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We present a reanalysis of nucleon decay in the context of the R-parity violating Minimal Super-
symmetric Standard Model, updating bounds on R-parity violating parameters against recent experimental
and lattice results. We pay particular attention to the derivation of these constraints and specifically to the
hadronic matrix elements, which usually stand as the limiting factor in order to derive reliable bounds,
except for these few channels that have been studied on the lattice.
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I. INTRODUCTION

The question of matter stability emerged sixty years ago
from the realization that the observed baryon asymmetry of
the Universe [1] required a violation of those symmetries
forbidding proton decay [2]. While baryon number B is
accidentally conserved in the Standard Model (SM) at the
perturbative level (as well as lepton number L), it is an
anomalous symmetry and thus broken by effects such as
instanton or sphaleron processes [3–5]. On the other hand,
B (or L) violation could reach more dramatic proportions in
constructions of new physics, such as grand unified
theories (GUTs) [6] or supersymmetric (SUSY) extensions
of the SM [7,8], where the Lagrangian density is not even
classically B (or L) invariant. In the former case, the typical
pattern of proton decay is imprinted in its mediation by
the gauge bosons of the extended gauge group [9–12]. In
the second case, B or L conservation is conditioned to the
explicit enforcement of these symmetries as a model-
building ingredient.
The usual assumption in the Minimal Supersymmetric

Standard Model (MSSM) consists in applying an R-parity
(RP) [13] on the Lagrangian density, making the lightest
supersymmetric particle a stable dark-matter candidate by
the same occasion. At the level of renormalizable terms, B
and L would then again appear as accidental symmetries of

the model. Nevertheless, if the MSSM is regarded as an
effective field theory (EFT) at the electroweak (EW) and
SUSY scales, nonrenormalizable operators acquire a legiti-
macy as markers of effects of higher energy (e.g., a GUTor
string completion), so that RP-conserving B=L-violating
operators of dimension five could then develop and mediate
proton decay [14–16]. Alternatively, RP could be sacrificed
altogether, leading to so-called RP-violating (RpV) models
[17,18], with (renormalizable) bilinear and/or trilinear
either B- or L-violating terms in the superpotential. At
this level, it is still possible to impose B or L invariance on
the Lagrangian density, or accept proton decay as a
phenomenological possibility.
These theoretical motivations, especially in the context

of GUT models, have triggered extensive experimental
interest in discovering B-violating decays of nucleons.
Early experiments testing the law of B conservation,
proposed by Weyl, Stueckelberg, and Wigner [19–21],
actually predate the Sakharov paper from 1967 [2]: a first
experiment was performed in 1954 by Goldhaber, and also
by Reines, Cowan, and Goldhaber [22]. See Table I in
Ref. [23] for a list of early experiments, 1954–1964, as well
as the work by Gurr et al. in 1967. However, even the most
recent results [24–34] have found no evidence for this
phenomenon and place ever stronger bounds on individual
proton or neutron decay channels. Recently, several new
experiments [35–37] have been announced; they should be
able to extend the current sensitivity considerably. See also
the recent overview in the introduction of Ref. [12].
In R-parity conserving supersymmetry, dimension-five

baryon-number violating operators have been considered
[14]. However, they involve external superpartners, which
at low energies must be converted to SM particles, thus
reverting to dimension-six operators, with possibly more
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than one high-energy mass scale. A complete list of
dimension-five lepton- or baryon-number violating oper-
ators is given in Ref. [16].
In this paper, we focus on nucleon decay from the RpV

perspective, i.e., with low-energy renormalizable couplings
and mediators relatively close to the EW scale. The
superpotential of the Rp-conserving MSSM is extended
by the following terms [14]:

WRp
¼ μiHu · Li þ

1

2
λijkLi · LjðEcÞk þ λ0ijkLi ·QjðDcÞk

þ 1

2
λ00ijkεαβγðUcÞαi ðDcÞβj ðDcÞγk; ð1Þ

where Q, Uc, Dc, L, and Ec denote the usual quark and
lepton superfields, · is the SUð2ÞL invariant antisymmetric
product, and εαβγ is the three-dimensional Levi-Civita
symbol. The indices i, j, and k correspond to the three
generations of flavor, while α, β, and γ refer to the color
index. The parameters λijk and λ00ijk satisfy the following
conditions without loss of generality: λijk ¼ −λjik,
λ00ijk ¼ −λ00ikj. The first three sets of terms of Eq. (1) violate
L and the last one, B. The simultaneous existence of B- and
L-violating couplings opens up decay channels of nucleons
into mesons and (anti)leptons, where squarks appear as
typical mediators at tree level. See Fig. 1, where we show
the decay p → πþν via an effective four-fermion interac-
tion generated from the UcDcDc and LQDc operators.
Such nucleon decays have received attention for a long time
in the RpV MSSM [38], see e.g., [18,39] for summaries.
Original studies focused on (B–L)-conserving processes
[40], then (Bþ L)-conserving ones [41,42]. Reference [43]
observed that flavor flips associated to the charged
weak interaction could be exploited to extend the limits
to all flavor directions of the RpV couplings.1 For related
cosmological bounds see, for example, [5,46,47]. Beyond
the “direct” nucleon decays mediated by a virtual squark
exchange, slightly more complicated structures involving
additional intermediate charginos and neutralinos were
also considered [38,48–51]. In case such decays are
kinematically allowed, these supersymmetric fermions
[52], or more exotic new particles [53,54], could also
replace the lepton in the final state. The case of a very light
neutralino is still experimentally allowed [55–58] and can
also be searched for in rare meson decays in various
experiments [59–63].
Beyond nucleon decays, which violate the baryon

number by one unit, processes violating B by two units,
such as dinucleon decays or neutron-antineutron oscilla-
tions, provide relevant limits on single RpV couplings, in
particular, of UcDcDc type. However, these phenomena
also often require further sources of flavor violation in the
squark sector. For this reason, we will not discuss them in

detail below and refer the interested reader to the recent
summary in Ref. [64].
In the current paper, we attempt to update the status of

the limits applying to the RpV couplings, providing a more
detailed attention to the low-energy form factors, about
which the RpV literature remains cursory, in general. We
restrict ourselves to tree-level RpV contributions since a
full one-loop matching would be much more involved. We
also renounce a heuristic implementation of the quark-
flavor changes, as proposed in, e.g., Ref. [43] since we
believe that such limits depend on the renormalization
scheme, i.e., on the formal definition of the tree-level
couplings.2 In the following section, we introduce the EFT
encoding nucleon decays and derive the matching con-
ditions. We also discuss the relevant low-energy hadronic
matrix elements, referring to lattice evaluations, when
available, then comparing these results to those of a static
bag model, which we employ in other cases. Finally, in
Sec. III, we apply up-to-date experimental bounds to
specific decay channels and obtain limits on combinations
of RpV couplings, before a short conclusion.

II. MATCHING THE RpV CONTRIBUTIONS ON
THE ΔB= 1 HAMILTONIAN

In this section, we review the general framework that we
employ to compute the nucleon decay widths in the context
of the RpV MSSM.

A. Low-energy EFT and QCD running

The classification of operators involving only SM fields
and satisfying the SM gauge symmetries and violating B
was performed in [65,66]. The operators of lowest dimen-
sion that do not conserve B are of dimension six and
conserve B − L [65]. Among them, we will be more
particularly interested in

Oð1Þ
mnpq ¼ εαβγ½ðdcÞαmPRðuÞβn�

· ½ðucÞγpPLðeÞq − ðdcÞγpPLðνÞq�;
Oð5Þ

mnpq ¼ εαβγ½ðdcÞαmPRðuÞβn�½ðucÞγpPRðeÞq�: ð2Þ

FIG. 1. Possible diagram for proton decay via an effective
operator generated from the R-parity violating operators UcDcDc

and LQDc in the superpotential.

1See also Refs. [44,45] for the effects of flavor flips on bounds
on and also on signals of RpV, beyond proton decay.

2It is indeed possible to thus inflate the set of limits applying to
individual (or pairs of) RpV couplings, but the actual bounds, in
fact, constrain given directions in parameter space.
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Note that u, d, e, and ν correspond to the usual four-
component spinors representing quarks and leptons, with
latin index relating to flavor and greek to color. Note that fc

(f ¼ u, d, e, ν) indicates charge conjugation: fc ¼ Cf̄T ,
with C the charge-conjugation matrix. PL;R are chiral
projectors. We note that the fields are defined in the
gauge-eigenstate basis so that an additional Cabibbo-
Kobayashi-Maskawa (CKM) rotation on, e.g., the
down-type left-handed quarks and a Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) rotation on the neutrinos should
be included, in case we wish to work in the mass
eigenbasis.
Dimension-seven operators conserve Bþ L [67].

Through a Higgs vacuum expectation value (VEV), they
produce effective dimension-six operators, which violate
the EW symmetry. We will encounter the following ones:

Qð1Þ
mnpq ¼ εαβγ½ðdcÞαmPRðuÞβn�½ðν̄ÞqPRðdÞγp�;

Qð2Þ
mnpq ¼ εαβγ½ðdcÞαmPRðdÞβn�½ðν̄ÞqPRðuÞγp�;

Qð5Þ
mnpq ¼ εαβγ½ðdcÞαmPRðdÞβn�½ðēÞqPLðdÞγp�;

Qð6Þ
mnpq ¼ εαβγ½ðdcÞαmPRðdÞβn�½ðēÞqPRðdÞγp�: ð3Þ

Such terms are produced in the RpV MSSM via particle
mixing, either in the squark or in the lepton-Higgsino-
gaugino sectors. An EW-violating VEV is always needed to
generate them. As long as the EWand SUSY scales are not
resolutely in hierarchical ratio, i.e., MSUSY=MW is not too
big, the associated suppression is not paramount. In fact,
even the relic of a dimension-eight operator will show up in
tree-level matching, though involving two orders of mix-
ing:

R ¼ εαβγ½ðdcÞαmPRðdÞβn�½ðνcÞqPLðuÞγp�: ð4Þ

In all the operators considered above, the lepton field can
be replaced by an electroweakino field. In fact, due to the
mixing appearing in the RpV context, the neutrinos and
charged leptons could themselves be viewed as specific
neutralino and chargino eigenstates. The resulting new
operators could be genuine low-energy operators in the
presence of, e.g., a light gaugino. If, on the contrary, the
electroweakinos are very massive (as compared to
the nucleon mass), then these operators with external
electroweakinos are simply a step in the direction of typically
higher-dimensional low-energy operators, as considered in,
e.g., Ref. [51].As long as no further quark (or gluon) lines are
attached in this manner, the QCD aspects of the operators
with external electroweakinos do not differ from those of
operators with external leptons (up tomomentum-dependent
terms), so that the recipes discussed below continue to apply.
In the RpVMSSM,B-violating effects in nucleon decays

are mediated by supersymmetric particles. At least the
sfermions can be expected to be comparatively heavy with

respect to the scale at which nucleon decay takes place.
This means that, below the scale of the sfermions, we can
summarize their impact in the B-violating processes by
their contribution to the operators of Eqs. (2)–(3) (where,
technically, the operators of Eqs. (3) should be restored to
their full EW-conserving version). This defines the effec-
tive Hamiltonian as follows:

Heff ¼
X

Ω¼O;Q

CΩðμRÞΩðμRÞ; ð5Þ

where μR denotes the renormalization scale. The Wilson
coefficients CΩ encode the short-distance effects and are
obtained from integrating out the heavy fields. Large
lnMSUSY

MN
corrections, where MN denotes the nucleon mass,

are expected to develop via radiative effects between the
scale of the sfermions μR ¼ MSUSY, where the short-
distance effects are defined, and the scale of the nucleon
μR ≈MN , at which the operators mediate the hadronic
process. The leading contributions to the anomalous
dimension have been studied in Ref. [68]. Contrary to
the case of GUTs, our high-energy boundary, the sfermion
scale, is expected to be comparatively close to the EW
scale, so that we can neglect the EW running and restrict
ourselves to the sole QCD running. Following Ref. [68], all
the operators then receive a simple scaling factor from the
QCD corrections, which we can summarize as follows:

CΩðμRÞ ¼ ηQCDCΩðMSUSYÞ;

ηQCD ¼
�

αSðmtÞ
αSðMSUSYÞ

�
2=β0½6�

·

�
αSðmbÞ
αSðmtÞ

�
2=β0½5�

·

�
αSðμRÞ
αSðmbÞ

�
2=β0½4�

;

β0½NF�≡ 11 −
2

3
NF; ð6Þ

with αS the running QCD coupling. The low-energy scale
μR cannot be set much below the charm massmc because of
the perturbative description failing at low energy. Lattice
calculations [69] employ μR ¼ 2 GeV. Then, the problem
is factorized in two separate issues, the determination of the
short-distance coefficients CΩðMSUSYÞ (or matching to the
high-energy model), which we perform in the next sub-
section, and the evaluation of the hadronic matrix element,
which we discuss in the subsequent subsections.

B. Defining the Wilson coefficients

In order to define the Wilson coefficients, we consider
partonic scattering amplitudes both in the full RpV MSSM
and in the EFT, and identify them at the SUSY scale
(matching). See Fig. 2 for example interactions.
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1. Feynman amplitude in the RpV MSSM

These transition amplitudes can be easily written at tree
level in terms of the couplings that are defined in the
Appendix.
An internal sup (up-squark) line mediates a transition

amplitude with three external down-type quarks (for
simplicity, we write fields in the amplitudes below, while
they should be replaced by four-component spinors in
practice):

ARpV½dαmdβndγpeq� ¼
iεγαβ
m2

Ũk

ðgUdd
R Þkmn

×fðgUdχ
L Þkpq½ðdcÞαmPRðdÞβn�½ðēÞqPLðdÞγp�

þðgUdχ
R Þkpq½ðdcÞαmPRðdÞβn�½ðēÞqPRðdÞγp�g

þ ½ðm;αÞ↔ ðn;βÞ↔ ðp;γÞ�: ð7Þ

Here, mŨk
denotes the sup mass of generation k, and the

couplings ðgUdd
R Þkmn, etc. are defined in Appendix B. The

lepton spinor is one of the light states of the chargino-lepton
system: eq ¼ χ−qþ2 (we omit the þ2 above, as well as the
þ4 for the neutrinos among the neutralino states later on).

We see that the result projects on the operators Qð5Þ
mnpq and

Qð6Þ
mnpq of Eq. (3).
Similarly, with two entering up-type lines, one entering

down-type line and a lepton, we have a diagram with an
internal sdown line:

ARpV½uαmdβnuγpeq�¼−
iεαβγ
m2

D̃k

ðguDd
R Þmkn

×fðgDuχ
L Þkpq½ðucÞαmPRðdÞβn�½ðecÞqPLðuÞγp�

þðgDuχ
R Þkpq½ðucÞαmPRðdÞβn�½ðecÞqPRðuÞγp�g

þ½ðm;αÞ↔ðp;γÞ�: ð8Þ

Here m2
D̃k

denotes the sdown mass and again the couplings
ðguDd

R Þmkn are given in Appendix B. For two entering down-
type lines and one entering up-type line plus a neutrino, we
first have a diagram with internal sdown line (the equation
is somewhat abusive as we consider neutrino and anti-
neutrino simultaneously):

ARpV½uαmdβndγpνq�¼−
iεαβγ
m2

D̃k

ðguDd
R Þmkn

×fðgDdχ
L Þkpq½ðucÞαmPRðdÞβn�½ðνcÞqPLðdÞγp�

þðgDdχ
R Þkpq½ðucÞαmPRðdÞβn�½ðν̄ÞqPRðdÞγp�g

þ½ðn;βÞ↔ðp;γÞ�: ð9Þ

Then, there is a diagram with an internal sup line contri-
buting to the same amplitude:

ARpV½dαmdβnuγpνq�¼
iεγαβ
m2

Ũk

ðgUdd
R Þkmn

×fðgUuχ
L Þkpq½ðdcÞαmPRðdÞβn�½ðνcÞqPLðuÞγp�

þðgUuχ
R Þkpq½ðdcÞαmPRðdÞβn�½ðν̄ÞqPRðuÞγp�g

þ½ðm;αÞ↔ðn;βÞ�: ð10Þ

2. Amplitudes in the effective field theory

The corresponding amplitudes in the EFT read,

AEFT½dαmdβndγpeq� ¼ iεαβγfðCQ5
Þmnpq

× ½ðdcÞαmPRðdÞβn�½ðēÞqPLðdÞγp�
þðCQ6

Þmnpq½ðdcÞαmPRðdÞβn�½ðēÞqPRðdÞγp�g
þ ½ðm;αÞ↔ ðn;βÞ↔ ðp;γÞ�; ð11Þ

AEFT½uαmdβnuγpeq�¼−iεαβγfðCO1
Þnmpq

× ½ðucÞαmPRðdÞβn�½ðecÞqPLðuÞγp�
þðCO5

Þnmpq½ðucÞαmPRðdÞβn�½ðecÞqPRðuÞγp�g
þ½ðm;αÞ↔ðp;γÞ�; ð12Þ

FIG. 2. Possible nucleon decays via the combination of couplings λ00kmn and λ0qpk. These can be seen as t- or s-channel processes.
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AEFT½uαmdβndγpνq� ¼−iεαβγfð−CO1
Þnmpq

× ½ðucÞαmPRðdÞβn�½ðνcÞqPLðdÞγp�
þðCQ1

Þnmpq½ðucÞαmPRðdÞβn�½ðν̄ÞqPRðdÞγp�
−ðCRÞmnpq½ðdcÞαmPRðdÞβn�½ðνcÞqPLðuÞγp�
−ðCQ2

Þmnpq½ðdcÞαmPRðdÞβn�½ðν̄ÞqPRðuÞγp�g
þ ½ðn;βÞ↔ ðp;γÞ�: ð13Þ

3. Matching

Identifying Eqs. (11)–(13) with Eqs. (7)–(10), we obtain

ðCO1
Þnmpq ¼

1

m2
D̃k

ðguDd
R ÞmknðgDuχ

L Þkpq;

ðCO5
Þnmpq ¼

1

m2
D̃k

ðguDd
R ÞmknðgDuχ

R Þkpq;

ðCQ1
Þnmpq ¼

1

m2
D̃k

ðguDd
R ÞmknðgDdχ

R Þkpq;

ðCQ2
Þmnpq ¼

1

m2
Ũk

ðgUdd
R ÞkmnðgUuχ

R Þkpq;

ðCQ5
Þmnpq ¼

1

m2
Ũk

ðgUdd
R ÞkmnðgUdχ

L Þkpq;

ðCQ6
Þmnpq ¼

1

m2
Ũk

ðgUdd
R ÞkmnðgUdχ

R Þkpq;

ðCRÞmnpq ¼
1

m2
Ũk

ðgUdd
R ÞkmnðgUuχ

L Þkpq: ð14Þ

The contribution to O1 is mediated directly by λ00 and λ0
couplings. The contribution to O5 is in fact of dimension
eight: it involves a Higgs VEV from squark mixing and a
second from chargino mixing. It is thus generated from the
μi terms and receives additional mixing suppression. The
contributions to Q1 and Q6 can be generated from a λ0
coupling, in which case, the Higgs VEV is provided by
squark mixing or from μi, in which case, the VEV comes
from gaugino-Higgsino mixing. The contribution to Q2 is
essentially mediated by mixing of the lepton with the
gauginos. The contributions to Q5 and R are of the same
order as that to O5, i.e., they depend on secondary mixing
of the leptons with the charginos/neutralinos. This counting
is changed if we replace the external leptons by electro-
weakino states, as we see in Sec. III.

C. Low-energy operators

So far, we have kept generic flavor indices. However,
assuming that valence quarks determine nucleon decays,
we can restrict ourselves to the three light quark flavors (as
well as the two lighter charged leptons), hence to a smaller
set of operators:

Oe
1 ¼ εαβγ½ðdcÞαPRuβ�½ðucÞγPLe�;

Oν
1 ¼ εαβγ½ðdcÞαPRuβ�½ðdcÞγPLν�;

Oe
5 ¼ εαβγ½ðdcÞαPRuβ�½ðucÞγPRe�;

Qν
1 ¼ εαβγ½ðdcÞαPRuβ�½ðdcÞγPRν

c�;
Ôe

1 ¼ εαβγ½ðscÞαPRuβ�½ðucÞγPLe�;
Ôν

1 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPLν�;
Ôe

5 ¼ εαβγ½ðscÞαPRuβ�½ðucÞγPRe�;
Ô0ν

1 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPLν�;
Q̂ν

1 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRν
c�;

Q̂0ν
1 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRν

c�;
Q̂ν

2 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRν
c�;

R̂ν ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPLν�;
Q̂e

5 ¼ εαβγ½ðscÞαPRdβ�½ðdcÞγPLec�;
Q̂e

6 ¼ εαβγ½ðscÞαPRdβ�½ðdcÞγPRec�: ð15Þ

Operators with ^ (lower set) induce ΔS ¼ 1, while those
without preserve strangeness. We neglect operators with
ΔS ≥ 2. The lepton should be understood as generic, e ¼ e,
μ and ν ¼ νe;μ;τ. We note that when twice the same quark is
contracted in a scalar product, e.g., εαβγ½ðdcÞαPL;Rdβ�, then
the operator is identically 0.
It is then straightforward to identify the Wilson coef-

ficients of the operators of Eq. (15) with the low-energy
coefficients of the original operators, Eqs. (2)–(3):

C½Oe
1� ¼ ðCO1

Þ111e;
C½Ôe

1� ¼ ðCO1
Þ211e;

C½Oν
1� ¼ −VCKM

r1 ðCO1
Þ11rν;

C½Ôν
1� ¼ −VCKM

r1 ðCO1
Þ21rν;

C½Ô0ν
1� ¼ −VCKM

r2 ðCO1
Þ11rν;

C½Oe
5� ¼ ðCO5

Þ111e;
C½Ôe

5� ¼ ðCO5
Þ211e;

C½Qν
1� ¼ ðCQ1

Þ111ν;
C½Q̂ν

1� ¼ ðCQ1
Þ211ν;

C½Q̂0ν
1� ¼ ðCQ1

Þ112ν;
C½Q̂ν

2� ¼ ðCQ2
Þ211ν − ðCQ2

Þ121ν;
C½R̂ν� ¼ ðCRÞ211ν − ðCRÞ121ν;
C½Q̂e

5� ¼ VCKM
r1 ½ðCQ5

Þ21re − ðCQ5
Þ12re�;

C½Q̂e
6� ¼ ðCQ6

Þ211e − ðCQ6
Þ121e: ð16Þ
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Here, we have chosen to define the couplings such that the
CKM rotation VCKM is fully carried by the down-quark
sector [70].

D. Hadronic matrix elements

In order to connect the parton level B-violating EFT to
actual nucleon decays, it is necessary to evaluate the
operators of Eq. (15) between the nucleon and its hadronic
decay products, e.g., pions or kaons. Nonperturbative
methods are needed to perform this step. Among the
models employed in the 1980s, a first class [71–76] would
consider nonrelativistic partons and exploit the SUð6Þ
flavor-spin symmetry. An alternative approach is that of
the bag models [77–82], where partonic quarks are now
relativistic. Major conceptual difficulties in these descrip-
tions appear in association with, e.g., the treatment of a
relativistic pion in the final state or the impact of the three-
quark fusion process [80,83]. Partial conservation of axial
vector currents was also employed for the estimate [83–86].
The formulation of a chiral model for baryon interaction
[87–90] allowed to derive relations between the decay rates
mediated by dimension-six operators and low-energy con-
stants (LEC). How far the validity of the chiral model
extends is not completely clear. Predictions are (very)
roughly in agreement among these calculations.

1. Lattice evaluation

Lattice approaches to nucleon decays were also consid-
ered early on and have continued up to this day [69,91–96].
Corresponding calculations focus on dimension-six oper-
ators and nucleon (N) decays into one pseudoscalar meson
(Π) and one (anti)lepton (LðcÞ): N → Πþ LðcÞ. The matrix
elements can be represented by the following form factors:

hΠðp−lÞjΩGHjNðpÞi¼PH

�
WN→Π

0;½ΩGH �ðl2Þ

−
i=l
MN

WN→Π
1;½ΩGH �ðl2Þ

�
uNðpÞ;

ΩGH≡εαβγ½ðqcÞαi PGðqÞβj �½PHðqÞγk�: ð17Þ

Here, q ¼ u, d, s; G;H ∈ fL;Rg are the indices of the
chiral projectors; p and l denote the four-momenta of the
nucleon and (anti)lepton, respectively; uNðpÞ represents
the spinor associated with the nucleon MN , its mass, and
WN→Π

ð0;1Þ;½ΩGH � correspond to the form factors, which depend

on the momentum transfer squared l2 between the
nucleon and the meson. For commodity, we will write
the left-hand side of Eq. (17) in the abbreviated form
hΠjðqiqjÞGðqkÞHjNi below. If qi ¼ qj, then the operator is
identically 0. Parity invariance of the strong interaction
results in identities under ðL;RÞ ↔ ðR;LÞ or ðL; LÞ ↔
ðR;RÞ exchanges. The assumption of isospin invariance
u ↔ d produces further relations between different initial
or final states: p ↔ −n, πþ ↔ π−, π0 → −π0, η → η,
Kþ ↔ K0, ρþ ↔ ρ−, ρ0 → −ρ0, ω → ω, K�þ ↔ K�0.
The lattice results for all the relevant form factorsWN→Π

0;½Ω�
(including the renormalization scheme conversion) are
presented in Table 4 of Ref. [69]. The WN→Π

1;½Ω� corrections

are evidently suppressed for electrons and neutrinos in the
final state but have been considered in the case of a muon
(see Table 5 of the previous reference). We then obtain a
complete list of matrix elements for the operators of
Eq. (15) for the transitions of N → Πþ LðcÞ type:

hΠðp−lÞ;LðcÞjΩG;HjNðpÞi

¼ w̄LðlÞPH · ·

�
WGH

0;½Ω�ðl2Þ− il
MN

WGH
1;½Ω�ðl2Þ

�
uNðpÞ; ð18Þ

wL ¼ uL; vcL denotes the lepton spinor. From there, it is
straightforward to derive the decay amplitudes and decay
widths:

A½N → Πþ LðcÞ�
¼ i
X
Ω
C½ΩGH�hΠðp − lÞ; LðcÞjΩGHjNðpÞi

¼ iw̄LðlÞPH

X
Ω
C½ΩGH�WN→Π

½ΩGH �uNðpÞ; ð19Þ

Γ½N → Πþ LðcÞ� ¼ 1

16πMN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

M2
Π þM2

L

M2
N

þ
�
M2

Π −M2
L

M2
N

�
2

s �
1

2

X
pol

jA½N → Πþ LðcÞ�j2
�

≃
MN

32π

�
1 −

M2
Π

M2
N

�
2X
Ω;Ω0

ðC½ΩGH�WN→Π
½ΩGH �Þ�ðC½Ω0

G0H0 �WN→Π
½Ω0

G0H0 �ÞδHH0 ; ð20Þ

with Ω, Ω0 scanning the list of Eq. (15),
P

pol representing
the sum over spinor polarizations, and MX denoting
the mass of particle X. We have neglected the lepton

mass in the last line. W reduces to W0 most of the
time but includes the W1 correction for muons in the final
state.
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2. Nonlattice evaluation

If we want to consider other decay channels, e.g.,
involving vector mesons, we need to turn to other means
of estimates of the hadronic matrix elements since corre-
sponding lattice results are not available. However, this
means that the uncertainties will be significantly larger for
these additional channels. The lattice results are presented
with comparatively small uncertainties ∼Oð10%Þ [69].
This latter reference already mentions a factor 2 to 3
difference with the proton decays evaluated from LEC,
showing that the precision drops considerably when resort-
ing to nonlattice methods. In practice, we consider the static
bag model described in the Appendix, from which we
expect results of strictly qualitative value. On the other
hand, considering the relatively large mass of the vector
mesons, the static bag model should be performing almost
in its regime of validity. We first compared the results of the
bag model with those obtained in Ref. [78], which we
essentially follow, and sensibly recovered the results of this
paper for the operator considered in this reference. Then,
we consider the bag predictions for the N → Πþ L
channels in order to compare with the lattice results and
assess the reliability of this approach. The results are
displayed in Table I for a proton radius of 5 GeV−1 and
smaller meson radii (pion: 3.3 GeV−1, kaon: 2.8 GeV−1,
and η: 4.7 GeV−1). In the case of “narrow” mesons (pions
and kaons), the results of the bag model are one order of
magnitude below the central values originating from the
lattice calculation and somewhat closer for “broad”mesons

(η, a factor ∼2). The difference in the case of the narrow
mesons can be somewhat reduced if one employs the same
bag radius of the proton for the mesons as well—essentially
because the overlap between proton and meson wave
functions is larger—and these values could be further
tuned by varying the chosen proton radius (which we do
not attempt). We thus observe that the bag model is not
reliable on a quantitative basis. However, the corresponding
results seem to always underestimate the hadronic matrix
elements, so that the bounds that one obtains when using
these values are conservative.
The hadronic matrix elements for the transitions into

vector mesons are shown in Table II with meson radii
4.8 GeV−1 (rho, omega) and 3.0 GeV−1 (K�). There, we
define the form factors as follows:

hVðp−lÞjΩGHjNðpÞi¼WN→V
½ΩGH �ðl2ÞPHγ

μuNðpÞεV�μ ðp−lÞ;
ð21Þ

where εV�μ corresponds to the polarization vector of the
vector meson. Including the lepton spinor LðcÞ in the matrix
element, the decay amplitude and widths then read,

A½N → V þ LðcÞ�
¼ i
X
Ω
C½ΩGH�hVðp − lÞ; LðcÞjΩGHjNðpÞi

¼ i
X
Ω
C½ΩGH�WN→V

½ΩGH �w̄LðlÞPHγ
μuNðpÞεV�μ ðp − lÞ; ð22Þ

TABLE I. Hadronic matrix elements for proton decays from lattice [(Lat.)] computations. Here the entries such as
ðduÞGðuÞH denote the operator ΩG;H of Eq. (18). We have not included the subscripts ΩG;H onW0 but just indicate
the decay mode in brackets.

W0½p → π0� W0½p → π0� W0½p → η� W0½p → η�
ðduÞGðuÞH ðGeVÞ2, lat. ðGeVÞ2, bag ðGeVÞ2, lat. ðGeVÞ2, bag
LL, RR 0.134 0.015 0.113 0.074
LR, RL −0.131 −0.015 0.006 0.005

W0½p → πþ� W0½p → πþ�
ðduÞGðdÞH ðGeVÞ2, lat. ðGeVÞ2, bag
LL, RR 0.189 0.022
LR, RL −0.186 −0.018

W0½p → K0� W0½p → K0�
ðsuÞGðuÞH ðGeVÞ2, lat. ðGeVÞ2, bag
LL, RR 0.057 0.010
LR, RL 0.103 0.012

ðsuÞGðdÞH ðsuÞGðdÞH ðduÞGðsÞH ðduÞGðsÞH ðsdÞGðuÞH ðsdÞGðuÞH
W0½p → Kþ� ðGeVÞ2, lat. ðGeVÞ2, bag ðGeVÞ2, lat. ðGeVÞ2, bag ðGeVÞ2, lat. ðGeVÞ2, bag
LL, RR 0.041 0.022 0.139 0.014 −0.098 −0.012
LR, RL −0.049 −0.022 −0.134 −0.014 −0.054 −0.010
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Γ½N → V þ LðcÞ� ¼ 1

16πMN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

M2
V þM2

L

M2
N

þ
�
M2

V −M2
L

M2
N

�
2

s �
1

2

X
pol

jA½N → V þ LðcÞ�j2
�

≃
M3

N

64πM2
V

�
1 −

M2
V

M2
N

�
2
�
1þ 2

M2
V

M2
N

�X
Ω;Ω0

ðCGH
Ω WN→V

½ΩGH �Þ�ðC½Ω0
G0H�WN→V

½Ω0
G0H �

Þ: ð23Þ

We have again neglected the lepton mass in the last
expression. Given that the matrix elements obtained with
the bag model are suppressed, as compared to those derived
on the lattice, the limits applying to nucleon to vector
meson transitions will always prove subleading as com-
pared to those of the nucleon to pseudoscalar meson
channels. As the latter are more reliable, this situation is
desirable so that derived bounds are conservative. On the
other hand, we note that in the bag model, the branching
ratios of the nucleon to vector meson transitions are larger
than those of the nucleon decays into pseudoscalar mesons.
Consequently, a more precise determination of the hadronic
form factors for vector channels could eventually lead to
competitive results, at least in certain directions of the
B-violating operator basis.
The matrix elements for the neutron decays can be

obtained from those of the proton channels by exploiting
the isospin symmetry:

hπ−jðduÞGðuÞHjni ¼ hπþjðduÞGðdÞHjpi;
hπ0jðduÞGðdÞHjni ¼ −hπ0jðduÞGðuÞHjpi;
hηjðduÞGðdÞHjni ¼ hηjðduÞGðuÞHjpi;

hKþjðsdÞGðdÞHjni ¼ −hK0jðsuÞGðuÞHjpi;
hK0jðduÞGðsÞHjni ¼ hKþjðduÞGðsÞHjpi;
hK0jðsuÞGðdÞHjni ¼ −hKþjðsdÞGðuÞHjpi;
hK0jðsdÞGðuÞHjni ¼ −hKþjðsuÞGðdÞHjpi;
hρ−jðduÞGðuÞHjni ¼ hρþjðduÞGðdÞHjpi;

hρ0jðduÞGðdÞHjni ¼ −hρ0jðduÞGðuÞHjpi;
hωjðduÞGðdÞHjni ¼ hωjðduÞGðuÞHjpi;

hK�þjðsdÞGðdÞHjni ¼ −hK�0jðsuÞGðuÞHjpi;
hK�0jðduÞGðsÞHjni ¼ hK�þjðduÞGðsÞHjpi;
hK�0jðsuÞGðdÞHjni ¼ −hK�þjðsdÞGðuÞHjpi;
hK�0jðsdÞGðuÞHjni ¼ −hK�þjðsuÞGðdÞHjpi: ð24Þ

E. Summary

For commodity, we introduce reduced decay widths Γ̃
for the nucleon (N) to pseudoscalar (Π) or vector (V) meson
transitions, from which the actual decay widths (Γ) can be
recovered as follows:

Γ½N → Πþ LðcÞ�≡MNη
2
QCD

32π

�
1 −

M2
Π

M2
N

�
2

× Γ̃½N → Πþ LðcÞ�; ð25Þ

Γ½N→VþLðcÞ�≡M3
Nη

2
QCD

64πM2
V

�
1−

M2
V

M2
N

�
2

×

�
1þ2

M2
V

M2
N

�
Γ̃½N→VþLðcÞ�; ð26Þ

where ηQCD represents the QCD running factor of Eq. (6).
We may then summarize the calculation of the nucleon

decay widths into a meson and a (an anti)lepton with the
following equations:

TABLE II. Hadronic matrix elements for proton to vector meson decays using the bag model. Otherwise, the
notation is as in Table I.

W0½p → ρ0� W0½p → ω0� W0½p → ρþ�
ðduÞGðuÞH ðGeVÞ2, bag ðGeVÞ2, bag ðduÞGðdÞH ðGeVÞ2, bag
LL, RR 0.062 −0.041 LL, RR 0.088
LR, RL −0.032 0.041 LR, RL −0.048

W0½p → K�0� ðsuÞGðdÞH ðduÞGðsÞH ðsdÞGðuÞH
ðsuÞGðuÞH ðGeVÞ2, bag W0½p → K�þ� ðGeVÞ2, bag ðGeVÞ2, bag ðGeVÞ2, bag
LL, RR −0.005 LL, RR 0.013 0.022 −0.008
LR, RL −0.006 LR, RL 0.009 −0.022 −0.002
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Γ̃½p → ðπ0; η; ρ0;ω0Þ þ eþ� ¼ jWN→M
Oe

1
C½Oe

1�j2 þ jWN→M
Oe

5
C½Oe

5�j2

¼ Γ̃½n → ðπ−; ρ−Þ þ eþ�;
Γ̃½p → ðπþ; ρþÞ þ νðcÞ� ¼ jWN→M

Oν
1

C½Oν
1�j2 þ jWN→M

Qν
1

C½Qν
1�j2

¼ Γ̃½n → ðπ0; η; ρ0;ω0Þ þ νðcÞ�;
Γ̃½p → K0ð�Þ þ eþ� ¼ jWN→M

Ôe
1

C½Ôe
1�j2 þ jWN→M

Ôe
5

C½Ôe
5�j2;

Γ̃½n → Kþð�Þ þ e−� ¼ jWN→M
Q̂e

5

C½Q̂e
5�j2 þ jWN→M

Q̂e
6

C½Q̂e
6�j2;

Γ̃½p → Kþð�Þ þ νðcÞ� ¼ jWN→M
Ôν

1

C½Ôν
1� þWN→M

Ô0ν
1

C½Ô1
0ν� þWN→M

R̂ν C½R̂ν�j2

þ jWN→M
Q̂ν

1

C½Q̂ν
1� þWN→M

Q̂0ν
1

C½Q̂0ν
1� þWN→M

Q̂ν
2

C½Q̂ν
2�j2

¼ Γ̃½n → K0ð�Þ þ νðcÞ�; ð27Þ

where the N → M superscript corresponds to the nucleon
(N) to meson (M) transition.

III. BOUNDS ON R-PARITY-VIOLATING
PARAMETERS

A. Approximations

The ingredients described in the previous section can be
included within a code and would allow to perform a test
that takes the mixing effects into account to their full extent.
Nevertheless, for simplicity, we perform several approx-
imations below on the mixings in the SUSY sector and
RpV violation, which allow to derive analytical bounds on
the RpV couplings:

(i) We neglect secondary electroweakino-lepton mix-
ing, only allowing for the leading Higgsino-lepton
mixing generated by the bilinear RpV parameters.

(ii) We linearize the sfermion-electroweakino/lepton-
quark couplings in terms of lepton-violating RpV
parameters.

(iii) We neglect Yukawa couplings of the first generation.
(iv) We assume that the squark sector is aligned with the

Yukawa structure of the quarks, so that the squark
mass matrices do not involve new sources of flavor
violation.

(v) We neglect left-right squark mixing, except for the
third generation.

We stress that the assumptions on the squark sector
eliminate most constraints originating in ΔB ¼ 2 proc-
esses. While flavor violation in the squark sector could be
restored at the radiative level through charged electroweak
(ino) loops, this feature would depend on the renormaliza-
tion scheme adopted for the squark masses and would only
be meaningful in a full one-loop analysis of B-violating
processes. Under these conditions,NN → KK [97] appears
as the main source of constraints fromΔB ¼ 2 phenomena.
Depending on the SUSY spectrum, the latter place limits on

the coupling λ00112 that can be read off in the left panel of
Fig. 4 in Ref. [64].
Exploiting these hypotheses considerably simplifies the

expression of the Wilson coefficients for the operators of
Eq. (15):

C½Oel
1 � ¼ −λ001g1VCKM�

1f

�
Yf
dδfg

μ�l
μ�

− λ0�lfg

� jXDg

kRj2
m2

D̃k

C½Ôel
1 � ¼ −λ001g2VCKM�

1f

�
Yf
dδfg

μ�l
μ�

− λ0�lfg

� jXDg

kRj2
m2

D̃k

C½Oνl
1 � ¼ −λ001g1λ0�l1g

jXDg

kRj2
m2

D̃k

C½Ôνl
1 � ¼ −λ001g2λ0�l1g

jXDg

kRj2
m2

D̃k

C½Ô0νl
1 � ¼ λ001g1

�
Y2
dδg2

μ�l
μ�

− λ0�l2g

� jXDg

kRj2
m2

D̃k

C½Qνl
1 � ¼ −λ00131λ0�l31

XD3

kRX
D3�
kL

m2
D̃k

C½Q̂νl
1 � ¼ −λ00132λ0�l31

XD3

kRX
D3�
kL

m2
D̃k

C½Q̂0νl
1 � ¼ −λ00131λ0�l32

XD3

kRX
D3�
kL

m2
D̃k

C½Q̂el
6 � ¼ ðλ00321 − λ00312Þλ0�lf1VCKM

3f
XU3

kRX
U3�
kL

m2
Ũk

C½Oel
5 � ¼ C½Ôel

5 � ¼ C½Q̂νl
2 � ¼ C½Q̂el

5 � ¼ C½R̂νl � ¼ 0; ð28Þ

where l is the lepton-flavor index while summation over

repeated indices is implicit. The X
Dg

kR, etc. denote the
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sfermion mixing factors given in Appendix A. This list can
be further reduced by neglecting sbottom mixing, CKM
mixing, or the strange-quark mass. We note, however, that
all the coefficients of Eq. (28) are linearly independent, i.e.,
that one can a priori find directions in parameter space
where only one of these coefficients (and any of the
nontrivial ones) is nonzero.
In Eq. (28), we have considered only the four-fermion

operators mediating proton decay that explicitly include a
lepton field. As argued before [49–51], it is meaningful to
consider operators with an electroweakino field replacing
the lepton, either because the electroweakino is light and,
e.g., long-lived, or because a heavy electroweakino medi-
ates higher-dimensional operators for proton decay. In the
latter case, an electroweakino-fermion-sfermion coupling
with further RpV sfermion-fermion-fermion interaction
would indeed produce dimension-nine (or higher) oper-
ators.3 Here, we specialize in a subsequent coupling of the
LLE type since the hadronic matrix elements studied in the
previous section would not apply if additional quarks were
involved.4 Factorizing out this step, we provide the Wilson
coefficients for the operators of Eq. (15), where an electro-
weakino replaces the lepton. The subscript b, w, hð�Þ,
respectively, denote bino, wino, Higgsino states (with two
states of mass �μ in the neutral case). Electroweakino
mixing can be included in the picture by combining the
various Wilson coefficients,

C½Ow−

1 � ¼ −g2λ00131VCKM�
13

XD3

kRX
D3�
kL

m2
D̃k

C½Ôw−

1 � ¼ −g2λ00132VCKM�
13

XD3

kRX
D3�
kL

m2
D̃k

C½Oh−
1 � ¼ Yg

dV
CKM�
1g λ001g1

jXDg

kRj2
m2

D̃k

C½Ôh−
1 � ¼ Yg

dV
CKM�
1g λ001g2

jXDg

kRj2
m2

D̃k

C½Ô0h−
1 � ¼ −

Y2
dffiffiffi
2

p λ00121
jXD2

kR j2
m2

D̃k

¼ −C½Ô0hþ
1 �

C½Qb
1� ¼ −

ffiffiffi
2

p

3
g1λ00111

jXD1

kR j2
m2

D̃k

¼ 0

C½Q̂b
1� ¼ −

ffiffiffi
2

p

3
g1λ00112

jXD1

kRj2
m2

D̃k

C½Q̂0b
1� ¼ −

ffiffiffi
2

p

3
g1λ00121

jXD2

kRj2
m2

D̃k

C½Q̂b
2� ¼

ffiffiffi
2

p

3
g1ðλ00121 − λ00112Þ

jXU1

kR j2
m2

Ũk

C½Q̂hþ
5 � ¼ Yg

uVCKM�
g1 ðλ00g21 − λ00g12Þ

jXUg

kRj2
m2

Ũk

C½Qw;h�
1 � ¼ C½Q̂w;h�

1 � ¼ C½Q̂0w;h�
1 � ¼ 0

C½Ob;w;h�
1 � ¼ C½Ôb;w;h�

1 � ¼ C½Ô0b;w
1 � ¼ 0

C½Ow−;h−
5 � ¼ C½Ôw−;h−

5 � ¼ 0

C½Q̂w;h�
2 � ¼ C½Q̂wþ

5 � ¼ C½Q̂wþ;hþ
6 � ¼ C½R̂b;w;h� ¼ 0: ð29Þ

Here g1 ¼ e= sin θW is the Uð1ÞY hypercharge gauge
coupling, and g2 is the SUð2ÞL gauge coupling.
Unsurprisingly, the contributions are suppressed (i.e.,
require sfermion mixing or vanish) when the quantum
numbers of the bino (SU(2)-singlet), wino (triplet) or
Higgsinos (doublets) lead to an operator violating the
SM gauge group. However, we note that the operators
of type Q1;2 with a bino are SM conserving, hence fully
legitimate dimension-six objects. All these coefficients are
only B violating, so that they do not involve λ0 or μl
couplings, in contrast to the coefficients of Eq. (28). Yet,
unless the lightest neutralino is very light, the “decays” of
the electroweakino line require additional RpV effects to
contribute to nucleon decays.

B. Nucleon decays into a meson and a lepton

The experimental results for nucleon decay modes into a
meson and a (an anti)lepton are collected in [34]. The
channels with pseudoscalar mesons in the final state tend to
be more constrained than those with vector mesons. Thus,
in consideration of our conservative estimates of the
hadronic matrix elements for the decays into vector meson,
these latter processes hardly have a chance to compete in
the current situation.5 Therefore, the limits on the Wilson
coefficients of Eq. (28) principally derive from the decays
into pseudoscalar mesons:

3The loop diagrams of Ref. [51] would be inconsistent in the
context of the tree-level matching that we perform here and
obviously depend on the renormalization conditions defining the
RpV couplings.

4On the other hand, hadronic matrix elements for B-violating
operators of dimension nine would yield further limits on RpV
parameters.

5However, we note that this would not be systematically the
case if we also employed the hadronic matrix elements derived
with the bag models for the decays into pseudoscalar mesons
since the branching ratios associated with the vector mesons are
then larger. A more precise determination of the hadronic matrix
elements for the nucleon to vector meson transition could thus
increase the relevance of these channels.
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(i) From p → π0eþ [32], ηQCDjC½Oe
1�j < 9.2 × 10−32 GeV−2.

(ii) From p → π0μþ [32], ηQCDjC½Oμ
1�j < 1.5 × 10−31 GeV−2.

(iii) From n → π0ν [30], ηQCD½
P

ν jC½Oν
1�j2 þ 1.05

P
ν jC½Qν

1�j2�1=2 < 3.5 × 10−31 GeV−2.

(iv) From p → K0eþ [28], ηQCDjC½Ôe
1�j < 6.4 × 10−31 GeV−2.

(v) From p → K0μþ [29], ηQCDjC½Ôμ
1�j < 5.3 × 10−31 GeV−2.

(vi) From n → Kþe− [26], ηQCDjC½Q̂e
6�j < 6.4 × 10−30 GeV−2.

(vii) From n → Kþμ− [26], ηQCDjC½Q̂μ
6�j < 4.5 × 10−30 GeV−2.

(viii) From p→Kþν [31], ηQCD½
P

ν jC½Ô0ν
1�þ0.366C×½Ôν

1�j2þ1.05·
P

ν jC½Q̂0ν
1�þ0.295C½Q̂ν

1�j2�1=2<2.0×10−31GeV−2.

Assuming a universal squark massmQ̃ and defining the mixing parameter ΔF̃g

LR ≈ −½M2
F̃g
�
LR
=m2

Q̃
(with ½M2

F̃g
�
LR

the left-

right squared-mass-matrix element, as defined in Appendix A) for F̃g ¼ Ũg; D̃g (g ¼ 3), we arrive at the following limits on
combinations of RpV parameters (with implicit sum on repeated indices):

				λ001g1VCKM�
1f

�
Yf
dδfg

μ�1
μ�

− λ0�1fg

�				 < 2.9 × 10−26
�

mQ̃

1 TeV

�
2 3.15
ηQCD				λ001g1VCKM�

1f

�
Yf
dδfg

μ�2
μ�

− λ0�2fg

�				 < 4.7 × 10−26
�

mQ̃

1 TeV

�
2 3.15
ηQCD�

jλ001g1λ0�l1gj2 þ 1.05jλ00131λ0�l31ΔD̃3

LRj2
�
1=2

< 1.1 × 10−25
�

mQ̃

1 TeV

�
2 3.15
ηQCD				λ001g2VCKM�

1f

�
Yf
dδfg

μ�1
μ�

− λ0�1fg

�				 < 2.0 × 10−25
�

mQ̃

1 TeV

�
2 3.15
ηQCD				λ001g2VCKM�

1f

�
Yf
dδfg

μ�2
μ�

− λ0�2fg

�				 < 1.7 × 10−25
�

mQ̃

1 TeV

�
2 3.15
ηQCD

jðλ00321 − λ00312ÞVCKM�
3f λ0�1f1Δ

Ũ3

LRj < 2.0 × 10−24
�

mQ̃

1 TeV

�
2 3.15
ηQCD

jðλ00321 − λ00312ÞVCKM�
3f λ0�2f1Δ

Ũ3

LRj < 1.4 × 10−24
�

mQ̃

1 TeV

�
2 3.15
ηQCD�				λ001g1

�
Y2
dδg2

μ�2
μ�

− λ0�l2g

�
− 0.366λ001g2λ

0�
l1g

				2 þ 1.05jΔD̃3

LRj2jλ00131λ0�l32 þ 0.295λ00132λ
0�
l31j2

�
1=2

< 6.4 × 10−26
�

mQ̃

1 TeV

�
2 3.15
ηQCD

:

ð30Þ

These constraints update earlier bounds (e.g., [18]) with
somewhat stronger limits due, in particular, to the relatively
recent results from the Super-Kamiokande experiment. In case
the squark mediator is a strange squark (g ¼ 2), one can
further exploit the limit fromdinucleondecays applying to λ00121
[64] to derive a bound on single couplings of the LQDc type.
However, the theoretical uncertainties have not been

taken into account in the derivation above. In addition to the
uncertainties associated to the hadronic matrix elements (of
order 10% according to [69]), one should add those
uncertainties originating with the Wilson coefficients.
While the leading QCD logarithms should be properly
included in ηQCD, finite and Next-to-leading order (NLO)
QCD corrections are not considered and could easily

amount to a ∼30% modification. Electroweak logarithms
have also been neglected, as well as electroweak flavor-
changing effects. We believe that the latter can only be
consistently included by performing a matching of one-
loop order and choosing a particular renormalization
scheme (so that the RpV parameters are set to a specific
definition). Finally, we should stress that the approxima-
tions on squark and electroweakino-lepton mixing over-
simplify the system, so that the bounds of Eq. (30) cannot
replace a full numerical test. In particular, the relevance of
neglecting flavor-changing effects in the sfermion sector,
while allowing flavor-violation in the RpV couplings, can
be questioned. Therefore, these limits should be seen at a
purely qualitative level.
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C. Nucleon decays into a meson and a long-lived bino

In this section, we assume the existence of a light bino
with mass comparable or below that of the muon and long-
lived so that it would appear as an invisible particle in
nucleon decays. Then, the dimension-six operators of
Eq. (29) are constrained by the limits on p → Kþν.6 In
principle, the decay width involving such a bino final state
should be counted together with other decay channels
involving an invisible final state, i.e., a neutrino or an
antineutrino, which were presented in the previous sub-
section. However, for simplicity, we neglect the purely
leptonic contribution to invisible decays below, e.g.,
because L-violating parameters vanish:

(i) From p → Kþν [31]

ηQCDjC½Q̂0b
1� þ 0.295C½Q̂b

1� − 0.705C½Q̂b
2�j

< 2.0 × 10−31 GeV−2;

from which we deduce (using λ00112 ¼ −λ00121),

jλ00121j < 3.9 × 10−25
�

mQ̃

1 TeV

�
2 3.15
ηQCD

0.350
g1

: ð31Þ

This limit is much stronger than that obtained
from dinucleon decay in Ref. [64], of order

jλ00121j∼<10−6ðmQ̃=1 TeVÞ2ðM3=1 TeVÞ1=2. However, in
the presence of a very light bino, one should not neglect
the mediation of this light field (in place of the gluino)
in the ΔB ¼ 2 process. The latter would consist of a low-
energy diagram with two effective quartic bino-quark

dimension-six vertices (Q̂ð0Þb
1;2 ) connected by a light bino

line, instead of the dimension-nine operators obtained by
integrating out heavy new physics. In particular, this means
that the momentum of the exchanged bino cannot be
neglected but needs to be assessed as part of the (strong)
low-energy dynamics. This would motivate a reanalysis of
this constraint (which goes beyond the scope of the
current work).

D. Nucleon decays into a meson and three leptons

The gauginos are now assumed to be heavy; they are thus
intermediate and off shell in the decay and can themselves
decay to three leptons. The Wilson coefficients of Eq. (29)
can be combined with gaugino and RpV couplings of the
LLE type in order to form the following dimension nine (or
higher from the SUð2ÞL-conserving perspective):

S1 ¼ εαβγ½ðdcÞαPRuβ�½ðucÞγPLel�½ēnPLem�;
Ŝ1 ¼ εαβγ½ðscÞαPRuβ�½ðucÞγPLel�½ēnPLem�;

T̂ 11 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRν
c
l �½ēmPLen�;

T̂ 0
11 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRν

c
l �½ēmPLen�;

T̂ 12 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRel�½ēmPLνn�;
T̂ 0

12 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRel�½ēmPLνn�;
T̂ 13 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRel�½ēmPRν

c
n�;

T̂ 0
13 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRel�½ēmPRν

c
n�;

T̂ 14 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRecl �½ν̄nPRem�;
T̂ 0

14 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRecl �½ν̄nPRem�;
T̂ 15 ¼ εαβγ½ðscÞαPRuβ�½ðdcÞγPRecl �½νcnPLem�;
T̂ 0

15 ¼ εαβγ½ðdcÞαPRuβ�½ðscÞγPRecl �½νcnPLem�;
T̂ 21 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRν

c
l �½ēmPLen�;

T̂ 22 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRel�½ēmPLνn�;
T̂ 23 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRel�½ēmPRν

c
n�;

T̂ 24 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRecl �½ν̄nPRem�;
T̂ 25 ¼ εαβγ½ðscÞαPRdβ�½ðucÞγPRecl �½νcnPLem�: ð32Þ

The associated Wilson coefficients read (where we have
neglected the Yukawa couplings of the light leptons and
assumed universal slepton masses):

C½S1� ¼ C½Ow−

1 � g2λlmn

M2m2
Ñl

C½Ŝ1� ¼ C½Ôw−

1 � g2λlmn

M2m2
Ñl

C½T̂ 11� ¼ −C½Q̂b
1�

g1λ�lmnffiffiffi
2

p
M1m2

Ñl

C½T̂ 0
11� ¼ −C½Q̂0b

1 �
g1λ�lmnffiffiffi
2

p
M1m2

Ñl

C½T̂ 21� ¼ −C½Q̂b
2�

g1λ�lmnffiffiffi
2

p
M1m2

Ñl

C½T̂ 12� ¼ C½Q̂b
1�

ffiffiffi
2

p
g1λlnmΔ

Ẽl�
LR

M1m2
Ẽl

C½T̂ 0
12� ¼ C½Q̂0b

1 �
ffiffiffi
2

p
g1λlnmΔ

Ẽl�
LR

M1m2
Ẽl

C½T̂ 22� ¼ C½Q̂b
2�

ffiffiffi
2

p
g1λlnmΔ

Ẽl�
LR

M1m2
Ẽl

6In principle, the kinematics of the decay to a light, but
massive, neutralino are different than to a neutrino. The detailed
consideration is beyond the present work.
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C½T̂ 13� ¼ C½Q̂b
1�

ffiffiffi
2

p
g1λ�nml

M1m2
Ẽl

C½T̂ 23� ¼ C½Q̂b
2�

ffiffiffi
2

p
g1λ�nml

M1m2
Ẽl

C½T̂ 0
13� ¼ C½Q̂0b

1 �
ffiffiffi
2

p
g1λ�nml

M1m2
Ẽl

C½T̂ 14� ¼ −C½Q̂b
1�

g1λ�lnmffiffiffi
2

p
M1m2

Ẽl

C½T̂ 0
14� ¼ −C½Q̂0b

1 �
g1λ�lnmffiffiffi
2

p
M1m2

Ẽl

C½T̂ 24� ¼ −C½Q̂b
2�

g1λ�lnmffiffiffi
2

p
M1m2

Ẽl

C½T̂ 15� ¼ −C½Q̂b
1�
g1λnmlΔ

Ẽl�
LRffiffiffi

2
p

M1m2
Ẽl

C½T̂ 0
15� ¼ −C½Q̂0b

1 �
g1λnmlΔ

Ẽl�
LRffiffiffi

2
p

M1m2
Ẽl

C½T̂ 25� ¼ −C½Q̂b
2�
g1λnmlΔ

Ẽl�
LRffiffiffi

2
p

M1m2
Ẽl

: ð33Þ

Here the mÑl
denote the sneutrino masses. Applying

lifetime limits from inclusive nucleon decay channels with
antileptons [98,99], we derive the following RpV limits
(with m2

L̃
the universal slepton mass):

(i) From p → π0eþl e
−
meþn ,

jΔD̃3

LRλ
00
131j½jλ211j2 þ jλ122j2�1=2

< 2.3 × 10−9
�

mQ̃

1 TeV

�
2
�

mL̃

1 TeV

�
2

×
M2

1 TeV
3.15
ηQCD

�
0.653
g2

�
2

: ð34Þ

(ii) From p → K0eþl e
−
meþn ,

jΔD̃3

LRλ
00
132j½jλ211j2 þ jλ122j2�1=2

< 2.4 × 10−8
�

mQ̃

1 TeV

�
2
�

mL̃

1 TeV

�
2

×
M2

1 TeV
3.15
ηQCD

�
0.653
g2

�
2

: ð35Þ

(iii) From p → KþνðcÞl e−n eþm,

jλ00112λ�lm2j < 1.6 × 10−10
�

mQ̃

1 TeV

�
2

×

�
mL̃

1 TeV

�
2 M1

1 TeV
3.15
ηQCD

�
0.350
g1

�
2

;

jλ00112λ�lm1j < 7.0 × 10−10
�

mQ̃

1 TeV

�
2

×

�
mL̃

1 TeV

�
2 M1

1 TeV
3.15
ηQCD

�
0.350
g1

�
2

: ð36Þ

Here, we employed the four-body final-state phase space
derived in [100] and neglected the lepton masses.

E. Purely leptonic final states

Experimental constraints on purely leptonic decay chan-
nels are also available [27]. These could a priori be
mediated by the strangeness-conserving dimension-nine
operator of Eq. (32), S1. Additional contributions from the
operators of Eq. (15) and an off shell photon seem difficult
to assess in the context of nonperturbative QCD. We will
not consider them. We then need to evaluate the nucleon
decay constant h0jSjNi. Note that h0j represents the QCD
vacuum and N ¼ p, n, the nucleon. For this, we exploit the
LEC of the chiral model [87] and write

h0jεαβγ½ðdcÞαPRuβ�½ðucÞγPL�jpi ¼ α̃½PLup�; ð37Þ

h0jεαβγ½ðdcÞαPRuβ�½ðdcÞγPR�jni ¼ β̃½PRun�; ð38Þ

with α̃ and β̃ the LEC calculated in Ref. [69] (see Eq. (23)
of this reference). These quantities are a priori valid in the
limit of vanishing energy transfer so that their use in decay
processes with energy comparable to the nucleon mass is
highly unreliable. Reference [69] quotes a factor of 2–3 (on
the conservative side) in the case of nucleon decay widths
into a meson and a (an anti)lepton, as compared to the full
lattice evaluation of the hadronic matrix elements. Thus, we
again expect results of purely qualitative value.
The transitions mediated by the operators of type S1 lead

to the following limits:
(i) From p → eþμþμ− [27],

jΔD̃3

LRλ
00
131λ122j < 5.1 × 10−11

�
mQ̃

1 TeV

�
2
�

mL̃

1 TeV

�
2

×
M2

1 TeV
3.15
ηQCD

�
0.653
g2

�
2

: ð39Þ

NUCLEON DECAY IN THE R-PARITY VIOLATING MSSM PHYS. REV. D 104, 015020 (2021)

015020-13



(ii) From p → eþμþe− [27],

jΔD̃3

LRλ
00
131λ211j < 4.2 × 10−11

�
mQ̃

1 TeV

�
2
�

mL̃

1 TeV

�
2

×
M2

1 TeV
3.15
ηQCD

�
0.653
g2

�
2

; ð40Þ

which, for these specific directions, are stronger than the
constraints obtained with the inclusive decay widths,
including an antilepton.

IV. CONCLUSIONS

In this paper, we have revisited the constraints from
nucleon decays on RpV parameters, updating the bounds
with current lattice calculations and experimental limits.
We have also paid more detailed attention to the derivation
of these constraints than usually presented in the literature.
Nucleon decays could take a very diverse pattern in the
context of RpV, and the current sets of bounds are restricted
by the limited knowledge of hadronic matrix elements. We
have exhumed the bag model for an estimate of the
transitions involving vector mesons, but the outcome
suffers from the comparison with the precise lattice results
available for decays into pseudoscalar mesons. For this
reason—and the associated performance of experimental
searches—limits from the nucleon transition to pseudosca-
lar meson and (anti)lepton (or invisible) place the most
stringent limits on RpV parameters.
In the RpV MSSM, it is also possible to build

L-conserving B-violating operators involving electrowea-
kinos, opening further search modes. Once again, the full
exploitation of these channels is limited by the absence of
reliable evaluations of hadronic matrix elements for, e.g.,
purely leptonic nucleon decays or channels with multiple

mesons in the final state. Constraints from ΔB ¼ 2 proc-
esses could provide complementary information, e.g., on
such scenarios, in particular, in the presence of a very light
bino liable to mediate such transitions close to resonance.
On the high-energy side, we have restricted ourselves to

a pure tree-level matching of the Wilson coefficients, as a
one-loop matching would be technically much more
involved. As a consequence, the limits that we have derived
in Sec. III should be seen as largely qualitative. In
particular, we renounced flavor-violating loops enlarging
the set of RpV couplings that can be constrained, as
sometimes presented in the literature. More precise limits
could naturally be derived in an analysis of one-loop order,
but these should then also depend on the renormalization
conditions chosen to fix the counterterms of the RpV
parameters, a point that seems to have been overlooked in
corresponding proposals.
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APPENDIX A: MSSM, RpV AND MIXING

1. Mixing in the squark sector

This is an R-parity conserving effect. The sfermion
mixing matrices can be written in the ðF̃L; F̃c�

R Þ basis as
follows:

M2
F̃
¼

2
64m2

FL
þ Y2

fv
2
f þ 1

2

�
Yf

L
2
g21 − If3g

2
2

�
ðv2u − v2dÞ Yfvf

�
A�
f − μ

vf0
vf

�

Yfvf

�
Af − μ�

vf0
vf

�
m2

FR
þ Y2

fv
2
f þ Yf

R
4
g21ðv2u − v2dÞ

3
75; ðA1Þ

where f is the fermion corresponding to the sfermion F̃,
while f0 is its SUð2ÞL partner. Then, Yf is the associated

Yukawa coupling, Yf
L;R the associated hypercharges, and

If3 the isospin. Finally, vf denotes the VEV of the Higgs
doublet to which the fermion f couples at tree level. In
principle, each matrix element in Eq. (A1) should be
understood as a 3 × 3 block in flavor space. With MSUSY
above the electroweak scale, left-right mixing in
the squark sector is only relevant for Yf ¼ Yt;b

(but Af is still a matrix in flavor space, meaning that

right-handed squarks of the third generation could still
have a relevant mixing with left-handed squarks of any
generation).
We define the (unitary) mixing matrix XF̃, such that

M2
F̃
¼ XF̃†diag½m2

F̃i
�XF̃. Then, the gauge eigenstates are

connected to the mass eigenstates through F̃i ¼ X ˜F�
iL F̃Lþ

X ˜F�
iR F̃

c�
R , and reciprocally, F̃L ¼ XF̃

iLF̃i, F̃c
R ¼ X ˜F�

iR F̃
�
i . The

mass matrix of Eq. (A1) should be diagonalized in a fully
unprejudiced fashion as to the magnitude of the matrix
elements, in general. However, it is instructive to consider
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the expansion in terms of the electroweak VEVs.
Then (neglecting intergeneration mixing), m2

F̃1
≈m2

FL
,

m2
F̃2

≈m2
FR
, XF̃

1L; X
F̃
2R ≈ 1 and XF̃

1R ≈ −X ˜F�
2L ≈ −½M2

F̃
�LR=

ðM2
F̃1

−M2
F̃2
Þ. The left-right mixing is obviously associated

with an electroweak VEV and is thus liable to generate
contributions to dimension-seven operators.

2. Mixing in the chargino/lepton sector

This involves both R-parity conserving (wino-Higgsino
mixing) and R-parity violating effects (Higgsino-lepton
mixing) [16]. We work in the description where the
sneutrino fields do not take a VEV. Then the mass terms
read −L ∋ ðw̃þ; h̃þu ; e

cf
R ÞMC̃ðw̃−; h̃−d ; e

g
LÞT þ H:c:, with

MC̃ ¼

2
64

M2 g2vd 0

g2vu μ μg

0 0 Yf
eδfgvd

3
75: ðA2Þ

Note that f, g correspond to the flavor indices. Note also that
μg is the RpV bilinear coupling. Themass matrix of Eq. (A2)
is diagonalized with a pair of unitary matrices so that
MC̃ ¼ VTdiagðmχ�i

ÞU. The mass eigenstates are then

defined as χþi ¼ V�
iww̃

þ þ V�
ihh̃

þ
u þ V�

ief
ecfR , χ−i ¼ U�

iww̃
−þ

U�
ihh̃

−
d þU�

ief
efL, and the gauge eigenstates can be expressed

in terms of the mass eigenstates through inversion.
In the hierarchical context jM2j; jμj; jjM2j − jμjj ≫ gv;

jμgj; Yg
evd, we can approximate these mixing elements by

the following expressions:

U1w; V1w; U2h ≈ 1;

V2h; U3el ; V3el ≈ 1;

U1h ≈
g2ðvdM�

2 þ vuμÞ
jM2j2 − jμj2 ;

V1h ≈
g2ðvdμþ vuM�

2Þ
jM2j2 − jμj2 ;

U2w ≈ −
g2ðvdM2 þ vuμ�Þ

jM2j2 − jμj2 ;

U2el ≈
μl
μ
;

V2w ≈ −
g2ðvdμ� þ vuM2Þ

jM2j2 − jμj2 ;

U3h ≈ −
μ�l
μ�

;

U1el ; V1el ; V2el ≈ 0;

U3w; V3w; V3h ≈ 0; ðA3Þ

where the mass-indices 1, 2, and 3, respectively, refer to
mostly wino, Higgsino, and lepton states.

3. Mixing in the neutralino/neutrino sector

This is largely comparable to that in the chargino/lepton
sector, however, it leads to at least one massive neutrino
[38,101,102]. The mass term is of Majorana type and, in the
basis ðb̃0; w̃0; h̃0d; h̃

0
u; ν

f
LÞ, involves the 7 × 7 matrix:

MÑ ¼

2
666666664

M1 0 − g1ffiffi
2

p vd
g1ffiffi
2

p vu 0

0 M2
g2ffiffi
2

p vd − g2ffiffi
2

p vu 0

− g1ffiffi
2

p vd
g2ffiffi
2

p vd 0 −μ 0

g1ffiffi
2

p vu − g2ffiffi
2

p vu −μ 0 −μg
0 0 0 −μg 0

3
777777775
:

ðA4Þ

This matrix is diagonalized via the 7 × 7 unitary matrix N
according to MÑ ¼ NTdiagðmχ0ÞN, from which we
deduce the mass eigenstates χ0i ¼N�

ibb̃þN�
iww̃

0þN�
ihd
h̃0dþ

N�
ihu
h̃0uþN�

iνf
νfL, i ¼ 1;…; 7. Again, in a hierarchical

context, the mixing elements can be linearized to

N1b; N2w; N5νl ≈ 1;

N1w; N1νl ; N2b; N2νl ≈ 0;

N5b; N5w; N5hu ≈ 0

N1hd ≈ −
g1ffiffiffi
2

p M�
1vd þ μvu

jM1j2 − jμj2

N1hu ≈
g1ffiffiffi
2

p M�
1vu þ μvd

jM1j2 − jμj2

N2hd ≈
g2ffiffiffi
2

p M�
2vd þ μvu

jM2j2 − jμj2

N2hu ≈ −
g2ffiffiffi
2

p M�
2vu þ μvd

jM2j2 − jμj2 ;

N3b ≈
g1
2

ðvd − vuÞðM1 − μ�Þ
jM1j2 − jμj2

N3w ≈
g2
2

ðvu − vdÞðM2 − μ�Þ
jM2j2 − jμj2 ðA5Þ

N3hd ; N3hu ; N4hu ;−N4hd ≈
1ffiffiffi
2

p ;

N3νl ;−N4νl ≈
μlffiffiffi
2

p
μ

N4b ≈ −
g1
2

ðvd þ vuÞðμ� þM1Þ
jM1j2 − jμj2

N4w ≈
g2
2

ðvd þ vuÞðμ� þM2Þ
jM2j2 − jμj2

N5hd ≈ −
μ�l
μ�

; ðA6Þ
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where the indices 1, 2, 3, 4, and 5 correspond to mostly bino, wino, a pair of Higgsino, and neutrino states (in fact 5 covers
three leptonic states).

APPENDIX B: FEYNMAN RULES

Below, we write the Weyl two-component spinors [103] with lower case letters and the four-component spinors with
capital letters. The baryon-number-violating couplings involving sups read (λ00mnp ≡ −λ00mpn),

L ∋ εαβγλ
00�
mnpðŨc

RÞα�m ðd̄cRÞβnðd̄cRÞγp þ H:c: ðB1Þ

→ εαβγλ
00�
rnpX

Ur
mRŨ

α
m½ðDcÞβnPRðDÞγp� þ H:c:; ðB2Þ

and for sdowns,

L ∋ þεαβγλ
00�
mnpðūcRÞαmðd̄cRÞβnðD̃c

RÞγp þ H:c: ðB3Þ

→ εαβγλ
00�
mprX

Dr
nRD̃

β
n½ðUcÞαmPRðDÞγp� þ H:c: ðB4Þ

Here XUr
mR; X

Dr
nR denote the squark mixing coefficients, cf. Appendix A 1. We will use the notations ðgUdd

R Þmnp and ðguDd
R Þmnp

to denote the complete coefficients in the second lines of Eqs. (B1) and (B3), respectively. We have, furthermore, in the
Lagrangians put the fields in parentheses.
The lepton-number-violating couplings involving sups, downs, and charginos read,

L ∋ Yf
dðŨLÞα�f ð ¯̃hþd Þðd̄cRÞαf þ λ0�fghðŨLÞα�g ðēLÞfðd̄cRÞαh þ Yf

uðŨc
RÞαfðh̃þu ÞðdLÞαf − g2ðŨLÞα�f ðw̃þÞðdLÞαf þ H:c:

→ Ũ�α
m fðD̄cÞαf½gUdχ

L PL þ gUdχ
R PR�mfqðχþÞqg þ H:c: ðB5Þ

gUdχ
Lmfq ≡ VCKM

gf ½Yg
uX

Ug

mR
�Vqh − g2X

Ug

mL
�Vqw�; ðB6Þ

gUdχ
Rmfq ≡ VCKM

gr ½Yf
dδfrX

Ug

mL
�U�

qh þ λ0�lgfX
Ur
mL

�U�
qel �: ðB7Þ

Note that g1;2 are gauge couplings. The lepton-number-violating couplings involving sdowns, ups, and charginos read,

L ∋ Yf
dðD̃c

RÞαfðh̃−d ÞðuLÞαf − g2ðD̃LÞα�ðw̃−ÞðuLÞαf þ λ0fgkðD̃c
RÞαkðeLÞfðuLÞαg þ Yf

uðD̃LÞα�ðh̄−u ÞðūcRÞαf þ H:c: ðB8Þ

→ D̃�α
m fðUcÞαf½gDuχ

L PL þ gDuχ
R PR�mfqðχ−Þqg þ H:c: ðB9Þ

gDuχ
Lmfq ¼ VCKM�

fg ½Yg
dX

Dg

mR
�Uqh − g2X

Dg

mL
�Uqwþλ0�lgkX

Dk
mR

�Uqel � ðB10Þ

gDuχ
Rmfq ¼ VCKM

fg
�Yf

uX
Dg

mL
�V�

qh: ðB11Þ

The lepton-number-violating couplings involving sups, ups, and neutralinos read,

L ∋ −Yf
uðŨc

RÞαfðh̃0uÞðuLÞαf −
1ffiffiffi
2

p ðŨLÞαf�
�
g1
3
ðb̃Þ þ g2ðw̃0Þ

�
ðuLÞαf − Yf

uðŨLÞαf�ð ¯̃h0uÞðūcRÞαf þ
2
ffiffiffi
2

p

3
g1ðŨc

RÞαfð ¯̃bÞðūcRÞαf þ H:c:

ðB12Þ

→ Ũ�α
m fðUcÞαf½gUuχ

L PL þ gUuχ
R PR�mfqðχ0Þqg þ H:c: ðB13Þ

gUuχ
Lmfq ¼ −Yf

uX
Uf

mR
�Nqhu −

1ffiffiffi
2

p X
Uf

mL
�
�
g1
3
Nqb þ g2Nqw

�
; ðB14Þ
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gUuχ
Rmfq ¼ −Yf

uX
Uf

mL
�N�

qhu
þ 2

ffiffiffi
2

p

3
g1X

Uf

mR
�N�

qb: ðB15Þ

The lepton-number-violating couplings involving sdowns, downs, and neutralinos read,

L ∋ −Yf
dðD̃c

RÞαfðh̃0dÞðdLÞαf −
1ffiffiffi
2

p ðD̃LÞαf�
�
g1
3
ðb̃Þ − g2ðw̃0Þ

�
ðdLÞαf − λ0fgkðD̃c

RÞαkðνLÞfðdLÞαg − Yf
dðD̃LÞαf�ð ¯̃h0dÞðd̄cRÞαf

−
ffiffiffi
2

p

3
g1ðD̃c

RÞαfð ¯̃bÞðd̄cRÞαf − λ0�fgkðD̃LÞαg�ðν̄LÞfðd̄cRÞαk þ H:c:

→ D̃�α
m fðD̄cÞαf½gDdχ

L PL þ gDdχ
R PR�mfqðχ0Þqg þ H:c:

gDdχ
Lmfq ¼ −Yf

dX
Df

mR
�Nqhd −

1ffiffiffi
2

p X
Df

mL
�
�
g1
3
Nqb − g2Nqw

�
− λ0gfkX

Dk
mR

�Nqνg ;

gDdχ
Rmfq ¼ −Yf

dX
Df

mL
�N�

qhd
−

ffiffiffi
2

p

3
g1X

Df

mR
�N�

qb − λ0�gkfX
Dk
mL

�N�
qνg : ðB16Þ

Omitting the slepton-Higgs mixing, the slepton-lepton/electroweakino couplings read,

gÑχþχ−
Lmjk ¼ Yf

eX
Ñf

mLVjefUkd − g2X
Ñf

mL
�
VjwUkef − λfpqX

Ñf

mLVjeqUkep ¼ ðgÑχþχ−
Rmkj Þ�

gÑχ0χ0

Lmjk ¼ g1ffiffiffi
2

p X
Ñf

mL
�ðNjνfNkb þ NjbNkνfÞ −

g2ffiffiffi
2

p X
Ñf

mL
�ðNjνfNkw þ NjwNkνfÞ ¼ ðgÑχ0χ0

Rmkj Þ
�

gẼ
�χ0χ−

Lmjk ¼ Yf
eX

Ẽf

mR
�ðNjνfUkd − NjdUkefÞ þ

X
Ẽf�
mLffiffiffi
2

p ½ðg1Njb þ g2NjwÞUkef − g2NjνfUkw�;

−λfpqX
Ẽq

mR
�
NjνfUkeq ¼ ðgẼχþχ0Rmkj Þ

�
;

gẼ
�χ0χ−

Rmjk ¼ −ðYf
eX

Ẽf

mL
�
N�

jd þ
ffiffiffi
2

p
g1X

Ẽf

mR
�
N�

jbÞV�
kef

− λ�fpqX
Ẽf

mL
�
N�

jνp
V�
keq

¼ ðgẼχþχ0Lmkj Þ
�
: ðB17Þ

APPENDIX C: STATIC BAG APPROACH TO NUCLEON DECAYS

In the MIT bag description of hadrons [104,105], valence quarks are relativistic fermions trapped in a spherical potential
well of radius R (we restrict ourselves to the flat infinite potential: Vðjx⃗j < RÞ ¼ 0 and Vðjx⃗j > RÞ ¼ ∞), the boundary of
which is stabilized by a pressure term. The associated fields can then be decomposed in modes,

qðxÞ ¼
X
m;s

½aqm;sUm;sðx⃗Þe−iωmt þ bq†m;sVm;sðx⃗Þeiωmt�;

with s ¼ � 1
2
¼ ↑↓ the spin and m indexing the solutions of the boundary conditions. Note that aqm;s and bq†m;s are creation

and destruction operators of (anti)quarks. Note also ωm ≡ Em=Rwith Em denoting the energy of the mode. We will restrict
ourselves to the mode of lowest energy,7 which can be described by the four spinors in Dirac representation:

U0;sðxÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
0

8πR3ðω0 − 1Þ sin2 ω0

s  
j0ðω0

jx⃗j
R Þχs

i x⃗·σ⃗jx⃗j j1ðω0
jx⃗j
R Þχs

!
ðC1Þ

V0;sðxÞ ¼ CU�
0;s

¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
0

8πR3ðω0 − 1Þ sin2 ω0

s  
−i x⃗·σ⃗jx⃗j j1ðω0

jx⃗j
R Þχ0s

j0ðω0
jx⃗j
R Þχ0s

!
; ðC2Þ

7In the case of the strange quark, we include a quark mass—see Ref. [106]—of 0.1 GeV, which, however, has negligible impact as
compared to the massless case.
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with j0ðxÞ ¼ sin x
x and j1ðxÞ ¼ sin x

x2 − cos x
x the first two

spherical Bessel functions, and ω0 ≈ 2.04 the first
root of the equation j0ðωÞ ¼ j1ðωÞ. χ↑ ¼ ð1

0
Þ ¼ −χ0↓,

χ↓ ¼ ð0
1
Þ ¼ χ0↑.

The hadronic bag states can be constructed with creation
operators of the valence quarks aq†αs and antiquarks b

q†
αs (α is

the color index) acting on the vacuum and satisfying the
usual anticommutation relations. For example,

proton;

jp↑i ¼
εαβγ

3
ffiffiffi
2

p au†α↑ðau†β↑ad†γ↓ − au†β↓a
d†
γ↑Þj0i;

neutron;

jn↑i ¼ −
εαβγ

3
ffiffiffi
2

p ad†α↑ðad†β↑au†γ↓ − ad†β↓a
u†
γ↑Þj0i;

neutral pion;

jπ0i ¼ 1

2
ffiffiffi
3

p ðbd†α↑ad†α↓ − bu†α↑a
u†
α↓ − bd†α↓a

d†
α↑ þ bu†α↓a

u†
α↑Þj0i;

and neutral rho;8>>><
>>>:

jρ01i ¼ 1ffiffi
6

p ðbu†α↑au†α↑ − bd†α↑a
d†
α↑Þj0i

jρ00i ¼ 1

2
ffiffi
3

p ðbu†α↑au†α↓ − bd†α↑a
d†
α↓ þ bu†α↓a

u†
α↑ − bd†α↓a

d†
α↑Þj0i

jρ0−1i ¼ 1ffiffi
6

p ðbu†α↓au†α↓ − bd†α↓a
d†
α↓Þj0i:

ðC3Þ

Then, the matrix element of a partonic operator Ω between
hadronic external states < Hfj

R
dx⃗Ωðx⃗ÞjHi > at t ¼ 0 can

be evaluated from replacing the quark fields within Ω by
their expression in the bag model, leading to the usual
interplay of Wick contractions. Different bags are em-
ployed for the various hadrons, the typical radius being
5 GeV−1 for a nucleon and 3.3 GeV−1 for a pion. AWick
contraction between an external creation/annihilation op-
erator and an internal quark field thus exports the bag
wave function of the corresponding hadron under the

R
dx⃗.

Contractions between operators involving both
external hadrons produce spectator quarks, leading to a
separate integral representing the overlap between the
two bag functions: for instance, h0jaqα↑½Hf�aq†β↑½Hi�j0i ¼R
dy⃗U

Hf†
↑ ðy⃗ÞUHi

↑ ðy⃗Þδαβ. Below, we detail the case

of the p↑ → ρ01e
þ transition mediated by an operator

ΩΓΓ0 ¼ εαβγ½ðdcÞαΓuβ�½ðucÞγΓ0e�, with Γ, Γ0 representing
generic spinor-algebra matrices,

hρ01jΩΓΓ0 jp↑i ¼ h0j 1ffiffiffi
6

p ðbuα↑auα↑ − bdα↑a
d
α↑Þ
Z

dx⃗εmnl½ðdcÞmΓun�½ðucÞlΓ0e� εβγδ
3
ffiffiffi
2

p au†β↑ðau†γ↑ad†δ↓ − au†γ↓a
d†
δ↑Þj0i

¼ −
1ffiffiffi
3

p
Z

dy⃗Uρ†
↑ ðy⃗ÞUp

↑ðy⃗Þ
�
2

Z
dx⃗½V̄p

↓ðx⃗ÞΓUp
↑ðx⃗Þ�½Ūρ

↑ðx⃗ÞΓ0eðx⃗Þ� þ 2

Z
dx⃗½V̄p

↓ðx⃗ÞΓVρ
↑ðx⃗Þ�½V̄p

↑ðx⃗ÞΓ0eðx⃗Þ�

−
Z

dx⃗½V̄p
↑ðx⃗ÞΓVρ

↑ðx⃗Þ�½V̄p
↓ðx⃗ÞΓ0eðx⃗Þ� −

Z
dx⃗½V̄p

↑ðx⃗ÞΓUp
↓ðx⃗Þ�½Ūρ

↑ðx⃗ÞΓ0eðx⃗Þ�

þ
Z

dx⃗½Ūρ
↑ðx⃗ÞΓUp

↓ðx⃗Þ�½V̄p
↑ðx⃗ÞΓ0eðx⃗Þ� þ

Z
dx⃗½Ūρ

↑ðx⃗ÞΓUp
↑ðx⃗Þ�½V̄p

↓ðx⃗ÞΓ0eðx⃗Þ�
�
: ðC4Þ

The connection between this calculation in the bag
model and the transition amplitude is not completely trivial
and requires resorting to the wave packet formalism
[78,107]. We apply the conversion factor in Eq. (12) of
Ref. [78]. The outgoing lepton is regarded as free, so that its
position dependence would be a simple e−ik⃗·x⃗, with k⃗ the

associated momentum. However, in the static approxima-

tion, the frequency jk⃗j leads to a very slow variation, hence
this factor can be discarded, or kept [79,81], e.g., in an
attempt to extend the prediction to the case of light pions. In
this latter case, however, the static cavity description is not
really suited, and tentative corrections should be seen as
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largely heuristic, such as the phenomenological suppres-
sion introduced in [78]. In our analysis, however, the decay
channels into pions are already covered by the lattice
description, so that the results of the bag model are only
employed in the more suitable configuration with heavy
mesons in the final state. To complete the calculation of the
transition amplitude, we provide the free-lepton spinors in
the Dirac representation:

uls ðk⃗Þ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ek⃗ þml
p

χs

k⃗·σ⃗ffiffiffiffiffiffiffiffiffiffiffi
Ek⃗þml

p χs

!
; ðC5Þ

vls ðk⃗Þ ¼

0
B@ k⃗·σ⃗ffiffiffiffiffiffiffiffiffiffiffi

Ek⃗þml

p χ0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek⃗ þml

p
χ0s

1
CA; ðC6Þ

Ek⃗ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

l

q
; ðC7Þ

wν
sðk⃗Þ ¼

ffiffiffiffiffi
jk⃗j

q �
χs

−χs

�
; ðC8Þ

with the standard normalization convention. Once all the
matrix elements have been computed, it is possible to
match them onto the form factors of the decay, e.g.,

AΩ½p → ρ0eþ�≡ hρ0; eþjCΩΩjpi
≡Wp→ρ0

½Ω� v̄ceðk⃗ÞPΩγ
μupð0⃗Þϵρμ�ð−k⃗Þ: ðC9Þ
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