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We study the recent XENON1T excess in the context of solar scalar, specifically in the framework of
Higgs portal and the relaxion model. We show that mϕ ¼ 1.9 keV and gϕe ¼ 2.4 × 10−14 can explain the
observed excess in science run 1 (SR1) analysis in the 1–7 keV range. In the minimal scenarios we
consider, the best-fit parameters are in tension with stellar cooling bounds. Despite this fact, the excess
represents an example bringing attention to two interesting effects of general relevance. First, the scalar-
Higgs mixing angle reproducing the excess, sin θ ≃ 10−8, is intriguingly close to the maximum value of
mixing angle for the technical naturalness of the scalar mass. While finding a parameter value very close to
its theoretical limit may naively seem an unlikely coincidence, we demonstrate that there exists a class of
models which generically saturate the mixing naturalness bound. Secondly, we discuss a possibility that a
large density of red giant stars may trigger a phase transition, resulting in a local scalar mass increase
suppressing the stellar cooling. For the particular case of minimal relaxion scenarios, we find that such type
of chameleon effects is automatically present but they can not ease the cooling bounds. They are however
capable of triggering a catastrophic phase transition in the entire Universe. Following this observation we
derive a new set of bounds on the relaxed relaxion parameter space. Finally, we present two nonminimal
models that demonstrate how the cooling bounds can be relaxed as a result of high density effects.
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I. INTRODUCTION

Recently, the XENON1T experiment reported an excess
of electronic recoil events in the science run 1 (SR1) signal
[1]. Within the energy range of 1–7 keV, the expected
number of background only events is 232� 15, while the
observed number of events is 285 with an apparent peak
near 2–3 keV, in contrast to the expected flat background.
The discrepancy corresponds to a 3.5σ rejection of the
background hypothesis in favor of an additional peaked
spectrum resembling a solar axion source [1]. An unac-
counted for background of tritium decay would lower the
significance of the excess to about 2.2σ. While it is possible
that the excess is due to a statistical fluctuation or yet

another unaccounted background, we focus on the case that
it is due to the existence of a new degree of freedom with a
mass smaller than a few keV.
The interpretation for the excess as a solar axionwithma ≲

0.1 keV leads to an electronic coupling of gae ∼ 3 × 10−12,
where the corresponding upper bound is gae < 3.7 × 10−12

[1]. This is consistentwith theLUXsolar axion search,which
implies an upper bound of gae < 3.5 × 10−12 [2], but in
tension with astrophysical bounds from stellar cooling.
Reference [3] reported an upper bound of gae ≲ 3 × 10−13

from red giant (RG) stars cooling. Yet there are hints for a
signal in anomalous energy loss in white dwarfs, RG stars,
and neutron stars which point to a preferred coupling of
gae ¼ ð1.6� 0.3Þ × 10−13 [4] (see also [5]). However, as
pointed by Ref. [6], a light scalar with a mass at or below the
keV scale can be produced in the Sun and be probed by dark
matter (DM) direct detection experiments through electron
ionization at the keV scale. In this work we mainly focus on
this possibility and confront it with the XENON1T excess.
Other possible implications of the recent XENON1T data
were discussed in [7–33].
Producing a light scalar (or a pseudoscalar with CP-odd

couplings) is generically a nontrivial task from the model-
building point of view. We will concentrate on two cases: a
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generic scalar Higgs portal scenario, which can be seen as
an effective description of various more complicated
constructions, and a more predictive relaxion model [34]
motivated by the Higgs mass naturalness problem. While
the relaxion is considered to be a pseudoscalar, its vacuum
generically breaks CP [35,36] leading to a scalarlike
phenomenology.
Below, we analyze the recent science run 1 XENON1T

result [1] in the context of a new scalar field with mass at
the keV scale or below and show that such a new particle is
compatible with the excess. In addition, we explore its
implications for the S2-only analysis [37] and show that
such scalar with keV mass has a clear signature in terms of
a bump on flat background. However, the bounds from
stellar cooling are stronger [38] and exclude the preferred
region of the parameter space. We also consider the case
where the tritium background is taken into account and
show that the preferred parameter space is consistent with a
smaller coupling and the tension with stellar cooling bound
is weakened.
Finally, we map the relevant parameter space to the

generic Higgs portal and the relaxion model [34]. We show
that the reported excess is located close to the naturalness
bound of the scalar-Higgs mixing angle and argue that such
a feature is in fact generic for a certain class of scenarios.
We also discuss a possibility that a localized phase
transition takes place inside RGs,1 locally increasing the
scalar mass, and, hence, alleviating the tension with stellar
cooling bounds. We find that such phase transition can
occur in minimal (non-QCD) relaxion models, but, unfortu-
nately, in a region of parameter space not compatible with
the reported excess. Nevertheless, we derive a new con-
straint on the relaxion parameter space, which is required to
avoid a new phase, with unrealistic Higgs mass, to fill the
whole Universe.

II. THE SOLAR RELAXION/SCALAR SIGNAL

We estimate the solar scalar signal by following Ref. [6].
For the axion case, see [39]. The relevant ϕ-electron
interaction Lagrangian is given by

L ⊃ −gϕeϕēe: ð1Þ

Below, we focus on the mϕ ≲ 3 keV mass range and
consider finite mass effects.
Within the Sun, light scalars can be produced by various

production mechanisms: bounded electrons (bb), recombi-
nation of free electrons (bf), Bremsstrahlung emission due
to scatterings of electrons on ions (ff), Bremsstrahlung
emission due to scatterings of two electrons (ee), and
Compton-like processes (C). At the relevant energy scale,

the dominant production rate is the electron-ion
Bremsstrahlung. The total differential scalar flux is esti-
mated as

dΦ
dω

≈
ωk

8π3R2

Z
⊙
dVΓprodðωÞ; ð2Þ

where Γprod is sum over all production rates, R ¼ 1 AU is
the distance between the Earth and the Sun, ω and k are the
scalar energy and momentum, respectively, and V is the
Sun volume, where the Sun profile is taken from [40].
The ratio between the matrix elements of a γ emission

and a ϕ emission (or absorption) is given by [41]

jMðe → eϕÞj2
jMðe → eγÞj2 ≈

g2ϕe
4πα

β2; ð3Þ

where β ¼ k=ω is the scalar velocity. Since the ratio in
Eq. (3) enters both in the production and in the detection
(divided by β), the ratio between the number of scalar and
pseudoscalar events rates can be written as

RϕðωÞ
RaðωÞ

¼ g4ϕe
g4ae

m4
e

ω4

�
4

β2

3 − β2=3

�
2

; ð4Þ

where Rϕ;aðωÞ ¼ dΦ
dω σϕ;aðωÞ, and σϕ;aðωÞ is scalar and

pseudoscalar absorption cross-section for liquid Xenon
[6,41–43]. From Eq. (4) we learn that the solar scalar
signal is softer than the solar axionlike case, and, thus, it
will be peaked at lower energies.
Next, following [6] we evaluate theRϕðωÞϵXe, where the

XENON1T detector efficiency, ϵXe, is taken from [1]. The
detector effects are taken into account by a Gaussian
smearing of the signal, where the relevant parameters are
adopted from [44]. The predicted ϕ event rates (after
smearing) for three benchmark points, BM1;2;3, with mϕ ¼
ð0; 1.3; 1.9Þ keV and gϕe ¼ ð0.8; 1.5; 2.4Þ × 10−14, respec-
tively, are plotted in Fig. 1. We validated the smearing
procedure by smearing the massless axion signal spectrum
from Ref. [39] and comparing it to Fig. 1 of [1], and found a
matching up to few percent level.
In addition to the above signal, manifested in both a

scintillation signal (S1) and an ionization signal (S2), we
consider the scalar signal in the XENON1T’s S2-only
analysis [37], where the energy threshold is lower,
∼200 eV. Since in the scalar case the signal is softer, it
is expected to have a better sensitivity in the S2-only
analysis. Scalars with masses around the solar interior
plasma frequencies, 1 eV≲ ωp ≲ 300 eV, have enhanced
production rate due to mixing with the photon longitudinal
mode in the Sun plasma [38]. As pointed out in [6], the
resulting sensitivity for mϕ ≲ 300 eV by using the
XENON1T S2-only dataset [37] is improved by an order
of magnitude. This resonant production is only efficient for

1While the horizontal branch stars cooling is also in conflict
with the observed excess, we first focus on the stronger tension
coming from RGs.
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scalar masses below the local plasma frequency, which
affects the shape of the expected spectrum with respect to
the scalar mass. We finally note that in-medium mixing
effect at the detector is negligible for the solar scalar, while
it could be important for direct detection experiments for
light scalar dark matter [45].

III. RECASTING OF THE XENON1T EXCESS
AS A RELAXION/SCALAR

We fit the scalar signal for the SR1 dataset of Ref. [1]
with and without the tritium background as follows. In the
first case, we construct a likelihood function of mϕ and gϕe
for the scalar signal and background. We take the back-
ground model as fixed, directly from Fig. 4 of [1]. This is
justified as the background (without the tritium) is essen-
tially fixed by the high energy spectrum and the injection of
the signal at low energy has negligible effect on it. This is

evident from the ∼2% change at the high end energy tail in
the best fit while considering the solar axion, tritium, and ν
magnetic moment in Ref. [1]. To assess the sensitivity of
the result, we also add the tritium background component,
where we profile over its magnitude.
By minimizing the likelihood, the best-fit point (with and

without the tritium background) is found to be mϕ ¼
1.9 keV and gϕe ¼ 2.4 × 10−14, where the left panel of
Fig. 2 shows the 68%, 95%, and 99% confidence intervals
in the mϕ − gϕe plane with and without the tritium back-
ground. To find the contours we apply the asymptotic
formula from [46] for two free parameters. We find that the
preferred region is for a finite mϕ ∼ 2 keV. This is in
contrast to the pseudoscalar case, where an effectively
massless solution is favored. The reason is that a massless
or very light scalar spectrum has a significant soft compo-
nent relative to the pseudoscalar case, as emphasized in
Eq. (4). The right panel of Fig. 2 demonstrates this point,
showing a comparison between the signal and background
with respect to the XENON1T data for the three benchmark
models, BM1;2;3. We note that the preferred region in the
parameter space is in tension with the upper bound found
from limits on RG cooling including plasmon-scalar
mixing effect, gϕe < 7 × 10−16 [38]. As a cross check,
we have performed the same likelihood analysis for the
pseudoscalar case and found good agreement with the
result of [1].
In addition to the S1 and S2 signal, we now consider the

possibility of a scalar signal in the S2-only analysis of
XENON1T [37]. This analysis only uses a partial back-
ground model, making possible setting upper bounds on
signals and testing the consistency of a given signal. In
Fig. 3, we plot the S2-only expected signal for BM2,
mϕ ¼ 1.3 keV and gϕe ¼ 1.5 × 10−14, and compare it to
the expected background and the data from [37]. For the
purpose of demonstration, we have multiplied the signal by

FIG. 1. The solar scalar event rates are shown for three
benchmark points as indicated on the plot. The shown event
rates include the detector efficiency and resolution. See the main
text for details.

FIG. 2. Left: The 68%, 95%, and 99% confidence intervals are shown, solid (dashed) contours are with (without) the tritium
background. The three benchmark points withmϕ ¼ ð0; 1.3; 1.9Þ keV and gϕe ¼ ð0.8; 1.5; 2.4Þ × 10−14 are marked in cyan, orange, and
purple, respectively. The purple (BM3) is the best-fit point. Right: The signalþ background is shown for the three benchmark points.
The black points and gray line are data and background (without tritium) from [1], respectively.
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10. We have also verified that the best-fit parameters for
SR1 dataset of Ref. [37] is consistent with S2-only analysis.
In addition to BM2, we have also plotted the signals of
mϕ ¼ 200 eV and gϕe ¼ 4 × 10−15. For these parameters,
the spectral shape of events for SR1 excess is close to the
BM1 in Fig. 2, while the events at the peak are suppressed
by less than ten percent for the same coupling constant.
This choice of parameters, especially in the context of
relaxed relaxion, may lead to interesting phenomenological
consequences inside stellar objects due to finite density
corrections to the potential. This will be briefly discussed
in Sec. V.

IV. NATURALNESS MIRACLE

We will now confront the observed excess of events with
theoretical models. Let us start with the case of a generic
scalar Higgs portal model, containing one new scalar
degree of freedom. Its coupling to the electrons comes
from the mixing with the Higgs and is given by

gϕe ¼
λeffiffiffi
2

p sin θ; ð5Þ

where λe is the electron Yukawa, and sin θ is the mixing
whose best-fit value turns out to be sin θ ≃ 1.2 × 10−8. In
the absence of any special cosmological dynamics, natu-
ralness implies an upper bound on the ϕ − h mixing angle
(the red line in Fig. 4) [47–49] (see also Appendix):

sin θ <
mϕ

mh
≃ 1.5 × 10−8

�
mϕ

1.9 keV

�
; ð6Þ

where in the last equality we used the best-fit value for the
scalar mass and mh ≈ 125 GeV is the Higgs mass. While
the best-fit mixing satisfies the naturalness bound, it
appears to be strikingly close to the boundary of the natural
region. Below we will argue that in fact, in Higgs portal
models, having a mixing close to the naturalness bound is a
generic feature which does not require any fine adjust-
ments. We will here follow a very simplistic line of
arguments, while for more details we refer the reader to
the Appendix.
Let us consider a Higgs portal potential, with the only

Higgs-ϕ interaction given by a term μjHj2ϕ. Because of the
resulting mass mixing, the scalar ϕ inherits the Higgs
couplings, suppressed by the mixing angle

sin θ ≃ μ=v; ð7Þ

where v is a Higgs VEV. We also find that the physical ϕ
mass at ϕ ¼ 0 is modified by the presence of the mixing

m2
ϕ ¼ m2

0 −m2
h sin

2 θ; ð8Þ

where m2
0 is the mixing-independent part of ϕ mass. The

XENON1T excess corresponds to m2
ϕ ≃m2

h sin
2 θ. Such a

relation can be reproduced for m2
0 ≃ 2m2

h sin
2 θ, requiring a

coincidence of scales m0 ∼ μ. The naturalness bound can
however also be saturated for any m2

0 ≪ m2
h sin

2 θ, corre-
sponding to m0 ≪ μ, and thus no need to equate a priori
unrelated parameters. This happens because for large μ, the
mass term at ϕ ¼ 0 is negative, and the actual minimum
(when formed by the interplay of negative quadratic and
positive cubic or quartic term) is characterized by the
physical massm2

ϕ ≃m2
h sin

2 θ. This means that any point on
the naturalness line can be realized in multiple ways, which
feature almost identical μ parameters, but different m0 such
that m0 ≪ μ.
As was already mentioned, the best-fit value of the gϕe

coupling is in tension with the stellar cooling bounds. In the
relevant mass range, the strongest constraints are derived
from the RGs evolution [38], gϕe ≲ 10−15, and are valid for
the scalar masses ≲20 keV. Such bounds however can be
avoided assuming the properties of the ϕ field are modified
in the dense interior of RG stars. The RG core density
significantly exceeds that of the Sun, reaching the nucleon
and electron number density nRG ∼ 1015 eV3 [38,50], and
in principle can affect the local scalar mass, making the
cooling bound inapplicable. This can be realized for
instance if the ϕ field potential is characterized by two
minima, one being the true minimum in the vacuum, and
another becoming the energetically preferred state inside
the RG stars, as a result of a correction to the scalar

FIG. 3. The signal and background for the S2-only analysis is
shown. The BM2 (orange),mϕ¼1.3keV and gϕe¼1.5×10−14, is
chosen for this plot. The signal is enhanced by 10 for the
illustrative purpose. In addition, we have also plotted the signal
that would arise frommϕ ¼ 200 eV and gϕe ¼ 4 × 10−15 (green).
Here, the coupling constant is chosen to show the spectrum of
events, although it is only marginally consistent with the current
S2-only analysis [6]. Also, for this choice of mass, the event
spectrum for SR1 excess is more or less similar to BM1 for the
same coupling constant. See the main text, especially Sec. V,
for the potentially interesting phenomenological consequences
related to this choice of parameters.

BUDNIK, KIM, MATSEDONSKYI, PEREZ, and SOREQ PHYS. REV. D 104, 015012 (2021)

015012-4



potential δV ≃ gϕNnRGϕ, where gϕN is a nucleon-scalar
coupling. These two minima have to be characterized by
significantly different masses. Constructing a potential
satisfying all the aforementioned criteria is however a very
nontrivial task, which we leave beyond the scope of the
current letter.

V. THE RELAXED RELAXION CASE

Relaxion mechanism [34] allows to explain the small-
ness of the Higgs mass by nontrivial cosmological dynam-
ics of the Higgs relaxion system. As was pointed out in
[51], around its first minima, the shape of the relaxion
potential is very shallow and highly nonsymmetric unlike
the generic potentials of pseudo-Nambu-Goldstone bosons,
which leads to several interesting phenomenological impli-
cations relevant for accelerators and tabletop experiments.
Here we discuss additional implications of the relaxion’s
exotic potential. We begin with just describing the relevant
properties of the relaxed relaxion and then move to the
implications. The relaxion mass and electron coupling are
predicted [51]

m2
ϕ ≃

Λ4
br

f2
Λ2
br

Λv
; gϕe ¼

λeffiffiffi
2

p sin θ ≃ λe
Λ4
br

fv3
; ð9Þ

where Λ is the cutoff, f and Λbr are the period and
amplitude of Higgs-dependent barriers, θ is the relaxion-
Higgs mixing angle, and v ¼ 174 GeV is the Higgs VEV.
Note that the formulas above are only order of magnitude
estimates. Assuming f ¼ Λ and the Standard Model (SM)
value for the electron Yukawa coupling λe ¼ λeSM, we find
for the best-fit values that

Λ ¼ f ≃ 60 TeV; Λbr ≃ 10 GeV: ð10Þ
More generally, for f > Λ we have a continuum of pos-
sibilities, allowing forΛ < 60 TeV < f andΛbr > 10 GeV.
Furthermore, for f ¼ Λ, the order of magnitude of the
inflationary Hubble parameter is constrained to be within
1 eVand 0.1GeV. In Fig. 4we show the position of the excess
in the allowed parameter space of the relaxionmodels (green
band), together with relevant experimental bounds.
For the best-fit mass, the relaxion model implies the

relaxion-Higgs mixing angle is within the range of sin θ ∈
½10−10; 10−5� [51]; see Fig. 4. Thus, by relaxing the
assumption of λe ¼ λeSM, we can identify a preferred range
for the electron Yukawa to be 10−3 < λe=λeSM < 102,
which is consistent with the current direct upper bound
of λe ≲ 600 × λeSM [62–64].
Let us now discuss whether the relaxion mechanism can

overcome the stellar cooling bounds with a help of the
chameleon effect discussed in the previous section.2

Potential importance of the density effects inside of neutron
stars on the QCD relaxion was already emphasized in
Ref. [67], while here we concentrate on the non-QCD
version of the relaxion mechanism. The relaxion potential
naturally features a set of consecutive minima, and may
travel between them if the density-induced relaxion field
displacement is large enough. In the minimal relaxion
scenario, the local nucleon number density n induces a
linear piece in the potential δV ≃ gϕNnϕ which shifts the
relaxion in the direction of the next deeper minimum. For a
sufficiently large shift the relaxion will start rolling towards
the next minimum. However, in the absence of efficient
friction3 and with negligible gradient energy, we expect that
the relaxion will not stop until it reaches the global
minimum of its potential, featuring a large negative
Higgs mass squared of the order of the cutoff scale Λ. If
the large density region is larger than the critical bubble, the
new phase will expand outside and fill the Universe.
Otherwise, localized bubbles [75,76] within the dense
astrophysical objects will be formed.
To induce such a phase transition (PT), the density-

induced relaxion field displacement, δϕn ≃ δV 0=m2
ϕ ¼

gϕNn=m2
ϕ, has to exceed the distance between the minimum

and the closest maximum of the relaxion potential, given by
Δϕ ≃ Λ2

brf=Λv [51]. UsingEq. (9)we find that the transition
requires

δϕn

Δϕ
≃
gϕNnΛ2

vΛ4
br

≳ 1; ð11Þ

and it will expand outside of the dense object if the object’s
radius R� is greater than the critical bubble radius which we
approximately estimate as 1=mϕ:

FIG. 4. The best fit to XENON1Texcess (purple dot) in terms of
the mixing angle, sin θ, and the scalar mass, mϕ, together with the
constraints from the stellar cooling [38,52,53] (brown), SN1987A
[54–56] (blue), as well as preferred relaxion parameter space [51]
(green), and the naturalness bound (red).We note that the SN1987A
constraint depends on SNe explosion mechanism [57–61].

2Density effects on light particles were also considered in other
contexts; see e.g., [65,66]. 3See [68–74] for a possible friction source.
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R� ≫ 1=mϕ: ð12Þ

An existence of localized phases not satisfying the latter
condition is an interesting topic which we leave for future
studies.
On the other hand, the scenario with the wrong Higgs

VEV bubbles expanding outwards is excluded experimen-
tally. It is important to find out how this fact limits the size
of sin θ which has a paramount importance for the relaxion
experimental tests. Expressing Eq. (11) through mϕ, sin θ,
and Λ,

δϕn

Δϕ
≃
gϕNnm4

ϕΛ4

sin4 θv11
≳ 1; ð13Þ

we see that there exists some minimal value of sin θ, below
which the PT always happens, and it is given by

sin θmin ≃
ðgϕNnÞ1=4mϕΛ

v11=4
: ð14Þ

The absolute lower bound on the mixing is then propor-
tional to the lower bound on the cutoff scale Λ, for which
we take 1 TeV.
In Fig. 5 we demonstrate our findings, applied to neutron

stars, RGs and the Sun. We assume the minimal coupling
gϕN ¼ ghN sin θ, where ghN ∼ 10−3 is the Higgs coupling to
nucleons. Colored areas show where the transition always
happens and propagates outside the dense objects. Such PT
can also happen for larger sin θ for some parameter choices.
For masses lower than the inverse size of the corresponding
astrophysical objects (left to corresponding colored areas)
the PT can happen, but it is localized within the dense
objects. For this plot we only chose to show the bounds
from three distinct types of high-density astrophysical

bodies, not aiming at a comprehensive analysis of all
possible stars.
Let us briefly comment on how the plot in Fig. 5 would

change if we chose a different minimal cutoffΛwhich is set
to 1 TeV here. Each of the points in the bulk of the green
band and the excluded regions can be realized by a
continuum of Λ values, but some of the boundaries of
these regions are directly sensitive to the minimal cutoff Λ.
In particular, for increased minimal Λ, the lower edge of the
relaxion band will go up, with sin θmin ∝ Λmin, see [51]. At
the same time, the minimal value of the mixing, below
which the transition always happens, is also ∝Λmin; see
Eq. (14). Therefore, in the log plot, the unstable regions will
shift up with increase of the minimal cutoff, while the green
band will shrink from below. Besides, the upper bound of
the relaxion band is quadratically sensitive to the maximal
allowed value of Λbr which in this case is set to v.
As one can see from the plot, the RG-localized PT region

is located, as trivially expected, far away from the
XENON1T excess point not allowing to reconcile the latter
with the stellar cooling.
Notice that the derived bounds can be substantially

changed assuming (nonminimal) stronger relaxion cou-
pling to nucleons. The current experimental bound on
proton coupling is gϕp ≲ 10−6 for mϕ ≲ 0.1 keV [77] (for
stronger bounds on coupling to neutrons see [78–81]). Such
an increased coupling can not help with resolving the stellar
cooling tension.

VI. TWO FIELD MODELS TO RELAX THE
COOLING BOUNDS

We now present two simplistic models allowing to
locally increase the mass of the scalar ϕ to the value above
∼20 keV inside of red giants and horizontal branch (HB)
stars. The effective induced potential of the ϕ field takes the
form

VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ 1

4
λϕϕ

4 þ npϕq

F3pþq−4 þ gϕeϕēe; ð15Þ

whereF is somemass scale. Theϕ-electron coupling is fixed
to reproduce the excess. In the following we will restrict to
p ¼ 1, 2 and to the situationswhere the third termofEq. (15),
sensitive to the matter density, increases the mass of the ϕ
field without changing the position of the minimum, hence
q ¼ 2. To reproduce the excess, we require

mϕ;Sun ≃ 1.9 keV;

mϕ;HB;RG > 20 keV; ð16Þ

wheremϕ;X is theϕ effectivemass in the environmentX. The
last requirement removes the tension with HB and RG
cooling; see Fig. 4.
As we will show later, this model requires to be

completed with new physics below some of the relevant

FIG. 5. Relaxion parameter space in the first minimum (green)
in terms of sin θ and mϕ. Purple dot shows the best fit to
XENON1Texcess. The blue, red, and yellow regions show where
the expanding bubbles are produced, resulting from neutron stars,
RGs cores, and the Sun core, respectively. See text for more
details.
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ϕ effective masses, in which case the potential (15) can not
be attributed to an effective field theory (EFT). It can
be obtained from a potential with additional light scalar
field χ,

Vðϕ; χÞ ¼ 1

2
m2

ϕϕ
2 þ 1

4
λϕϕ

4 þ 1

2
m2

χχ
2 þ gχNnχ þ κχαϕβ:

ð17Þ

Shifting the χ field origin to the new minimum inside of
dense objects, χ → χ − gχNn=m2

χ , the effective induced
potential for ϕ (15) is obtained.
The potential of Eq. (15) is reproduced from the one of

(17) for fp; qg ¼ fα; βg ¼ f1; 2g; f2; 2g. The f2; 2g case
corresponds to the leading order expansion of the potential
of Ref. [82] designed for the same purpose. Let us consider
the two cases in detail.

A. Model with fp;qg= f1;2g
We chose the following parameters of the reduced

potential (15):

mϕ ¼ 0.5 keV; F ¼ −
m2

χ

κgχN
¼ 0.1 MeV; ð18Þ

which give

mϕ;Sun ≃ 1.9 keV; mϕ;HB ≃ 30 keV;

mϕ;RG ≃ 0.3 MeV: ð19Þ

Besides the conditions (16), we also need to satisfy the star
cooling bounds on ϕ − N interactions. While the large
effective mass in RG removes the corresponding bound, in
HB we obtain, recasting the results of [38], the following
estimate of the bound:

1

4π

�
gχNκE

E2 þm2
χ

�
≲ 10−10: ð20Þ

The lhs of Eq. (20) accounts for the χ propagator necessary
to produce two ϕ quanta from plasma, phase space
suppression for two-body decay, and we will take E ∼
mϕ;HB for the typical energy scale in the problem. For
gχNκ=m2

χ ¼ F fixed by (18), this leads to

m2
χ ≲ 10−9Fmϕ;HB ≃ ð1 eVÞ2: ð21Þ

A set of parameters, satisfying the above inequality and the
fifth force bounds on χ − N interactions, is for instance

mχ ¼ 10−8 eV; gχN ¼ 10−22; κ ¼ −10 eV: ð22Þ

Furthermore, the presence of the cubic coupling between
ϕ and χ induces an instability of the potential. We compute

the corresponding tunneling action invacuum, assuming that
tunneling happens along a straight trajectory t inϕ − χ plane,
and scan over all possible t directions passing through
Vðϕ; χÞ < 0, thereby finding the trajectory with the minimal
action. Using the exact solution for quadratic plus cubic
potential [83],S23 ≃ 205m2

t =κ2t (wheremt and κt are themass
and the cubic coupling in a t direction), we found
min½S23� ≃ 109. Using the thick wall approximation [84],
Sthick wall ≃ π2ðϕ2

exit þ χ2exitÞ2=jVexitj, and scanning over all
possible exit points, we obtained min½Sthick wall� ≃ 108. Both
numbers correspond to the tunneling being sufficiently
suppressed. Also notice that inside of dense objects the
tunneling is expected to be even more suppressed, as the
density effect shifts the χ minimum in the direction opposite
to the tunneling direction.
Another option to relax the cooling bounds could be to

further decrease the scale F, leading to mϕ;HB ≳ 0.2 MeV
where the HB cooling bound disappears. In practice, this
leads to a too large ϕ effective mass in the Sun.

B. Model with fp;qg= f2;2g
We assume that the cooling bounds on ϕ − N interaction

are significantly relaxed in this case and can be ignored. We
choose the following parameters for the reduced potential:

mϕ ¼ 0.5 keV; F ¼ mχ

κ1=4g1=2χN

¼ 50 keV; ð23Þ

giving

mϕ;Sun≃1.9 keV; mϕ;HB≃24 keV; mϕ;RG≃2.4MeV;

ð24Þ

Such a low value of F again does not allow to consider the
model with only one field ϕ as an EFT. The extended
potential with the χ field can then be defined for instance by

mχ ¼ 10−7 eV; gχN ¼ 10−22; κ ¼ 10−3: ð25Þ

This concludes our discussion of the two-field models.
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APPENDIX: NATURALNESS BOUND AND ITS
SATURATION

Let us consider generic renormalizable scalar potential

Vðh;ϕÞ ¼ 1

2
μh2ϕþ 1

4
λhϕh2ϕ2

−
1

2
m2

h0h
2 þ 1

4
λhh4

þ tϕþ 1

2
m2

ϕ0ϕ
2 þ 1

3
aϕϕ3 þ 1

4
λϕϕ

4: ðA1Þ

In the limit of large Higgs mass, the Higgs-ϕ mixing is
given by

sin θ ≃ ðμþ λhϕϕÞv=m2
h; ðA2Þ

where mh is a physical Higgs mass and v ¼ hhi is its VEV.
To derive the expression for the ϕ mass, let us integrate out
the Higgs boson. This amounts for a substitution of h2

solving V 0
h ¼ 0, namely,

h2 →
1

λh

�
m2

h0 − μϕ−
1

2
λhϕϕ

2

�
≃ v2 −

μϕ

λh
−
λhϕ
2λh

ϕ2; ðA3Þ

into the scalar potential (A1). One can neglect the effect of
ϕ kinetic term renormalization when working in the leading
order in mixing. The resulting ϕ effective potential
becomes

VðϕÞ ¼ ϕ

�
tþ 1

2
μv2

�
ðA4Þ

þ 1

2
ϕ2

�
m2

ϕ0 þ
λhϕ
2

v2 −
1

2λh
μ2
�

ðA5Þ

þ 1

3
ϕ3

�
aϕ −

3λhϕ
4λh

μ

�
ðA6Þ

þ 1

4
ϕ4

�
λϕ −

λ2hϕ
4λh

�
ðA7Þ

≡ t̂ϕþ 1

2
m̂2

ϕ0ϕ
2 þ 1

3
âϕϕ3 þ 1

4
λ̂ϕϕ

4: ðA8Þ

By a ϕ field constant shift, one can always fix ϕ ¼ 0 in the
actual minimum. Such a redefinition will also shift the
values of the parameters of the scalar potentials (A1), (A4),
in particular the new coefficient of ϕ1 in (A4) has to vanish,

t̂ ¼ 0. In a shifted theory, the ϕ mixing and mass read in
terms of redefined parameters (for which we use the old
notations)

sin θ ≃ μv=m2
h; ðA9Þ

m2
ϕ ≃m2

ϕ0 þ
λhϕ
2

v2 − sin2 θm2
h: ðA10Þ

In the absence of fine tunings in the expression for the mass
(A10), one expects that

m2
ϕ ≳ sin2 θm2

h; ðA11Þ

which represents the so called naturalness bound. While the
above derivation is based on tree-level quantities, an
analogous bound (up to a loop factor) can also be obtained
by requiring the quantum corrections to not exceed the
physical ϕ mass; see Ref. [51]. One can also notice from
Eq. (A10) that naturalness implies a bound on the cross-
quartic coupling λhϕ ≲m2

ϕ=v
2.

It is also possible to identify a generic condition under
which the bound gets saturated. To this end it is convenient
to work in the original basis of Eq. (A4), i.e., without ϕ
shift, in order to keep an explicit dependence on the
parameters of possibly different physical origin. A typical
minimum of a polynomial potential is formed by a balance
between two dominant terms with opposite slopes. We can
approximately describe the potential around the relevant
minimum with

V ≃
cp
p
ϕp −

cq
q
ϕq; ðA12Þ

hϕi ≃ ðcp=cqÞ
1

q−p; ðA13Þ

m2
ϕ ≃ ðp − qÞc

q−2
q−p
p c

p−2
p−q
q : ðA14Þ

We then notice that for q ¼ 2 the physical mass becomes
independent of cp and is simply given by a single
coefficient, m2

ϕ ≃ c2, up to an order-one factor.
Furthermore, for μ2 ≫ 2λhm2

ϕ0 þ 2λhλhϕv2 this single coef-
ficient is uniquely related to μ, by m2

ϕ ≃ c2 ≃ 1
2λh

μ2 as

follows from Eq. (A5). Substituting μ ≃
ffiffiffiffiffi
λh

p
mϕ into the

mixing (A2) we find that the first term in this expression
saturates the naturalness bound, i.e.,

sin θ ≃mϕ=mh: ðA15Þ
This means that whenever (a) the quadratic term (A5) in the
effective ϕ potential is dominated by the term ∝ μ2

originating from the cubic interaction with the Higgs,
and (b) the minimum is formed by a balance between
the quadratic term and any other, the naturalness bound is
saturated.
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