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Neutrino nonstandard interactions (NSI) can be constrained using coherent elastic neutrino-nucleus
scattering. We discuss here two aspects in this respect, namely effects of (i) charged current NSI in neutrino
production, and (ii) CP-violating phases associated with neutral current NSI in neutrino detection. Effects
of CP-phases require the simultaneous presence of two different flavor-changing neutral current NSI
parameters. Applying these two scenarios to the COHERENT measurement, we derive limits on charged
current NSI and find that more data is required to compete with the existing limits. Regarding CP-phases,
we show how the limits on the NSI parameters depend dramatically on the values of the phases.
Incidentally, the same parameters influencing coherent scattering also show up in neutrino oscillation
experiments. We find that COHERENT provides complementary constraints on the set of NSI parameters
that can explain the discrepancy in the best-fit value of the standard CP-phase obtained by T2K and NOνA,
while the significance with which the large mixing angle (LMA)-Dark-solution is ruled out can be
weakened by the presence of additional NSI parameters introduced here.
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I. INTRODUCTION

Coherent elastic neutrino-nucleus scattering (CEνNS)
is an allowed standard model (SM) process which was
predicted in the 1970s [1,2] and was observed recently by
the COHERENT experiment [3–5]. In between the theo-
retical prediction and its observation, the formalism to use
CEνNS as a probe for new neutrino physics, new neutral
current physics or nuclear physics was pointed out for
several scenarios [6–17]. Since its observation there has
been a surge of papers that study limits imposed by the
COHERENT data on various standard and new physics
aspects, see e.g., [18–58].
Nonstandard interactions (NSI) in particular are a popu-

lar new physics scenario that can be constrained by CEνNS.
NSI arise for instance via effective dimension-six inter-
actions of neutrinos with terrestrial matter. Possible effects
during neutrino production, propagation and detection have
been an important feature of neutrino phenomenology as
reviewed in Refs. [59–61]. Many theories beyond the SM

generate NSI at some level. If present, they can lead in
current and future neutrino oscillation experiments to
modified or even wrong measurements of neutrino param-
eters [62–78]. For example, NSI include additional CP-
phases beyond the single phase relevant in the standard
neutrino oscillation picture. In this respect it should be noted
that a tension in the determination of the standardCP-phase
in the T2K andNOνA experiments [79,80] can be explained
by neutral current NSI including a new CP-phase [78,81].
Another feature concerns large mixing angle (LMA)-Dark,
i.e., the octant of the “solar neutrino angle” θ12, which in the
presence of flavor diagonal NSI can be different (θ12>π=4)
from the one in the standard picture (θ12 < π=4) [82]. In
general, the degeneracies between standard and new param-
eters in neutrino oscillation probabilities need to be broken
by complementarymeasurements, in particular by scattering
experiments. Indeed, CEνNS may be crucial here, already
providing limits that disfavor the LMA-Dark solution
[19,20,25,46,55]. In Ref. [55], it was shown that the
LMA-Dark solution could be excluded at a higher signifi-
cance with future CEνNS data with νe and νμ flavor and a
target with an equal number of protons and neutrons.
In this paper we will discuss two aspects of NSI in

coherent scattering. These are (i) effects of charged current
NSI in the production of neutrinos, and (ii) effects of CP-
phases of neutral current NSI in the detection of neutrinos.
To the best of our knowledge, charged current NSI were not
studied in the context of CEνNS, and a dedicated paper of
CP-phases associated with effective NC NSI does not exist
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either. Aspects of CP violation in coherent scattering were
discussed, but in a slightly different context. In Ref. [83], a
light vector boson with complex couplings was considered,
but no connection to oscillation physics was made.
Reference [81] mentions that the parameter values explain-
ing the T2K=NOνA discrepancy can be tested in CEνNS,
but does not study effects of the CP-phases in CEνNS.
Finally, Ref. [84] provides global fits of oscillation and
COHERENT data with focus on CP violation, but fitted
only the absolute values of the NSI parameters when using
COHERENT data. Our goal here is to present a formalism
which takes into account CC NSI in pion and muon decay
at the spallation neutron source relevant for COHERENT,
as well as NC NSI along with the new CP-phases for
the detection process. We confront this setup with the
COHERENT data that used a CsI[Na] target [3–5], putting
limits on CC NSI parameters. We find that effects of CP-
phases from NC NSI require at least two different flavor-
changing NSI terms. We demonstrate that in this case the
constraints on the NSI parameters depend crucially on
the values of the new CP-phases. We show as a further
example that in this case COHERENT can set comple-
mentary limits to the parameter space relevant for the
T2K=NOνA discrepancy. Finally, we estimate how the
exclusion level of LMA-Dark is reduced in the case where
CC NSI and/or CP violating NC NSI are present.
In Sec. II, we introduce the fitting procedure and develop

the formalism to describe CCNSI at the source and NC NSI
along with the new CP-phases at the detector. In Sec. III,
we discuss our results for CP violating NC NSI and CC
NSI, before summarizing in Sec. IV.

II. FORMALISM

A. Experimental details and fitting procedure

In this section we provide details of the COHERENT
data that we will fit, and of our fitting procedure. The
COHERENT experiment measures coherent elastic
neutrino-nucleus scattering. Neutrinos are provided from
pions decaying at rest, which in turn are produced from
the spallation neutron source. The data we will use in this
paper was collected with a total number of 1.76 × 1023

protons on target (pot) delivered to liquid mercury [3–5].
Monoenergetic muon neutrinos ðνμÞ at Eν ¼ 29.8 MeV
are produced isotropically from pion decay at rest
(πþ → μþνμ) followed by a delayed isotropic flux of
electron neutrinos (νe) and muon antineutrinos (ν̄μ) pro-
duced subsequently by muon decay at rest (μþ → νeeþν̄μ).
All three flavors are intercepted by a CsI[Na] detector at a
distance of L ¼ 19.3 m from the source.1 For all practical
purposes, the CsI will be considered as a target since the Na
as a dopant contributes negligibly [3]. We do not consider

the timing information between the prompt and delayed
signal in our analysis, which is a small effect at the current
precision level of COHERENT as noted e.g., in [44]. The
average production rate of the spallation neutron source
neutrinos from the pion decay chain is r ¼ 0.08 neutrinos
of each flavor per proton. The differential event rate, after
taking into account the detection efficiency ϵðTÞ, taken
from Fig. S9 in Ref. [3], of COHERENT reads

dNνα

dT
¼ tN

Z
Emax
ν

Emin
ν

dEν
dσα
dT

ðEν; TÞ
dϕναðEνÞ

dEν
ϵðTÞ; ð1Þ

where dσ=dTðEν; TÞ is the differential cross section of
CEνNS with respect to nuclear recoil, and dϕναðEνÞ=dEν

is the flux with respect to neutrino energy. Further,
t ¼ 308.1 days is the run time of the experiment, N ¼
ð2mdet=MCsIÞNA is the total number of target nucleons,
mdet ¼ 14.57 kg, NA is Avogadro’s number, MCsI is the
molar mass of CsI, Emin

ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=2

p
, M is the mass of the

target nucleus, Emax
ν is the upper limit of the neutrino

energy which is 52.8 MeV for the delayed signal and
29.8 MeV for the prompt signal. We take a recoiled energy
window of 4 to 30 keV for the analysis.
Our fitting procedure closely follows our earlier work

[36]. In particular, we apply here a recent measurement
from Ref. [86], which includes energy dependence of the
quenching factor (QF).2 The following relation between the
nuclear recoil energy and the number of photoelectrons
(p.e.) is used

np:e: ¼ fQðTÞ × T ×

�
0.0134
MeV

�
; ð2Þ

where fQðTÞ is the new quenching factor and 0.0134 is the
average yield of the scintillation light in the detector by a
single electron per MeV; both values were taken from
Ref. [86]. The expected number of events in the ith bin,
therefore, is

Ni ¼
Z

Tiþ1

Ti

dNνα

dT
dT; ð3Þ

where the nuclear recoil energy limits of the integration
ðTi; Tiþ1Þ for ith bin are related to the corresponding limits
in terms of number of photoelectrons by Eq. (2). For the
fitting analysis of the parameters we use the following χ2

function

1Recently new data was provided by COHERENT indicating
at about 3σ a nonzero CEνNS cross section with argon [85].

2There has been a debate about the correctness of this QF,
however, as we have checked, our results are not significantly
affected if we use the constant QF or the one used here. For a
realistic analysis the energy dependence should be there.
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χ2 ¼
X30
i¼4

½Ni
obs − Ni

expð1þ αÞ − Bið1þ βÞ�2
ðσiÞ2

þ
�
α

σα

�
2

þ
�
β

σβ

�
2

; ð4Þ

where Ni
obs is the observed event rate in the ith energy bin,

Ni
exp is the expected event rate given in Eq. (1) integrated

over the recoiled energy corresponding to each flavor, and
Bi is the estimated background event number in the ith
energy bin. The statistical uncertainty in the ith energy bin
is σi, and α, β are pull parameters related to the signal
systematic uncertainty and the background rates. The
corresponding uncertainties of the pull parameters are
σα ¼ 0.135 [86] and σβ ¼ 0.25. We calculate σα by adding
uncertainties related to flux (10%), neutron capture (5%),
acceptance (5%) and quenching factor (5.1%) in quad-
rature. All the data, background and uncertainties were
taken from Refs. [4,5].
Having established the fitting procedure, we will now

give the fluxes and the cross sections in the new physics
scenarios that we are interested in, namely charged current
nonstandard interactions and neutral current nonstandard
interactions including new CP phases. The former will
modify the flux, dϕναðEνÞ=dEν, while the latter will modify
the cross section, dσ=dTðEν; TÞ.

B. Effective Lagrangians and the NSI notations

Neutrinos for the COHERENT setup originate from
charged current (CC) reactions in pion (πþ) and muon (μþ)
decays and are detected via neutral current (NC) inter-
actions through coherent elastic scattering on the CsI[Na]
target. At the source, on top of the standard model weak
interaction, there can be CC nonstandard interactions (NSI)
in the πþ and μþ decays. Those are described by effective
dimension-six terms [63,66,87–89] as

Lπþ
CC ¼ −

GFffiffiffi
2

p ðδμβ þ εudLμβ Þ½d̄γλð1 − γ5Þu�½μ̄γλð1 − γ5Þνβ�;

ð5Þ

Lμþ
CC ¼ −

GFffiffiffi
2

p ðδαeδβμ þ εμeLαβ Þ½ν̄αγλð1− γ5Þe�½μ̄γλð1− γ5Þνβ�:

ð6Þ

Here GF is the Fermi constant, α, β denote the neutrino
flavors (e, μ, τ), and δαβ is the Kronecker delta. For
example, in the presence of CC NSI the two body decay
(πþ → μþνμ) is modified to πþ → μþναðα ¼ e; μ; τÞ,
where α ¼ μ corresponds to a flavor-conserving NSI and
α ¼ e, τ correspond to flavor-changing NSI. In these three
cases the parameters that control the fluxes are εudLμμ , εudLμe

and εudLμτ , respectively. Likewise, in the three-body leptonic

decay of muons, the ν̄μ flux is controlled by the parameters

εμeLμμ , εμeLeμ and εμeLτμ , while the νe fluxes are controlled by
εμeLμe , εμeLee and εμeLτe .
For the detection via NC reactions, nonstandard inter-

actions can modify it as well. At quark level, the NC NSI
can be conveniently written as

Lq
NC ¼ −

GFffiffiffi
2

p ½ν̄αγλð1 − γ5Þνβ�½ðgLαβδαβ þ εqLαβ Þq̄γλð1 − γ5Þq

þ ðgRαβδαβ þ εqRαβ Þq̄γλð1þ γ5Þq�: ð7Þ

Here q are first generation up/down quarks and gL=Rαβ are
SM NC couplings with left/right-handed target quarks.
Indices α ¼ β correspond to SM interactions plus
flavor-conserving NSI while α ≠ β corresponds to pure
beyond-the-standard-model flavor-changing interactions.
Summation over the flavor indices is implied in Eqs. (5)–(7).
All ε parameters are complex in the charged current

interactions in Eqs. (5) and (6). On the other hand, because
of the Hermiticity of the neutral current Lagrangian in
Eq. (7), all flavor-diagonal parameters are real while the
flavor changing parameters are complex. Under the
Hermiticity condition, the latter interchange the flavor
indices and the sign of the phases also changes, that is,
particularly in Eq. (7), ðεqL=Rαβ Þ� ¼ εqL=Rβα for α ≠ β.
Often one rewrites the left- and right-handed ε in vector

and axial vector form. The effective interactions terms in
Eqs. (5) and (7) can be written as

Lπþ
CC ¼ −

GFffiffiffi
2

p ½μ̄γλð1 − γ5Þνβ�½ðδμβ þ εudVμβ Þd̄γλu

− ðδμβ þ εudAμβ Þd̄γλγ5u�; ð8Þ

Lq
NC ¼ −

GFffiffiffi
2

p ½ν̄αγλð1 − γ5Þνβ�½ðgVαβδαβ þ εqVαβ Þq̄γλq

þ ðgAαβδαβ þ εqAαβ Þq̄γλγ5q�; ð9Þ

where

gV=Aαβ δαβ ¼ gLαβδαβ � gRαβδαβ; ð10Þ

and the vector and axial vector parameters are

εqV=Aαβ ¼ εqLαβ � εqRαβ : ð11Þ

We do not consider any right-handed currents in the
pion decays, so the only remaining contribution is the left-
handed one as given in Eq. (5). On top of this, since the
pion is a pseudoscalar particle, only the axial vector part of
the hadronic matrix element contributes in Eq. (8), and we
also consider only the axial vector NSI. Likewise, for all
practical purposes, the axial vector contribution in CEνNS
is negligibly small (see e.g., [16]) and thus we will consider
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only the vector terms in Eq. (9). That is, we will consider
for the CC NSI the parameters εudAμβ and εμeLαβ for pion and
muon decays at the neutrino production, while the NC NSI
parameters are εqVαβ at the detection.
It is important to mention that effects similar to the CC

interactions can also be produced due to the light sterile
neutrino production at the neutrino source in the pion and
muon decays. The light sterile neutrino effects and the
resulting lepton unitarity violation has recently been
studied with the CEνNS in Ref. [57]. The specific model
realization of such effects was studied long ago in Ref. [90].
However, our goal in this work is to focus only on the CC
NSI with the three standard model neutrinos.

C. Fluxes with CC NSI, cross section with NC NSI
and the expected energy spectrum

To estimate the effects of CC NSI at neutrino production,
we have to include them in the charged current decays
which will in turn modify the three fluxes in terms of the
CC NSI parameters. There occurs two types of parameters
in each decay. One is a flavor diagonal interaction
which interferes with the standard model process, and
the others are two flavor changing parameters for each
decay. The contribution of the latter adds incoherently to
the SM. After adding both types of CC NSI effects in each
decay, the total differential flux expression will change
accordingly as

�
dϕνμðEνÞ

dEν

�
NSI

¼
�
dϕνμðEνÞ

dEν

�
SM

�
ðj1þ εudAμμ j2 þ jεudAμe j2 þ jεudAμτ j2Þ≡ 1þ 2ReðεudAμμ Þ þ

X
α¼e;μ;τ

jεudAμα j2
�
;

�
dϕν̄μðEνÞ

dEν

�
NSI

¼
�
dϕν̄μðEνÞ

dEν

�
SM

�
ðj1þ εμeLμμ j2 þ jεμeLμe j2 þ jεμeLμτ j2Þ≡ 1þ 2ReðεμeLμμ Þ þ

X
α¼e;μ;τ

jεμeLμα j2
�
;

�
dϕνeðEνÞ

dEν

�
NSI

¼
�
dϕνeðEνÞ

dEν

�
SM

�
ðj1þ εμeLee j2 þ jεμeLeμ j2 þ jεμeLeτ j2Þ≡ 1þ 2ReðεμeLee Þ þ

X
α¼e;μ;τ

jεμeLeα j2
�
; ð12Þ

where the standard fluxes for COHERENT read

�
dϕνμðEνÞ

dEν

�
SM

¼ rNpot

4πL2
δ

�
Eν −

m2
π −m2

μ

2mπ

�
;

�
dϕν̄μðEνÞ

dEν

�
SM

¼ rNpot

4πL2

64E2
ν

m3
μ

�
3

4
−
Eν

mμ

�
;

�
dϕνeðEνÞ

dEν

�
SM

¼ rNpot

4πL2

192E2
ν

m3
μ

�
1

2
−
Eν

mμ

�
; ð13Þ

with, again, Npot ¼ 5.71 × 1020 being the number of
protons per day, L ¼ 19.3 m is the baseline and r ¼ 0.08
is the number of neutrinos per flavor per proton on target.
In Eq. (12), for each flux there are only two types of
parameters; twice the real part of the flavor diagonal NSI
and the three modulus squared parameters which include
one flavor diagonal and two flavor changing ε. Now we
discuss the effect of NC NSI on the cross section of
CEνNS. The differential cross section of CEνNS, with
respect to the nuclear recoil energy T, for neutrinos with
flavor β and energy Eν scattered off a target nucleus ðA; ZÞ,
can be written for T ≪ M as [1,2,6,8,16]

dσβ
dT

ðEν; TÞ ≃
G2

FM
π

Q2
Wβ

�
1 −

MT
2E2

ν

�
F2ðq2Þ: ð14Þ

Here M is mass of the target nucleus with Q2
Wβ its weak

nuclear charge, and Fðq2Þ is the nuclear form factor as a

function of q2 ¼ 2MT, the momentum transfer in the
scattering of neutrinos off the nuclei. We take the nuclear
form factor Fðq2Þ from Ref. [91], given by

Fðq2Þ ¼ 4πρ0
Aq3

½sinðqRAÞ − qRA cosðqRAÞ�
�

1

1þ a2q2

�
:

ð15Þ

Here, ρ0 is the normalized nuclear number density, A is
the atomic number of CsI, RA ¼ 1.2A1=3 fm is the
nuclear radius, and a ¼ 0.7 fm is the range of the Yukawa
potential.
The weak chargeQ2

Wβ is expressed in terms of the proton
number (Z), neutron number (N), standard vector coupling
constants gVp ¼ 1=2 − 2 sin2 θW ,

3 gVn ¼ −1=2 and the NC
NSI parameters εuVαβ and εdVαβ , as

Q2
Wβ ¼ ½ZðgVp þ 2εuVββ þ εdVββ Þ þ NðgVn þ 2εdVββ þ εuVββ Þ�2

þ
X
α≠β

jZð2εuVαβ þ εdVαβ Þ þ Nð2εdVαβ þ εuVαβ Þj2: ð16Þ

As explained before, due to the Hermiticity of the NC
Lagrangian in Eqs. (7) and (9) the diagonal parameters εqVββ
are real, while the flavor-changing parameters εqVαβ are

3We use the low energy value sin2 θW ¼ 0.2387 [92] for the
analysis.
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complex and can be written in terms of modulus and phase as jεqVαβ jeiϕ
qV
αβ for α ≠ β. After expanding the terms, we can rewrite

the weak charge in Eq. (16) as

Q2
Wβ ¼ ½ZðgVp þ 2εuVββ þ εdVββ Þ þ NðgVn þ 2εdVββ þ εuVββ Þ�2

þ
X
α≠β

½ð2Z þ NÞ2jεuVαβ j2 þ ðZ þ 2NÞ2jεdVαβ j2 þ 2ð2Z þ NÞðZ þ 2NÞjεuVαβ jjεdVαβ j cosðΔϕαβÞ�; ð17Þ

whereΔϕαβ ¼ ϕuV
αβ − ϕdV

αβ is the relative phase of εuVαβ and εdVαβ . Notice that we have suppressed the superscripts “uV=dV” on
the phases and “udV” on the relative phases. For νν=νμ̄ and νe respectively, Q2

Wβ is

Q2
Wμ=μ̄ ¼ ½ZðgVp þ 2εuVμμ þ εdVμμ Þ þ NðgVn þ 2εdVμμ þ εuVμμ Þ�2 þ ð2Z þ NÞ2ðjεuVeμ j2 þ jεuVτμ j2Þ þ ðZ þ 2NÞ2ðjεdVeμ j2 þ jεdVτμ j2Þ

þ 2ð2Z þ NÞðZ þ 2NÞ½jεuVeμ jjεdVeμ j cosðΔϕeμÞ þ jεuVτμ jjεdVτμ j cosðΔϕτμÞ�; ð18Þ

Q2
We ¼ ½ZðgVp þ 2εuVee þ εdVee Þ þ NðgVn þ 2εdVee þ εuVee Þ�2 þ ð2Z þ NÞ2ðjεuVeμ j2 þ jεuVτe j2Þ þ ðZ þ 2NÞ2ðjεdVeμ j2 þ jεdVτe j2Þ

þ 2ð2Z þ NÞðZ þ 2NÞ½jεuVeμ jjεdVeμ j cosðΔϕeμÞ þ jεuVτe jjεdVτe j cosðΔϕτeÞ�: ð19Þ

Thus, in presence of NC NSI, the parameters to analyze are
jεu=dVμμ j, jεu=dVee j, jεu=dVeμ j, jεu=dVτμ j, jεu=dVτe j, Δϕeμ, Δϕτμ, Δϕτe.
Notice that in Eq. (19), the terms with “eμ” indices were
obtained from the terms with originally “μe” indices due to
the Hermiticity requirement.

We can now take a look at the observable effects of the
CC and NC NSI parameters including their CP-phases on
COHERENT’s energy spectrum. The result of this exercise
is shown in Fig. 1. The parameter values are “�0.074” for
the CC parameters given in Eq. (12) and 0.074 for the

FIG. 1. Observed energy spectrum of COHERENT data in terms of photoelectrons together with the expected spectrum for SM, CC
NSI and NC NSI with three choices of the new CP-phases. For the case CC NSI, the moduli were all taken þ0.074 or −0.074 while
setting the NC NSI to zero. For the case NC NSI all parameters were takenþ0.074with three choices for the CP-phases while setting all
the CC NSI to zero.
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modulus of the NC parameters in Eqs. (18) and (19) with
three choices of the relative CP-phases. As can be seen in
Eq. (20), the CP-terms are responsible for different
interference effects in each case. When Δϕ ¼ 0, there is
constructive interference, when Δϕ ¼ π, there is destruc-
tive interference, while for Δϕ ¼ π=2 the interference
effects are zero.
One can expect that the constraints on the CC NSI

parameters will be weaker than on the NC NSI. The main
reason for this is that as soon as εuVαβ or εdVαβ are switched on,
the proton number appears in the weak charge in Eqs. (12),
(16), which otherwise is very much suppressed due to the
accidentally small gVp ∝ 1–4 sin2 θW . In contrast, CC NSI

parameters appear as an overall (1þ ε) contribution to the
flux, and hence there is less sensitivity to them.

III. RESULTS AND DISCUSSION

In this section, we will present the fits of the CC and NC
parameters in the framework sat up so far.

A. Impact of CP-violating phases on the NC NSI
parameter spaces

To discuss the CP-effects more conveniently, we ignore
first the flavor-diagonal terms and rewrite the cross section
in terms of only the flavor-changing NSI parameters and
their relative phases as

dσβ
dT

ðEν; TÞ ≃
G2

FM
π

½ðZgVp þ NgVn Þ2 þ
X
α≠β

½ð2Z þ NÞ2jεuVαβ j2 þ ðZ þ 2NÞ2jεdVαβ j2

þ 2ð2Z þ NÞðZ þ 2NÞjεuVαβ jjεdVαβ j cosðΔϕαβÞ��
�
1 −

MT
2E2

ν

�
F2ðq2Þ: ð20Þ

There are three relevant relative CP-phases, that is, Δϕeμ,
Δϕτμ andΔϕτe, occurring only in the flavor-changing terms.
The phaseΔϕeμ is related to εuVeμ and εdVeμ , and similarlyΔϕτμ

is related to εuVτμ and εdVτμ and Δϕud
τe to εuVτe and εdVτe .

For the fit we set one of the three ε’s to zero and fit the
other two for three extreme choices of the corresponding
relative CP-phases, that is, Δϕ ¼ 0, π=2 and π. The
obtained results for the three parameter sets are shown in
Fig. 2. In each case, the result for the choice corresponding to
Δϕ ¼ 0 was tacitly obtained before and reported in several
previous papers, while the other two choices Δϕ ¼ π=2; π
are presented for the first time in this work.

In the case of no interference (Δϕ ¼ π=2), the standard
diagonal bands with both positive and negative slopes are
transformed into the elliptical regions as can be seen for all
three cases in Fig. 2. As a by-product of the no-interference
choice, one can simultaneously constrain the two relevant
absolute parameters in each case. As shown in blue and red,
the lines at the center of all graphs corresponds to the
degenerate minimum for each case.
We continue by investigating the space of one particular

set of parameters, namely the absolute value jεqVeμ j and
the phase ϕeμ, which are important for the long-baseline
oscillation appearance and disappearance experiments.

FIG. 2. NC NSI: 68% and 90% C.L. contour boundaries in the flavor changing NC NSI parameter spaces corresponding to three
possible sets of parameters with three extreme choices for the new CP-phases, that is, Δϕαβ ¼ π=2 (the central elliptical contour),
Δϕαβ ¼ 0 (the band with negative slope) and Δϕαβ ¼ π (the band with positive slope). The best-fit values are shown in red and
blue colors. The relatively extended best-fits are due to the flat minimum in each case. The legend assignments in the left panel is
applicable to all.
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Very recently, there has been reported a ∼2σ discrepancy
between T2K [93] and NOνA [94] measurements of the
standard 3ν oscillationCP-phase (δ) [79,80]. In Ref. [81], it
was argued that in the presence of NC NSI and a related
new CP-phase this tension is reduced. We explore here the
same parameter space relevant for the two long-baseline
oscillation experiments. The result is shown in Fig. 3,
where we present the parameter range explaining the T2K/
NOνA discrepancy, as well as an independent limit
obtained by IceCube [95]. Two fits of COHERENT data
was performed in this work here.
First, we take all other parameters equal to zero except

one parameter over which we marginalize and fit the
absolute parameter jεqVeμ j and the corresponding phase
ϕqV
eμ . This region is shown in dark red color and marked

as “COHERENT (a)” in Fig. 3. The marginalizing param-
eter is either jεdVeμ j and its phase when we fit jεuVeμ j and its
phase, or jεuVeμ j and its phase when we fit jεdVeμ j and its phase.
Second, we marginalize over all the other parameters and fit

jεuVeμ j and ϕuV
eμ or jεdVeμ j and ϕdV

eμ . This region is shown in light
red color and marked as “COHERENT (b)” in Fig. 3. This
result is independent of the choice of the quark flavor due to
the symmetry between terms for up and down quarks
appearing in Eq. (20).
As can be seen from Fig. 3, marginalization mitigates the

excluded region, while in the first case, the COHERENT
data alone excludes a large parameters space allowed by
NOνA and T2K, but is relatively weaker compared to
IceCube. Even in case of COHERENT (b), COHERENT
gives comparable or better constraints than NOνA and T2K
in some parts of the parameters space. Also one can see from
the figure, the parameter space of COHERENT for the first
case [COHERENT (a)] shows similar behavior to the
IceCube. This points out how COHERENT is complemen-
tary to long-baseline experiments, and already tests part of
the parameter space that explains the T2K=NOνA discrep-
ancy. Note, however, that if there is only one ε, COHERENT
has no sensitivity to any phase.

FIG. 3. NC NSI: 90% C.L. contour boundaries in the parameter space of absolute NSI parameter and the relevant CP-phase for the
case when we set all NSI parameters equal zero except for one of the εqVeμ (q ¼ u or d), over which we marginalize [COHERENT (a)] and
for the case when we marginalize over all other parameters [COHERENT (b)]. The overlaid curves for T2K+NOνA and IceCube were
taken from Refs. [81,95] with normal ordering of the neutrino masses. For a realistic comparison, the T2K+T2Kþ NOνA and IceCube
results of the absolute parameter boundaries on the horizontal axes were normalized for the two quark case. The region on the right side
of all curves is the excluded region.
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B. Constraints on CC NSI parameters
from COHERENT data

Nowwe use the COHERENT data to constrain the source
CCNSI parameters related to pion andmuon decays. As can
be seen in Eq. (12), each flux has two types of CC NSI
parameters, flavor conserving and flavor changing. Only the
former interferes with the SM contribution. For each flux,
we fit the real part of the flavor-conserving ε and one flavor-
changing NSI parameter together, while setting parameters
in the other two fluxes to zero. The three fit results at 68%
and 90% C.L. are shown in Fig. 4. The one parameter at-a-
time constraints on each individual parameter are summa-
rized in Table I. For comparison, we also give bounds
fromother studies, whichwere obtained from the kinematics
of weak decays, Cabibbo–Kobayashi–Maskawa (CKM)
matrix unitarity and branching ratios of meson decays.
While the COHERENT constraints are weaker than those,
we note that direct comparison with the other bounds
from branching ratios and kinematics is not always

straightforward, because those often involve charged lep-
tons in contrast to neutrinos [64,96].
Note that in Eq. (1) the real parts of the CC NSI

parameters appear with a relative factor two compared to
the squared absolute values, which explains the different
scale on the axes in Fig. 4. Note further that the relative
contribution to the total flux in COHERENT is 50% for ν̄μ,
31% for νe, and 19% for νμ [3]. This reflects in the size
of the constraints in the left ðνμÞ, middle ðν̄μÞ and the
right ðνeÞ panels of Fig. 4.

C. Interplay between the CC NSI and the NC NSI
at COHERENT and the LMA-Dark solution

For illustration on the interplay of CC and NC NSI
parameters, we focus on fitting the two NC NSI parameters
relevant for the LMA-Dark degeneracy existing in the
solar oscillation data [82]. This issue is related to the two
possible solutions in the parameter space of the solar
mixing parameters (θ12 and δm2

21), where one solution is
the standard 3ν mixing while the other one is caused by
flavor-conserving NC NSI parameters during propagation
and has, in particular θ12 > π=4. The corresponding NSI
parameters are εuVee and εuVμμ , which are real. This possibility
has been ruled out, in the pure effective operator limit
in Refs. [19,20,24,25,36,44,46,55]. In the earlier papers
[19,20,24,25,36,44], it was concluded that the LMA-Dark
solution is excluded by the COHERENT data by at least 3σ.
Recently, Ref. [46] presented a revised analysis and
concluded that there is still room for the LMA-Dark
solution which cannot be excluded by the CEνNS data.
Very recently, Ref. [55] has shown that LMA-Dark is
disfavored 2.2σ in the presence of an extra phase for the
corresponding flavor diagonal NSI parameters.
In our following analysis, we will show how the

significance level of the exclusion of the LMA-Dark
solution gets affected in the presence of CC-NSI parameters

FIG. 4. Allowed regions of the CC NSI parameters relevant for the COHERENT setup considered in this work. In each figure, the
index α of the label on y-axis corresponds to e, μ or τ. Each figure corresponds to one of the three fluxes, νμ (left), ν̄μ (middle), and νe
(right), as defined in Eq. (12).

TABLE I. One parameter at-a-time constraints at 90% C.L.
from this work for the CC NSI derived from Fig. 4 and defined in
Eq. (12) compared to other studies [97] (first two rows), [98] (last
four rows). The subscript α in the 1st column and third, fifth,
seventh row stands for e, μ, τ. In the column “other bounds” the
abbreviation “Br.” stands for branching ratios, “Osc.” stands for
oscillations, “Kin.” stands for kinematics.

Parameter COHERENT (this work) Other bounds

ReðεudAμμ Þ ½−0.9; 0.9� ½−0.007; 0.012� ðBr:Þ
εudAμα ½−1.3; 1.3� ½−0.118; 0.118� ðBr:Þ
ReðεμeLμμ Þ ½−0.3; 0.5� ½−0.030; 0.030� ðKin:Þ
εeμLμα ½−1.1; 1.1� ½−0.087; 0.087� ðOsc:Þ
ReðεμeLee Þ ½−0.5; 0.7� ½−0.025; 0.025� ðOsc:Þ
εμeLeα ½−1.2; 1.2� ½−0.030; 0.030� ðKin:Þ
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and the new CP-phases. This is meant only as an
illustration of the impact of a possible simultaneous
presence of those. In principle one should fit the solar
neutrino data in the presence of those parameters as well,
which is beyond the scope of this work. From Fig. 5, one
can see that after including the CC NSI and the CP-phases,
the allowed boundaries extend towards the LMA-Dark
region, which implies worsening of the exclusion signifi-
cance of the LMA-Dark solution. A more concrete state-
ment would require fitting solar and other oscillation data in
combination with coherent scattering data, which is beyond
the scope of this work.
Here we want to analyze the following aspects. First, we

want to see the impact of the CC NSI parameters on the
given flavor-conserving NC NSI in the fit. Second, we want
to see effect ofCP-phases on the given NC NSI parameters.

Third, we want to see how the allowed region for the given
parameters change with and without marginalization over
all the other parameters. Fourth, how these three aspects
change the significance level of excluding the LMA-Dark
solution. We emphasize that we are not interested in fitting
of all the NC NSI parameters in this study, which can be
found in several other works, e.g., in Refs. [44,47]. Here we
consider the following analysis as an example of how the
above four motivations could be tested. To this aim we fit
the two parameters (εuVee and εuVμμ with the following five
choices: (a) Setting all the other NSI parameters equal to
zero. (b) Marginalizing over all the real CC parameters in
the range ð−0.1; 0.1Þ and absolute parameters in the range
(0.0,0.1), while setting all the NC NSI parameters equal to
zero. (c) Marginalizing over all real NC parameters in the
range ð−0.1; 0.1Þ and absolute parameters in the range

FIG. 5. CC, NC NSI and CP-phases together: Two-dimensional allowed regions for the flavor diagonal NC NSI parameters relevant
for the LMA-Dark solution in solar data. For guidance of the best-fit values and the 90% C.L. projections, we also provide one parameter
at-a-time Δχ2 distribution for each fitting parameter in the top and right-side panels. Contour plots for case (a) [red], (b) [green],
(c) [orange], case (d) [blue] were obtained at 90% C.L. with Δχ2 for 1 d.o.f. while case (e) (black) was obtained at 3σ for 2 d.o.f. C.L.
The red and green stars correspond to one of the two best-fit points for case (a) and (b), respectively. For case (c), (d), and (e), the minima
are flat as can also be seen in the one-dimensional plots. The legend colors for cases (a)–(d) corresponds to both two-dimensional and
one-dimension plots. See text for further details about the five cases and the fitting procedure. The 3σ diagonal band shows the
LMA-Dark solution in solar data taken from Ref. [20].
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(0.0,0.1) with the three relative CP-phases in the range
ð0; 2πÞ while setting all the CC NSI parameters equal to
zero. (d) and (e) Marginalizing over all real parameters,
both CC and NC NSI, in the range ð−0.1; 0.1Þ and absolute
parameters, both CC and NC NSI, in the range ð−0.1; 0.1Þ
and the relative CP-phases in the range ð0; 2πÞ.
The result of this analysis is illustrated in Fig. 5. For each

case mentioned above, we present our results of this
analysis in two-dimensional allowed regions and in one-
dimensional Δχ2 distributions in the top and right-side
plots. The two-dimensional contour plots for the cases
(a)–(d) were obtained at Δχ2 ¼ 2.71 ð90%Þ for one degree
of freedom (d.o.f.) in order to make a reasonable compari-
son with the one-dimensional plots in the top and right-side
panels while case (e) was obtained with Δχ2 ¼ 11.83 ð3σÞ
for two d.o.f. to compare with the corresponding 3σ LMA-
Dark solution shown in Fig. 5. All the minima and the
90% C.L. boundaries of the two-dimensional contours and
the one-dimensional Δχ2 distributions in Fig. 5 are con-
sistent with each other. The best-fit points for cases (a)
and (b) are shown with stars. As can be seen from the
corresponding one-dimensional plots, these two cases
have absolute minima. For case (c), (d), and (e), after
including the CC, NC NSI and the CP-phases in the fit,
the absolute minima are lost and we get a flat minimum.
The range of the flat minimum for case (c) and (d) can be
estimated from the projections of the one-dimensional
plots on the corresponding contour plots. Note that
we have taken the same fitting procedure for the one-
dimensional plots as for the two-dimensional plots in
cases (a)–(d) except one of the two parameters (εuVee , εuVμμ )
was set to zero.
The effects of the CC NSI and CP-phases can be seen by

comparing cases (a) versus (b), and (c) versus (d) and (e) in
Fig. 5. In each case when the CC NSI and CP-phases are
included in the fits, the contour boundaries broaden and
extend towards the LMA-Dark solution. The CC NSI
effects are seemingly small as compared to the NC NSI,
but their effects are still there. As mentioned above, for a
fair comparison with the solar 3σ LMA-Dark solution, we
also take the special case (e) of the allowed region at 3σ
C.L. ðΔχ2 ¼ 11.83Þ (two d.o.f.). We recall that (e) corre-
sponds to the case of including all parameters; that is, CC
NSI, NC NSI and the CP-phases in the fit and thus is the
most general case for testing the significance of the
exclusion of the LMA-Dark solution.

IV. SUMMARY AND CONCLUSIONS

In recent years, considerable effort has been made to
constrain new physics with CEνNS using COHERENT
data. There have also been several attempts to show how
this process plays a complimentary role in resolving issues
existing in oscillation measurements of standard mixing
parameters, which otherwise cannot be resolved by the

oscillation experiments alone. Despite the important role of
the observed process, we find that two important aspects
related to NSI, namely, the CC NSI at neutrino production
and the new CP-violating phases associated with the NC
NSI, are missing from previous studies. A detailed analysis
of these two aspects using the COHERENT data was the
main goal of this paper. The procedure developed here for
our fits of COHERENT data can of course be used for any
future experimental setup. This paper focuses on the
present situation. Detailed studies on future constraints
will be presented elsewhere.
By including the CC NSI at the neutrino production and

the CP-phases related to NC NSI at the detection, we have
addressed two issues in oscillation experiments; namely,
the LMA-Dark solution and the tension between T2K and
NOνA measurements of the standard CP-phase (δ). This is
based on the fact that new CP-phases implied by NC NSI
can be connected to measurements of the standard CP-
phase in running or future long-baseline neutrino oscil-
lation experiments. This is another example on how
scattering and oscillation experiments complement each
other and can be used to resolve degeneracies. In addition,
we have also constrained CC NSI.
As expected, the bounds on the CC NSI are not

competitive with existing ones for reasons discussed in
Secs. III A and III B. However, future CEνNS experiments
with larger precision and more statistics will certainly push
the parameter space further, which will be an important
independent test for the CC NSI models. On the other hand,
new CP-phases associated to NC NSI significantly change
the limits on the absolute NC NSI parameter values and
therefore need a careful treatment.
For the CP-effects, we have presented our results both in

terms of relative phases arising in the NC NSI with the up
and down quarks and in terms of individual phases. For the
first case, we analyzed in detail how the allowed regions of
the corresponding flavor-changing parameters are changed
by including the relative CP-phases. In the second case,
we chose one specific set of parameters, namely the
absolute value and the associated individual CP-phase
either for up or down quarks, which are particularly
relevant for T2K and NOνA, but also for IceCube. We
performed analyses with and without including all other
parameters in our fit to see their effects (see Fig. 3) on the
oscillation measurements. We have shown that in one case
[COHERENT (a)], COHERENT excludes a large param-
eter space that on the other hand is allowed by NOνA and
T2K while COHERENT does relatively weaker with
respect to IceCube. Even in the case of COHERENT
(b), COHERENT gives competitive or better constraints
than the T2K and NOνA.
To see the combined effects of all the CC, NC NSI and

the associated CP-phases, we focused on two flavor-
conserving parameters which are relevant for the solar
oscillation data and which cause the LMA-Dark solution to
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the solar oscillation mixing parameters. We have studied
five different cases as summarized in Fig. 5. If we include
all the parameters in the fit, the previous ≳3σ exclusion of
the LMA-Dark solution is weakened and the allowed
parameter space from COHERENT data extends almost
to the center of the LMA-Dark solution.
To conclude, CEνNS is not only a good way to probe the

absolute NC NSI parameters, but also the CC NSI
parameters and the new CP-phases associated with the

flavor-changing NC NSI parameters. Our analysis pro-
vides an independent method of testing those parameters
and can contribute to resolve issues faced by the oscil-
lation data.
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