSB parameter at zero temperature b. Particularly, at zero
chemical potential the critical temperature can be written as
Tc ≈ b̃2T0 with T0 ¼ 1.73G−1=2. In the zero-temperature
limit, the critical chemical potential can be written as μc ≈
b̃2μ0 with μ0 ¼ 2.55G−1=2. Since b is itself a function of G
we should combine these expressions with the results of
Fig. 1 and this combination gives us the Fig. 8. As we can
see, the critical temperature and critical chemical potential

FIG. 5. Normalized gap equation solutions in the massless case
for: μ ¼ 0.0 (black curve), μ ¼ 1.0 (dashed curve), and μ ¼ 10.0,
in units of b.

FIG. 6. Normalized gap equation solutions in the massless as a
function of μ for: G̃ ¼ 103 (black curve), G̃ ¼ 108 (dashed
curve), in units of b.1We use the identity Im 1

DðkÞþiϵ ¼ πδðDðkÞÞ
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have the same dependence in G̃, up to a multiplicative
constant.

V. FINAL COMMENTS AND PERSPECTIVES

In this work, we investigate aspects of dynamical
Lorentz symmetry breaking. First, by use of the Keldysh
formalism, we find the DS equations for nonequilibrium
fermionic systems with interactions given by Eq. (1). We
also show that through the Keldysh formalism the vacuum
expectation value (v.e.v) of the composite field Aμ given by
ghAμi ¼ gαμ ¼ 2B will be in general dependent on the
nonlocal coordinate X. This shows that the violation of the
Lorentz symmetry and nonequilibrium can be naturally
combined by the use of Keldysh formalism.
Going further, analyzing the DS equations in the

equilibrium limit and we see that, through the solution
of the DS equations with meaningful approximations, we

can access new sectors of the model proposed in [14,15],
we reach the solutions of the gap equations for both DLSB
and self-energy and we find that system has two special
sectors, the first is the weak coupling limit, where the
DLSB is dependent of the bare mass m. The second sector
is the strong coupling limit, where the self-energy vanishes
and the DLSB became intense and rules the dynamics of the
system (see Fig. 2 and Fig. 3). Between these two sectors, we
have a transition regionwhere both theDLSB parameter and
the self-energy are important to the dynamic of the system.
In Fig. 4 we plot the behavior of the DLSB parameter in the
small coupling regime (G̃ < 1) as a function of the mass
(assuming the self-energy Σ ≈m) for G̃ ¼ 10−2 and the
perturbative solution found in ref. [14]. As we can see, the
behavior of both curves is similar, and the nonperturbative
solution can be seen as an improvement of the perturbative
one, without any abrupt change in the character of the DLSB
parameter. An important difference is that in the limitm → 0

the DLSB vanishes, whereas the perturbative result is
finite (b ∝ G−1=2).
In particular, we show that in the massless case the

DLSB is a possibility of strongly coupled systems with
G̃ > G̃c ≈ 15.8. As can be seen in Fig. 1 and Fig. 2, there
are two different regions concerning the strength of the
coupling constant G. The first, G̃ ≪ G̃c is characterized by
a massless fermionic theory with a null DLSB parameter,
and the second, with G̃ > G̃c we find a massless fermionic
theory and with non-null DLSB parameter. We show that
assuming m ¼ 0 the DS equations shows that for G̃ > G̃c,
Tc ≈ 1.73b̃2G−1=2 at zero chemical potential and μc ≈
2.55b̃2G−1=2 at zero temperature, and the behavior of this
critical parameters can be shown in Fig. 8.
In this context, we can discuss the interpretation of the

(timelike) DLSB parameter as a true chiral chemical
potential. Due to the existence of a mass in the self-energy
gap equation solution, there is no chiral symmetry in the
model, unless m ¼ 0. Therefore, the model will have a true
chemical potential only if m ¼ 0 or in the limit G̃ → ∞.
In general a chiral chemical potential is related to a

conservation of the chiral current, i.e., ∂μj
μ
5 ¼ 0,

where jμ5 ¼ ψ̄γμγ5ψ . Since our model has not a gauge
symmetry, there are no anomalies and the symmetry
is not broken if m ¼ 0. Therefore, in the massless case
we have a conserved charge given by Q5 ¼

R
d3xj05 ¼R

d3xðψ†
LψL − ψ†

RψRÞ ¼ NL − NR, with L, R representing
the chiral components of the Dirac fermion. In a thermo-
dynamical perspective, a chiral chemical potential gener-
ates a chiral charge density ρ5 ¼ ρL − ρR which is called a

chiral imbalance and is given by ρ5 ¼ μ3
5

3π2
þ μ5

3
ðT2 þ μ2Þ

[26], and in our case μ5 ¼ ghA0i ¼ 2B. This effect violates
CP andCPT symmetries, such way it can produce a baryon
number violation and can be a source for baryogene-
sis [27,28].

FIG. 7. Phase transition diagram for a timelike DLSB with
m ¼ 0; b ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

0.5=G
p

(black curve), for b ¼ ffiffiffiffi
G

p
(black and

dashed) and for b ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2.0=G

p
. Here T0 ≈ 1.73G−1=2 and

μ0 ≈ 2.55G−1=2.

FIG. 8. Plot of the log10 of the critical temperature T̃c (black
curve) and critical chemical potential μ̃c (black and dashed) as a
function of G̃ and for m ¼ 0.
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Even if we assume m ≠ 0, in the strong coupling limit
G̃ ≫ G̃c we can approximate Σ ≈ 0 and in this case, the
DLSB parameter is not a true chemical potential and it still
contributes to a “chiral” imbalance, but in this case, we
must take into count that the equality between chirality and
helicity is not exact. From the perspective of Keldysh
formalism, a way to implement the chiral chemical poten-
tial is to expand the Wigner function F character in Dirac
space through projectors PL;R ¼ 1

2
ð1� γ5Þ to accommo-

date this new feature. This implementation is beyond the
scope of this work and will be investigated in the future.
Going further, a way to improve our results can occur by

extending the rainbow approximation through the use of
the Bethe-Salpeter equation. We also can improve our
result by extending the quenched approximation, taking
into account the polarization tensor contribution, and taking
into account the nonlocality of the renormalization function
AðX;pÞ. These modifications will introduce new and more
complex nonlocalities which difficult the extract informa-
tion, but numerical analysis such as [29] can be made.
New features can also appear if we take a more complex

structure of the Wigner function FðX;pÞ, particularly the
spinorial character. Since the DLSB parameter is propor-
tional to SK ¼ 2iIm½SRF� if we give up the scalar property
of the Wigner function a much richer tensor structure arose.
In special, SK could have off-shell contributions which is a
feature of nonequilibrium physics and can give us new
sources of Lorentz symmetry breaking. Although the
model represented by the action (2.1) and analyzed with
the nonperturbative tools of the DS equations can be called
a toy model, some applications can be thought of in
condensed matter, e.g., in the context of 3D Weyl semi-
metals models [30]. The study of these other applications
will be the theme of a forthcoming paper.
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APPENDIX A: WIGNER TRANSFORMATION

Since our results are dependent on the knowledge of the
fermionic function, we need to find the solution of the
kinetic equation for F(x,y). We can achieve this with the use
of the Wigner transformation (WT) which is defined as
follows. Let Aðx; x0Þ a function and X ¼ xþx0

2
and

x̃ ¼ x − x0, thus:

AðX;pÞ ¼
Z

dx̃e−ipx̃A

�
X þ x̃

2
; X −

x̃
2

	
: ðA1Þ

The inverse of the Wigner transformation is given by:

Aðx; x0Þ ¼
Z

dpeipðx−x0ÞA
�
xþ x0

2
; p

	
: ðA2Þ

with dp ¼ ddp
ð2πÞd for any dimension d. Let C ¼ A∘B a

convolution, the WT of C reads:

CðX; pÞ ¼ AðX; pÞei
2
ð∂⃖X ∂⃗p−∂⃖p∂⃗XÞBðX; pÞ

≈ AðX; pÞBðX; pÞ þ i
2
ð∂⃗XAðX; pÞ∂⃗pBðX; pÞ

− ∂⃗pAðX; pÞ∂⃗XBðX; pÞÞ þ � � � ðA3Þ

When AðX;pÞ and BðX; pÞ is weakly dependent on X
coordinate the approximation is valid up to first order in ∂X.
Other important property is the WT of a product of two
functions. Let Cðx; x0Þ ¼ Aðx; x0ÞBðx; x0Þ. Thus:

CðX; pÞ ¼
Z

dqAðX; p − qÞBðX; qÞ ðA4Þ

If the function Aðx; x0Þ are invariant under translations, thus
Aðx; x0Þ ¼ Aðx − x0Þ implying ∂⃗XAðX;pÞ ¼ 0, therefore
AðX; pÞ ¼ AðpÞ and the WT is equivalent to the Fourier
transformation.

APPENDIX B: KINETIC EQUATIONS

The full fermionic propagator Scdðx; yÞ, as can be reach
from Eq. (2.10), obey the following equation:

Z
dy½ðS−10 Þcdðx;yÞþgδðx−yÞγμa;cdbaμðxÞþΞcdðx;yÞ�Sdfðy;zÞ

¼ δcfδðx− zÞ ðB1Þ

Due to the causality structure the full fermionic propa-
gator in the Keldysh formalism it has the following
structure in the Keldysh space:

Sdfðy; zÞ ¼
�
SRðy; zÞ SKðy; zÞ

0 SAðy; zÞ

	
: ðB2Þ

The self-energy contribution obeys a similar structure, i.e.:

Ξdfðy; zÞ ¼
�
ΞRðy; zÞ ΞKðy; zÞ

0 ΞAðy; zÞ

	
: ðB3Þ

Therefore the retarded (advanced) component of
Sdfðy; zÞ obey the following (Kadanoff-baym-like) non-
linear equations:

ðiγμ∂μ þ gγμγ5αclμ ðxÞ −mÞSRðAÞðx; yÞ

þ
Z

dzΞRðAÞðx; zÞSRðAÞðz; yÞ ¼ δðx − yÞ; ðB4Þ
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where

gαclμ ðxÞ ¼ iGTr½γμγ5SKðx; xÞ�: ðB5Þ

Important to highlight that the causal structure of the full
fermionic propagator fix αqμðxÞ ¼ 0 unambiguously.
Therefore, we use αclμ ðxÞ ¼ αμðxÞ for short. Since SK is
skew-Hermitian, by parametrization we can write SK ¼
SR∘F − F∘SA with F ¼ Fðx; yÞ a generic hermitian
tensor in Dirac matrices space and we use the symbol “∘”
as the convolution operator. Therefore, F obey the follow
equation:

Z
dy½Δðx;yÞFðy;zÞ−Fðx;yÞΔðy;zÞ�

¼ΞKðx;zÞþ
Z

dy½Fðx;yÞΞRðy;zÞ−ΞAðx;yÞFðy;zÞ�;

ðB6Þ

whereΔðx;yÞ¼ðiγμ∂μþgγμγ5αμðxÞ−mÞδðx−yÞ. Applying
the Wigner transformation in Eq. (B6) we find:

Re

��
γμ þ ∂

∂pμ Ξ̃
RðX; pÞ

	 ∂
∂Xμ

FðX; pÞ

−
∂

∂Xμ Ξ̃
RðX;pÞ ∂

∂pμ
FðX; pÞ

�
¼ Icoll½F� ðB7Þ

where Ξ̃RðX; pÞ ¼ ΞRðX; pÞ þ gγνγ5ανðXÞ, αμðXÞ
is the WT of αμðxÞ and is given by αμðXÞ ¼
iG

R
dp0Tr½γμγ5SKðX; p0Þ� and Icoll½F� ¼ −iΞKðX; pÞ þ

2Im½ΞRðX; pÞFðX; pÞ� is the collision integral. The equi-
librium solution is given by Icoll½F� ¼ 0 and can be shown
that for fermionic fields in equilibrium FeqðkÞ ¼ tanhðk0−μ

2T Þ
and its connected with the fluctuation dissipation theorem
(FDT) [20].
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