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We investigate scattering amplitudes of the reversible #-exact Seiberg-Witten map-based noncommu-
tative (NC) quantum electrodynamics and show explicitly the SW map invariance for all types of tree-level
NCQED two-by-two processes, including Mgller, Bhabha, Compton, pair annihilation, pair production,
and light-by-light (LbyL: yy — yy) scatterings. We apply our NCQED results to the yy — yy and yy —
¢+ ¢~ exclusive channels, convoluted to the ultraperipheral lead *°Pb ion-ion collisions, where LbyL
scattering was recently measured by the ATLAS Collaboration at the LHC. We have demonstrated that
yy — yy is the more appropriate channel to probe scale Ayc. We also find that the transverse (¢)
dependence of the NC PbPb(yy) — Pb*Pb*yy differential cross section shows large anisotropy near the
peak NC contribution for a pure spacelike NC parameter. So the ¢ variation of the differential cross section
is likely an appropriate signature for the NCQED contributions with the pure space-space noncommutative
parameter, given that enough events could be available for determining the anisotropy.
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I. INTRODUCTION

Lorentz symmetry, as a cornerstone of modern physics,
appears with the Einstein formulation of the special theory
of relativity in 1905. A classical example maintaining
Lorentz symmetry is the Dirac-Born-Infeld model [1-3],
which introduces an upper bound for the electric field near
the electron, eliminating electron self-energy divergences,
while another is the famous Euler-Heisenberg classical
Maxwell Lagrangian density [4]. Since then, Lorentz
symmetry is one of the symmetries whose violation has
been challenged many times by many experimental
attempts and bounds obtained.

In the modern string theory framework regarding the
effect of spontaneous breaking of Lorentz symmetry, one of
the most striking observations is that via tensor field
vacuum expectation values the low-energy effective theory
can be expressed by usual gauge fields or gauge fields
deformed by space-time noncommutativity (NC). These
two versions of effective theory can be subsequently
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connected by highly nonlocal expressions, called the
Seiberg-Witten (SW) map [5].

While the simplest quantized coordinates argument
would set the noncommutative scale to be at Planck scale,
string theory does not specify directly the vacuum expect-
ation value for the B* field; therefore, the corresponding
antisymmetric tensor 8" governing NC space-time defor-
mations could bear an unknown value which may be
assessed by experiments [6-9]. NC gauge field theories
are therefore studied intensively as perturbative quantum
field theories from both theoretical (mathematical physics
and field theory) [10-22] and phenomenological view-
points [23-64].

The SW map turns out to be not only of theoretical
importance, but also highly instrumental in defining qua-
sirealistic phenomenological quantum gauge field theory
models [16,17,65-77]. In recent years, some crucial uni-
tarity properties [78—83] of the perturbatively quantized NC
gauge theories [84,85], with and without the SW map, have
also been successfully linked up via the so-called #-exact-
SW—mapl expansion technique leading to the effect of
UV-IR mixing [9,86-105]. Additional to the Moyal mani-
fold, it was shown that UV-IR mixing manifests itself on

'J.T. thanks L. Alvarez-Gaume for pointing out, during our
discussions in the early years of SW, the importance of a #-exact
SW map, i.e., on the necessity to resum all originally #-expanded
SW map solutions at the end of a day.
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the k-Minkowski [106,107] and Snyder [108—111] spaces,
as well. We note that there are also connections between
UV-IR mixing and other ideas like vacuum birefringence
[112], holography [113,114], weak gravity conjecture,
naturalness and the hierarchy problem [115-120], and
noncommutative  Aharony-Bergman-Jafferis-Maldacena
theory [121], all known as possible windows to quantum
gravity [122-125].

In recent years, tremendous progress has been achieved
in the field of the on-shell scattering amplitudes of quantum
gauge theories [126,127]. NC(S)YM without the SW map
have been found to share a good amount of recently
discovered abstract scattering amplitude structures with
their commutative counterparts at both the tree and one-
loop levels [128,129]. On the other hand, scattering
amplitudes of SW mapped NC gauge theories are mainly
studied on an explicit process-by-process basis. An expan-
sion over the NC parameter 6 was also used in various early
studies, which covered a fairly large number of processes.
Furthermore, while it has been shown formally that SW
map-based equivalence exists between on-shell back-
ground field effective actions [130-132], there is not yet
awork that studies explicitly the scattering amplitudes in an
NC gauge theory defined via a reversible SW map and
compares with its counterpart without the SW map.

In this work, we fill this vacancy by demonstrating
explicitly that all tree-level two-by-two scattering ampli-
tudes in an NCQED model defined with a reversible
f-exact SW map are identical to their unmapped counter-
parts, which is compatible with the formal equivalence
proven before [130-132].

As applications of this newly found identity, we revisit
the NCQED two-by-two processes and, in particular, light-
by-light scatterings and lepton pair production processes in
the context of ATLAS ultraperipheral lead *®Pb ion-ion
collision measurements [133-136] and show that LbyL
scattering is a better probe to the NC scale of these two.
ATLAS results were already compared with the standard
model (SM) predictions [137-139] and used in con-
straining various models beyond the SM [140-146].

The paper is structured as follows. In Sec. II, we describe
the Moyal NC deformation and the SW map-induced actions
by means of the 9-exact SW maps for a photon and charged
fermion. In Sec. III, we prove the SW map invariance of
scattering amplitudes in the matter and the gauge sectors of
NCQED. In Secs. IV-VI, we revisit and compute the cross
section of exclusive processes in NCQED and SM: Mgller,
Bhabha, Compton (first computed by Klein and Nishina in
1929 [147]), dilepton pair annihilations and productions,
and yy — yy scatterings (first published by Karplus and
Neuman in 1951 [148])—showing complementarity
between NCQED and QCD [42-47]—and present them
in the form of 3D figures of ratios of cross sections onc/ogm
as functions of the incoming energy and the NC scale,
respectively. Section VII is devoted to the SM and NCQED
computations of recent ATLAS Collaboration measured

PbPb(yy) — Pb*Pb*yy and PbPb(yy) — Pb*Pb*¢*¢~ col-
lision cross sections. Section VIII contains discussions and
conclusions, respectively. In Appendixes we are using main
conventions and notations, like equations of motions (EOM)
and on-shell conditions, from Peskin and Schroeder [149],
and give the NCQED Feynman rules (FR), the NC phase
factors including ¢-integrals, and details of vanishing of the
SW map induced amplitude for yy — yy scattering. For
relevant integrals and other mathematical issues among
Wolfram Mathematica [150], we are using mainly
Gradshteyn and Ryzhik [151].

I1. SEIBERG-WITTEN MAP-INDUCED
NCQED ACTION

A. General SW map considerations

We consider the minimal NCQED model in terms of the
minimal NC gauge and charge fermion fields, A, and ¥,
respectively, which lives in the adjoint representation of the
NC gauge group U(N):

. 1 7
gmin / _EFW*FW + lP*(iD - m)\Pa

F,=0A,-0A,—i[AA,],
DY =0,¥—-i[AY] (1)

where (x) denote the Moyal-Weyl star product. The relation
between the NC and commutative quantities or fields is
given by the #-exact Seiberg-Witten map. In the above
action (1), we do apply the generalized SW maps of
the NC gauge parameter A, NC gauge and fermion fields
A, and Y, in terms of commutative gauge parameter 4 and
commutative—physical-—gauge and fermion fields a, and
v, respectively.

Extending results obtained in Refs. [76,77], by applying
a method based on the following consistency condition
transformations [13,14]:

Op\A, =0, A +i[AA,] = 5,A,a,l, (2)

OpF,, =i[ASF, ] = 6,F,]a,]. (3)

oL uv

Al[A, 4], a,] = [A[dy, a,5A[h, a,]] + 6, Aldy, ]

- 1.512/\[/11, (1”], (4)
we have been working out in detail the #-exact SW map for
the noncommutative gauge field strength F,, up to the third
order of ordinary U(N) gauge field a, [90]. So, in terms of

commutative U(1) gauge field strength f,,, we have found
the following solution:

Fle-a,0")=ef, + Ff;, + Ff,:, + O(e*),
f/,w = aﬂal/ - 81/“/4’ (5)
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where the term for the SW map up to the e> order F ;i is
fairly universal [90,91,104]:

in(x) = ezeij(fﬂi*vaj - ai*Zajf;w)' (6)

Here, we use well-known Moyal-Weyl x- and the *,-
product definitions:

0500y

(fxg9)(x) = f(x)e" 7 g(y)

X=y
0,00,

sSin 3
9,00,
2

= f(X)*29(x) = f(x)

where, in fact, the x, product is nonassociative; however, it
1S commutative.

Now we give the e® power of the #-exact field strength
F f; [SW map (I)-induced solution in Eq. (65) from
Ref. [90]], needed for all further computations:

3
Fo(x) = % 9gH ([fykfviflj]*y + [furfuif i)l ay T [fvlaiajfyk]*y - [fﬂkaiajful]*g,

—ladi(fuif ., +laidjadiful, , + [01f waid;adl,

1

+ [akaialajfmx]*y ) ([aiakajalfmx]*y + [alfﬂyaiakaj]*y)) .

with new star product being defined in Refs. [90,92].

(8)

A general SW map expansion of the NC U(N) charged fermion field ¥(x), in terms of commutative gauge and fermion

fields (a, ), respectively, is given as

P(x) =PO>x) + PO (x) + PP (x) +--- =y —%Hifa,- « 0w+ O(a*)y,

©)

where the right-hand side of Eq. (9) represents the leading-order charged fermion SW map, derived long ago [5]. The bullet

product (¢) in Eq. (9) is defined as

D00y
e —1
9,00,
;200
2

(fe9)x) = f(x)

Above, the * product is not associative, but it satisfies the
integral identity, which is easy to prove by expanding,
integrating by part, and resumming the resulting series.
At the end of this section, note that, to obtain the
complete two-electron—two-photon vertex ['**(eeyy) (nec-
essary for any quantum-loop computation) in momentum
|

9(y)

o /(f'g)hz/f(g-h).

(10)

[
space, we also need a second order in gauge field f-exact
SW map for the electron field, ¥(?)(x). Using the SW
differential equation method [76] in the same way as we did
in Ref. [90], we have also obtained the ¥(?) (x) term of the
SW map expansion (9) explicitly:

e—%(p&q—}—p&k—}—qak) -1

. 1 ..
wo = [ dpdqdke—t(wwxzeu{a,(p)a,-(q)w(k)

—£(pbq + pOk + q0k)
y N 1 e~5(POa+pOk+qok) _ | e~5(pba+pok) _ |
—om {ai(p)am(Q)w(k)(q + k)jkn%qgk (_% (pOq + pOk + qok)  —%(pOq + pek)>
1 1 e~ 5(POq+pOk+q0k) _ | e~ 3(POk+q0k—pOq) _ 1
— 5 k(24,8 (P)ai(q) = qiin (P)an(q))yr (k) p0g <_ L(pOq + pOk + qOk) —1i(pOk + qOk — pHQ)ﬂ }

(11)
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B. Minimal #-exact SW mapped NCQED action

From minimal noncommutative U(N) action (1), we
perform the SW map expansion in terms of commutative—
physical—fields (a,,w) and write the generalized mani-
festly gauge invariant actions with a minimal number of
fields:
|

§=Sua) +Sp +Sp+ Sppy + Sy + 0 (12)
The solution of the #-exact SW map in terms of commu-
tative gauge field strengths f** was resolved from the SW
differential equation [90], giving the following minimal
action’:

1 -
Su) = ‘Efﬂvf"“rlv/ﬁw, (13)
o€ [ pipw 1 14
0= —5 f f;u'*zfuj _Zfij*ZfﬂU ’ ( )

2
Sy = —%gijakl /(fm*zfuj)(f”k*zf”z) — (fijxafuw) (%)

+ 21" fuif e 1] o T 21" (ai%0;(fu*afur) — [fﬂkaiajfyl]*3/ -

1 1 1
- Zf’w [fﬂvfikfjl]*}, + 8 (fw*2fij)(fkl*2fyu) + 5equlw[aifjkflpaqu/]/\/((l)’

where additional star products could be found in
Refs. [90,92].

1. Minimal matter sector: Relevant parts
up to the e* order

Next, we give f-exact electron-photon action up to the e'
order Sy, as

Sl/?al// = /ll_/(é*l//
0D P+ imy+ (- im) (0,0,
— [+ ;B0 4 par) =iy (D im.

(16)

There are also two-electron—two-photon action-relevant
terms Sy 2, with additional parts which are proportional to
the free field equation for either y or y. Therefore, since
they vanish due to the EOM, they are irrelevant to the tree-
level scattering processes we are heading for. Bearing this
in mind, we collect now the relevant terms at the ¢ order

which does not vanish on shell S; 2, [ielevant:

1 - _ _
ll_/azl//‘relevant = _2/011[(81'1// ° Cll')ﬁ*l// + W¢i*(ai ® Jl//)

+w(aixy (20t — da;))xy

00,5+ ) Py - O] (17)

S

*See the discussion regarding gauge freedom parameters in
Refs. [90,92], at the beginning of Appendix_A 2 b.

[aifﬂkajfvl} *3/>
(15)

I

Extracting the relevant matter part of the two-electron—
two-photon coupling terms, we integrate (17) by part in
such a way that all partial derivatives hit y, thus changing

the form of S, to

1 -
Sl/7a211/|relevant = 2/ 0 |}/_/aj (ai ¢ (¢*W)) - l/_lﬁ*(ai ® a/W)
—w(ai*2 (2044 — Ba;))*y

- 0900, (P - o). (18)

From the above actions (14)—(16), and (18), we obtain the
Feynman rules which are given in Appendix A,
respectively.

2. Minimal gauge sector: Relevant parts of the
three- and four-photon couplings

Since the triple-photon interaction, based on a fairly
universal second-order SW map for the gauge field, is
already given as Eq. (14), here we continue with higher-
order contribution.

Expanding (1) up to the order of aﬁ by using (12), we get
the following general form for the four-photon interaction:

1 3
§¢ =8, = ~17 / (FGFEm 4+ 2efrF,), (19)

where the two distinct solutions for the e order gauge field
strength have been found and given explicitly in Ref. [90].
After using solution (I) [Eq. (65) in Ref. [90]] from (6)—(8)
and (19), we obtain
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1 >

2
e rretuy ¢ ij
462 F/wF B = _Z/aj(fyi*lfuj - ai*Zajf;w)

X O (fHixaf?) — agHr0if*).

(20)

In the second term of Eq. (19), we are not using the
complete (8) for F f;, but only the relevant part, which
then for the universal gauge field SW map AI‘;2 =
—"2—29’761,-*2(8/% + f.) gives

1 Ve’ 1 Ulip, % A€
_Z/fﬂ [F/lu]rclevant = _;/f” [lea/l’Au]
= _i/[fﬂyteaﬂ]Aizﬂ

: e1)

producing

2

1 3 € ij v
_Z/fﬂy[F;D]relevant = ?/aj(alfﬂ *2ajaﬂ)

X O (agxy(Oya, + f1)).  (22)

Altogether, from Eq. (19) we then have

e’ g
S€2 ‘relevant = _Z / gljekl[(fﬂi*lfuj)(f”k*nyl)

- z(ai*Zajfﬂu)(fﬂk*nyj)
+ (ai%20f ) (@ x20, 1)

= 2(0,f"x,0;a,)(ar*>(01a, + f1,))]. (23)

From the above action (23), we obtain the relevant FRs and
give them in Appendix A.

C. Parametrizations of the NC 6 matrix and unitarity
of the NCQED theory

We parametrize the 4 x 4 antisymmetric # matrix as
follows:

0 Co1 Co2  Co3
Cuw I | —coo O 2 C13
O ="5"="3 ’ (24)
A A —C —c 0 c
NC NC 02 12 23

—cp3 —ci3 —¢3 0

where the ¢, -matrix elements are identical in all reference
frames resulting in Lorentz symmetry breaking and run
within [0, 1] values. The c¢(; elements are related to the
time-space (timelike) noncommutativity defined by the

direction of the background E, = A+ (Co1> Con, Co3) field,
NC

while the ¢;; coefficients are related to the space-space
(spacelike) NC and are defined by the direction of the

background B, = A%NC (Cp3, —Cy3,Cpo) field.

Itis important to stress that, for the case 8 # 0, V i, the

NC theory is not unitary, i.e., having acausal behavior
[78,79]. Only the condition 8% = 0 keeps the theory unitary
and causal. However, to keep the possibility of nonzero
space and time NC contributions to the novel particle
physics effects, i.e., the physical noncommutative effects,
we invoke a covariant generalization of 8% = 0 require-
ments through the so-called unitarity condition, known as
the quantum or perturbative unitarity condition [80].
Namely, the theory with 8% # 0 can be converted into
one with only 8% # 0 by a suitable observer Lorentz trans-
formation, since the presence of observer Lorentz invariance
implies that there are no difficulties with perturbative
unitarity provided by 6,0 > 0. Analogous methods do
apply for noncommutative theories with 8% # 0, which lead
to the so-called lightlike noncommutativity defined in
Ref. [79]. One may combine both spacelike and lightlike
into the following set of requirements for unitarity:
The lightlike noncommutativity takes place when the equal-
ity holds in the first part of Eq. (25); otherwise, the
conditions allow a boost to By # Eg = 0, i.e., the spacelike
noncommutativity.

III. SEIBERG-WITTEN MAP INVARIANT
SCATTERING AMPLITUDES

A. Electron and positron processes

In accord with Figs. 1-4, here we use the two-by-two
kinematics 1(k;) + 2(k,) — 3(k3) + 4(k,) and momentum
conservation k; + k, = k3 + k4 which defines Mandelstam
variables for arbitrary 2 — 2 scattering:

s = (ki + kp)? = (ks + ky)?,
1= (ky — ky)* = (k3 — kp)?,

u = (ky—ky)* = (ky = k3). (26)

1. Mgller scattering: e e~ — e~ e~

First, we examine the NC effects arising from the
contributions relevant to the Mgller amplitude MM,
Summing diagrams in Fig. 1 by using Feynman rules
(Al) and/or (A2), we read out the following S-matrix
element:

SM(e™(ki)e™ (ko) — e (ks)e™ (ky))

= (27)*6W (ky + ky — k3 — kg)iMN ;. (27)
Here M), represents sum of the non-SW(/) map-induced
and the SW(II) map-induced contributions to the ampli-
tude, respectively. Performing trivial integrations over the o
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ug(ki) r) U (ka)
(%)W
uo (ko) pea T Ga(ks)

ki — ks = q = —ko + k3

ug(ky) o T (ky)
(qU)W

Ua(k2) ] e Uy (ks)
I

ki — ks = qu=—ko+ ks

ug(k1) g (ky)

’lja(—k'g) ’Ua/<—]€3)

ug(kr) s U (ka)
(C]t)/w
@a(—ké) ) oo’ B Ve (—ks)
I

kv —ky=q = ks — ko

FIG. 1. Left panel: Feynman diagrams contributing to the elastic Mgller scatterings e~ (k;)e™ (ko) — e~ (ks)e™(k4). Right panel:
Feynman diagrams contributing to the elastic Bhabha scatterings e~ (k;)e™ (ko) — e™ (k3)e™(k4). Both are presented with EOM and on-
shell conditions from Peskin and Schroeder [149]. Momenta k;, i = 1, 2, 3, 4, placed in the counterclockwise direction start in the left
upper corner, while definitions of respecting Mandelstam variable and channels (s, ¢, u) are given in Eq. (26).

¢'(k1) € (ka)

!
> F;;\.(Y

Ug(kg) ﬂu(k‘g)

ki + ko =q, = ks + ky

e (k1) Lyur € (ks)

>
-

ug(ka) Fgﬂ Uo(ks)
ki — ks =q = ks — ko

Y

(k1) " (k)

ug (kZ) ﬂa(kS)

e (k1) (k)

(k) Ui (k3)
ki+ ko =ks+ky

FIG. 2. Feynman diagrams contributing to the Compton scatterings e~y — ey, with free field conditions as usual from Peskin and
Schroeder [149]. Momenta k;, i = 1, 2, 3, 4, placed in the counterclockwise direction start in the left upper corner, with respecting

Mandelstam variable or channels (s, 7, u) being given in Eq. (26).
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us(h) DI en(hy) (k) P en(hy

—_ —_ \J\H\\
(qf)n’d’ (IIu)u’J’ ﬁ

—_— —_—

Val—k2) Fjl“‘/ e (k3) Val—h2) e e (k3)

ki —ky=q = —ko+ ks

by — k3 = qu=—ka+ ky
ug(kr) e (ky)

Tes

)3

Da(—Fhz) k) Ua(—Fka)

ki 4 ko = ks + kg

€ (ks)

k4 ko =qs=ks+ky

FIG. 3.

(k1) Tp (k) e (k) D8 g (k)

ANNNN\N\ ————
(@) \\FH\ (@)

€ (k) rys va(—ks) (k) N )

—kithki=q =ky— ks k1 —ks=qu= —ky+ ky

e (ky) U (ky) e'(ky)

T (ks)

¢ (ks) vg(—ks) € (k2)

ki+ko=ks+ky

vg(—Fks)

ki +ko=qs=ks+ky

Left panel: Feynman diagrams contributing to the e~ (k;)e*t (k,) — y(k3)y(ks) pair annihilation. Right panel: diagrams

contributing to the y(k;)y(k,) — e~ (k3)et(k4) pair production. Free field conditions are used from Peskin and Schroeder [149].

Eltl(k1> 624(k4)

INEC

¥ N
€po (k2> 6#3 (k3)
qs + kl + kQ =0

elt1<k1) 6;4(]{:4)

[ H1ops

INQIZE
ki — ks = qu= ks — ks

€H2<k2) 623(]63)

624(]'64)

elh(kl)
N

A

[ H1H213 14

A
€1, (K2) ey, (Ks)
kl + ICQ = kg + k4

FIG. 4. Feynman diagrams contributing to the exclusive LbyL scatterings y(k; )y (ko) — y(k3)y(k4), with free field conditions from
Peskin and Schroeder [149]. Separated arrows indicate the flow of momenta. Outer momenta k;, i = 1, 2, 3, 4, are placed in the
counterclockwise direction, with respecting definitions of Mandelstam variable or channels (s, 7, u) being given in Eq. (26).

functions and splitting amplitudes into non-SW mapped
NCQED (M;,, M;,) and the SW mapped parts of NCQED
(M, Myp,), respectively, we have the following Mgller
scattering amplitude M :

Mll\ﬁrll = Mt + Mu
= (M;+Mp) +M;+My),,  (28)

M, = a(ky)(T] + 1) (=q,. ky )u(k)
x %uu@)(w + 1) (g k)u(ky),  (29)

Mu - _ﬁ(k3>(r7 + FI;I)(_QW kl)u<k1)
x %u(kmr; 1) (g k)ulky),  (30)

u
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with vertices I'; and I';; being given in Appendix A as FRs
(A1) and (A2), while propagators are taken from
Ref. [149], respectively. So the above amplitude M,
represents the f-channel contribution from the NCQED
without the SW map, while M, stands for the #-channel
amplitude arising in the NCQED theory with the SW map.
The same notations are going to be used for s- and u-
channel amplitudes, further on.

Using detailed vertices from Eqs. (Al) and (A2) and
applying them in amplitudes (29) and (30), we find that all
the SW map-induced NCQED parts of amplitudes and/or
diagrams in the left part of Fig. 1, including both the pure
NC I';, x T, and the cross terms of the type I';, x I},
respectively, due to the free field equations vanish on shell
trivially:

(Mm) 29) (Mllu) 30) = 0. (31)
giving the SM result which is shifted only by the non-
commutative phases:

1
My, =eZe 2(k49k'+k’9k2); (k4)y”u(k1)ﬁ(k3)y#u(k2), (32)

My, =—€2€2<k49k2+k*9k1) u(ky)y,u(ky)i(ks)y*u(ky). (33)

This property was first observed for fermions in the adjoint
representation of the NC U(1) some years ago [88].

For the in-out momentum conservation 5(4)(k1 + ky —
k3 — k4), one can show the following relations, in general:

(1) kOks
(2) k6k,

- k40k2 = k39k2 + k49k1 and
- k49k3 - k39k2 - k49k1 . (34)

Using the relation (/) above, one can show that the
NCQED Mgller scattering amplitude shares the same
permutation symmetry as its QED counterpart and respects
the fermion statistics accordingly.

2. Bhabha scattering: e e* — e~ e*

Second, we examine the NC effects arising from the
contributions of the two relevant diagrams to the Bhabha
amplitude M®. From the sum of right diagrams in Fig. 1,
we read out the following S — 1 matrix element:

SP(e*(ka)e (ki) — e*(ks)e™ (ky))
= (27)*6W (k) + ky — k3 — kg)iMB, ;. (35)

Trivial integrations over the & functions and splitting
amplitudes into parts coming from non-SW mapped
NCQED (By;,B;,) from the SW mapped parts of
NCQED (B, By), respectively, we have the following
Bhabha scattering amplitude MP,,:

MB =B+ B, = (B + By), + (B + Byy),. (36)

B, = __(_kZ)(FI; + F/;I)(Qn —k3)v(—ks3)

X alk) (T + ) (=g k)uth). (37)

By = o(=ky)(Ty + ;) (—=qy. ky )u(ky)
?1mm+mmphm 3. (38)

s

Using vertices from Egs. (A1) and (A2) and applying the
amplitudes (37) and (38), we show, due to the free field
equations, the trivial on-shell vanishing of the SW map-
induced amplitudes

(Bm)m) = (Bm)(ss) =0, (39)

and producing the SM result shifted by the noncommuta-
tive phases:

—_

By, = —e?esbathmtatho) Z ey )y u(ky )o( =) v(=ks),

~

(40)

1
By = e2edbathat0) <k )y, v(—ks )0 (—ka)yu(ky). (41)
N

B. Electron and photon processes

1. Compton scattering: ye — ye

From the sum of diagrams in Fig. 2, we read out
the following Compton scattering (S —1) =S¢ matrix
element:

$C(r(ky)
(271')45 (kl + kz - k3

e~ (ky) = e (k3)y(ks))
ka)iME  (42)

with the total amplitude M, being split into the non-
SW(I) and the SW(II) map-induced contributions to the
electron and photon interactions and/or Compton scattering
amplitude, respectively. Feynman rules for vertices
@y 4)’s are given in Appendix A [Egs. (A1)~(A4)], while
propagators are defined in Ref. [149], respectively. After
performing trivial integrations over d functions, we obtain
the following sum of amplitudes:
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MIC+11:eu(kl)65(]‘4)1_4(]‘3)(:?111”(](2)7 CZ}’OCTVOv
v . kl+k2+me
Cliy=—i F7+IITmz

fo—Katm 1
+I7 ngerﬁu

v
IﬁI+II

1—‘I-HIpl—‘H»II + FI+II ’

M = MG+ MG+ M, + M, +M,,s

+ Mg+ M, + Mip, (43)
where yoTiyo = I 7oliwro = Uy and 7olo = T,
Above, amplitude M, represents the s-channel contribu-
tion from the NCQED without the SW map, while M
stands for the s-channel amplitude induced into the
NCQED by the SW(/I) map. The same is valid for the
u and ¢ channels, respectively. For instance, only the first
term I'; in Eq. (Al) represents the Feynman rule for the
NCQED with non-SW(/) map-induced terms, while the

|

M, = —ie*e,(ky)ej(ky)e

iy Oky— kg Ok3)

additional two terms in Eq. (A1) arise due to the SW(/I)
map. Second, only the first line V43 of Eq. (A6),
represents the FR for the NCQED theory with non-
SW(I) map-induced contributions. Other notations of the
diagrams in Fig. 2 and corresponding contributions given in
Egs. (43) are self-evident, and Ward identities in matter
sector being satisfied.

Note that the four-field-vertex contact term in Fig. 2 does
not exist without the SW (/) map; i.e., only the nonvanishing
part is induced by the SW (/) map. In Appendix A, this is
anticipated by writing explicitly in Eq. (A4) vanishing of that
contact term part on shell due to the free field equations:
(T")4p = 0. Thus, we called it as irrelevant. However, the
SW(II) map-induced term (I'};),; #0 in Eq. (A4) is
necessary to cancel the SW (/1) map-induced pieces in the
other three diagrams in Fig. 2. Next, we show that, by explicit
computations of s-, u-, and t-channel three-field-vertex
diagrams from Fig. 2 and Eqgs. (43) for the on-shell case,

K+ +m,

n(k )y ——r=  °
I G+ ket =

“u(ky), (44)

MG, = —ie*e, (ky)es(ky)ia(ks) [Eeé(k‘"% (ks ky)yH (Oky ) _Ee “hOR) B (—ky, k3)7* (Oks )

Pk Kb K 0K 08,

c 4¢?
Mi = m%(’ﬁ) s (kg)e™

MG, =e e”(kl)ej(k4)e‘%(k39k2)

MG, = —ie*e,(ky)e;(ks)e

i(k3ky) o

MG, = —ie*e, (ki )e; (ky)i(ks) [—Eez(k“akz F.(ky. k3)(Oks) y" +%e_%(k‘ek”F-(—kmkz)(ekz)”}’”

- %F-U% k3)F.(—ky, kz)k4(9k3>"(9k2)”] u(ky).

Finally from Appendix A using FR (A4), in the notation of the fourth diagram in Fig. 2, we have

(45)
ke, Ok
o alks) g = 7k = ket Ju(ks). (46)
F,, (kv —kg)i(ks) [0 §, + r"(Ok, )" — (k)" r"|u(ks), (47)
kO —hi0ks) y oy K2 T Ratme 4
it(k3)r (ky ks =2’ u(ks), (48)
(49)
MS, =0, (50)
Mll4s + M?Mt + M?Mu’ (51)

MII4

where
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2

e _ i i Vo i
My, =€ (k1)€ﬁ<k4)”(k3)§ {7”(9"3)”6 O F (—ky, k3) — (Oky )y e MO F, (K, ky)

Pk k)l o) O 08 1 (),

2

c _
M114t - 2
2
e
c _
M114u - ?

_éF~(k1a k3)F.(=ky, ky)(Oks)" (Oky )" ks

It can then be shown that
MICIS + M?Ms = M%t +M1C14t = M%u +M§:I4u =0. (53)

Thus, the sum of the SW map-induced contributions to the
on-shell Compton scattering amplitude vanishes.

2. Dilepton pair annihilation and production:
T S yylyy > €T e
From the sum of diagrams, for annihilation (left panel in
Fig. 3) and for production (right panel in Fig. 3), we read
out the following S — 1 matrix elements, i.e., the M* and
MP amplitudes, respectively:

SA (e (ky)e™ (ko) — y(ks)y(ky))
= (22)*6W (ky + ky — k3 — kg)iMB, (54

S (r(ky)r(ky) — e (ks)e™ (ky))
= (2”)45(4)(k1 +ky — k3 — k4)iM1P+11- (55)

Because of the same topological and Lorentz structures
of contributing diagrams in the left and right panels in
Fig. 3 as in the Compton scattering (Fig. 2), the same
conclusion of vanishing the SW(/I) map-induced contri-
butions is valid for the pair annihilation and pair production
processes, respectively. So those, together with (31), (39),
and (53), represent the extraordinary property of SW maps
in the matter sector of NCQED. This same property we
shall prove for the pure NCQED gauge sector.
|

S ek )es (k) (ks [2((0ky 7 = 7 (Oky ) = 04 (fy + K)] e H00R)F, (ky ~kq)uky).

eu(ky)es (ky)un(ks) [(9k3)”7”35(k49k2)F-(k17k3) — P (Oky e ORI F (—ky, k)

u(ky). (52)

|
C. Photon-photon process

In this section, we present noncommutative effects
arising from the contributions of the four relevant diagrams
to the yy — yy scattering amplitude M? from Fig. 4. We
shall further on consider two different basis to express our
total amplitude after summing up diagrams. Those are, first,
the amplitudes in terms of the Lorentz decomposition basis.
Second are the photon amplitudes expressed in the helicity
basis, along the analysis of Refs. [126,128,129], i.e., on the
line of the scattering amplitude ideas in recent trends of
theoretical physics progress.

Lorentz decomposition is important for proof of the
SW(II) map invariance of scattering amplitudes on shell,
respectively. Now note that after or when proving vanishing
of the SW(/I) map-induced contributions, the Ward iden-
tities have to be shown only for the non-SW(/) map-
induced parts of the scattering amplitudes, which we shall
actually perform first in the next subsections.

S7(y(ky )y (ky) = v(ks)y(k4))
= (27)*6W (ky + ky — k3 — kg)iM7, ;. (56)

Here, each vertex I' in the diagrams is the sum of the non-
SW(I) map and SW(II) map-induced relevant parts, from
FRs (A5)—(A17). By splitting (56) into non-SW (I';) and
SW (T';;) parts, we have the following amplitude for the
sum of s-, #-, and u-channel three-photon diagrams, plus the
four-photon one as

_igaﬁ

M = €, (ke (ko)eg, (k3 )eg, (ky) - {(Fl + Ty (ky, ko, q,) 2 (Ty + Ty )PP (—ksy, —ky, —q)

a _iglf
A+ (T + Ty )t (ky, =gy, —ky) —o2

t

—i
+ (T + Ty )19 (ky, =gy —ks3) quaﬁ

u

— A3 NV hid
= iMyy + iM

s

(T + Ty fotb (ky, —ks. q,)

(Cp + Typ)otb (k. —ka q,,) + (T + Ty )F#arbs (kg ky, ks, —k4)}

(57)
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1. Non-SW(I) map-induced yy — yy amplitudes and Ward identities

Total non-SW (/) map-induced contributions are

iMy = iM) +iMY

1 a 1 P
= eﬂl(kl)eﬂz(k2)€;3<k3)€;4(k4) : {;Fﬁﬂz(khkz,qs)FI;W (=k3, —k4, —q;) +~ Fﬂlm(kh—fln —k4)rl;2”3 (k. —k3.q,)

1
+ =0 (ky, =qy. —k3)T7% (ky, —ky, q,,) + i F555 (e ke, =k, —k4)}- (58)
u

Taking into account FRs and the decomposition of vertices,
the total on-shell non-SW map-induced amplitude (58)
shall have the following form:
k, 6k

" in

kO _ kiOky | k0K,
1

a, sin sin
2 2

iM} = aysin

kiOky | ksOk,
sin 7

+ as sin (59)
where the coefficients a;, i = 1, 2, 3, shall be determined
later by explicit computations. One could simplify iM] by
employing the following Moyal-Weyl *-product Jacobi
identity in momentum space:

k,0k k;0k k,0k k, 0k
sin 12 2sin 32 4 _sin 12 3 sin 22 4
k, 0k k,0k
+ sin%sin% =0. (60)

One of the momenta, k4, has a fixed place, and the
remaining three are cyclically permuted. The left side
|

M;lLoremz = [M?y + M;ly]Lorcntz
= -4, (1), 1), (), 1) - {sin
1
+- (2K g’ — 2K ' + (k
1

. k\Oky .
—sin sin

ko Oks
2

1
_;(2]{,‘14491&1 +2k111d;4 _
1

KOk,
Sin

1 = ko) g2 ) (2K5 s —

gﬂlﬂ}gﬂ2ﬂ4 —+ gﬂ1ﬂ4gﬂ2ﬂ3

|
vanishes due to the momentum conservation and antisym-
metry among two indices of g1+,

Note that the structure of our Jacobi identity in momen-
tum space (60), generated by the Moyal-Weyl x product
applied to the s-, #-, and u-channel scattering amplitudes
given in Fig. 4, arises from color-kinematic correspondence
between the U(l) and the U,(1) gauge theories
[126,128,129]. Taking into account the SW map, that is,

after U, (1) Y U(1), one has only usual U(l) gauge
symmetry. The same is valid for the inverse SW map;
thus, one could say that the structure (60) is invariant under
the U(1) SW map. Finding concrete frameworks of the
alternative derivation which provide a geometric interpre-
tation of such structure, in color-kinematic correspondence
or duality between gauge theory and perturbative gravity at
the tree-level scattering amplitudes, was recently performed
and published in Ref. [127].

Using Eqgs. (58) and (60) and FRs from Appendix A, we
get usual Lorentz decomposition of the on-shell non-SW
map amplitude (M| en,) in the following form:

k36k4

gﬂ]ﬂz gﬂ3ﬂ4 + gﬂ]ﬂz gﬂzm 29#1#49#2/43

2 - (ky — ko))

* ;(2/‘?9? + 2k gt = (ky + k3) @173 ) (2K g2 + 2Kl g — (kg + kz)agmm)]
— 29#1#29#3#4
(k) QR %+ 205 % = (ks + ks p)

- R 2R = () ) (2R R (b 4 )| | (61)

From the above, it is easy to show that Ward identities in the pure gauge sector are fulfilled, too. Namely, with the replacement

et (k;) — ki’ in Eq. (61), we have found that k" - (M7 L orenz ).

=0, Vi=1,...,4; ie., it always vanishes, as it should.

Q.E.D.
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2. SW(II) map-induced yy — yy amplitude

Because of our first result for Compton scattering in
momentum space (53), i.e., that the #-exact SW(II) map-
induced contributions from the sum of diagrams in Fig. 2
vanish nontrivially, it was clear that we have to prove that

|

Y _ 3y 4y
MII|Lorentz - [MII + MII}Lorentz

the same property holds in the pure gauge sector of
NCQED, i.e., that from Fig. 4 the sum of s, ¢, and u
channels (56), plus the four-photon term from Eq. (A7),
vanishes, too. After extracting SW(//) map-induced ampli-
tude M7, | | oreniz from Eq. (57), we have to show that

: * * 1 a
= —l€”l (kl )eﬂz(kZ)eﬂ_% (k3)€ﬂ4(k4) : {; [Fl;lma(kl ’ k2’ qs)l—";;m (_k3’ _k4v _QS)

+ 1—"Illmzar(klv k2v qs)l—‘?lma(_k% _k4’ _Q.Y) + Fl;llﬂza(kh k29 qs)Fl;;ﬂsa(_kSa —k4, _qs)]

|
+ 7 [F§1”4a(k1, 4t —k4)r7fma(k2, —ks, CIt) + FI;Ilﬂ4a(kl’ —4q: —k4)r72”3a(k2, —ks, C]z)

+ 00" (ki =g =k U7 (ko —k3. 1)

1 st '
+ " [T (kv s =g —k3 )T (kg =k q,,) + T3 o (ki = =k )T (kas —ky. q,,)

+ 710 o (ky s =g = k3 ) (ka =k )] + i35 (ks ks =k, —k4)} =0. (62)

The underlying idea for the SW map invariance of
scattering amplitudes is that for each vertex term in
Feynman rules generated by the invertible SW map there
exists a collection of diagrams to cancel it on shell. The
general proof for such cancellation is already sketched in
our equivalence and duality papers [131,132]. Proof of
Eq. (62) is given in Appendix C.

IV. CROSS SECTIONS FOR ELECTRON
AND POSITRON SCATTERINGS

Completing SW maps for the gauge field (photon) and
charged fermion field (electron), and constructing the
minimal #-exact U(1) photon-electron action up to the
second order in coupling constant (e*), we apply NCQED
to the following collision processes [42,45-49]: Mgller
(e7e” — e"e”) and Bhabha (e"e™ — e~e™) scatterings,
Compton scattering (ey — ey) [45,47], dilepton pair anni-
hilation (£Y¢~ — yy) [42], dilepton pair production
(yy = ¢1¢7) [46], and photon-photon (yy — yy) scatter-
ings [42], respectively. We find that an oscillatory depend-
ence is induced in these processes due to the NC matrix 6.
In this article, we shall compute unpolarized total cross
sections for head-to-head collision processes within the
same general frame—we call it the noncentral mass
(NCM) frame—and also in the central mass (CM) frame
obtained from the NCM by taking appropriate limits,
respectively.

A. Mgller scattering cross section

From the sum of the square of matrix elements (32) and
(33), with the total amplitude and after summing and

|
averaging over spins for the massless unpolarized case,
we find

1 1

ZZ|MM|2 = ZZ|M11 + My,
spins spins

sP+u? P41

1 u?

:264[

2
+2:—cos(k3€k2 +k0k)|. (63)
u

Phases in the pure 7- and u-channel terms of Eq. (63)
cancel out, while total phases in the interference cross
terms of Eq. (63) turn into the F of the form (/) in
Eq. (34), i.e., F 2(k30k, + k40k,), respectively. From the
above, one obtains the differential cross section in the
head-to-head massless Mgller scattering. Using Eqs. (B6)
and (B7), and after rearranging Eq. (63), we obtain three
terms representing QED contributions in agreement with
Ref. [149], while the fourth one is coming from the
NCQED phase factors, confirming the expression earlier
given in Ref. [42].

To obtain the total cross section with the NC correction
included, we shall compute the phase space integral in a
general—NCM—frame of head-to-head collision. In the
NCM frame after integration over k;, the delta function
over energy w; then yields a differential cross section
formula for an arbitrary unpolarized two-by-two process in
the polar coordinate system:
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do

e dQ =sinddIde.

(64)

NCM (4”5 ) spins

Since we shall work out all processes for the massless
case, the cross section (64) represents a quite general form
in the NCM frame. For relevant processes, we just have to
compute all terms in Y- . [M|* and then integrate over
the final state angles.

We next compute the Mgller cross section of head-to-head
collision for the massless case in the NCM frame defined in
Egs. (B1). Using Eq. (B4), the relevant phase factor for
Mgller, from Eqgs. (B6) and (B7), for the general case of
space-time noncommutativity we obtain contributions to the
Mgiller scattering, for all types of noncommutativity.

Taking into account two identical particles in the final
state by integrating over d€2, we obtain the NC part of the
Mgller cross section in the NCM frame as a function of
only incoming energies @, , and the NC parameters M and
Axnc, respectively:

4o [ dx W Wy
oNcInem = — ; /_11—x2 {1—JO<A§C MV1-x*)],
X =cosd, (65)

with M given in Eq. (B7). Expanding the above cross
section in the regime of small energies and large Ayc, one
obtains

2a02
M oM / [OHO)
14 =— dx 66
NC|NCM A4NC . (601(1 .X)+CU2(1+X)) ( )

which is regular at both x — =1 limits. Therefore, the full
destructive cross section (65) is regular at these limits, too.

In the CM frame, w, = w, = w,; thus, M — 2M. For
small argument expansion (65) simplifies into an asymp-
totic cross section at low energies, suppressed by the NC
scale Ayc to the fourth power:

J'L'O(S~2 _
TAD M-, M =
NC

/2 2
13 + ¢53.

We notice that M is proportional to the length of the
projection of the vector ﬁg = AﬁCBg onto the plane
transverse to the incoming particle axis. So for the same
length of B, the noncommutative contribution would be
maximized when it is on the transverse plane, as expected.

onclom = — (67)

B. Bhabha scattering cross section

From the sum of matrix elements (40) and (41), and after
summing and averaging over spins for the massless
unpolarized case, we have

—DMBP Z|Bn + By, J?

spins SPmS
sS4+ u ur+2
=2¢* [ 2 + 2
u?
+ 2ECOS<k39k2 - k46k1) 5 (68)

which gives the differential cross section for the head-to-
head massless unpolarized Bhabha collision. Again, the
phases in the pure ¢- and s-channel terms of Eq. (68) cancel
out, while total phases in the interference cross terms of
Eq. (68) turn into the F of the form (2) in Eq. (34), i.e.,
F 2(k30ky — ky40k;), respectively. To determine phases in
the NCM frame (B1), we are using the relevant phase factor
from Eq. (B4). The phase factors for Bhabha from
Egs. (B6) and (B7) for NCM show that the Bhabha
scattering receives contributions from all NC types.

The same procedure as for Mgller gives the noncom-
mutative part of the Bhabha differential cross section in
the NCM frame and as a function of only incoming
energies w; and w, and the NC parameters c(3, A, and

Anc, respectively:
(1+ x)?

_7[052 wy\3
Nem S \@ l—x
2
X {l —cos<%co3(l —x))
Axc

xJO<wlw4A\/—>]

2
AN C

doﬁc
dx

(69)

The small argument expansions of cosine and Bessel
functions in Eq. (69) give

Il wt [
_w/ dx(1 + x)?
ANc -1

{1+ ) + 8k (1= x)
(01(1 = x) + w,(1 4 x))°

ch INem

. (70)

which is regular at x — 41 limits.

It is interesting that the Bhabha cross section in the CM
frame of head-to-head collision for the massless case, i.e.,
where ®; = w, = w4, depends only on E, as A —
2y/c3, + 3, [see Eq. (B7)]. This means that, in the CM
frame and for the pure spacelike noncommutativity where
Ey = 0, the NC contribution to the Bhabha cross section
vanishes. However, the general condition (25) still allows
the NC contribution to be nonzero. In this case, one can

express Ey as a projection along the z axis Eg as well as
perpendicular to the z axis E7, so that A = 2A3¢|E; | and

lcos| = A§1C|Eg|. The cross section (70) for energies below
the scale Ayc in the CM frame then simplifies to
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Anc[TeV] 15

FIG. 5.

1.0
Anc(TeV]

Left: Mgller cross section ratio with the NC correction (65) included, with the pure QED cross section, given as a function of

incoming energy E and scale Ay for the spacelike NC [M| = \/c?; + ¢3; < 1. Right: Bhabha cross section ratio with the NC correction
(69) included, with the pure QED cross section, as a function of energy E and scale Ayc for the lightlike NC: |¢i3] < 1. Both are

computed numerically for the cutoff e = 1077.

wals

U§C|CM = 12 (2E5 + Eéz)- (71)

Thus, for fixed |Egy| (which in the lightlike noncommuta-
tivity |By| = |Eg| ox Agé case fixes the NC scale, t0o), the
NC contribution would maximize when E, = E..

Finally, we illustrate oscillatory behavior of Mgller and
Bhabha scattering cross sections in 3D plots from Fig. 5,
which show almost no oscillation for Mgller due to the
absence of cosine, while there is wild oscillation for the
Bhabha case.

V. CROSS SECTIONS FOR ELECTRON AND
PHOTON PROCESSES

In this section, we analyze Comptons ¥y — £*y, as
well as dilepton pair #+#~ — yy annihilation and pair yy —
£+ ¢~ productions (£ = e, u, 7) and yy — yy, respectively.
The above processes in NCQED are important by them-
selves; however, diphoton and dilepton productions
together with Bhabha scatterings also serve as a source
of the so-called long-distance effect contributions to the
exclusive yy — yy scatterings and shall be, in particular,
considered later.

A. Compton scattering cross section
After rearranging phases (34), we obtain the sum of the
remaining non-SW map-induced amplitudes as

ME = MS, + ME, + ME,

ko Ok
123

= (e MS - M)

+ T MS + ME)), (72)
. o +htm,
MS§ = —lezeu(kl)eu(k4)”(k3)?’”Mﬁy u(ks).

(73)

MS = =iee,(l)ei (k) G
x u(k3) (g fr — ki'y” = ka"y*)u(ky),  (74)
MS = =iete, (ke k)l o2 (),
(75)

where two terms (73) and (75) without NC phases arising
from the first two diagrams in Fig. 2 are the same as in
Klein-Nishina [147] expressions, while Eq. (74) with
extracted phases from Eq. (72) represents NC correction
coming from the three-photon vertex contribution to the ¢
channel fully described by the non-SW map term (46).

After average over initial spins and summations over
final spins with contractions over photon polarizations, we
compute the absolute square of the MC for the unpolarized
case as

D IMEP =(MSEF = MET)(MS = ME)
spins
+ (MG MEF)(ME + ME)
+ 10k (MET— METY(ME + ME)
+emkiOki (MCT 4 MEHME=MS).  (76)

From the above equation, it is clear that |M$|? + | M$|?
builds the Klein-Nishina formula. Also, in the massless
average we have found that MST MG = METMS =0,
METME = METMES, and MGTME = METMS.

By extracting out the ordinary QED contributions,
following Peskin and Schroeder [149], in terms of
Mandelstam variables and for the massless unpolarized
case, from Eq. (76), we have obtained the noncommutative
correction to the absolute square of the full Compton
amplitude MC:
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—ZIM Nl = ZIMCF

spins spms spins

(kiky)? +

—Z(I/\/lﬁ?l2 +IMEP) =

(kiks)®

= 4e*(1 — cos k 0k, [ k)
1ky

Jumping shortly to Egs. (72)—(77), we found a differ-
ential cross section for massless Compton scattering,
confirming results obtained before in Refs. [45—-47], where
the first two terms represents the Klein-Nishina formula for
standard QED. However, the third term (77) containing the
phase factor arises from the 7-channel diagram in Fig. 2
containing a triple-photon coupling vertex, existing in all
Moyal versions of the NCQFT [47], and all of its
interference with the s- and u-channel diagrams and with
|

doc w? w1 +x ) (1+x)?
=8ra-— |1 +2—= 2—
dx Inew = 87t [ * 11—x+ w? (1 —x)

(1 = cos kOky)(MET + MGT — MEHYME
m2 mé 52+ u? . kOky
e 4 e — 8¢t sin? . (77
k]k4 (klkZ)(k2k4) m,—0 tz 2 ( )

the interference between the s- and u-channel diagrams, as
presented in Eq. (76).

Continuing with the NCM frame, having definitions
(B1) and (B3), and after variable change (cos§ — x) and
integrating over ¢, we obtain the following massless NC
part of the Compton differential cross section as a function
of incoming energies @, 5, the NC parameters cy; and C,
and the NC scale Ayc [see Eq. (B7)], respectively:

2} {1 _C°S<a/)\lT::Cos(x—1 > <w1w4 Cmﬂ (78)

2
ANC

while in the CM frame, where w; = w, = w,, of head-to-head collision and from Eq. (78) we obtain the following NC

correction to the cross section:

2ra® 1 4+ (1+x)?
Aelow =" [

which is valid for various types of noncommutativity.

1. Collinear singularity in NCQED Compton scattering

It is easy to notice the similarity between the NCQED
amplitude square and the quark-gluon scattering amplitude
q9 — qg in QCD, which has the 7-channel term (77) and
(78) added to the amplitude square besides the term that is
identical to the Compton scattering in the commutative
QED, which makes the complete (QED + NCQED) differ-
ential cross section for a massless electron divergent at both
forward and backward limits, respectively, as shown in
Fig. 6. Next, we can also notice that the NCQED ye — ye
process possesses a t-channel collinear singularity similar
to gg — qg. On the other hand, these two singularities are
not exactly the same. The NCQED ye — ye amplitude
square diverges by #~! because of the NC factor as shown in
Eqs. (77)~(79),® while gg — gg diverges by =2 [149].

3Inspecting more carefully Eqs. (78) and (79), we notice that,
at (ALNC)8 order and higher, the collinear singularity of Compton
scattering in NCQED gets eliminated by the arbitrary NC factor.
However, for timelike and/or lightlike noncommutativity, due to
the cosine, the collinear singularity gets eliminated starting at
(5)* order.

5Co3 sC 3
- —= =1 |Jy|l—5—V1- ,
(g =)0 (g, Vi)

(79)

|

Since to our knowledge the collinear singularity in the
NCQED Compton process has not attracted many studies,
we invest here some efforts to study its properties. One

104

—_
T

1074 -

do
(

dx

|

10*8—“

10712,‘

-1.0 -0.5 0.0 0.5 1.0
X

FIG. 6. Massless NCQED Compton scattering differential cross
section—in log scale—versus x = cos d, with 9 being the polar
angle. The plots are evaluated from QED and Eq. (78) for head-
to-head collision of a photon with energy w; = 200 GeV and an
electron with energy @, =250 GeV. The red line presents
the QED, green the NCQED (78), and blue the total
(QED + NCQED) differential cross section, respectively. The
collinear divergences of QED and NCQED contributions can be
easily noticed.

015021-15



LATAS, TRAMPETIC, and YOU

PHYS. REV. D 104, 015021 (2021)

question one may ask is whether this collinear singularity can
be suppressed by certain reasonable choices of NC parameter
6. Limiting to the head-to-head scattering scenario (78) and
(79), we notice that the collinear singularity is suppressed if
C=+/(co1+c13)?+(con—c23)?=0. Now a nonvanishing
NC contribution to Compton cross section exists only if
co3 # O0when C = 0. Once we inspect these constraints more
carefully, we notice that ¥ would have to be neither
spacelike nor lightlike NC to satisfy both conditions. We
conclude that it is not possible to suppress the collinear
singularity by an appropriate choice of 0.

Next, we attempt to introduce a regulator for the
collinear singularity in the NC cross section integral by
hand. We consider the following simplified scenario: CM
frame, spacelike 0**, and s < 4A2NC. We then obtain the
following approximative formula for the cross section:

ats 1 14 x)?
oS clen 237;\4/1 dx [3 Fx+ 2(1)} C*(1 + x).
NC /=

(80)

We then introduce a small dimensionless shift 6 to the 1 — x
denominator [149] in Eq. (80), making it

na?s  [1 (1+x)?
GSC'CMEW/ dx[3+x+2ﬁ]cz<1+x>
te o

1 1—-x
(81)

Evaluating this integral and keeping only terms till O(In §),
we get

na?C?s 2 17
NC

Based on the divergence order, one may then choose 6 =
s/ A3 to ensure that

dod
ZZNC = 2ra

2 1 — 2 21 2
» wi(1—x)" +w3(1 +x) {l—cos(

dx |nem (01(1 = x) + @ (1 4 x))*

describing the pair annihilation cross section showing not
only explicit dependence of the pair annihilation cross
section on the NC scale, but also in the head-to-head
annihilation geometry revealing all types of space-time
noncommutativity, just like for Compton scatterings.
Taking into account two identical particles in the final
state, we should take 1/2 of the needed integral in forming
a total cross section. From Eq. (85), we next give the pair
annihilation cross section in the CM frame of head-to-head
collision for the massless case, with a perfectly regular
integral which carries pure timelike noncommutativity

since A — 24/c3, + c2,:

NC 0

On the other hand, this regulator 6, appropriate or not,
would limit the validity of aﬁc to well below Ayc. Thus,
finding a more natural and/or less limited way to regulate
the 7-channel singularity of NCQED Compton scattering
would remain a relevant open problem for future research.

B. Dilepton pair annihilation cross section

Using the crossing symmetry in accord with the left plot
in Fig. 3, we replace momenta (k; — —ky), (ko = ky),
(k3 > —k,), and (k4 — k3) in the Compton amplitude
square (77) and obtain an unpolarized differential cross
section in terms of Mandelstam variables:

do® _ dogep | dofc
dQ dQ dQ

_az t+u 2t2+u2
S 2s|u ot 52

(1 —cosksbky)|, (84)

with the first two terms out of three representing QED
contributions in agreement with Ref. [149], while the third
one is coming from the NCQED triple-photon coupling
phase factors [42].

Next, following the same procedure as in the Compton
section by using the NCM frame defined in Eq. (B1), from
Eq. (B7), we shall find contributions for the general case of
the NC space-time. After variable change and integration
over ¢, we obtain destructive noncommutative contribution
to the unpolarized pair annihilation differential cross
section in the NCM frame as a function of incoming
energies w;,, the NC parameters cj; and A—given in
Eq. (B7)—and Ayc, respectively:

D (wn(x = 1) + on(x + 1)))10 (w‘mAmﬂ . (85)

2
ANC

o

1
onclem = T dx(1+x?)

: A
x [ T=cos( B x ) Jo(5-v1=22)|. (86)
23T \anze

Interestingly, there is no collinear singularity whatsoever.
In the case of pure spacelike noncommutativity, cross
section (86) vanishes identically, as it should. However,
the more general conditions (25) again allow Eq. (86) to be
nonzero. The leading noncommutative contribution at low
energies can be expressed as follows:
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A nats
oNclom = —
Nclem 50

(3EZ +EJ%). (87)

So, for fixed |Ey|, the NC contribution to the cross

section at low energies is maximized when E, = E g, which
is opposite to the Bhabha scattering case.

Pair annihilation shows in the NCM frame all types of
noncommutativity, while in the CM frame the NC correc-
tion becomes pure timelike which could be transferred into
the lightlike one, and it is illustrated in the 3D left plot in
Fig. 7. Mild oscillation of the NCQED/QED cross section
ratio gets stable by approaching unity for lightlike NC and
when Ayc and the energy pass ~1 TeV values. There is no
collinear singularity whatsoever, and in the case of the CM
frame at small energies the NC correction to the total cross
section is destructive and finite (87).

C. Dilepton pair production cross section

Again using the crossing symmetry in accord with the
right plot in Fig. 3, we can replace momenta (k; — k;),
(ky = —ky), (ky = —ky), and (k3 = —k3) in the amplitude
square (77) and obtain a differential cross section for the
head-to-head unpolarized massless pair production:

do® _dogep | dofc
12[9) 12[9) dQ

70{2 t+u 2t2+u2
C2s|u ot 52

(I —cosk6ky)|, (88)

where the first two represent QED contributions [149],
while the third one is coming from the triple-photon
coupling phase factors [47].

The same procedure as in the Compton section in
the NCM frame (B1) after variable change gives the

0.0
E[TeV] 05

1.0
AnclTeV] ‘ 20

oBen

noncommutative part of the pair production total cross
section and as a function of only incoming energies o ,,
the scale Ayc, and only the NC parameter ¢, respectively.
So, first, after using the relevant phase factor for pair
production from Egs. (B4) and (BS5), we have found the
destructive NC contribution to the differential cross section:

= —27a? [1 - cos( 503 )}
NCM 2A%c

oi(1 = x)* + w3(1 +x)?
(@ (1 = x) + @y (1 +x))*

doyc
dx

. (89)

again with no collinear singularity. Notice that the pair
production cross section of head-to-head collision for the

massless case is fully timelike and depends on Eg only,
which is easy to understand, since this is the only possible
nonvanishing term in the NC coupling (k;0k,), the two
incoming momenta which are collinear in the head-to-head
scattering geometry. This coupling vanishes for a pure
spacelike NC parameter yet remains allowed by the general
unitary constraint (25).

Next, from Eq. (89) we compute the pair production total
cross section in the CM frame of head-to-head collision for
the massless case, w; = w, = w4. For energies smaller
than scale, s/ ZA%IC < 1, the expansion of cosine function
in Eq. (89) gives asymptotically

(90)

m
P - 2 w2
onelom = —3¢ sE,".

Finally, we illustrate numerical analyses of both full
cross sections in the CM frame, i.e., the pair annihilation
(86) and pair production (89) as functions of scale Ayc,
incoming energy, and for lightlike NC parameters and

o 1.00

1.0
Anc[TeV]

20

FIG. 7. Left: pair annihilation, QED + NC cross section (86), normalized to the pure QED cross section as a function of incoming
energy E and NC scale in the CM frame, for the lightlike case with |cp3] = | — ¢j3] S 1 and A = 0. Right: pair production, ratio of
QED + NC cross section, with the pure QED cross section as functions of energy E and NC scale, for the lightlike noncommutativity

with [co3| = [ =3/ S 1.
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present them as 3D left and right plots in Fig. 7,
respectively.

Inspecting the left plot in Fig. 7, one realizes that in the
CM frame the pair annihilation total cross section ratio of
the NCQED (86) with one obtained in QED, as a function
of energy, the lightlike noncommutativity, and the NC
scale, having oscillatory behavior for small E and scale
values, then rises and starts to stabilize around unity when
both Ayc scale and the incoming energy E approach
~1 TeV scale. Similar oscillatory behavior one may see
in Fig. 18 in Ref. [42].

Lepton pair production shows in the NCM frame a pure
timelike type of noncommutativity, which could be trans-
ferred into the lightlike one. There is no collinear singu-
larity whatsoever, and in the case of CM frame and at small
incoming energies the NC correction to the cross section
has a destructive finite value (90). It is illustrated in the right
plot in Fig. 7, which due to cosine shows wild oscillatory
behavior at small NC scale and large energy values and up
to 0.5 TeV agrees with Fig. 2 in Ref. [47]. However, the
right plot in Fig. 7 does show double oscillations, then
dropping and stabilization of the NCQED/QED cross
section ratio around unity for lightlike NC when Ayc
and the energy pass ~1 TeV values.

|

VI. CROSS SECTION OF LIGHT-BY-LIGHT
SCATTERINGS

A. Helicity amplitudes of NCQED
photon-photon scattering

Since the NCQED yy — yy is invariant under the SW
map, the calculation of the scattering cross sections can
follow the general results of tree-level photon scattering
amplitudes in NCQED without the SW map. The basic fact
is that there exists a one-to-one correspondence between
the color ordering in QCD and a x-product ordering in
NCQED [128,129]:

n i n
tr H T < exp <— 3 Z Pzi-19P2i> . (91)
i1 i=1

The tree-level *-product ordered NCQED photon scatter-
ing amplitudes can then be shown to be identical to their
QCD gluon scattering counterpart. The full helicity ampli-
tudes of NCQED yy — yy scattering can be obtained by
summing over all x-product orders. The nonvanishing
helicity amplitudes up to a total reflection of all photon
helicities may be expressed as follows [42]:

N _ s . kiOky . kabky 57 . kOky . kyOks
M (s, tu) = 32ﬂa<u sin sin > P sin 5 sin 5 )
k, 0k k;0k k, 0k k,0k
Mt~ (s.t,u) = 32ﬂa<zsin D22 32 4—%sin 12 4 sin 22 3),
S

koky . kabky 1

2
Mt (s.t,u) = 32na<gsin 5

(92)

- kiOky . Kabky
2 w2 2 )

The amplitude square is then a sum over all nonvanishing helicity amplitude squares, which yields, after some arithmetic,

IMIP = > Mgy I = 20M5EP + (M

helicity
=2(-32za)* - (=2) {Sin

.nz k] §k4 sinz k29k3 <£ u

kOk k;6k
2 12 2Sin2 324<

)

Here we notice two remarkable properties: First, the
amplitude square (93) is closely connected to its gg —
gg counterpart in QCD, as expected. A conversion to the
latter (up to an overall normalization factor) can be
achieved by replacing three NC factors with three identical
QCD factors in accordance with Eq. (91):

> ()

{a;.a;.ap.0/} u

i#j+k#1=1234.

Si
+ 2 u s

)

in k;Ok ; in? ki Ok,
—_— e
2 2

(94)

t u

[+ [MXcP)

t k,6k
; + sﬁ’) + sinz%sin

kyOky (st st
PR N T i
2 <t+s+u2)

(93)

The sum over the Mandelstam variable fractions in Eq. (93)
then boils down to

t u tu s t st S u su
(— —+tS5+-+-+—=+—+ +—2>
u t s r s u t
tu su st
=3---5-=, 95
2 2 Ut ( )

which is exactly the same kinematic factor that occurs in
the differential cross section of QCD exclusive free gluon
(gg — gg) scattering [149].
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On the other hand, unlike QCD, all the collinear
singularities from the factions of Mandelstam variables
in Eq. (93) are canceled by the corresponding collinear
zeros in the NC factors. This property can also be

|

shown at helicity amplitude level with some help from the
star product Jacobi identity (60), which allows us
to transform the amplitudes (92) into the following
form:

4+ - E . k]9k3 . k29k4 f . k19k4 . k29k3
Ml (s, tu) = 32na <u sin——sin—=—+ —sin——sin—- ],
k,0k k0k k0k k,0k
Mt~ (s.tou) = 32ﬂa<%sin 1772 6in 32 4—%Sin 12 4 sin 22 3),
t . kOk ksOky, t . kOk k,0k
- _ I kOky . Kk3bky 1 . KiOK3 . Kobky
Mic ™ (s.t,u) = 32mx(s sin———sin— + sin——sin—= > (96)

The cancellation of collinear singularities is then straight-
forward.

B. Light-by-light cross section in NCQED

Using a helicity amplitude decomposition method or
signature, we shall determine the NC contributions to the
total cross section of the exclusive yy — yy process
starting with the NC amplitudes (92) and then adding
on the SM amplitudes [138,152-165]. Averaging over
initial and summing over final helicities in the NCM
frame, from Eq. (64) we obtain a cross section containing
three terms: the SM one USMZ, the SM interference with

NCQED o%y;,nc» and pure NCQED term O'chz,

tively. Note that, since the SM contribution dependence on
energy is rather tedious [157-161], there exist various
approximations in the literature [152-154]. Namely, a
very high-energy regime is relevant for further LC,,
experiments, while a relatively low-energy limit is inter-
esting because the ATLAS Collaboration actually mea-
sured a diphoton final state in the central detector with
only less than 30 GeV diphoton invariant mass.

respec-

1. Pure NCQED contributions to the
Yy — Yy cross section

We compute the pure NC contribution to the yy — yy
cross section starting with the helicity amplitude square
(93)." Generally, after taking into account two identical
particles in the final state, we have obtained for arbitrary
energies in the NCM frame the following pure NCQED

exclusive cross section JNCZ

‘Because of the similarity or complementarity of
NCQED with QCD, there exist only three maximal helicity
violating (MHV) independent noncommutative amplitudes
(++++,++——, +—+—) given in Eq. (92).

4 Exclu __ __
GNC2 NCM — 4

1 @?
2 4
a /_ dx—2
t
[(211234 11234 11234 <u+”+ 2)

(211324+11324+11324)< Lo >

+(2j6423+2f23+}]‘423)(%—'—%—’—%ﬂ’ (97)

with above integrals over dg being given in Egs. (B11).
The above cross section (97) is valid for an arbitrary
energy regime and for arbitrary scattering angles,
which, together with the SM x NC interference term,
give noncommutative correction to the total cross
section in the laboratory of NCM frame. The above
integrals 1'3** and I'*** contain new NC constant G
given in Eq. (B7).

Choosing the CM frame with @w; = w, = @, and the
pure spacelike noncommutativity where ¢,y =0, Vi =1,
2, 3, from Eq. (B7) we have A -0, G=C=M/2,
and M — 2M. The linear combinations of ¢-integrated
phase factors (B9) and (B11) satisfy the following
relations:

2?1234 + 21234 + i1234 =0
2[1324 +11324 +11324 2[1423 +Il423 +Il423
sM
:277:|:3_4.]0(— 1-.X'2>
AN
174
I V1= )], (98)
202

and we finally have an expression for the cross section
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1 1 1
xelu __
NCZE —as/_ dx(sz—l—t—Q-l-P)

x (211423 4 143 | praosy (99)

which vanishes in the absence of spacelike noncommu-
tativity [see (B7)], as it should.

Performing expansions in Bessel functions (98), we have
found that all terms proportional to the (1/Ayxc)* cancel out,
while the next terms of (1/Axc)® order of expansion
contribute. So the first nonvanishing contribution then reads

21za? s> M* N
Expand - M4_ 2 2 2 <
dlem S ) =(cf3+c5) <1,
NC 640 A%C

(100)

and shows correctness of our computations of Egs. (97)
and (98). Note that, after using Mandelstam variables in CM
frame and NC phase integrals (B11) one can easily see that the
above x-integrals in (97) contain no collinear singularities.

2. SM x NCQED interference contributions to
the yy — yy cross section

Since SM loop diagram contributions do not show the ¢
dependence [152-154,162] and that MY." = M., to
determine the SM x NC interference term denoted as
ohvxnes after using two identical particles in the final state
argument, we found

OJéMxNC'E)SI{}[l
T 1287 / a)4/ Al Moy ™M™
+ Mgy~ + Mgy M
+ (Mg~ + Mgy~ M (101)

where the ¢ integration of the NC helicity amplitudes (92)
gives

a N s 138 1423
/ d(pMNC —1671'a<;(1_—1+) _E(I__I+> ),

0

/ doMic
0
2n

1? t
—167xa (_(1_ _I+)1234__(I_ —I+)1423) ,
u

—I+)]423> )

(102)

u u
_I+)]234_7(1_

We define the structures of 7, integrals (102) in
Eq. (B10) with respect to the NC type and with respect
to the NCM frame. Taking the above integrals from
Eq. (B10) for the spacelike noncommutativity only, one
see that the deference of integrals (/_ — I.)'?>** vanishes.

Since the interference contributions for spacelike NC,
independently of frame, arises from 71#?* integrals only, we
take the @-integrated NC amplitudes from Eq. (102) and the

real part of SM amplitudes from Refs. [152—155] and find
the interference terms for the unpolarized cross section at
high energies:

0 Exclu _ _ ™7 _ 1423
SMxNCINCM — lstu
2AfttH+ L 2t 27+
xRe[s My T+ My FurMy T,

1423 2y |2 (122 )M/ 1= 22|, (103
|NCM J ZANC oy X ( )

In the NCM frame for spacelike noncommutativity, M # 0
(B7), the high-energy regime expression relevant for
the further experiments is good enough for numerical
integrations.
Like for the pure NC?2 case, we chose the CM frame and
from (B10) and (103) obtain
1- xz)]

—a [1dx sM
GSMXNC ](E:)ﬁxcllu = 7/1 Stu [1 —Jo <_4A2
- NC
+ u2M++—_]’

x Re[s>M i |
(104)

+PMEy

which for the small argument (si/ 4N} < 1) expansion
of the Bessel function eliminates (1 — x?) in the denom-
inator:

0 Exclu
SMXNCICM

—asM? [1 2 U2 .
-t / ]dee[M;Wus—zM;w MG

(105)

The top left plot in Fig. 8—log scale—shows the angular
distributions as functions of x in the CM frame. How “flat”
the NCQED contribution is depends on the ratio \/s/Axc-
This ratio varies roughly from one to three in the scenarios
considered in the PbPb part. The plots are evaluated at
/s = Anc = 100 GeV. In this case, the NC contributions
are already significantly larger than the standard model.
Note that the pure NCQED contribution and interference
contributions are at similar scale.

In the SM, LbyL scattering [152,155] is tree-level
forbidden and goes only via quantum loops,5 while in
the NCQED it exists at tree level. In the 3D plot in Fig. 8,
we illustrated the exclusive ratio of LbyL cross sections
o/ %y of the NC contributions (99)+(104) with the SM
one in the CM frame, as functions of incoming energy E
and the NC scale Ayc. Integration over x = cosd was

>The main contribution comes from the first loop [152-162],
while the second-loop QED and QCD contributions to the
amplitudes are small [155], contributing to the cross section
on the level of a few percent only.
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FIG. 8. Left: the SM and the NCQED incoming energy scaled LbyL angular distributions as functions of x = cos§ (where 9 is

the polar angle) in the CM frame. The blue line is pure NC (99), the green line is interference SM x NC (104), and the red line is the
pure SM contribution, at /s = Ayc = 100 GeV. Right: 3D plot in the CM frame of exclusive numerically integrated LbyL ratio of
the  NCQED contributions with the SM o4/o%y using (99)+(104), and SM, as a function of incoming energy

E = /s = V4w ,w, and scale Ayc.

performed with cutoff regulator € = 107, The absence of
cosine and presence of Bessel functions only produce mild
oscillatory behavior which starts to show up gradually. To
see transparently such behavior, we take a wide range of
energy and relatively low NC scale. Thus, in the upper 3D
plot in Fig. 8, right corner, there are two peaks when energy
grows very high and for the small NC scales, where the first
corresponds to the pure NC contributions (99)—large due
to the small value of the NC scale—while the second peak
corresponds to the interference (104), respectively. The 3D
plot in Fig. 8 shows behavior similar as demonstrated
further by the lines of Fig. 10 independently whether we are
in the fiducial phase space or not. Also, the next peaks are
actually negligible.

Q.E.D.

Pb*

Pb

(v, €%, g9, q)

VIL. NCQED AND THE ATLAS 25Pb-ION
COLLISION EXPERIMENTS: PbPb(yy) —
Pb*Pb*yy AND PbPb(yy) — Pb*Pb £+ £~

In this section, we continue searching for the physical
phenomena of noncommutativity of space-time coordinates
via ATLAS 2%Pb-ion experiments producing yy and
£t¢~ final states, sketched diagrammatically in Fig. 9.
Particularly, in an attempt to estimate a bound to the scale
of spacelike NCQED, we take the convoluted exclusive
cross sections

Gzlt“heory = O‘QMZ + G)SCMXNC + gl(ICZ’
f=y.0",99.9q. (106)
(v, 07, 9, q)
Y Pb

Pb*

FIG. 9. Diagrammatic sketch of the PbPb(yy) — Pb*Pb*(yy, £+ £, gg, §q) scatterings in ultraperipheral 2*®Pb-ion collisions in the
ATLAS experiment at LHC, with a black dot representing any pointlike and/or short-distance (loop) interactions. The wavy solid line
corresponds to the outgoing final state pairs; otherwise, notations are self-evident.
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ol

heory = Experiment
f =yy.£"¢" channels, compare with the convoluted
ATLAS measured cross section. Note that produced gg
and gq exclusive but virtual states in lead experiments get
realized as real jets and real meson pair final states captured
in detectors, respectively.

In the PbPb(yy) — Pb*Pb*yy reaction, the incoming
208ph jons have survived the electromagnetic interaction,
with a possible electromagnetic excitation due to the energy
loss via photon emissions, denoted by (). Hence, the final
state consists of two low-energy photons and no further
activity in the detector—in particular, no reconstructed
charged-particle tracks originating from the IP; see [135].
Although the cross section for the exclusive yy — yy
process is tiny, various techniques can be used to study
it indirectly [139].

To apply NCQED to the data for LbyL scattering, we use
the lepton-, quark- and W*-boson-loop diagrams from
Refs. [152-156], combine them as the full SM amplitudes
together with NC amplitudes (92), and use Eq. (64) to
obtain the total exclusive yy — yy differential cross section:

and, under the assumption 0‘4 for dominant

5

Exclu CO4>2 1 " h %
— ek _ (lM i |2 + M i M i
Theory <47ZS 4 lz:l: SM SM NC

do?
dQ

h oy h; h,
+ MSMMNCT + [Mycl?). (107)

where by =—4++++, hy=++——, hy=+—+—, hy=+——+,
and hs = +———. The pure SM contributions do arise from
all five amplitudes /;; however, due to the complementarity
of NCQED with QCD, only three MHV NC amplitudes
with helicities /i, h,, and ks from Eq. (92) match with the
SM in the interference terms (103) giving rise to the cross
section in Eq. (107).

A. Kinematics of the ultraperipheral ion scatterings

In the ultraperipheral scattering, one considers the
electromagnetic fields of the incoming heavy ions to be
a spectrum of real photons moving along the beam axis.
This simplifies the incoming photon kinematics in the
laboratory (NCM) frame to be a head-to-head collision.
Thus, we take the PbPb(yy) — Pb*Pb*yy cross section as a
convolution of exclusive theoretical differential cross sec-
tion (107) [(97) and (103) plus the SM one from
Refs. [152-156]] with the incoming photon flux factors,
integrated over the range of observed solid angle and
measured outgoing photon energies [133,135].

The incoming photon energy spectrum space (@, @, ) is
usually reparametrized by the diphoton invariant mass m
rapidity Y, and the volume element transformation:

vy

1 (]
Y==In—,
2 ()

m,, = /s = /4w w,,

dw dw, — %dmde. (108)

To determine the rapidity Y of the produced outgoing
diphoton mass which, for symmetric systems, is maximal at
Y =0 when o™ = o)™ = y/by,, with by, being the
minimum separation between the two equal charged nuclei
of radius Ry, we use for the lead ion spectrum the impact
parameter-dependent expression integrated from b, to
infinity, with the requirement b,;, = Ry plus a correction

equivalent to the geometrical condition |l_;1 - l_;z| > Ruin =
2Ry to ensure that all collisions occur without hadronic
overlap and breakup of the colliding beams. Propagated
uncertainties to the final cross sections are of the order of
420% for lead-lead ion collisions, covering different form-
factor parametrization and the convolution of the nuclear
photon fluxes [137].

B. Criteria of the ATLAS events selection denoted
as the ATLAS cuts

In the ATLAS experiment ultraperipheral PbPb(yy) —
Pb*Pb*yy events [133-135], the two incoming photons
emitted by the 2%Pb ions are almost collinear, i.e., almost
head to head; thus, they are selected by the following rules:

— small diphoton transverse momentum p; and aco-
planarity;

— diphoton invariant mass m,, larger than 6 GeV;

— transverse energy Ejy of each photon larger than
Er > Ey) =3 GeV;

— each photon absolute pseudorapidity |y;| smaller
than y, = 2.37 corresponds to a constraint on the
angular range 10° <9 <170°(+0.9898 <cos9(=x) S
—0.9898) of photons recorded by ATLAS. This
ATLAS cutoff —14+¢€ <cosd <+1—¢ with € =
0.0102 is experimentally determined and, thus,
different with respect to the numerical dimensionless
cutoff ¢ = 1077 used for exclusive 2 — 2 scatter-
ings containing a collinear singularity in ¢ and/or u
channels.

The first condition allows us to assume that incoming
photons are real and collinear. This assumption simplifies
the constraint on transverse energy to be only one, since the
transverse momentum of outgoing photons must equal each
other. The above conditions shall be translated into con-
straints implied on the theoretical cross section calculation.

We continue by assuming k; and k, as incoming
momenta and outgoing momenta being k; and k; =
ky + ky — k3, respectively. Then pseudorapidities y;4 of
outgoing depend only on the angle to the z axis:

1. 1+x

=2Y - =-1
Y3 Y4, Ya 2nl—x

. (109)
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where Y from Eq. (108) is the rapidity of the total
momentum (k; + k,) = (k3 + k4). By this, we can express
the last constraint

I+x
sl <yo and |y| < yo = |In—) <2y0. (110)
and we have the first simpler constraint on Y:
1/1. 14x 1 1 14x
—(=1 - <Y< —=In . 111
2(2“1—x y0> 2(y° 2= x> (1)

To include the transverse energy constraint E; > E
requires a bit of care. Using diphoton invariant mass m,,,
we can express this constraint as

2
5 my, 1—x
Y _

e (112)

>E,.

ET:CU4 1—x _Y)X_

For a typical cut which requires transverse energy E; > E
and both outgoing particles to bear pseudorapidity y; 4 <y,
the full sophisticated integral domain is defined as follows:

e — 1

@ € [0,2x], x| < poTaE

RN ED: 1 1 L+x
A B ECY AD N CUR S P
1. 1+x m, m?2
“In In Py
”lz T—x <2E0 4E2 )
11 1er+1 Myr 4 m% 1
2 1-—x 2E, 4E2

and that was used in all of our further numerical integra-
tions in fiducial phase space.

(113)

C. Equivalent photon approximation
and fiducial cross section

Photons originating from the high-energy 2°®Pb-ion
nuclei can be viewed as the photon beam in the equivalent
photon approximation (EPA) [166-168]. Because of the
coherent action of all the protons in the nucleus, the
electromagnetic field surrounding each fast-moving
nucleus with the charge Ze is very strong, and it is
approximated by a distribution of (almost) real photons
moving along the beam direction. The simplest version of
this approximation is to introduce a photon number
function n(w), where @ is the monophoton energy.
Under such a convention, convolution of exclusive cross
section (107) with the photon number function in the
fiducial phase space, was expressed in Refs. [163—165] as

d 7 do’ 9 Exclu
2 / - dYdSn(0)n(o2) {—" (@1, @, "”)} ,
dQ Theory

(114)

with simplest photon number functions n(w;) from the

monopole form factor. However, this did not quite take into
account the ultraperipheral nature of the process:

2 2 2g 22
n(w) = 2Zﬂa (2@2;2—5];5 In (1 +_§) — 1>,
6
<Tz>.

&= (115)

Here, y = /syn/(2my) is the Lorentz relativistic factor for
the Nth ion nucleus, and (r?) is the mean squared radius of
that Nth nucleus.

An improved version of the monopole photon_number
function N(w, |b|) is constructed, including the “b- -impact
parameter,” Wthh is a two-dimensional vector that marks
the position of the nucleus from the position of impact on
the plane perpendicular to the beam direction [156]. Photon
number function N(w, b), being expressed in terms of the
second kind of modified Bessel function K, is determined
by the nucleus elastic form factor:

Z’a 0]
e
CUZ C()2 ?
—Jare Kb me) ).
y = YN (116)

2m,,

In the ATLAS experiment, from 2®Pb-ion nuclear data
[169] one finds & = 0.088 GeV, y is the 2°Pb-ion Lorenz
factor, and m, = 0.931 GeV is the atomic mass unit.

The differential cross section in the fiducial phase space
is then expressed as the following sevenfold integral:

do” :2/{516(&)1,(1)2,19,(,0)]5“1“ o
dm}/y dQ Theory

dy - -
X_dzb dzbZ (|bl _bZ‘ _Rmin)

My,

X N(@y. [bi])N (@3, b)), (117)

with Rpyin = 2R 20spy,) = 14 fm ~ 71 GeV~!, where in prac-
tice the fourfold integration over impact parameters b; and
52 can be performed by defining the improved luminosity

2

. &L,
function dn,_ ¥
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L, _
dmde my,
4r - 2n

=% [abdb) [ apion
m 0

144

2

Taking this into account, the cross section of PbPb(yy) —
Pb*Pb*yy is expressed in the fiducial phase space by
convoluting (107) with luminosity function (118) in the
following form:

vy
dm 2 s dQ

dm,,dY )

144 Theory

(119)

Using this photon number function from one-loop and
monopole approximations, we first compute numerically
the fiducial total cross section of the PbPb(yy) — Pb*Pb*yy
collision in the SM for the ATLAS cuts and found it to be
57 nb, which is comparable to the previously reported
values [133,135]. Two other ATLAS kinematic cuts dis-
cussed in the literature were also listed in Table I. In the
same Table I, we have also presented additional two cross
sections, that is, the 120 and 12 nb coming from the ALICE
and CMS experiments, respectively. In the case of monop-
ole approximation, our integrated cross section at the SM
one loop given in Table I relatively well agree with numbers
published in Table I in Ref. [138].

D. NCQED contribution to PbPb(yy) — Pb*Pb*yy
reaction for ATLAS cuts

Applying the protocol tested in the former subsection, we
calculate the combined contribution from both the SM one-
loop and NCQED tree-level yy — yy amplitudes in the
ATLAS PbPb(yy) — Pb*Pb*yy experiment, with 2°®Pb-ion
center of mass energy /sxy = 5.02 TeV [135], which is
sensitive to most of the 4z solid angle, implying that the
integral (117) and (119) ranges over the ATLAS cuts: 9 cutoff
withe = 0.0102, with0 < ¢ < 27, mp, = 0.9315 GeV, and
y = 2693, giving the data span as a function of diphoton
invariant mass m,,, presented in Fig. 10 and Table I

It seems that in the LbyL scattering measurements
ATLAS has recorded only events with less than 30 GeV

—/ d2b1d2bz®(‘51 - 52| - Rmin>N<a)l’ |51|)N(602,

51 |>N((U27

b))

5D (/B2 + [Baf? ~ 205y Bl cos — Ruga) (118)

diphoton invariant mass [Fig. 3(a) in Ref. [134], or the same
figure as Fig. 2(b) in Ref. [135]]. Inspecting Fig. 4 in the
Appendix in Ref. [134], which displays event 453765663
from run 366994 with diphoton invariant mass of
m,, = \/E =29 GeV, we conclude that this LbyL scatter-
ing event and other recorded events certainly belong to the
class of exclusive relatively low-energy (with respect to m,)
processes, which is in accord with the conclusion in
Ref. [138] that the cross section for elastic yy — yy scatter-
ing could be measured in the present **Pb-ion collisions
only for subprocess energies smaller than 30 GeV.

We first consider matching the reported experimental
fiducial cross section of 78 nb [135] by combination (107)—
(119), which yields an unimpressive scale Ayc of about
72 GeV, a value which had been ruled out some time ago.
Since the relevant NC scale is small in the ATLAS
PbPb(yy) — Pb*Pb*yy scenario, we notice that pure NC
amplitude |M%{.|*> gives the main contribution to the
fiducial cross section diphoton invariant mass distribution
peak value of ;’n—‘; (right panel in Fig. 10), which occurs
moderately above Aync as expected from the Bessel
function J, dependence [see Eqs. (97) and (103)] on the
scale Ayc. So the high-energy peak value of 42~ in the left

dmy,

panel in Fig. 10 is a direct consequence of the pure NC
amplitudes and determines the possibility of observing
excessive events due to the NCQED.

E. Recent ATLAS lead experiments

Proposing that the difference between the LHC-ATLAS
measured is mainly due to the noncommutativity of space-
time (106), by using Eqs. PbPb(yy) — Pb*Pb*yy scattering
cross section in ultraperipheral lead-lead collisions and the
SM prediction(92), (106), and (113)—(116) we obtain the
total cross section in the fiducial phase space to be 59.8 nb,
relatively close to the experimental mean value, however,
only at Ayc = 100 GeV. Inspecting Table II, one may
clearly see that the present ATLAS experiment basically

TABLE 1. A few total SM fiducial PbPb(yy) — Pb*Pb*yy cross sections calculated at /Sy = 5.5 TeV (Lorentz
factor y = 2930) [138] and for various collaboration experimental cuts.

Kinematic cuts Collaboration

ggM(] B 1Oop)monopole (nb)

m, >5GeV, |y <7 ATLAS 382
m,, >5 GeV, p, > 2 GeV, |y;| <7 ATLAS 190
p. > 09 GeV, |y;| <0.7 ALICE 120
p.>55GeV, |y;| <25 CMS 12
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FIG. 10. Left panel: convoluted differential cross section versus diphoton invariant mass distribution of the PbPb(yy) — Pb*Pb*yy
collision in fiducial phase space of the PbPb system in the ATLAS PbPb(yy) — Pb*Pb*yy experiment with the ATLAS cuts and
V/Snn = 5.02 TeV, for the SM (black line) as well as the SM+(0-exact NCQED) with Ayc values 53 (blue line), 72 (green line), and
100 GeV (red line). Right panel: convoluted NCQED related contributions to the fiducial cross section versus diphoton invariant mass
distribution under the ATLAS cut conditions for Ayc values 53 (blue lines), 72 (green lines), and 100 GeV (red lines). Dotted lines are

pure NC contribution U;ICZ,
gives only the NC scale smaller than 100 GeV. Namely,
from the left panel in Fig. 10 and Table II, we see that
second peak values of ~(1,0.1,0.01) nb/GeV exist for
Anc = (53,72,100) GeV, respectively. In addition, after
checking the distribution of cross section with respect to
diphoton invariant mass m,,, we conclude that such a
scenario does not explain the observation of the ATLAS
experiment, since the cross section induced by NCQED
amplitude comes from a wide band at m,, 2 100 GeV, as
nicely presented by the ATLAS Collaboration in Fig. 2(b)
in Ref. [135]. Given the current integrated luminosity
accumulation speed (~1 nb~!/yr) for the current LHC,
we doubt that any stronger bound of Ayc ~ 100 GeV can
be achieved from the present-day ATLAS PbPb(yy) —
Pb*Pb*yy experiment.

The lepton pair production in the framework of ATLAS
lead experiments shall be presented and discussed further.

F. LbyL scatterings in the next-generation
collider experiments

1. Convoluted cross section versus diphoton
invariant mass distribution

Because of the importance of the possibility to discover
noncommutativity of space-time, we shall now discuss

TABLE II. Summary of the predicted NCQED related contri-
bution to the PbPb(yy) — Pb*Pb*yy fiducial cross sections

Ohaene = Obm + Obuune + Ok for ATLAS cuts at (/SN =
5.02 TeV and various Ayc values.

Anc T Thne ONG g o () My | max
(GeV) (nb)  (nb) (nb) dm,,~ Imax Gev)  (GeV)
53 57 12.1 125.5 1.09 115
72 57 3.6 17.6 0.13 132
100 57 1.0 1.8 0.011 138

. - v S r v
dashed lines are interference terms oy, e, and solid lines are oy = oy + Ogpunc:

Fig. 11 in some more detail. The first left dashed and solid
line large peaks, up to m,, ~ 100 GeV, correspond to the
% and the M:jx—::’c diphoton fiducial cross section distri-
butions, while the second solid line peaks correspond to the
sum of interference and the pure NCQED terms, respec-
tively. This outstanding second peak reflects the evolution
of NC factors with respect to energy scales: When energy
scales become larger than Ayc, the NC factors become
oscillatory and bounded. Consequently, the NC amplitudes
are very small at very low energies where the SM con-
tribution dominates and then increase quickly and compete
with the exponentially decreasing luminosity factor [156]
to give the rising side of the NC second peak. Such a new
feature is a genuine peculiarity of our #-exact NCQED.
Since the future higher-energy experiments could
increase the experimental sensitivity to the noncommuta-
tive effects drastically, we also estimate potential improve-
ments one would expect from the next generation of
colliders, in particular, upgraded CERN HL-LHC® up to
V/Snn = 14 TeV, the proposal for next-generation Chinese
hadron collider SppC with energy ./sxy =70 TeV
[170,171], and from the Future Circular Collider (FCC)
proposal up to /sy = 100 TeV [172-178]. Assuming
that all the kinematic ATLAS cuts remains the same, while
only the energy scale or Lorentz factor scales up 5, 7, or 20
times with respect to the current ATLAS value
V/Sny = 5.02 TeV, we estimate the noncommutative scale

Axc corresponding to a high-energy ddmiy maximum with
124

~0.01 nb/GeV magnitude and present that in Table III and
Fig. 11. We find that Ayc are about 2.5, 3.1, or 5.2 times

®The High-Luminosity Large Hadron Collider (HL-LHC)
project aims to crank up the performance of the LHC in order
to increase the potential for discoveries after 2027. The objective
is to increase luminosity by a factor of 10 beyond the LHC’s
design value.
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Left panel: convoluted differential cross section versus diphoton invariant mass distribution of the PbPb(yy) — Pb*Pb*yy

collision in fiducial phase space of the PbPb system for the future case of higher-energy ATLAS-like experiments. Dashed lines show the
SM contributions, dotted are for #-exact NCQED, and solid for the SM+(0-exact)  NCQED, respectively. Black lines are for /Sy =
5.02 TeV and Aync = 100 GeV; red for /syy =25.10 TeV and Ayc = 257 GeV; blue are for /Syy = 35.14 TeV and
Anc = 311 GeV; and green curves correspond to /Syy = 100.40 TeV and Ayc = 523 GeV. Right panel: convoluted differential
cross section versus diphoton invariant mass distribution of the PbPb(yy) — Pb*Pb*yy collision in fiducial phase space of the PbPb
system for the future case of higher-energy ATLAS-like experiments. Dashed lines are for SM and solid are for the SM-+(6-exact)
NCQED contributions. Dotted lines are SM plus leading order in #-expanded NCQED results. Red and blue lines are for the same

energies as in the left plot.

~100 GeV, for the nowadays ATLAS energy scale
5.02 TeV, respectively. Also, the left plot in Fig. 11 and
Table II (,/syn ~ 5, 25, 35, 100 TeV), both show a new
feature in the form of second peaks at diphoton invariant
mass m,, ~ 140, 570, 740, 1500 GeV induced by the huge
relativistic effect at higher energies (see the much larger y in
Table III), shifted with respect to that in the left plot
in Fig. 10.

Such improvements are considerable, yet still insuffi-
cient to make this kind of experiment(s) convenient for
bounding Aync when comparing to other known bounds,
unless the integrated luminosity can be further improved by
multiple scales of the next-generation hadron colliders.
Because of the SM W loops, the left and right panels in
Fig. 11 at m,, between 150 and 200 GeV show a small dent
arising from the W-loop contributions to the pure SM and
the SM x NC interference terms, respectively. Namely, W
contribution starts to show up by inducing a sharp drop or
turn between 100 and 200 GeV presented in Fig. 1 in
Ref. [155]. That dent is unfortunately experimentally
invisible.

TABLE III. Estimations for ATLAS PbPb(yy) — Pb*Pb*yy
like experiments at higher energies. Here we made adjustments

doxcorn ~0.01 (nb/GeV).

|max
dm,,

of the NC scale in a way to get

V/SNN (TCV) 4 ANC (GGV) UéM (nb) 01}:1C (nb) m77|max (GGV)
5.02 2693 100 57 2.8 138
25.10 13465 257 178 6.6 567
35.14 18851 311 211 7.9 737
100.40 53860 523 336 16.9 1480

The existence of a second peak, with maximum nz,, | ;...
given in Table III, reflects the evolution of NC factors with
respect to energy scales: When energy scales are much
smaller than Ayc, the NC factors are increasing as mono-
mials with high power. Once the energy scales become
larger than Ayc, the NC factors become oscillatory and
bounded. Consequently, the NC amplitudes are very small
at very low energies where the SM contribution dominates
and then increase fast and compete with the exponentially
decreasing luminosity factor [156] to give the rising side of
the NC second peak. So when the energy scale goes beyond
Anc the NC amplitudes start to deviate from monomial
increase, so that ;T":y falls down quickly. The subsequent

oscillatory behaviors of the NC factors are fully suppressed
by the luminosity function and cannot be seen in this
process.

In the case of the #-expanded NCQED model, cross
sections presented in the right panel in Fig. 11 (dotted lines
for #-expanded model) show the behavior of jT"; with the

same two peaks. Here we give an example for two higher
energies, red lines correspond to /sy = 25.10 TeV
(Anc = 257 GeV), and the blue lines are for /syy =
35.14 TeV (Anc = 311 GeV), respectively. So the same
NC peak shows up but a bit higher and shifted from
about 700 to about 1050 GeV, that is, shifted up for about
30% in diphoton energy. The same shall work for other
energy cases, like in Fig. 11, showing this way explicitly
that the important NC peak shows up in both the expanded
and unexpanded theory, showing that it is an genuine
feature arising from the Moyal-Weyl manifold of
the NCQED.
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Our estimate show that, like in the original ATLAS case
in Fig. 10, the NCQED contribution in the next-generation
hadron collider ultraperipheral heavy ion scattering sce-
narios also manifests as a second peak of d‘ini at a diphoton
mass range moderately higher than Axc (see Fig. 11).
Also, both panels in Fig. 11 transparently show that
the point at which NCQED starts decoupling7 from the
SM, and the NCQED contribution second peaks, as
functions of (,/sxn, Anc) follows more or less a similar
sort of pattern.

It is also important to note that the SM PbPb(yy) —
Pb*Pb*yy background in the NC second peak region is a
few orders of magnitude lower than the NC second peak.
This simply states that at each of the NC second peaks, i.e.,
at each m from Tables II and III, in the left plot in

144 |max

. . do,
Fig. 11, the corresponding 3% values are a number of
124

e '
OSM4NCQED ., doycorp
dm,, dm,,

. d
orders of magnitude below the sec-

ond peaks.

Inspection of our results presented in Figs. 10 and 11,
right panel, represent a new result with respect to our
recent paper [145]—uncover that novel, beyond the SM,
behavior starting to show up gradually and become visible
when approaching m,, ~ 30 GeV, a maximal value of the
diphoton invariant mass reached in the ATLAS experi-
ment at ,/Syy = 5.02 TeV; see Fig. 2(b) in Ref. [135].
Note that NC peaks at m,, ~150-2000 GeV in both
panels in Fig. 11 could be a bit misleading because of
the log-log scales. It is a quite wide band if the diphoton
invariant mass scale is linear. The hardest problem is still
the absolute value of the peak, which will require having
totally 1000 nb~" integrated luminosity. To be absolutely
clear, to have a signal would require about ten events at the
peak. According to the CERN ATLAS and CMS
Collaborations, further plans of upgrading the LHC to
HL-LHC, and the Chinese proposal for SppC [171], as
well as within the FCC [174-180] proposal, to increase
luminosity by at least a factor of 10 beyond today’s LHC
is quite possible, and ten events at the peak are, in fact,
accessible.

2. The 9 and @ angular distributions
of convoluted LbyL scattering

The broad NC peak discussed in the last subsection
raises one additional question on how to distinguish it
from other (currently unknown) physical processes
within the same regime. It is long known that
NCQED breaks Lorentzian symmetry and induces non-
trivial dependence of the differential cross section to the
transverse angle ¢. We have also learned from the left

"Interestingly, the NCQED decoupling from SM is at about the
same energy as the maximal exceeding energy of the recent ATLAS
experiment at /sy = 5.02 TeV, of <30 GeV [135].

plot in Fig. 8 that the yy — yy differential cross section
also depends on the longitudinal angle 9 in a unique
way. So we investigated the PbPb(yy) - Pb*Pb*yy
differential cross section with respect to x = cosd and
¢ for ATLAS and its FCC analogy scenarios. The
results are summarized in Figs. 12 and 13. As we
can see from the plots, the x dependence of the
PbPb(yy) — Pb*Pb*yy differential cross section follows
the same trend as the yy — yy process in the left plot in
Fig. 8. The NC contributions are flatter than the SM
contribution, yet the difference is not significant within
the angular range considered.

The ¢ dependence of the different cross section
is, on the other hand, considerably more significant.
The NC contributions vanish at the orientations
where the transverse momentum is parallel to the
transverse projection of By while reaching the maximum
at the orientations perpendicular to the transverse
projection of B,. This can be easily explained by
observing the fact that, in a head-to-head collision
geometry, the NC factor kjj0ksy4 is proportional to

|/’_<'1,2-(B9l x k*)|. We therefore conclude that the ¢
variation of the differential cross section is likely an
appropriate signature for the NCQED contributions,
given that enough events could be available for deter-
mining the anisotropy.

G. Noncommutative background processes
in the LbyL scatterings

In the ATLAS Letter [135], a large portion of material
is, as it should be, devoted to the very important analysis
of background processes. Namely, the dominant back-
ground processes, i.e., the central exclusive productions
(CEPs) gg — yy and yy — eTe™ as well as other fake-
photon background contributions,® are in the ATLAS
experiment estimated from data, and the statistical sig-
nificance against the background-only hypothesis is found
to be 8.2 standard deviations [135]. From the perspective
of our NCQED contributions to the exclusive yy — yy
process, we discuss sources to the noncommutative
background contributions in the LbyL collisions which
are represented by the following exclusive three-level
processes.

(1) The first two are dilepton pair annihilation and
productions in the CM frame. Our Fig. 7 shows
oscillatory behavior of both processes, while from
Egs. (85) and (89) we have oy, > 0 (see Ref. [149])

¥Fake diphoton events such as cosmic-ray muons, the yy —
£t¢™, qq, as well as vector meson dominance mechanisms driven
meson pair productions and cascade annihilations, etc., are all
analyzed in Ref. [135], showing negligible impact on the overall
LbyL results. The same was found for single-bremsstrahlung
photon production contributions within the 2%Pb-ion collision
cross section measurements [135].
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FIG. 12. The PbPb(yy) — Pb*Pb*yy differential cross section
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in the ATLAS (/syn = 5.02 TeV, Ayc = 100 GeV, upper plots)

and FCC (/syy = 35.14 TeV, Ayc = 311 GeV, lower plots). In each scenario, the left 3D plot shows a total differential cross section

with respect to x and m,,,. The right plot compares the behaviors of

the SM (red line), interference (green line), and NCQED (blue line)

contributions as well as the total differential cross section (black dashed line) with respect to x when m,, is at the NC peak position listed

in Table III.

and onp < 0, i.e., both NCQED annihilation and
production, are destructive with respect to QED
contributions. We display them as a 2-cascade of
production-annihilation process yy — £7£~ — yy,
contributing to the yy final state.

Third, in Bhabha cross sections, QED and NCQED
contributions are both constructive: agED > 0[149],
and of > 0 (69), and together with the above two,
through 3-cascades of production-scattering-annihi-
lation yy — £7¢~ — £1¢~ — yy, also contribute to
the yy final state.

Both the 2-cascade and the 3-cascade processes shall
be understood as a kind of long-distance effect,
contributing to the yy final state. However, due to the
sign switch in the NCQED contributions, they
should partially cancel general CEPs as dominant
background contributions to the fake yy final state;
see the discussion in Ref. [135].

Exclusive Compton and Mgller scatterings cannot
produce a fake yy final state at all.

(ii)

(iii)

(iv)

(v) All the above is much welcome, since that way the
noncommutative backgrounds become even more
suppressed.

Therefore, we conclude that NCQED background con-
tributions to the LbyL scatterings should be in the heavy
ion collision scenario(s) experimentally invisible, i.e., the
NCQED framework contribution to the yy final state, as a
true single final state, becomes more exposed and domi-
nated; see Figs. 10 and 11.

H. Lepton pair production

One may also consider NCQED contributions to
the PbPb(yy) — Pb*Pb*¢ "¢~ reaction via tree-level exclu-
sive pair production processes yy — £7£~. The full spin
averaged exclusive differential cross section in NCQED
is given in Eq. (89). We notice that the NC factor is
sensitive to the #° component only in the geometry of
the exclusive yy — £7¢~ processes on an ATLAS
PbPb(yy) — Pb*Pb*£+ £~ setting. Here we use lightlike
noncommutativity and set |0 = | — 03] = Ag% and by

015021-28



SEIBERG-WITTEN MAP INVARIANT SCATTERINGS

PHYS. REV. D 104, 015021 (2021)

< 102
3 103
g 1w 3
£ 10 o
| X105 S
b-§106‘ \ 5§
o 10| \
°l3 o f | B|E
107" 1 %5
10"
2 6
100
— 107
2 102
g 10
) -3
g2 10 g
| X107} 8
of| £ f c
5|8 107 am ¥
° ¢ \ .| =
107} | o| £
1 w[E
10 ‘ o
2
AA”O 6

0.004 4
0.003 1
0.002 q
0.001 <
0.000 1
0 1 2 3 4 5 6
0.004 ‘ I I l 1
0.003 il
0.002 !
0.001 1
0.000 &
0 1 2 4 5 6

14

FIG. 13. The PbPb(yy) — Pb*Pb*yy differential cross section @ d in the ATLAS (/syy = 5.02 TeV, Aye = 100 GeV, upper plots)
and FCC (/syy = 35.14 TeV, Axc = 311 GeV, lower plots). In each scenario, the left 3D plot shows the total differential cross section
with respect to ¢ and m,,. The right plot compares the behaviors of the SM (red line), interference (green line), and NCQED (blue line)
contributions as well as the total differential cross section (black dashed line) with respect to ¢ when m,, is at the NC peak position listed
in Table III. The transverse angle ¢ is chosen to be zero at the direction of the projection of B, onto the transverse plane.

convolution estimate the NCQED correction to the
PbPb(yy) — Pb*Pb*¢ ¢~ process. We assume exactly
the same ATLAS kinematic cuts and energy scales to
calculate convoluted lepton pair production from Eq. (89)
in analogy to the left panel in Fig. 11. Resulting diphoton

. . .. . do? do?
fiducial cross section distributions —2* and the —J>< are
144 144

displayed in Fig. 14, which shows that NCQED plots give a
negative correction to the PbPb(yy) — Pb*Pb*£ ¢~ proc-
ess. The relative magnitudes tend to be large at high
energies and not much different from the QED background.
At the same time, the absolute magnitudes in the same
range are inherently very small. Also, it is interesting that
theoretical decouplings of NCQED from ordinary QED at
the ATLAS experiment energy of 5.02 TeV (black lines in
Fig. 14) start to show up gradually at maximal excess of
diphoton invariant mass ~100 GeV, 3 times higher than in
the case of LbyL scattering. Because of the cosine
dependence of energy in dilepton cross section (89),
oscillatory behavior with respect to the LbyL scattering
starts to show up at a bit higher energy, i.e., when
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FIG. 14. Convoluted differential cross section versus diphoton
invariant mass distribution of the PbPb — Pb*Pb*#*#~ collision in
fiducial phase space of the PbPb system for current and future
higher-energy ATLAS-like experiments. Dashed lines are for QED
contributions, and solid lines correspond to the QED-+(f-exact)
NCQED, respectively. Black lines are for ,/syy = 5.02 TeV and
Anc=100GeV;redfor /syy = 25.10 TeV and Aye = 257 GeV;
blue for \/syy = 35.14 TeV and Axc = 311 GeV; and green for
v/Snn = 100.40 TeV and Ayc = 523 GeV values from Table II1L
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approaching a diphoton invariant mass of ~200 GeV. We
therefore conclude that a PbPb(yy) — Pb*Pb*yy collision
producing exclusively two monophotons is a much better
probe to the NC scale than PbPb(yy) — Pb*Pb*/ "¢~
process.

VIII. CONCLUSIONS

In this work, we present an explicit proof that all tree-
level two-by-two scattering amplitudes in NCQED are
invariant with respect to an invertible SW map. This
surprisingly simple result is in accordance with our prior
formal analysis that U(1) NC(S)YM with and without the
SW map are equivalent to each other on shell [131,132].
Our result, like its more formal precedent, is nontrivial
because the reversible #-exact SW maps from noncommu-
tative to commutative fields are highly nonlocal.” For this
reason, the results on the redefinition of local fields do not
automatically apply to NCQED with the SW map.
Motivated by this newly found explicit invariance, we
revisit the differential and total cross sections of NCQED
two-by-two processes.

First, we observe several similarities to the analogous
processes in QCD. Kinematic structures—fractions of
Mandelstam variables—of NCQED contributions to cross
sections of two-by-two processes (Bhabha, Mgller, anni-
hilation, production, Compton, and LbyL) given in
Refs. [42,45,47] are the same as corresponding fractions
of Mandelstam variables of free quark-gluon processes in
QCD, shown in Egs. (17.70), (17.71), (17.75), (17.76),
(17.77), and (17.78) of Peskin and Schroeder [149].

It is, however, second to note that the collinear
singularities of QCD processes do not match their
NCQED counterparts. The NCQED Compton scattering
exhibits the same 7-channel collinear singularity as QCD
quark-gluon scattering but at a lower power. And, while
NCQED LbyL scattering shares the same color- or star-
product-ordered amplitudes with QCD free gluon-gluon
scattering amplitude, the extra momentum-dependent
noncommutative factors completely cancel the collinear
divergences from the fractions of Mandelstam variables
and make the NCQED yy — yy process collinear diver-
gence-free.

Comparing with the upper bounds derived from tree-
level NC processes, we consider the collinear singularity in
the NCQED Compton scattering as more worthy for further
investigations in the near future. If we adopt an analogy to

*We are grateful to C. P. Martin for providing to us important
early references [181-184] which, while clarifying the issue of
equivalence within the field redefinition of gauge transforma-
tions, also discuss locality versus nonlocality issues in QFTs,
generally. From that perspective, note that there are also dis-
cussions of the standard nonlocal NC SW mapped theory versus
the global NC one [185], indicating that there might be a need for
a different interpretation of the original Seiberg and Witten paper
results.

QCD here, then this singularity appears to suggest an
unknown and nontrivial soft physics of NCQED, which
would be instrumental in canceling the IR singularities in
the hard process(es). The difference between collinear
singularities in NCQED and QCD, in particular, the lack
of it in the NCQED yy — yy process, seems to indicate that
the conjectured soft physics may be very nontrivial by
itself. One would further wish that such completion could
result in a theory compatible with the long-known negative
one-loop f function in U(1) NCYM [85] and/or the (in)
famous UV-IR mixing [93,95,98,105]. On the other hand,
the scaling is QCD. A full investigation along this direction
lies beyond the scope of this work. The authors would,
nevertheless, be truly grateful if some progress can be
achieved soon.

As an application of the theoretical progress made in this
work, we investigate the possibility of detecting NCQED
signals in the ultraperipheral PbPb(yy) — Pb*Pb*yy and
PbPb(yy) — Pb*Pb*/ "¢~ future scattering experiments at
HL-LHC and FCC, presented in Figs. 11 and 14, respec-
tively. We follow the equivalence photon approximation
and employ a monopole form factor to calculate the total
cross section of both processes. Our results indicate that the
PbPb(yy) — Pb*Pb*yy channel probes NC scales better
than PbPb(yy) — Pb*Pb*#/"#~. Yet neither channel could
probe really large scales (Anc 2 0.5 TeV) even after we
extrapolate the ion energy to beyond the next-generation
hadron collider proposal(s).
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APPENDIX A: FEYNMAN RULES

1. Matter sector: Non-SW(I)|SW(IT)
map-induced terms

To obtain vertices in momentum space, we next follow
the regular procedure, with momenta assignment given in
Fig. 15, which from the first diagram for electron yields the
following FRs:
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FIG. 15. NCQED Feynman rules with all gauge fields incoming.

D = Dop(tie(k3)ue (ky)y (k1)) = [T + Tpjlag, ky + ky = ks,

. i
[T} + Tyl = e | 7" —EF-(khkz)((klgkz))’” — KOk ) + (o — m, ) (0K, )| (A1)
aff
okt e

[rl;]a/} = iefe 2 zyﬂ}a/)” [Fma/} = —EF.(kl, ko) [(¥1 (Oky ) — (fo — me)(gkl)ﬂ)}a/)" (A2)

_jfok . ki 0ky

e 2 - kq0ky SIN
F.(kl,kz) :W:F.(kz,kl)*Ee_l%T%j. (A3)
T2 T4

The first term I} in Eq. (A2) represents FRs for the NCQED without the SW map and is in agreement with
Refs. [42,45,47], while additional terms denoted as F’,’ ; arise due to the f-exact SW map. Note that the Lorentz structure of

the second term in Eq. (A2) is the same as the NC neutrino-photon coupling, in the case of massive neutrinos [86,88].
From the two-photon—two-electron diagram in Fig. 15, the regular recipe yields

o = Do (i (ks ue (ko)y (ka)y (k1)) = (07 + 177 o
(Fllw)aﬂ = O’
-
(T )p = 5 |5 (F kit ko (ki ) (0203 )"y + (ko K (ko) (O (0K 'K

+ (7 (Ok3) e (kg k3) + 77 (0k3 e T F . (ky . )

k3

— ((Oky)"y e T Fu(ky, ky) + (Oky )y e T Fu(ky, k)

k30ky

= (2(r"(0k)" + v (Okg)) + O (1 — fa))e ™7 Fo (kg ky) J (A4)

which is symmetric under simultaneous pair exchanges (v, k4) <> (4, k). Here, I"}" represents a term irrelevant for the on-
shell tree-level computations; thus, we indicate that fact by equating it with zero. This FR is coming from the action (17)
and/or (18) induced by the #-exact SW maps for gauge field strength (5) and fermions (9), respectively.
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2. Gauge sector: Non-SW(I)|SW(II)
map-induced terms

a. Triple-photon coupling: General FRs

Considering the gauge sector by employing a straight-
forward reading-out procedure from Sy (14) for the third
diagram in Fig. 15, we have the Feynman rule I*1#2#: for
the triple-photon vertex in momentum space [92]:

|

DY = Tmebs(y (ky), y(ka). v (ks))

= eViVi® (ki ky, k3)F ., (ko  k3),  (AS)

with vertex function V7% (ky,ky,k3) and F, (ky. k3)
being taken from Refs. [92,104]:

Vi (ke ks ks) = —(kiOka)[(ky = Ky gt + (ky — k)1 g2t + (ks — ky P2 ghs],
Vil (ky ky. ks) = =092 [k (kaks) — K5 (Kiks )] — 04245 K5 (ki ks) — K5 (Kiky)] — 09901 [R5 (Ko ky) — Ky (koks)]
+ (Oky e g ok — KSR ] + (0K, ) [g72 ks — KE'RS] + (0K ) [0 k5 — KRS
+ (Oky)o[g vk — K K] + (Oks) (g9t — K] + (Oks ) [0 k5 — K52 RS, (A6)

Here again, only the first line of Eq. (A6), with function
2 sin% instead of F, (k,, k3), from SW NCQED triple-
photon FRs (A5) and (AG6), represents the FR for the
NCQED theory without the SW map, in agreement with
Refs. [42,55], respectively.

b. Four-photon coupling: General
considerations and FRs

Finally, the ¢ order SW map for the gauge field strength
produces the four-photon interaction diagram in Fig. 15
arising from the action Sy (15). The Feynman rule I'**7*
for the fourth diagram in Fig. 15 is much more compli-
cated, even with additional gauge freedom «’s fixed to
unity. Those FRs are generally given in detail in Egs. (16),

|

P (ks ko ks k)

|

(B.1), (B.2), and (B.4)-(B.6) in Ref. [92]. After the
inspection of tadpole contributions to the photon polari-
zation tensor for two different SW maps (I) and (ID),
represented with gauge freedom parameters (k,k;)’s and
(k,K%)’s, respectively, in Ref. [92] we have found that for
K=K =Ky =K3 =Ky =K, =Ky =Ky =k = 1 the sum
of bauble and tadpole contributions to polarization tensor
(I) given by Eq. (37) and contributions to polarization
tensor (II) (38) are equal. Thus, we shall use the FR from
Ref. [92] for the SW maps (I) and (IT) with all «’s = 1 and
with momenta k; in Fig. 15 being the incoming ones.
Because of the number of typos in FRs from Appendix B
in Ref. [92], next we repeat all, but corrected, FR
equations:

¢ 52
e
— TS“[F;;\I#ZMM (kl’ kz, k3, k4) + F/él#z#slﬂ(kl’ kz, k3, k4)

_|_ F’f‘”z’””“(kl, k27 k3, k4) + Flzllﬂzllslht(kl’ kz, k3, k4) + l—*l341llzﬂ3ﬂ4(k1’ k2, k3, k4)

+ DY (ke k. ks k) 4+ D559 (ke k. ks k)] 6(ky + ko + ks + ky),

(A7)

where S, denotes permutations over all ({k;,y;}, V i =1,2,3,4) pairs simultaneously. Capital indices I + 11, as before
from Eqs. (A1)-(A6), indicate a splitting of the total contribution into the one / arising from the action without the SW map
and the second I/, as a contribution induced by the SW mapping.

First we split I’ into five and I'p into three pieces, respectively:

5
Sa " (kg by k) = Z S4F’/:li”2ﬂ3m(k1»k27 k. ka)lriars

i=1

S4FZ][”2”3”4(/€1 ko ks ky)|pr = 54(‘/2#2#3#4(](] ko ks k)i F o, (ks ko) F o (K3, ky)),

3
SqTRP (ke Ko, ks k)| = a5 (ke ey, s a1

i=1

Sy (ks kg gy kg) 10 = Sa(ViE™" (kv ko, ks k) |1 F oy (R k) o (Kas k),

(A8)
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VIS Ly = VR = (ki Oky ) (k3Oky) g1Hs gHots,
VIR Ly = VRIS = gk grbs (ks ) (o),
VIS L = (kiks) [(Oko )1 (kg )Fs ghots — QFHa i) — 0112 (Oky )15 ']
+ (kaka)[(0ky )2 ((Oks ) g5 + O RS ) + 08182 (O3 )M K],
VAL 1y = Ok 09I I = (Oky R 0+ 2 O]
+ (k3Oky) (0" kRS — (Okp)M K g4 + (O )2 k5! g1re ]
VAL o = =[(0ky )2 (0ky Yo ko Ka! + (0K ) (Oks )k K (A9)
where clearly only the first term in Eq. (A9), the V4, belongs to the class of non-SW map-induced terms, since that term

was induced due to the x-commutator term of the NCYM gauge Lagrangian F*xF,, ~ [a"%a"][a,%a,], with
A,(x) = a,(x); see details in Ref. [42]. What follows are additional, but irrelevant terms:

V’éllﬂ%m\Hu = 2(0ky )" [(koks) (K{20F#s — (Oky )3 giats) — (kpky) (K Q13 4 (O ) g2ks )],

Vi i = 20k ) (ks Ok ) (K5 g2 — g0 kYY),

VAL = 200k PR R ROk PR, (A10)
Tensor structures of remaining I';, i =1, 2, 3, 4, 5, terms are listed next:

YRR (R kg ks k)| = 2F 4 (Ko, ks kg V5 (ko ks k) s
DYV (b, po, pas Pa)ln = (RF ., (ki ky)Fo (ks  ky) = F (ko ks, k) = Fo (g, ks, ky) ) - VB (e by, ks, ky)
D5V (ke Ky ks k)| = Foay (Kgs oy ka) VB (K ko, ks, ka) g
)
)

11>

DR (kg ks, ky) | = F*z(kl,kz) u, (ks kg ) VAP (g Ko, ey, )| g
TEHI (e ey, ks, ey g = Fy(ka, ks, ky) VAR (ke s, keg) |, (A11)

where the above * products induced functions in momentum space: F, , F, , and F(j are defined in Refs. [90,92],
respectively. Tensor structures of V;’s are given next:

VAR (K K ks ky )| = 2(ky ko) (K5 (O )20 — K5 (Oky )1 0020 4 g1t (Oky )12 (O3 )1 + (k3Oky) g1Ho6¥24)
— 2K ((koOky )RS 014 + K51 (Oky )12 (O )t + (koOky) g4 (Ok3 )M — (k3Oky) g1 (Oky)H)
+ 2(ky k) (K (Oky Jfo 0ots — k5! (Oky 12004 + g4 (Oky ) (Okp ) + (kaOky) g1#2044)
= 2k (k3 Ok )RS 021 + KS' (Oky )2 (O3 ) + (k3Oky) g#2 (Oky ) — (koOky) g (Ok3)").
VR (R kg ks Ky )| = (Oka ) [(ky ko) (KRG 0020 — (Oky )2 gihe ) + Ky (0o )M Ky + (KaOy)g14)
= (Kiky) (K5 01144 4 (Oky ) g1t2) + Ky (K5 (Oky )2 = (KaOky) g12)],
VAV (ke ks ks k) g = (KPR = (Kiks) g#4) (0o ) (Oks )2 + 09245 (k,0ks)),
VP (ke ko, ks k) g = ((kiky) gFs — KRG ) (0K )2 (O3 ),
VEPII (e ko ks k) g = (KPR = (Kyky ) g1#4) 0Ky )2 ((Oka )1 (k30ky) + (Oky ) (ky0ks3)). (A12)

For any additional details, we refer to Ref. [92]. However, the irrelevant terms are proportional to the free field equation for
a,(x); therefore, since they vanish due to the EOM and gauge condition, they are irrelevant to the tree-level scattering
processes we are heading for. Thus, we collect now the relevant terms at the e? order which does not vanish on shell. As we
mentioned at the beginning of the paper in Sec. II, we shall work out only the FRs from relevant gauge action given in
Sec. I B. Thus, the irrelevant FRs (A10)-(A12) we are giving just for the sake of completeness, but we do not need them
further on. However, one should not forget that those irrelevant terms are indeed very much relevant for arbitrary loop and/
or non-Abelian computations.
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c. Four-photon coupling: Relevant terms FRs

Starting with action (12) and obtaining relevant part (23), from where we already have FRs arising from the very first term
in Eq. (23) presented in Ref. [92] and denoted as I'4 and/or V, in Eqs. (A7) and (A9), respectively, the FRs from second,
third, and fourth terms in Eq. (23) we determine next. Note that only «, is present twice, thus producing at the very end
terms proportional only to F, (ky, k,)F,, (k3. k4), etc. The relevant four-photon vertex in accord with the fourth diagram in
Fig. 15 is

2
D dtevam | (ks ko ks, ky) = % [WHbHs (K, Ky, kg, kg ) F o, (K ko) F o (K3, ky)

+ all S, permutations over {k;, y¢; } pairs simutaneously|,, ;;6(k; + ky + k3 + k), (A13)

WHH2H3Ha (kl’ kz, k3, k4) — VZI/‘Z/‘MM + Wlfll‘z#}/m + ngﬂzmm + Wlsflﬂzﬂw:t’ (A14)

where V, is exactly the same as terms given in Eqs. (A7)—(A9). The W, is coming from the second term in the first line,
while W, and W5 are coming from the first and second terms in the second line of Eq. (23), respectively. After we split the
above W, into three terms, we have

3
WHIRAS (R Ky Ky, hy) = Z WIS (kK s, k),

i=1

WIS (K ko, ks, ky) = 2(0ky )1 01595 (K5 (kaky) — Ky (Kaks)],
WAV (fy Ky, ks, k) = 2(0ky ) [(Ok3 ) (9245 (kaky) — K5PKY?) + (Oky )5 (g2 (kyks) — K5 K52,
(Oky

WL (ky kg ks k) = 2(0ko )" (k3Oky ) [y g2t — KS* gk, (A15)
WH (ky kg ks k) = 2(0ka )1 (Oka )92 (kaky) — K5' RGP (Al6)
WEPEE (ky ko ks k) = 2(k10ky) [2(Oky ) (K g1#2 — K2 gte) + 00 (K2 RY! — g4 (ki kg ) )] (A17)

APPENDIX B: THE ¢ INTEGRATIONS NEEDED IN ALL NCQED AMPLITUDES

1. Noncommutative phase factors

Choosing the general frame for the 1(k,) + 2(k,) — 3(k3) + 4(k,) collision, which we called the non-center-of-mass—
NCM—frame, we start with 4-momenta = (energy, 3 — momenta), for the incoming first particle k; = (wy, 1?1) and for the
incoming second one as k, = (®,, l_éz), where both momenta to lie on the z axis. The scattered outgoing particle 4-momenta
are k3 = (w3, l%) and k, = (wy, l&), respectively. In the spherical coordinate system for the massless case with 3-
momentum l?l + 752 = 123 + /24 and energy w; + w, = w3 + w4 conservations, respectively, we have

ki = (01,0,0,—@,), ky = (@,,0,0,,), ky = (w4, w4 sin 9 cos @, @, sin 9 sin @, w4 cos ),

ks = (w) + @y — @y, —wy4 Sin I cos @, —w, sin I sin @, @ — @, — w4 cos ), (B1)
while using respecting Mandelstam variable s, ¢, u definitions (26) we have
s = 4w w,, t = =2ww4(1 — cos ), u = =2wyw4(1 + cos 9). (B2)

Taking the case of photons, there is s + # + u = 0 from where, together with energy conservation, we express a pair of
incoming energies @, , in terms of pair of outgoing energies ws 4, and vice versa:
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1 1
R za(a)3+a)4(l +x) + y/0} — @3(1 —xz)), a)2:§<a)3—a)4(1 —x) F y/w} - wi(1 —x2)>,

. (a)% + a)%) - (w% - a)%)x 20w,

- , = , = 9. B3
(0] + @) — (0 — @)x @4 @1 (1 = x) 4+ @, (1 + x) * = eos (B3)

Now, by using noncommutative matrix @ and kinematics, from Eqs. (24) and (B1), respectively, we write down
analytically all phase factors generated by the NCQED introduced in the previous section and in the NCM frame of head-to-
head 2 — 2 collision necessary further to compute and analyze NC contributions to all electron and/or photon scattering
and/or annihilation processes:

20)1(02
kyOky = €03,
Ac
—w
kiOky = AL 1 [c03 (2002 + w4 (cos 9 — 1)) + w4 sin I((cor — 13) 08 @ + (co2 = €23) sin )]
NC
W1y . .
kOky = A [coz(cos @ — 1) + sind((co; — ¢13) cOs @ + (cop = €23) sin @),
NC

w . .
kyOky = ATz [co3 (201 — w4(cos I + 1)) — wysind((co; + ¢13) cos @ + (cor + €23) sin )],

NC
kyOky 220)4 [coz(cos & + 1) + sin d((co; + c13) cos @ + (cop + €23) sing)],
NC
k30k, = el [co3(@(cosd — 1) + wr(cosd + 1))
Akc
+ sin9((@; + @)(co 08 @ — cop sin@) — (@) — wy) (€13 08 — cx38ing))]. (B4)

2. The ¢ integrations over the noncommutative phase factors

Using Eq. (B4), after decomposing sinus functions in Eqgs. (92) and (93), and for other processes, with the help of Ref. [151]
we may neglect terms which in the integration over dg give zeros'” and obtain all contributing phase factors needed:

2
cos k10k, = c0s< 21(02 c03>

cos k;0ky = cos| — c03 (2w, + wu(x — 1)) > < 1 4C 1—x2sin(¢+}/c)),

Co3 )) 'C05<A2 C\/:SHIW-H’C))

NC

cos k10k, = cos

NC

003 x+ )> COS<a[)\22a)4 Gﬂsm@p ‘I’YG))»

NC

cos k,0k, = cos

cos kz0k, = cos

cos ky0ky = cos( co3(2m; — wy(x + 1))) - cos (— 05\2;)4G 1 — x?sin(p + yG)>,

c03 (@ (x = 1) + @y (x + 1))) cos(%/\ 1 — 22 sin((p—yA)>, (B5)
NC

""Note that while computing the ¢ distribution of certain processes we have used non-¢ integrated, i.e., full NC phase factors given in
Eq. (B4).
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cos(k 0k, + k30ky) = cos 0_23 [—2w @) + w4(@;(x = 1) + @y (x 4+ 1))] | - cos a)12a)4A 1 —x?sin(p —y,4) |,
Axe Axce

cos(k,Oks + ky0ks) = cos| —5—MV'1 — x%sin(¢p + YM))’

2
cos(k,0ks — k,0k,) = cos C[(\);C(M coz(x + 1)) - oS (a[)\l;MA 1 — x?sin(p + 7A)>’
NC

NC

cos(k 0k, + k,0ks) = cos

M~/1 - x?sin(p + yM)),

2
NC
2
cos(k;Oky — kyOks) = cos [ — a4 cos(x — 1)) - cos (“”2“’ 4 A1 — X2 sin(g + yA)>, (B6)
ANC ANC

with the following definitions of the noncommutative coefficients

—

: 1
C= \/(001 —c13)* + (cor = €23)°, Sinyc 26(001 —c13), COS}’CZE(Coz—Cza)v

. 1
G= \/(001 + ¢13)* + (con + ¢23)%, sSnyg =

A¢<cm<l+ws>cm<1zs>>>2+<m?+z>cn<1z>>f

1
y COSY 4 :Z<C02<1—%)+023<1—%>>,
1 1
) ;
1
), COS}’M :M (C02 <1 —%) — C23 (1 +%>) (B7)
1 1

hi

Now, since the SM amplitudes Mq,,, V i =1,...,5—see[152-156]—do not depend on ¢, the form which contains only
the linear type of phase factor products 2sinasinf = cos(a — f3) — cos(a + f3) shall be applied for computations of
interference terms in Eq. (107). Second, from above general form we have to integrate over dg a square phase factor coming
from Eq. (93) as 4sin?¢ sinzg =1—cosa—cosf + 1 (cos(a + f) + cos(a — f)). Combining both types of phase, the
2sinasin f and the 4 sinzgsin2 g we found two types of integral I and 7, i.e., I, and jO,i respectively:

—

(cor 4 ¢13). cosyg = — (Cor + €23),

21
/ dp2sinasinf = I_(x) — 1. (x), x = cos ¥, (B8)
0
2z ., L[ A 1 4 n
dg4 sin S S = Io(x) —|—§(I+(x) +1_(x)). (B9)
0

Next by performing ¢ integrations of each of three phase terms in My, Ml ™", and M/~ amplitudes, after making
simple replacement AIZ\IC - 2A12\1c in (B6) phases and using (BS8) structure, we obtain the integrals we need:

015021-36



SEIBERG-WITTEN MAP INVARIANT SCATTERINGS PHYS. REV. D 104, 015021 (2021)

C w .

1!2%(x) = 2z cos 2/\023 (2w10y £ w4(01(x = 1) +wr(x+1))) | o 2/1\2414 V1-x }

L=AANC . NC

r ) M
1132*(x) = 2z cos &(—wl(sz +w4(x = 1)) £ wy004(x + 1)) | Jg e ( > 1 _xz]’
+ _2A§C | _2A2NC A

[ ¢ 1, [ww, (A
I1£%(x) = 2z cos ZA(EC (£ (20) = w4(x + 1)) + wyw4(x — 1)) | Jo 2/1%2 (M) 1 _xz]’ (B10)

and we note that for the spacelike case cy; = 0 the difference (7124

Now we find d¢ integrals over the (B9) structure of phases as

— 1'%3%) vanishes.

. 2¢ ¢

1(1)234(x) = 2;1(1 —cos AIZ\TS: a)la)z] —cos [%1604(601( -1)+

2(1)324()() _ 2ﬂ<] —cos :\2030)1(20)2 + wy(x— :|J0 {wlaMC
LAANC

n [ co3 w194

1423 () = 2;;(1 —cos Alz\lca)lam( ] |:A2NC CV1—-x }

12%%(x) =2z cos 6—33(—2601602 Ty (x=1) + wy(x+1)))
L‘ *NC

jli324(x) = 27 CoS %(—wl (20)2 +CU4()C— 1)) :l:a)zw4(x+ 1))
NC

11#23(x) = 2z cos

0 (daoy (200, — 045+ 1)) + 01004 (x— 1)
ANC

(1)2()("‘ 1 D104

ol
e

A\/—D

]JO[A

o ww(x+1)
NC

G 1_X2D,

NC

WHrWy
—cos (2a)1—a)4(x—|—1] [ G ])
|:ANC ARc
W1 Wy B
JO A l—x],
1 ARe
T T M
Jo a[)\12w4<A> 1—4,
1 LAxe
1 [wws /A 5
J, 1- . Bl11
ol Gvi=+] e

APPENDIX C: VANISHING OF THE SW(IT) MAP-
INDUCED AMPLITUDE M7,: PROOF OF EQ. (62)

Explicit cancellation of the SW(/I) map-induced con-
tributions to yy — yy process from Fig. 4 in the particular
case of Moyal U(1) NCQED is very demanding, because
some quite nonstandard tensorial analysis within a sum of
relevant Feynman diagrams is needed. That is the reason
why lengthy tensorial contractions in a sum of s-, -, and u-
channel 3y-vertex diagrams plus 4y-vertex diagram from
Fig. 4 executed by hand and computer is given in detail
next, showing explicit vanishing of M/, i.e., Eq. (62). We

Fﬂma(kl k2. q)
l—*ﬂ3ﬂ4/5( —ks, —ky, — S)

e k19k2 Zk'” gﬂza—
e k49k3 2k ”49/}”3

(k10k,)|
(kyOks)[
D% (ky, —qy, —ky) = e(kyOky) 2K
Fﬂzﬂsﬁ( —k3, q,) = e(k30k,)|
T (b, g, k) = e(la0k, )2k g +
0P (ky —ky, q,) = e(kyOky) [2kot P2 +

015021

2k g + (k

start with details of 3y- and 4y-vertices and relevant
amplitudes, in the (s,¢,u) channels, generated by both
the non-SW(7)|SW(/I) map-induced terms, respectively.

1. 3y-vertices, (s.t,u) channels: Non-SW(I)|SW(II)
map-induced terms
Using FRs (AS5) and (A6) and from Fig. 4, and after
splitting the non-SW parts from the SW parts, applying
momentum conservations and free field equations, we
obtain the following twice six non-SW(7)|SW(II) map-
induced 3y-vertex contributions:

1 = ky) g F, (ki ky),
kgt Pt + (ky — k3 )P g1 F, (ka. k3),

G 4 2kt g — (ky + k) g F (kg k),
2 P 4 2kyt2 P — (ky + ky )P 23] F (k3. ky),

2k g = (k3 + ki )"g" 5] F ., (ks  ky),

kg2 Pt — (ky + ky )P g#2H4]F,, (kg kr), (C1)
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7% (kys kg, q) = e{ (kika) [2(0ky ) g% + 2(0k, )2 g + 04192 (ky — k3)°]
= [(Oky)" k> + (Oky )2 k5! (ko + ky) Y F, (Ky k).
TP (—ks, kg, —q,) = —e{ (kaky) [2(0ks )1 s + 2(0ky s P + 07544 (k3 — k)]
— [(Oky )P4 kyts + (Oky)2 kst ) (ks + ks )P }F,, (k3. ky),
Dy (kys =g —ks) = e{(kika)[2(0ky )1 g = 20k, ) g — 09174 (ky + Ky )]
— [(Oky kgt + (Oky )1 Ky (kg = Ky ) Y F L, (Kas k),
TP (ky —k3. q,. ) = e{ (kaks)[2(0ks )2 g5 — 2(Oky ) g2 — 015 (ks + ky )]
= [(Oky)Fs kst + (Oks )2k (ks = ko )P YF ., (s, k),

(
(
(
(
T3 (k=g —ks) = e{ (kiks)[2(0ks )M g™ — 2(0k, Vg™t — 099 (ks + k,)7]
(
(
(

— [(Okz ) kP + (Oky )Foks | (ks — ky )"}, (K3, ky),
Ui (ky, —ky, q,) = e{(kaky) [2(Oky )2 g/ — 2(0ky s g2 — 0921 (ky + k)]
— [(Oka kgt + (Oky )2k ) (ky — k)P }F (kg ky),

needed to show the Ward identity for Eq. (61) and vanishing of scattering amplitude (62).

2. 3y-diagrams, (s t.u) channels: SW(IT) map-induced amplitudes

The sum of 3y-vertex diagrams defined in Fig. 4 gives the following amplitude:

M) = —ie,, (ki)e,, (ka)es, (ks e, (Ka)

1
. {; [Fl;lﬂza(kl ) k27 Q.Y)Fl;;#4a<_k37 _k4’ _qs) + F/}l}ﬂza(kl’ k2’ qs)rl;3ﬂ4a(_k3’ _k4’ _qu‘)

+ T (ks kg, g )T (ks =k, —g,)]
1

o Ty, = =K DU (o, K, 00) + T3 (1, =g =k TP (s, ks )

+ I (ki =g, = k)T (ko k5. q,))

1
+ ; [F';]% (kh —qu> —kz)rﬁma(kz’ —ks4, qu) =+ F’;}% (kl’ —u> —k3>rl1lma(k2, —ky, qu)

e <k1,—qu,—k3>r';f"4“<k2,—k4,qu>]},

which produces all nine terms, from s, ¢, and u channels in Eq. (C3) separately, as
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—i
(ky + ky)?
+ Fl;llﬂza(klv ka qs)F/;;ﬂ4a(_k3a _k47 _qs)]

[0y (ks ko g )T (= k3, —kas —q) + T3 (ks ko g ) TP (—ks, —ky, —q5)

= (i) (ko) [k 10K g+ 20k o + 0 ks = )
— kg' (2(Okz )+ g#oFs + 2(Oky )H3 gh2Hs + OF3H4 (ks — ky )H2)

+ g ((9k3)"4(k2 —ky )5 A+ (Oky ) (ky — Ky )H +%9”3”4(k2 —ky) (ks — k4)>}

R0k |18 20k o + 200 5 + 05k = o))
- k’f (2(9k1)ﬂzgﬂlﬂ4 + 2(9k2)#|gﬂzﬂ4 + gulﬂz(kl — kz)"‘*)

+ g <(9k2)”‘(k4 —k3)!> + (Oky )= (ky = k3 +%9’””2<k1 — k) (ky = k3)>}

- hske)| Ok P08 Yo + 20K, oo + 0 (ks = )
+ (ka)ﬂl (2(3k3)ﬂ49#2#3 + 2(9k4)#29ﬂzﬂ4 + 9#3#4(k3 — k4)#2)

+ o ((9k3)”4(k1 = ky )5 4 (Oky ) (kg — ko )Hs +%9”3”4(k1 —ky) (k3 — k4))]

(O R+ (O K ) (O ok <9k4>ﬂ3k§4>}*§"’ , ()

ﬁ (D2 (ky, —q,, —kg) D% (ky, =k, q;) + T4 (ky, =gy kg )TH (ky, —k3, ;)
+ T (kys = q =ka )T (ko =k, q,)]

_ (—iez){(k19k4) [k;f4(2(9k3)mgmm —2(Ok)s gk — 0958 (ky + ey )
+ Ky (2(Ok3 )2 g'sts — 2(Oky )1s g2t — 04245 (ky + k3 )H4)

1
= g (0K 0+ k> = OB+ e = 309k + ) + ) )
+ (k29k3) []553 (2(9k4)ﬂlgﬂ2ﬂ4 - 2(61(1)”49”1”2 — Gk (kl + k4)ﬂz)
+ kg’z (z(gk4)ﬂlgﬂzﬂ4 _ 2(9](1)1449#1% _ gﬂlm(kl + k4)ﬂ3)
1
= g (00 s+ k= OB Yol + K = 300k + ko b + ) )
k)| (08, 210K 0 = 200 = 099 ks + k)
— (gkl)m (2<9k3)ﬂ29ﬂlﬂ3 — 2(9]{2)”39”‘”2 — QHaks (k2 + k3>ﬂ1)
1
— o <(9k3)”2(k1 + kgt = (Oka ) (ky + k) — S0 (ky + ka) (k3 + kz))]

*%

= ((Oky)ky! + (Okq)" kY ) ((Oko)  K5* + (9k3)”2k’£3)} r, (C5)

and
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—i
(ky = k3)?
+ FlllllaIQ(klv —qu> _k3)r}1¢;ﬂ4a(k27 _k47 CIu)]

[F7laﬂz(kl > —qus _k3)r7;”4{l(k27 _k4v qu) + 1'*/[41101142 (kl > —qu» _kS)Fllhma(kZ’ _k4v qu)

= (—iez){(k19k3) {kﬁh (2(0ky )2 gits = 2(0ky ) g1tz — 0204 (ke + kg )1)

+ kg‘ (2(Oky )2 gtsks — 2(Oky 4 g2Hs — OF2F4 (ky + ky )H3)

— g5 ((Okg)! (ky + ky)e = (Oko )" (ky + ks ) — %‘9”2”4@1 + ks ) (ko + k4)>}

T (kaOks) {kf;wz(ewlgﬂw (G g — s (y + k)

+ kZZ (2(Okz )" g#oFs — 2(Oky )3 gris — OF193 (kg + ks )H4)

— g ((9k3)’“(k2 + kg )ts = (Oky ) (ko 4 kg ) —%9”‘”3@1 + k3) (ko + k4)>]

T (koky) {(eksw (2(0ka 2 s — 2(0k e s — 0955 (ky + y))

— (Hkl)”3 (2(9k4)#zgﬂlu4 — 2(9k2)ﬂ4gﬂlﬂ2 — G2k (k2 + k4)m)

1
— g <(9k4)”2(k1 + k3t — (Oky ) (ky + ks)*> — 59”2”4(k1 + k3) (ky + k4)>}

(O R+ (O KOsk <ek4>ﬂzk§4>}ff,

with self-evident shorthand notations:

«  ginkfk ‘gkz sin —k3gk4 « sinklk gk“ sin —kzgk3
§= kiOk,  kiOky ° T= kiOks  koOky °
2 2 2 2
«  sinhds gk3 sin —ngk“
U= (C7)

K0k;  kyOky
2 2

The above 3y-vertex diagram s-, ¢-, and u-channel ampli-
tudes (C4), (C5), and (C6), respectively, should be canceled
|

with the corresponding s-, 7-, and u-channel 4y-vertex
diagram amplitudes we give next.

3. 4y-vertices, (s.t.u) channels: Non-SW(I)|SW(II)
map-induced terms
Starting with Feynman rules (A7)-(A10), we perform
simultaneous permutations S, of I’y over the momentum-
index pairs {k;, p;}, Vi=1,...,4. First, detailed permuta-
tion S, over relevant term I, ****** gives non-SW (I)|SW (I1)
induced four-photon terms:

SR (ke Ky, ks, —ka )| = 4[(kyOks ) (k3Oky ) (14 g2t — g’”’”Q"Z’”):é + (k1Oky) (kyOks) (g2 g — 9”‘”39”2”4)%

+ (K Oks) (kaOk ) (g2 g — i s U],

SyTHHM (ky ey, —k. —ky) g = 0.

Note that the S, permutation over momenta k;, V i =1,
2, 3, 4, acting on the product of two functions
F,, (k. ky)F,,(ks,ky), due to the momentum conservation
and properties of the %, product, gives only three different

terms, S, T, and U, respectively. Equation (C8) describes
the four-photon vertex arising from the pure * commutator,
as already discussed in Appendix A after Eq. (A9), and it

(C8)

[

corresponds exactly to the non-SW contribution
[yVeRsts (ke ky, —ks, —ky) vertex. We anticipate in Eq. (C8)
that there are no SW(/I) map-induced contributions corre-
sponding to the S, "> (ky,ky,~k3,~k4) term. However,
all other terms in Eqgs. (A8)—(A11) do arise due to the SW
maps. Detailed S; permutation of remaining terms in
Eq. (A8) from Appendix A starting with T?,'"**** gives
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S4F’/§‘2”2”3”4(k1, ky, —ks, —k4)|; = 0,
S4l—~;:\12uzﬂ3ﬂ4(kl’ ky, —ksz, —ky)|;; = 4[0F 7200344 ((kiks) (kaky) — (kiky) (kok3))S + OF1#a0F243 ((k ko) (ksky) — (kik3)(koky))T
L+ o (ky ky) (kske) — (Kyks) (kaks)) ). (C9)

Here we anticipate that there are no non-SW (/) map-induced contributions corresponding to the S, (ky, kp, —k3, —ky4)
term in the s (the same is valid for # and u channels, too), either. Permutations of the next terms give

S4Fﬁ2ﬂ2ﬂ3ﬂ4 (kl’ k2a —k3, —k4>
= 4[(Oky )2 ((Oky ) (kika) gHs + (Okz ) (kikz) o) + (Oka )1 ((Oks)F (kiky) g'#s + (Oka)H> (kiks)g'H+)
+ 01k ((kyky ) (K (Okg ) — k5 (Oks ) ) + (kyks) (KT (Oks ) — K5* (Oky )))

+ 0 (K ky) (K5 (O ) — ki (0K, )2) + (Ko ks) (K5 (0K, )2 — ki (Oko)"))]S + (t][u), (C10)
where in the above expression symbol (t||u) is shorthand notation for #- and u-channel contributions. Also, we have
Sal 2 (ky ko, =k, —ky)

= 4[(](]9](2)((9](4)#3(/(!;29/41#4 — klglguzm) - (ng)m(kglgﬂzm — kﬁ2gﬂlﬂ3) + @H3Ha (k’g‘k’f — k’;zkﬁl))
- (ksOky) (O s (R ko — 1 k) — (O P (R s — Rt - G1r (KRS — KERE)))S + (tJw). (C11)
1 Hops
S4FA15 o 4(kl» k2’ _k3v _k4)
= —A[(Ok, 2 ((Okg P R RS - (Oky PR REY) + (B ) ((Okg P KRS + (O PR RE)]S + (tll).  (C12)
Permuting additional relevant FR terms proportional to W, in Eq. (A15), we have

Sa(WhHHH (ke kyy =k, —ka) F o, (k1 ko) F (K3, Ky))

= 4[0m172 ((Ok )" (ki (koky) = K5 (ki k) 4 (Ok ) (K (koky) — K5 (kiky)))
+ 05t ((Oky )2 (K5 (i ky) — Ky (kiks)) + (Oky)1 (K5 (kaks) — kzz(kzks)))]g + (t[[w), (C13)

Sa(WHH (ke ke, =k, —kg ) F o, (ki k) F (ks ky)
= —4[(Oky )2 ((Okg ) (K5 K 4 K5 kY — 209174 (kyks)) + (Oks )P (kKD + KR KRS = 299195 (kky)))

+ (O ) ((Okg ) (KKl + KPR — 29924 (ki ky)) + (Oks ) (KPP RS + KKy — 294 (k1k3)))}~§ + (t[mw), (C14)
Sa(WFo (ky ke, —kz, —ka ) F o, (ki ko) F o, (K3, ky))
= 4[(k10ky) ((Oks ) (k5> gt — k5! g21) + (Oky ) (K> g1¥s — Ky g#))
+ (kaOky) (O, )2 (Ky* gt = Ky gie) + (Oky ) (Ky! gt — K5* g#24))]S + (t]|u). (C15)

Finally, additional new terms proportional to W, 3 in Appendix A (A16) and (A17) are needed to be permuted to obtain
all relevant four-photon vertex diagrams:
S4<ng2ﬂ3ﬂ4 (kl ’ kZ’ _k3’ _k4)F*2(k1’ kZ)F*z (k3v k4))
= 4{(Oky )2 [(Oks )" (K7 K5 — g7 (kiks)) + (Oka ) (K Ky — g1 (kiky)]

*

+ (O ) [(Oks ) (Ky'K5* — g (kaks )) + (Oky ) (K kG — g (kaky))]}S + (t]|w). (Cl6)
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Sy (W55 (ky Ky, —ks. —ka)F ., (ki ko) F o, (k3. Ky)
= —2{ (ki 0ky)[Ky' (2(Oks ) g2+ + 2(Oky )5 g2t — 0434 (ky — k3 )2)
— K (2(0k3 ) gits + 2(0ky )i g — 04544 (ky = k3))
+ g2 (2(0ks ) (ky — ko) + 2(0kq ) (ky — ko) — 0414 (ky — k) (kg = k3))]
+ (k3Oky) [k’ (2(0k )2 gits + 2(0ky )1 go4s — 0142 (ky — Ky )
— K5 (2(0k, )2 g+s + 2(0ky ) gots — 04112 (ky — Ky )

+ ¢ (2(0k )2 (ks — kg)! 4 2(0ko )" (ks — k)2 = 01172 (k3 — ky) (ky — kl))]}g + (t[u). (C17)

Finally, to prove vanishing of the SW(/7) map-induced contributions to the scattering amplitude in the pure gauge sector,
i.e., that M7, (yy — yy) =0 (62), we split the total cancellation into the following four subsections to achieve a fully
transparent presentation of our explicit proof.

4. Cancellation 1

First, we extract third terms (% 00)” from the ninth (next to last) lines in Egs. (C4), (C5), and (C6), obtained from the
computations in Fig. 4, first three diagrams, and found the required sum of the s-, -, and u-channel contributions as

Z [(C4) + (CS) + (CO)] 1y listjsthti=123.4

%g"i!‘j()ﬂkw

1 * * *
= iezz [([2 — uz)eﬂlﬂ29ﬂ3ﬂ4s + (u2 — sz)gﬂlmgﬂzllzT + (t2 _ s2)6ﬂ1ﬂ30ﬂ2ﬂ4 U} (C]S)

Now in terms of Mandelstam variables (26) we take the I'y, part of Egs. (A9), i.e., (C9), as a result of S, permutations of
SW(II) map-induced 4y-coupling term (S,I'y,) and obtain

) > 2 * * *
%[(&FZ]ZMMM(kl,k27—k37—k4)|n>(c9)] :%[( Z—)Qra it S 4 (57 —u? )G9t T + (52— 12 )9 graia U], (C19)

which exactly cancels (C18).
Q.E.D.

5. Cancellation 2

The remaining first two terms in the ninth lines from (C4), (C5), and (C6) are

[(C4) + (CS) + (CO)];y = —ie? (ksky)0 52 (Bks s (Ky — k)™ + (ke (ky — ky)]S

15 two terms in 9™ lines of
+ ie? (kyks )01 [(Ok3 )2 (ky + kg ) — (Oka ) (ky + k4)”2]%

i (kaky) 005 [(Oky )2 (Ky + ks ) — (Ok) (ky + ks)y2] U, (C20)

and we compare them with the sum of the corresponding contributions to the four-photon diagram in Fig. 4 denoted as a
sum of all §; permutations of I'y, (C10) and W, (C13), respectively:
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- 2
ie
——[(SaTa,) c10) + (SaWi))ciz)lur

corresponding terms from
= Fie? 0 {(Oks )" [k (ki ks) — Ky (kiky) + K (kaks) — RS (kik3)]
+ (kg ) [k (kyky) = K5* (ki k3) + K (koky) — K5* (kiky)] + - -} S
— ie? 01 {(Oky o[ (kiky) = K (Kiks) = K (koky) + Ky (K1 Ky )]

(ks ) R (k) — K (k) — KO (ksky) + K9 (Ko ks)] + - 3T
— ie0M { (Oky ) [k (ki ky) — K2 (kyky) — KA2 (Koks) + K52 (K1 ko)]

T (O ) [R5 (K k) — K2 (k) — R (Kaky) + RS (K Kg)] + -} U. (c21)

It is easy to see that Eq. (C21) exactly cancels the sum of the remaining first two terms arising from the ninth lines in
Egs. (C4), (C5), and (C6) and given as Eq. (20), respectively.
Q.E.D.

6. Cancellation 3

Writing explicitly terms in the sum of s-, 7-, and u-channel contributions to the four-photon diagram in Fig. 4,
we have

> 2
e
e [(Sala,) iy + (SaW i) c1s) + (SaW3) el

1% terms from
—_— / 2
= o {2k 0k 25 (2(0ks) 4 + 2(0ky )2 s + 0 (ks — ki )2)
— 2K (2(Okz )1 g#s + 2(Oky ) g1Hs + Ok (ks — ky))

+ g2 (2(Oks ) (ky — ko )5 + 2(Oky )5 (ky — Ky )4 + 0444 (ky — ko) (ks — k4)>]§
+ 2(k3Oky ) [2Kly (2(0ky 2 giits + 2(Ok, )1 ghats + Ok (ky — ky JH)
— 2]{’;4 (2(gk1)H29ﬂ1ﬂ3 + 2(9k2)ﬂlgﬂzll3 + g (kl — kz)m)

+ g (2(0ky )" (ks — kg)> + 2(0k, )2 (ks — ka)! + 0442 (ky — ko) (k3 — k4))]§

+ 2(ky Ok ) [2K)* (2(0ky )5 ¢4 — 2(0ks )2 gt + 00245 (ky + k3 )

+ 2k, (2(Oky ) gt — 2(0k3 )2 gt + 0245 (kg + ks )

= (2K ) (ky + ke = 200K ) (ki + Ko+ 095 (ky -+ k) (ks + ks))]T
+ 2(koOks)[2K5" (2(0k, )+ ¢4 — 2(0ky )1 gt + 04144 (ky + kg )2)

+ 265 (2(0k, e gt = 2(0ky ) gt + 041 (ky + kg )

— g5 (2(0k, )M (ky + k3 ) — 2(Okg)! (ky + k3 ) + 0174 (ky + k3 ) (ky + k4))]%
+ 2k Oks ) [2K° (2(0ky ) g1 — 2(Oky )2 g1Hs + 09244 (kg + kg )1)

+ 2051 (2(Oky s gHs = 2(0ky )12 g5t + 0424 (ky + kg )

— g (2O ) (ky + k) = 2(0ky )2 (ky + k) + 025 (ky + k3 ) (ky + k4))]l*]
+ 2(ky0ky) [2K5" (2(0k, ) g#o = 2(Oks )1 g#oHs + 0145 (ky + k3)H2)

+ 2K (2(0ky )0 g = 2(Oky )1 gt 4 08 (ky + k)

— g (2(0k, s ey + kY1 — 2(0ks 1 (g + Ky + 055 ey + ky) (ky + K3))] U} (C22)
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By simple comparisons with Eq. (C4), it is easy to see the cancellation of their first six lines with parts proportional to § in

Eq. (C22). Since the same is working for 7" and U proportional terms, we finally have cancellations of corresponding

contributions to the sum of diagrams from Fig. 4:

< > [(C4) +(C5) + (C6)},,> +(C22) = 0.
15t 6 lines of

(C23)

Q.E.D.

7. Cancellation 4

First we extract the sum of the seventh, eighth, and tenth lines in Eqs. (C4)—(C6) and write explicitly just one of the terms
in s-, #-, and u-channel contributions to the three-photon vertex diagrams from Fig. 4:

> [(C4) +(C5) + (Co)l,

(7+8+10)" lines of

— (k) ) { (kg [2(0K Yo s -+ 09 (e — ey ] — (O RS K} S

— i2(0k, '+ { (ko) (0K, o g0 + 09 (ky + ks )1 ] — (Oky KRG YT 4 -

— i€ Ok, ) { (k) 20y )1 112 + 69285 (ky + Ky )] — (Okp Pk KU + - -

(C24)

Second, we write explicitly the first terms from (C10), (C12), (C13), (C14), and (C16) in the s-, -, and u-channel

contributions to the four-photon diagram in Fig. 4:

je?

e [(SaT'ay)(c10) + (Salag) (1) + (SaWi,) i3y + (SaWi,) cray + (SaW2)(cie) i

15t terms in

= +ie?(Oky )2 {((kiks) + (kiky))[2(Oks ) g1k 4 04383 (ky — ky )]

= Ok R KR KRS KNS 4
+ ie(Oky ) {((kika) — (kiks))[2(Oko)rs g#2 + 024 (ky + k3 1]
= (Oha) [ = KK 4 R — )T
+ie?(0ky ) {((kika) = (kiky))[2(0ky )" g1t + 0424 (ky + kg )]

— (Bko )RR — KR+ KSR — R} O -

and see that they do cancel (C24) exactly. This way we have

also showed that in the pure NCQED gauge sector all SW

map-induced terms cancel out at tree level of the exclusive
yy — yy scatterings.

Q.E.D.

The meaning of the above cancellations (C18)—(C25)

producing nontrivial zero for LbyL (62), together with

(C25)

nontrivial zero in Compton case (53) and with trivial zeros
for Mgller (31) and Bhabha (39) cases, is that the SW map-
induced contributions to all scattering amplitudes vanish,
proving thus explicitly that in both the matter and the gauge
sector of the on-shell U(1) NCQED scattering amplitudes
with and without SW maps are equal or equivalent one to
each other, as indicated generally in Refs. [131,132].
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