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Light scalar fields that couple to matter through the Higgs portal mediate long-range fifth forces. We show
how the mixing of a light scalar with the Higgs field can lead to this fifth force being screened around
macroscopic objects. This behavior can only be seen by considering both scalar fields as dynamical, and is
missed if the mixing between the Higgs field and the scalar field is not taken into account. We explain under
which conditions the naive “integrating-out" procedure fails, i.e., when the mass matrix of the Higgs-scalars
system has a nearly vanishing mass eigenvalue. The resulting flat direction in field space can be lifted at the
quadratic order in the presence of matter and the resulting fifth force mediated by the Higgs portal can be
screened either when the gravitating objects are large enough or their surface Newton potential exceeds a
threshold. Finally we discuss the implications of these results for nearly massless relaxion models.
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I. INTRODUCTION

One highly developed approach to searching for new
physics, which is agnostic about the nature of the full
underlying theory, is to look for new fields that couple
to the Standard Model through “portal-operators” [1]. The
most minimal, and therefore arguably most well moti-
vated of these introduce no new scales into the theory, and
therefore the resulting interactions are not necessarily
suppressed by a high scale. In this work we will focus
specifically on the introduction of an additional light scalar
field, which couples to the Standard Model through the
“Higgs portal” [2–4] via a standard Yukawa coupling. New
scalar fields of this type are motivated by a wide range of
fundamental open questions, including the nature of dark
matter [5–9], the nature of dark energy [10–12] and the
hierarchy problem [13,14], and can also be part of a
mechanism of electroweak baryogenesis [15–19].
In this context, the coupling of the scalar field to matter is

simply induced by the “Higgs-portal” coupling of the scalar
field to the Higgs field, together with the Yukawa coupling
of the Higgs field to matter

L ⊃ λψhψ̄ψ ð1Þ
where we simplify the description by considering matter as
a Dirac field ψ with a Dirac mass term mψ ¼ λψ hhi when

the Higgs field acquires a nonvanishing vacuum expect-
ation value (vev) hhi. This vev triggers the electroweak
symmetry breaking and results from the low-energy Higgs
potential, i.e., a polynomial with self-interactions up to
order four only, whose coefficients depend on the light
scalars. The Higgs potential reads explicitly

VðhÞ ¼ −
μ2

2
h2 þ λ

4
h4 ð2Þ

where the μ term, which drives the electroweak symmetry
breaking, is now field dependent, and thus scalar fields
coupled through the Higgs portal can help to explain the
origin of the electroweak scale [13,20].1 This mechanism is
at the heart of “relaxion” models [14] where the rolling of
the scalars down their interaction potential eventually
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1The link with the electroweak-Higgs-theory is easily obtained
from the Higgs Lagrangian

LH ¼ −∂H†∂H þ μ2H†H − λ4ðH†HÞ2 ð3Þ
in term of the Higgs doublet H. After electroweak symmetry
breaking, the neutral component of the Higgs doublet becomes
H0 ¼ vþφffiffi

2
p where v ¼ μ=

ffiffiffi
λ

p
where the neutral Higgs field

acquires a mass m2
φ ¼ 2μ2. In the following, we will work with

the neutral field h ¼ vþ φ which is a normalized real scalar field
whose potential is given by Eq. (2). The fermion masses in the
Standard Model are typically of the form yijHψ̄ iLψ jR where ψ
could be the top quark field and the indices account for the three
flavors. After electroweak symmetry breaking, the h field couples
according to yψffiffi

2
p hψ̄ψ to a given quark or lepton. This implies that

in Eq. (1) we have λψ ¼ yψ=
ffiffiffi
2

p
and mψ ¼ λψv.
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triggers the Higgs symmetry breaking. Experimental con-
straints on the relaxion model are discussed in Ref. [21].
Bounds on scalar fields coupled through the Higgs portal
arise from many different measurements including particle
colliders and fixed-target experiments. A review of these
experimental searches and their future prospects can be
found in [22]. Constraints also arise from astrophysical
observations including the abundance of light elements
produced by big bang nucleosynthesis [23] and the energy
loss of supernovae [24,25]. More constraints on light scalar
fields can be found in Ref. [26].
If these scalars couple to matter through the Higgs portal

only, one phenomenological consequence is the existence
of fifth forces. If the scalars are light these fifth forces are
subject to constraints from a wide range of experimental
searches [27–29]. In this work we will show how particular
choices of portal couplings and potential for the light
scalars can enable them to hide from experimental searches
for fifth forces. This follows from the nonlinear regime of
the theory in the presence of matter. The mechanism
through which the fifth forces are suppressed is therefore
similar in nature to the screening mechanisms that have
been widely studied for theories of dark energy and modi-
fied gravity [30–42], for a review of the constraints on
theories with screening see Refs. [43–45]. However the
mechanism we present here is a novel way of suppressing a
scalar mediated fifth force arising from the mixing with the
Higgs field.2

We will uncover three situations. The first is when the
mass eigenstates of the Higgs-scalars system in vacuum are
all positive, the presence of matter in the environment, e.g.,
a macroscopic matter distribution as appears in laboratory
experiments, leads to a linear-response theory and the
coupling between the scalars and matter depends on the
mixing angle between the Higgs field and the scalars. In
this case, the vevs of the Higgs and scalar fields are linearly
shifted by the matter density inside a massive body and the
interaction mediated by the Higgs field between massive
objects is proportional to their masses resulting in Yukawa-
type fifth forces of the standard form. The second case
occurs when one of the eigenstates of the Higgs-scalar
system becomes massless. In this case the Higgs-mediated
interaction becomes of infinite range in vacuum. We find
then that the linear-response theory breaks down. Nonlinear
effects start dominating as the effective potential can be
parametrized as

UðδϕÞ ≃ 1

6
U000ðδϕÞ3 − βϕ

mPl
δϕρ ð4Þ

where U000 is the third derivative of the scalar potential
along the massless direction defined by δϕ and βϕ is the
effective coupling of the scalar to matter of density ρ.
Stabilization of the scalar can only happen whenU000 and βϕ
have the same sign. When this is not the case, the presence
of matter destabilizes the vacuum, we discuss this pos-
sibility further in Appendix C.
We find that the nonlinear stabilization of the scalar

field parametrizing the flat direction, i.e., the massless
eigendirection in field space, induces the screening of
the corresponding long-range force. Screening can
happen three different ways. The first one and the most
common is when the scalar field acquires a large mass
at the new minimum of the effective potential. When
this happens, the fifth force is Yukawa suppressed and
gravitational tests are easily satisfied. The second and
third ways are new in the context of the Higgs portal.
Indeed when either the massive bodies are large enough
or their surface Newton potential is also large enough,
the effects of the fifth force are reduced. These sit-
uations could be of interest to cosmology where a nearly
massless scalar is necessary to drive the acceleration of
the expansion of the Universe. We find here that its
coupling to the Higgs field could result in a screening of
its potentially induced fifth force in the solar system for
instance. Applications of this mechanism to dark-energy
models are left for future work.
This mechanism applies to the relaxion model where the

μ term is a linear function of a scalar field modulated by a
cosine function. We find that vacua with massless excita-
tions do exist for the relaxion models and that the flat
direction can be stabilized at quadratic order. Hence the
fifth force due to the massless field in the relaxion spectrum
can be screened by the nonlinear screening mechanism that
we describe in this paper, in particular the models whose
flat direction is stable under quantum corrections are
screened as the scalar mass at the minimum of the effective
potential along the flat direction is large.
The paper is arranged as follows. In Sec. II we describe

the Higgs-portal models and their flat directions. We also
consider the quantum corrections and impose restrictions
on the models from the quantum stability of the flat
directions. In Sec. III, we describe the long-range fifth
force in the context of the linear-response theory. When this
breaks down, i.e., when there is a flat direction associated to
a zero mass eigenstate, we study the stabilization of the flat
direction in matter in Sec. IV together with the new
screening mechanisms particular to the Higgs-portal sys-
tems. Finally in Sec. V we focus on the relaxion cases.
Technical details can be found in the appendices.

II. A LIGHT SCALAR COUPLED THROUGH
THE HIGGS PORTAL

In this section we will introduce the two-field model
that we work with in this article, we will determine

2Scalar dark-energy models, and scalar-tensor theories of
modified gravity typically couple to matter through a conformal
rescaling of the metric. In Refs. [46,47] it was shown that, at
leading order, these theories are equivalent to scalar fields that
couple to matter through the Higgs portal.
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the expectation values and masses of the fields in
different environments, and will determine when effec-
tive single field approximations to the dynamics of the
theory are useful. We end with a discussion of quantum
corrections.

A. The model

We consider a theory which contains a light scalar ϕ in
addition to the Higgs field h and a fermion field ψ . We thus
study a simplified version of the Standard Model, so that
the Higgs field is real, and only one Dirac fermion is
present. We expect the generalization of the results we
derive here to the full Standard Model to be straight
forward. The Lagrangian we consider is

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
ð∂hÞ2 − VðϕÞ þ μ2ðϕÞ

2
h2 −

λ

4
h4

− iψ̄=∂ψ − λψhψ̄ψ ð5Þ

where the μ term is now field dependent. The scalar
field ϕ could play the role of dark matter or dark energy.
We therefore assume that the mass scales associated to
the scalar ϕ are much lower than the mass of the Higgs
field in vacuum. As a result, the lifetime of the scalar
field is much larger than the age of the Universe [21].
The corresponding equations of motion for the two
scalars are

□ϕ − V0ðϕÞ þ μðϕÞμ0ðϕÞh2 ¼ 0 ð6Þ

□hþ μ2ðϕÞh − λh3 − λψ ψ̄ψ ¼ 0: ð7Þ

We denote the light scalar vev by ϕ0 and the Higgs vev
as v. These must satisfy the following requirements

μ2ðϕ0Þ ¼ λv2 ð8Þ

V 0ðϕ0Þ ¼ −
μ3ðϕ0Þμ0ðϕ0Þ

λ
: ð9Þ

In this work we will largely be interested in the behavior
of the fields around large bodies of dense matter, where
we replace ψ̄ψ → hψ̄ψi ¼ nψ where nψ is the number
density of the medium. After identifying the mass of the
fermions as mψ ¼ λψv, the equations of motion for the
fields in a dense medium become

□ϕ − V0ðϕÞ þ μðϕÞμ0ðϕÞh2 ¼ 0 ð10Þ

□hþ μ2ðϕÞh − λh3 −
ρ

v
¼ 0 ð11Þ

where ρ is the local density of matter made up of our
fermions ψ3 The resulting dynamics of the fields are
controlled by an effective potential

Veffðh;ϕÞ ¼ VðϕÞ − 1

2
μ2ðϕÞh2 þ λ

4
h4 þ hρ

v
ð12Þ

In what follows we will use the subscript 0 to denote the
expectation values of the fields in vacuum, and the
subscript “bg" to denote the values of the fields which
minimize the effective potential of the theory in a
background of constant nonzero density ρ.

B. An effective field theory for ϕ

If there is a large hierarchy between the mass of the
Higgs and the mass of the light scalar field, then we might
expect to be able to “integrate-out” the Higgs field, leaving
only an effective theory for ϕ. In vacuum, or when gradients
of h can be ignored, we can integrate-out the Higgs field
when heavy enough compared to the light scalar ϕ using
the minimum equation along the h direction, i.e., ∂L

∂h ¼ 0.
This leads to

λh2ðϕÞ ¼ μ2ðϕÞ − λψ
hðϕÞ ψ̄ψ : ð13Þ

To first order in perturbations of h around its vev, we have

hðϕÞ ¼ μðϕÞffiffiffi
λ

p −
λψ

2μ2ðϕÞ ψ̄ψ ð14Þ

which gives the effective Lagrangian

L ¼ −
1

2
ð∂ϕÞ2 þ μ4ðϕÞ

4λ
− VðϕÞ − iψ̄=∂ψ −

μðϕÞffiffiffi
λ

p
v
mψ ψ̄ψ

ð15Þ

and the strength of the tree-level scalar exchange between
two fermions is controlled by the coupling constant

3Notice that we couple the Higgs field to fundamental
fermions such as quarks and electrons. In a real material, most
of the mass of the atoms comes from the masses of neutrons and
protons. The mass of neutrons and protons comprises mostly the
gluon part which is only coupled to the Higgs field at the one-
loop level via the masses of the heavy quarks. There is also a
small fraction due to the valence quarks. Such loop effects with
nonperturbative dynamics in the strong sector would result in a
proportionality coefficient for the coupling to the nucleons that
can be extracted from [32,48–52], see for instance Eq. (4.8) in
[49]. Nonlinear corrections in the Higgs field induced by the loop
corrections to the gluon condensate due to the threshold effects in
the running of the strong coupling constant would alter this
picture and could lead to potentially interesting effects as in the
dilaton or symmetron models [32,40]. This is beyond the present
treatment.
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βϕðϕÞ
mPl

¼ −
μ0ðϕÞffiffiffi

λ
p

v
ð16Þ

corresponding to a Yukawa interaction mediated by per-
turbations in the field, δϕ ¼ ϕ − ϕ0, of the form

L ⊃
βϕ
mPl

δϕρ: ð17Þ

Note that we use the reduced Planck mass m2
Pl ¼ 1=8πGN .

In a background of density ρ ¼ mψ hψ̄ψi, the back-
ground value ϕbg is determined by

V 0
effðϕbgÞ ¼ V 0ðϕbgÞ −

μ0ðϕbgÞμ3ðϕbgÞ
λ

þ μ0ðϕbgÞρffiffiffi
λ

p
v

¼ 0

ð18Þ

where the one-field effective potential VeffðϕÞ given by

VeffðϕÞ ¼ VeffðhðϕÞ;ϕÞ ð19Þ

determines the dynamics of the field ϕ in an environment of
density ρ.
In the medium of density ρ, the scalar field acquires a

mass given by where

m2
ϕ;bg ¼ −

1

λ
½3μ2ðϕbgÞðμ0ðϕbgÞÞ2 þ μ3ðϕbgÞμ00ðϕbgÞ�

þ V 00ðϕbgÞ ð20Þ

and mediates a fifth force proportional to the Newtonian
interaction

VðrÞ ¼ 2β2ϕðϕbgÞVNðrÞe−mϕ;bgr ð21Þ

where the Newtonian interaction between two fermions of
masses mψ is

VNðrÞ ¼ −
GNm2

ψ

r
: ð22Þ

This is a Yukawa interaction whose strength is determined
by the coupling βϕðϕbgÞ. The force mediated by the scalar

ϕ is weaker than gravity if jβϕðϕbgÞj < 1=
ffiffiffi
2

p
. The solar

system bounds on such a coupling are tight and follow
mainly from the Cassini experiment where the Shapiro
delay of radio-waves emitted by the Cassini satellite was
investigated. The constraint β2ϕðϕbgÞ ≤ 10−5 which follows
from these measurements requires a small coupling of the
scalar to matter. One possible explanation for this 10−5

effect could be that the coupling of the scalar to matter is
screened, i.e., is influenced by the presence of matter and
reduced from a natural value of order one in vacuum to a
much smaller value in the presence of matter. This is what

happens in models subject to the chameleon [33] or the
Vainshtein mechanisms [53]. In this paper, we will find
that when the spectrum of the Higgs-scalar models has a
massless excitation, screening of macroscopic objects can
occur via a new mechanism.
If there is no scalar potential, i.e., VðϕÞ≡ 0, there

exists an extremum of the effective potential for the scalar
field when

μ0ðϕ0Þ ¼ 0: ð23Þ

Without knowing further details of the model we cannot say
whether this is the true minimum of the theory. If it is the
minimum, however, there is no scalar mediated fifth force
because the coupling-constant vanishes. If the scalar has a
bare potential VðϕÞ then the vacuum value of the scalar
field is shifted, i.e., opening up the possibility of a fifth
force in vacuum which may still be screened in more dense
environments. We will discuss when this is the case in
particular if the Higgs-scalar mass matrix has a vanishing
eigenmass, i.e., if there exists a potentially unscreened and
long-range scalar interaction.

C. The effects of mixing

In this section we return to the full two-field model of
Eq. (5) and will determine when the mixing between the
two fields becomes so significant that the dynamics of the
Higgs field cannot be neglected. We start by considering
the mass matrix for the theory in vacuum, this is made of
the second derivatives of the potential in Eq. (5). We define

m2
h ¼ 2μ2ðϕ0Þ ð24Þ

m2
ϕ ¼ V 00ðϕ0Þ − v2ðμ0ðϕ0ÞÞ2 − v2μðϕ0Þμ00ðϕ0Þ ð25Þ

and a vacuum mixing angle θ such that4

sin θ ¼ 1

m2
h

∂2Vðϕ; hÞ
∂ϕ∂h

����
ϕ0;v

¼ −
vμ0ðϕ0Þ
μðϕ0Þ

: ð27Þ

The mass matrix of the scalar potential is given by

M2 ¼
�
Vhh Vhϕ

Vhϕ Vϕϕ

�
ð28Þ

4Note that, in the vacuum, we have the link between the mixing
angle and the coupling to matter defined in the effective theory for
ϕ in Eq. (16),

βϕ
mPl

≡ βϕðϕ0Þ
mPl

¼ sin θ
v

ð26Þ

We will see this direct link reappear in Sec. III B.
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where Vxy ¼ ∂2V
∂x∂y are the second derivatives of the poten-

tial, and we identify x and y either with h or ϕ. The mass
matrix in vacuum becomes

M2
0 ¼

� m2
h m2

h sin θ

m2
h sin θ m2

ϕ

�
ð29Þ

whose mass eigenvalues are

m2
� ¼ 1

2

�
m2

h þm2
ϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

h −m2
ϕÞ2 þ 4m4

h sin
2 θ

q �
: ð30Þ

We will typically work in the regime where mϕ ≪ mh and
θ ≪ 1 in which case, to first order in small quantities,
the two mass-eigenvalues are m2þ ≈m2

h and m2
− ≈m2

ϕ −
m2

h sin
2 θ. When the mixing angle is much smaller than

mϕ=mh, the mass matrix is essentially diagonal with
eigenmasses given by mh and mϕ. As the mixing angle
increases, the light mode of mass m− becomes lighter until

j sin θj ¼ mϕ

mh
ð31Þ

where the eigenmass m− ¼ 0 vanishes. We will see in
Sec. II D, that when the massm− ≈ 0 it is necessary to work
to higher order in perturbation theory in the presence of
matter.
To see why a linearized perturbative analysis fails,

consider how the fields behave in a dense environment.
Assuming that a local matter density perturbs the fields
from their vacuum expectation values, the background
values of the fields satisfy

h2bg ¼
V 0ðϕbgÞ

μðϕbgÞμ0ðϕbgÞ
ð32Þ

and

hbg

�
μ2ðϕbgÞ −

λV 0ðϕbgÞ
μðϕbgÞμ0ðϕbgÞ

�
¼ ρ

v
: ð33Þ

If these field values are close to the values that minimize the
effective potential in vacuum, we can write ϕbg ¼ ϕ0 þ δϕ
and hbg ¼ vþ δh. The solution to these equations is
given by

δh ¼ −
m2

ϕ

m2
h

δϕ

sin θ
ð34Þ

δϕ ¼ βϕρ

mPl

1

m2
ϕ −m2

h sin
2 θ

ð35Þ

where βϕ is the coupling in vacuum, i.e., βϕ ¼ mPl
v sin θ.

Even in low-density environments, we see that the linear

perturbative treatment fails when mϕ ¼ j sin θjmh, i.e.,
when m− ¼ 0.

D. Effective single-field theory for the light mode

The breakdown of linear perturbation theory can be
better understood by studying the theory along the nearly
flat direction defined by the eigenvector associated to the
eigenmass m− for m−=mϕ ≪ 1. i.e.,

α⃗− ¼
�− sin θ

1

�
ð36Þ

As in Sec. II B we are reducing the theory to a single
field effective model, but this time identifying that the true
light mode of the theory is a mix of both the Higgs and
the field ϕ. This amounts to analyzing the potential along
the field direction parametrized by the fields ðh;ϕÞ ¼
ðv − sin θδϕ;ϕ0 þ δϕÞ. The dynamics are governed by a
potential

UðδϕÞ ¼ Veffðv − sin θδϕ;ϕ0 þ δϕÞ − Veffðv;ϕ0Þ ð37Þ

which can be expanded to cubic order as

UðδϕÞ ≃ 1

2
m2

−δϕ
2 þ 1

6
U000δϕ3 − sin θ

δϕ

v
ρ: ð38Þ

where a prime indicates a derivative with respect to ϕ. The
third derivative, and coefficient of δϕ3 in Eq. (38) is

U000 ¼ Vϕϕϕ −
v2

2

�
ðμ2Þ000 þ 3

ðμ2Þ0ðμ2Þ00
μ2

�
ð39Þ

evaluated at ðh;ϕÞ ¼ ðv;ϕ0Þ. The dashes are derivatives
with respect to ϕ.
Neglecting the cubic term, the minimum of the potential

in Eq. (38) is obtained for

δϕ ¼ sin θ
m2

−

ρ

v
ð40Þ

which coincides with Eq. (35), the position of the minimum
of the potential for the linearized two-field theory, when
sin θ ≃ mϕ

mh
. We now obtain a criterion for the breakdown of

linear perturbation theory; higher order perturbations must
be included when the cubic terms dominates over the mass
term, i.e., for mass eigenvalues such that

m4
−≲
����U000

v

���� sin θρ: ð41Þ

We will illustrate this breakdown of linear perturbation
theory for the relaxion model, when it is introduced
in Sec. V.
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When the cubic term in the effective potential becomes
important, the equation for the position of the minimum of
the potential is modified. A new minimum can be found
when

U000 > 0: ð42Þ

and the field is stabilized with a vev

δϕbg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mϕρ

U000mhv

s
ð43Þ

where the square of the mass of fluctuations of the field at
the position of the new minimum is

m2−bg ¼ U000δϕbg: ð44Þ

We show in the Appendix A 2 that the mass given in
Eq. (44) and the lowest eigenvalue of the Higgs-scalar mass
matrix coincide. When U000 < 0, the flat direction is not
stabilized at the quadratic order. Stabilization at higher
order would require unnatural fine-tunings of the coeffi-
cients of the perturbation series of the full potential around
the vacuum expectation values, or for the theory to evolve
into a fully nonperturbative regime. Wewill analyze the fate
of these models briefly in the Appendix C.

E. Quantum corrections

As we are interested in a nearly flat direction in field
space, we should worry about the quantum stability of that
flat part of the potential. A theory extending the Standard
Model with a second scalar field coupled through the Higgs
portal suffers from the usual hierarchy problem of the
Standard Model. This is the question of the stability of the
Higgs vev and mass under quantum corrections induced by
heavy, i.e., larger than the Higgs mass, states5 In the context
of our model this becomes a question about the sensitivity
of the potential VðϕÞ and the mass function μðϕÞ to
corrections from quantum fluctuations of beyond the
standard model particles. We have nothing to add to this
discussion and take for granted that the low-energy
effective action for the Higgs-scalar system does admit a
flat direction when the mixing angle is close to mϕ=mh.
However, we must check that at low energies, below the
electroweak scale, the dynamics of the field δϕ, parameter-
ising the flat direction and stabilized by dense matter, is not
dominated by quantum corrections.
We work with the effective single-field potential

described in Sec. II D, where δϕ describes fluctuations

of the light mode around the minimum of the effective
potential. The resulting quantum corrections depend on the
mass of these fluctuations given by

m2
δϕ ¼ m2

− þU000δϕ: ð45Þ

The one-loop correction to the scalar potential calculated in
dimensional regularization with a sliding scale μDR is6

δϕUðδϕÞ ¼ −
m4ðδϕÞ
64π2

ln
μ2DR
m2

−
: ð46Þ

When m− is negligible in Eq. (45), the correction to the
potential becomes

δϕUðδϕÞ ∝ −
ðU000Þ2δϕ2

64π2
: ð47Þ

to the mass term which does not lift the flat direction as
long as

U000 ≲
32π2

3
vϵ ð48Þ

where we have introduced the dimensionless parameter

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mϕρ

U000mhv3

s
: ð49Þ

This constrains the parameter space of the Higgs-portal
models with a flat direction. In a similar way we can
determine the effects of quantum fluctuations of a massive
fermion ψ , whose mass mψ ðδϕÞ ¼ mψð1 − sin θ δϕ

v Þ comes
from the variation of the Higgs field along the flat direction.
Fluctuations of ψ give a correction to the potential of the
form

δψUðδϕÞ ¼ m4
ψ ðδϕÞ
32π2

ln
μ2DR
m2

ψ
: ð50Þ

The full form of the potential along the flat direction,
taking quantum corrections into account, is

UðδϕÞ ¼ Uvac þ ðm2
ϕ − sin2 θm2

hÞ
δϕ2

2

þ U000 δϕ
3

6
þ T

sin θδϕ
v

ð51Þ

where T is the trace of the energy-momentum tensor of
matter and vacuum energy

5The relaxion model [14] is an exception to this, where the
second scalar field is introduced to try to provide a solution
for the hierarchy problem. We will discuss the relaxion further
in Sec. V.

6We regularize divergent integrals like
R d4p

p2þm2ðδϕÞ ¼
m2ðδϕÞð μ

m−
ÞϵDR R d4þϵDR x

x2þ1
and extract the finite part, depending

on ln μ=m−, after removing the divergences in 1=ϵDR.
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T ¼ −ρ − 4Uvac: ð52Þ

Notice that the quantum corrections due to the fermions ψ
to the vacuum energy induce the change

Uvac → Uvac þ
m4

ψ

32π2
ln
μ2DR
m2

ψ
ð53Þ

and this can be renormalized to zero in what follows.
The quantum corrections due to the fermion fluctuations

do not modify the term cubic in δϕ in Eq. (51) as long as

U000 ≳ sin3 θmψ ð54Þ

The quadratic correction to the mass term amounts to
changing

m2
h → m2

h −
3m4

ψ

8π2v2
ln
μ2DR
m2

ψ
ð55Þ

which is the quantum correction to the Higgs mass due to
the fermion loop [54]. Again, this can be absorbed in the
definition of the Higgs mass. In the end, the quantum-
corrected potential is similar to the classical one after
renormalization of the Higgs mass and the vacuum energy.
Higher order terms in δϕ4 are negligible due to the sin4 θ
factor. Hence we find that the flat direction is preserved
quantum mechanically. In the following, we will assume
that the Higgs mass is the renormalized one and analyze
the flat direction for sin θ ¼ mϕ

mh
where mh has been

renormalized.

III. THE LONG-RANGE FIFTH FORCE

So far we have discussed the values of the two scalar
fields that minimize the effective potential in vacuum and
in dense environments, and the resulting effective cou-
pling of the light mode to matter. In this section we will
proceed to analyse the form of the scalar fifth force
around a compact object more precisely.7 Around a
compact matter source the two fields will be perturbed
from their background values. As the mass eigenstates
are combinations of the Higgs field and scalar ϕ the
perturbation to the Higgs field will contain a component
of the light-mass eigenstate, the gradient of which could
communicate a long-range fifth force to other matter
particles in the vicinity. This is the way a compact object
interacts with the surrounding matter particles with a
range characterized by the Compton wavelength

associated with the lowest eigenmass of the Higgs-scalar
mass matrix in vacuum.

A. Spherical profiles

To study the behavior of the fifth force we will assume a
source mass made of matter which is a static sphere of
constant-density ρ and radius R (so that the total mass of the
source is M ¼ 4πρR3=3). We will solve the equations of
motion for the fields both inside and outside the source
mass and impose continuity of the fields and their deriv-
atives at the surface.
Both inside and outside the source, the mass matrix,

Eq. (28), can be written in terms of a diagonal matrix
of the eigenvalues, M2

D and a rotation matrix, R, as
M2 ¼ RTM2

DR, where the superscript T denotes the
transpose of the matrix, see Appendix A 2. We allow for
the mass matrix to be different inside and outside the
source, we will say that outside the source the eigenvalues
of M2 are y�, and inside the source these are λ� (both y�
and λ� have dimensions of mass squared). The rotation
matrices are Ri and Ro, which can be expressed in terms of
mixing angles θi and θo, see Appendix A 2.
The equations of motion to be solved are therefore

RoΔ
�

h − v

ϕ − ϕ0

�
¼
�
yþ 0

0 y−

�
Ro

�
h − v

ϕ − ϕ0

�
ð56Þ

outside the source, and

RiΔ
�
h − hin
ϕ − ϕin

�
¼
�
λþ 0

0 λ−

�
Ri

�
h − hin
ϕ − ϕin

�
ð57Þ

inside the source, where hin and ϕin are the values of the
fields that minimize the effective potential inside the source
and Δ the Laplacian operator in spherical coordinates.

B. The linear case

We begin by studying the case where linear perturbation
theory can be trusted. This assumes that the model we
study is far away, in parameter space, from points where
m2

ϕ ¼ m2
h sin

2 θ, and that the density of the source is not too
high; see for instance Eq. (41). In this case we know that the
values of the fields that minimize the effective potential
inside the source are small perturbations from the values
that minimize the effective potential in vacuum. In the
linear case, the mass matrices can be considered to be
equal, i.e., the mixing angles θi;o coincide inside and
outside the compact objects. This will not be the case in
the quadratic case as we will see next.
As a result, the equation of motion inside the source,

Eq. (57), can be simplified to be

7We use the term “fifth force” here to denote the new long-
range scalar mediated force, that is not present in the Standard
Model. However, the Higgs, as a scalar field, in principle
mediates a very short-range force that could be termed the “fifth
force”. In which case the additional scalar field is actually
mediating a “sixth force”.
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RoΔ
�

h − v

ϕ − ϕ0

�
¼
�
yþ 0

0 y−

�
Ro

�
h − v

ϕ − ϕ0

�
þ ρ

v
Ro

�
1

0

�

ð58Þ

Notice that we have explicitly use the equality between the
mass matrices inside and outside the source.
The equations of motion in Eq. (58) can be solved in

terms of the rotated fields

δΦ ¼ Ro

�
h − v

ϕ − ϕ0

�
ð59Þ

which must be identified with decreasing exponential
functions outside the source

δΦo ¼

0
B@

Bþffiffiffiffi
yþ

p
r e

− ffiffiffiffiyþp ðr−R0Þ

B−ffiffiffiffi
y−

p
r e

− ffiffiffiffiy−p ðr−R0Þ

1
CA: ð60Þ

where B� are constants of integration. Inside the source one
must impose that the first derivatives of the fields must
vanish at the origin leading to

δΦi ¼

0
B@

Aþffiffiffiffi
yþ

p
r sinh

ffiffiffiffiffiffi
yþ

p
r

A−ffiffiffiffi
y−

p
r sinh

ffiffiffiffiffi
y−

p
r

1
CA −

 C
yþ
D
y−

!
ð61Þ

where

�
C

D

�
¼ ρ

v
Ro

�
1

0

�
ð62Þ

The constants A� and B� are constants of integration. As
already stated, we have imposed the boundary conditions
that the perturbations to the fields should decay to zero as
r → ∞ and that the fields should be regular at r ¼ 0.
By requiring that the fields and their first derivatives

are continuous at the surface of the source we determine
the remaining constants of integration. The full expressions
for these constants are lengthy algebraic expressions, see
Sec. IVA and Appendix B for the complete expressions.
For simplicity we focus on the physically interesting case
where the Compton wavelength of the heavy mode is
always smaller than the size of the source, and the Compton
wavelength of the light mode is always larger. This requires
the assumptions:

ffiffiffiffiffiffi
yþ

p
R ≫ 1;

ffiffiffiffiffi
y−

p
R ≪ 1 ð63Þ

and corresponds to the physical situation of a Higgs field
mediating an interaction of sub-Fermi range and a light
scalar with a Compton wavelength much greater than the
size of the source. Of greatest relevance is the way in which

the light mode appears in the Higgs field. Outside the
source this appears in the form

h ≈ v −
sin θoB−ffiffiffiffiffi

y−
p

r
e−
ffiffiffiffi
y−

p ðr−RÞ: ð64Þ

This will communicate a long-range interaction to the
matter fields depending on the mixing constant B−.
Keeping only the leading terms, we find that the four

constants of integration are given by

Bþffiffiffiffiffiffi
yþ

p ¼ −
ρ cos θoR
2yþv

ð65Þ

B−ffiffiffiffiffi
y−

p ¼ ρ sin θoR3

3v
ð66Þ

Aþffiffiffiffiffiffi
yþ

p e
ffiffiffiffi
yþ

p
R ¼ ρ cos θoR

vyþ
ð67Þ

A−ffiffiffiffiffi
y−

p ¼ −
−ρ sin θo
vy3=2−

ð68Þ

The tree-level long-range scalar force is communicated to
matter through the Higgs field, which has the form,

h ≈ v −
M sin2 θo
4πvr

e−
ffiffiffiffi
y−

p ðr−RÞ ð69Þ

where M ¼ ð4π=3ÞρR3, as expected in the linear theory
(recall that in this case y− ≈m2

ϕ −m2
h sin

2 θo). Thus the
light mode, of mass

ffiffiffiffiffi
y−

p
, mediates a Yukawa interaction

between matter particles and massive objects, with a
coupling-strength relative to gravity

βϕ
mPl

¼ sin θo
v

: ð70Þ

This is in exact agreement with the coupling-constant we
determined for the effective field theory where the Higgs
had been integrated-out in Eq. (26). So we can conclude
that the effective single-field theory for ϕ accurately
captures the behavior of the fifth force in the linear regime.

IV. THE HIGGS-PORTAL SCREENING
MECHANISM

A. The perturbed fields

In the previous section, we showed that, when linear
perturbation theory is valid, the strength of the interaction is
proportional to β2ϕ. We will now show how this behavior is
modified in the nonlinear case when the Higgs-scalar mass
matrix admits a flat direction. In this case, linear perturba-
tion theory breaks down as
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m2
h sin

2 θ ¼ m2
ϕ: ð71Þ

when the mass of the lightest mode (almost) vanishes. This
does not mean that the system is no longer perturbative.
Indeed the flat direction in field space is lifted as long as
U000 > 0 at second order in perturbation theory. These
minimum values for the two fields are given by

ϕin ¼ ϕ0 þ vϵ ð72Þ

hin ¼ v

�
1 −

mϕ

mh
ϵ

�
; ð73Þ

where the dimensionless parameter ϵ was defined in
Eq. (49). The perturbations to ϕ0 and v will remain small,
due to the smallness of ρ compared to the particle physics
scales, unless U000 is vanishingly tiny; we will assume in
what follows that this is not the case and will analyze the
range of values of U000 allowed by observations below. The
displacements in both ϕ and h due to the presence of matter
with density ρ are now proportional to

ffiffiffi
ρ

p
. The fields react

less strongly to the presence of a dense source, i.e., in
ffiffiffi
ρ

p
,

than they do in the linear regime, i.e., in ρ. So we start to see
screening of the effects of the scalar fields emerging.
The mass matrix in a region of density ρ has eigenvalues

λþ ≈m2
h ð74Þ

λ− ≈U000ϵv ð75Þ

and the mixing angle is

θi ≈ θo − δ ð76Þ

where we have a small mixing angle

θo ≃
mϕ

mh
ð77Þ

and the variation of this mixing angle due to the presence of
matter is given

δ ¼
�
m2

ϕ

m2
h

−
ðμ2Þ00ðϕ0Þ

2λ

�
ϵ: ð78Þ

To find the form of the long-range fifth force we solve the
equations of motion for the fields in the same way as we
outlined in the previous section for the linear case. We find
that outside the source

�
h

ϕ

�
¼
�

v

ϕ0

�
þ RT

o

0
B@

Bþffiffiffiffi
yþ

p
r e

− ffiffiffiffiyþp ðr−R0Þ

B−ffiffiffiffi
y−

p
r e

− ffiffiffiffiy−p ðr−R0Þ

1
CA ð79Þ

and inside the source

�
h

ϕ

�
¼
�
hin
ϕin

�
þ RT

i

0
B@

Aþffiffiffiffi
λþ

p
r
sinh

ffiffiffiffiffi
λþ

p
r

A−ffiffiffiffi
λ−

p
r
sinh

ffiffiffiffiffi
λ−

p
r

1
CA ð80Þ

again, A� and B� are constants of integration and we have
imposed the boundary conditions that the perturbations to
the fields should decay to zero as r → ∞ and that the fields
should be regular at r ¼ 0.
Imposing that the fields and their first derivatives are

continuous at the surface of the source we find that the
constants of integration are given by the following iden-
tities

�
Aþ
A−

�
¼ −X−1ð1þ YÞRoδΦ ð81Þ

and 0
B@

Bþffiffiffiffi
yþ

p
R

B−ffiffiffiffi
y−

p
R

1
CA ¼ ð1 − RδSX−1ð1þ YÞÞRoδΦ ð82Þ

where we have introduced the vector

δΦ ¼
�
δh

δϕ

�
¼
�

hin − v

ϕin − ϕ0

�
ð83Þ

and the matrix Rδ ¼ RoRT
i , corresponding to the rotation

angle δ ¼ θo − θi. We also define the matrices

Y¼
� ffiffiffi

y
p

þR 0

0
ffiffiffi
y

p
−R

�
; C¼

�
cosh

ffiffiffiffiffi
λþ

p
R 0

0 cosh
ffiffiffiffiffi
λ−

p
R

�
;

S¼

0
B@

sinh
ffiffiffiffi
λþ

p
Rffiffiffiffi

λþ
p

R
0

0
sinh

ffiffiffiffi
λ−

p
Rffiffiffiffi

λ−
p

R

1
CA; X¼RδCþYRδS: ð84Þ

Notice that in the limit y− → 0, i.e., in the massless case,
the constant B−ffiffiffiffi

y−
p

R has a finite limit. Again we consider the

case of most physical interest, where the Compton wave-
length of the heavy mode is much smaller than the radius of
the source and the Compton wavelength of the light mode
is much larger;

ffiffiffiffiffi
λþ

p
R ≫ 1 and

ffiffiffiffiffi
λ−

p
R ≪ 1. We also

assume λþ ≃ yþ ≃mh. In this limit the relevant parameter
B− simplifies and is given in the Appendix B where the full
expression with no approximation can also be found.

B. Screening nearly massless fields

1. The screening factor

We now concentrate on the constant B−=
ffiffiffiffiffi
y−

p
when y− is

vanishing small, i.e., when there is a nearly massless field
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in the spectrum of the theory. We also rely on the fact that
the quadratic term of the effective potential UðδϕÞ is
negligible compared to the cubic term, which stabilizes
the flat direction at quadratic order in the presence of
matter. The scalar force outside the massive object is
mediated by the Higgs field which couples to matter. In
particular, the screening of the scalar interaction compared
to the linear case depends on the profile of the Higgs field
outside the objects. This depends on the B− coefficient
which is evaluated in Appendix B and reads

B−ffiffiffi
y

p
−
¼ κR3δϕ ð85Þ

where λ− ¼ m2
− is the square of the lowest eigenmass of the

Higgs-scalar mass matrix in the dense body, and we have
introduced the prefactor

κ ¼
m2

−
3
þ δ2mh

2R

1þ mhRδ2

2

: ð86Þ

The resulting Higgs field outside the body is given by

h ¼ v − κδϕ
R3 sin θo

r
ð87Þ

in the nearly massless limit where the exponential Yukawa
suppression is negligible. The corresponding force on a test
body of mass mtest is simply

Fϕ ¼ −κ
δϕ

v
mtestR3 sin θo

r2
: ð88Þ

This is the main result of this paper.
Notice first that the scalar force is always attractive as

κ > 0. Moreover, one can easily retrieve the linear case by
neglecting terms in δ2 and upon using δϕ ¼ sin θoρ

m2
−v

we get

Flinear
ϕ ¼ −

2 sin θ2om2
Pl

v2
GNMmtest

r2
ð89Þ

corresponding to a ratio with the Newtonian interaction of
2β2ϕ where βϕ ¼ mPl

v sin θo.
In the nonlinear case, the scalar force is related to the

linear force by

Fnl
ϕ ¼ 3κvδϕ

ρ sin θo
Flinear
ϕ : ð90Þ

The coefficient

Θ ¼ 3κvδϕ
ρ sin θo

ð91Þ

is the screening factor. Screened scalar interactions corre-
spond to Θ < 1. We focus on two interesting cases.

2. The large radius case R ≳ δ2 mh

m2
−

The screening factor is also given by

Θ ¼ 3κv2ϵ
ρ sin θo

ð92Þ

and we find that

Θ ¼ 2

1þ mhRδ2

2

ð93Þ

implying for small objects, the scalar interaction is
enhanced by a factor of two compared to the linear case.
This is antiscreening whose origin can be traced back
directly to the nonlinear behavior of the scalar field along
the flat direction. Indeed assume that the leading correction
along the flat direction is not cubic but of the type

UðδϕÞ ⊃ UðnÞ

n!
δϕn: ð94Þ

The minimum induced by matter is now located at

δϕbg ¼ ϵv ð95Þ

where

ϵ ¼
�ðn − 1Þ! sin θρ

UðnÞvn

�
1=ðn−1Þ

: ð96Þ

The mass is given by

m2
− ¼ UðnÞ

ðn − 2Þ! δϕ
n−2
bg ð97Þ

leading to the screening factor

Θ ¼ n − 1

1þ mhRδ2

2

: ð98Þ

As can be seen, this antiscreening originates from the
number of way of connecting the field δϕ from a given
body to another δϕ associated to another body via the nth
order interaction of Eq. (94). Indeed there are (n − 1) way
of choosing the second leg δϕ once the first one has been
chosen in a vertex of order n.
When n ¼ 3, screening only occurs when R is larger

than the screening radius defined by

Rscr ¼ 4ðδ2mhÞ−1 ð99Þ

the screening factor becomes small and equal to
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Θ ≃
Rscr

R
≪ 1: ð100Þ

In this case the scalar interaction is suppressed for objects
much bigger than the screening radius.

3. The small radius case R ≲ δ2 mh

m2
−

In the small radius case, we find that

κ ¼
δ2mh
2

1þ mhRδ2

2

: ð101Þ

As the numerator is larger than the term leading to
antiscreening by a factor of two, screening only occurs
for radius larger than the screening radius. In this case we
find that

Θ ¼ v2

m2
Pl

ϵ

2ΦN sin θo
: ð102Þ

Hence screening happens for objects with a large enough
Newtonian potential ΦN ¼ GNM=R satisfying

ΦN ≳
v2

m2
Pl

ϵ

2 sin θo
: ð103Þ

As v2=m2
Pl ≪ 1 and sin θ0 ≪ 1, the order of magnitude of

ΦN for screening to happen is left undetermined. But there
will certainly be regions of parameter space for which the
fifth force is suppressed. This second type of screening
is similar to the chameleon screening mechanism which
takes place for objects with a large enough surface Newton
potential. Here screening happens only for large enough
objects with a large enough Newton potential at their
surface.

4. The effective coupling and the violation
of the equivalence principle

The most stringent tests of the modified Newton law has
been performed by the Cassini probe [55]. In the environ-
ment of the Sun, the correction to the motion of a test
satellite must be smaller than 10−5, i.e.,

2Θ⊙β
2
ϕ ≲ ϵcas ≃ 2 × 10−5: ð104Þ

Modifications of Newton’s law in the laboratory have been
probed down to a distance d ≃ 0.1 mm. This also imposes
strong constraints on models. These bounds apply to the
coupling of real materials made out of atoms. As already
mentioned, we have only discussed the coupling of the light
scalar to one fundamental fermion and not to atoms. The
coupling to atoms could be obtained using the formalism
developed in [50,51] where the effects of the gluon
condensate and the valence quark masses on the nucleon

masses are taken into account as well as the binding energy
effects in atoms. In this formulation, five coefficients are
introduced ðdg; de; dme

; dmu
; dmd

Þ corresponding to the
couplings of the scalar field to gluons, photons, electrons,
u-type quarks, and d-type quarks. In our model, the
coupling to fermions comes from the Higgs portal and
results in a universal coupling with dme

¼ dmu
¼ dmd

¼ffiffiffi
2

p
βϕ. At tree-level there is no coupling of the Higgs field

to the photons or the gluons, i.e., dg ¼ de ¼ 0. These
coupling can be induced via quantum corrections [50]
leading to dg;e ≠ 0 which would have to be evaluated for
precise comparison with experiments, see also [56].
Hence the models that we have presented involve only

one fermion field and in essence the coupling hρ=v to
matter is universal to all matter species, i.e., the weak
equivalence principle is respected. A potential violation of
the weak equivalence principle induced mainly by the
couplings to photons and gluons has been constrained by
the MICROSCOPE experiment recently [57].8 In this paper
we have uncovered a new mechanism involving screened
macroscopic objects and leading to an additional violation
of the strong equivalence principle, i.e., two macroscopic
bodies with non-negligible gravitational potentials do not
fall in the same fashion in the field of a third object.9 This is
well known for chameleon models [59,60]. The role of
cubic interaction terms in the scalar potential, such as those
present along the flat direction of the Higgs-scalar system
considered here, in the violation of the strong equivalence
principle in screened models has also been noticed in [61]
with potentially observable consequences. Here we will not
be model-specific and leave such applications to further
work. Objects of density ρ and size R couple to the long-
range scalar field with an effective coupling

8Taking the five couplings into account, the effective coupling
to atoms of atomic number A and charge number Z is given by

ffiffiffi
2

p
βA;Z ¼ d⋆g þ ðdm̃ − dgÞQm þ deQe ð105Þ

where dm̃ is the coupling to the symmetric combination of
u and d quarks, here at tree-level simply

ffiffiffi
2

p
βϕ, d⋆g ¼ dg þ

0.093ðdm̃ − dgÞ þ 0.00027de and the charges Qm ¼ 0.093 −
0.036
A1=3 − 1.4 × 10−4

ZðZ−1Þ
A4=3 , Qe ¼ −1.4 × 10−4 þ 7.7 × 10−4

ZðZ−1Þ
A4=3 .

The coefficients d⋆g ðdm̃ − dgÞ and d⋆g de are constrained by
MICROSCOPE.

9We refer to the weak equivalence principle when two bodies
with negligible gravitational binding energy fall in the same way
in the field created by a third one. As a result the weak
equivalence principle applies to the motion of test bodies. For
the strong equivalence principle we request that the universality
of free fall also applies to bodies with a finite gravitational
binding energy [58]. In this work we only see screening of the
fifth force for extended objects of finite mass. These objects have
a nonzero gravitational binding energy, and so the effects of
screening (which cannot be seen when only considering test
particles) are a violation of the strong equivalence principle.
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βeff ¼ Θβϕ ð106Þ

corresponding to a rescaling of Newton’s constant as

GN → ð1þ 2βϕβeffÞGN ð107Þ

in the interaction described previously between a test-
particle coupled with the strength βϕ and the body with a
strength βeff . Unscreened bodies have Θ ¼ 1. More gen-
erally two bodies characterized by screened couplings
βA;B ¼ ΘA;Bβϕ interact with a modified strength

GN → ð1þ 2βAβBÞGN: ð108Þ

As a result of the density and size dependence of the factors
ΘA;B, two screened bodies fall differently in the gravita-
tional and scalar fields created by another body C. The
Eötvos parameter is therefore

ηAB ¼ ja⃗A − a⃗Bj
ja⃗A þ a⃗Bj

≃ β2ϕΘCjΘA − ΘBj: ð109Þ

There are two potentially stringent tests of the equivalence
principle. The first one is the Lunar Laser Ranging experi-
ment [62] where the acceleration of the Moon and the Earth
in the gravitational field of the Sun are monitored. The
second one is the MICROSCOPE satellite experiment [57]
where two cylinders of different compositions fall in the
gravitational field of the Earth. In both cases the Eötvos
parameter is constrained at the 10−13 and 10−14 level
respectively.

V. SCREENING THE RELAXION

A. The relaxion

The relaxion model [14] is a theory where an additional
scalar is added to the Standard Model. This scalar couples
to the standard model fields through the Higgs portal in
such a way that the dynamics of the relaxion could provide
an explanation for the hierarchy problem. Wework with the
relaxion model of Ref. [21] where

VðϕÞ ¼ −rgΛ3ϕ ð110Þ

μ2ðϕÞ ¼ 2ðΛ2 − gΛϕÞ þ 4
Λ4
br

v2
cos

ϕ

f
ð111Þ

and Λ is the UV cut-off.10

The effective potential has a minimum in vacuum when
the fields take the values ϕ0 and v satisfying,

vð−Λ2 þ gΛϕ0Þ þ
λ

2
v3 −

2Λ4
br

v
cos

ϕ0

f
¼ 0 ð112Þ

gΛv2 − rgΛ3 þ 2Λ4
br

f
sin

ϕ0

f
¼ 0 ð113Þ

and the scalar masses are

m2
h ¼ 2λv2 ð114Þ

m2
ϕ ¼ 2Λ4

br

f2
cos

ϕ0

f
ð115Þ

The mixing angle is determined by

sin θ ¼ rgΛ3

λv3
: ð116Þ

The cubic parameter of the effective potential is given by

U000 ¼ −
m2

ϕ

f

�
tan

ϕ0

f
þ 6

f
v
sin θ

�
: ð117Þ

The light mode of the linearized theory is massless when

cos
ϕ0

f
¼ g2r2

λ

f2Λ6

v4Λ4
br

ð118Þ

and the flat direction is lifted at the quadratic order in the
presence of matter when

U000 ¼ −
m2

ϕ

f

�
tan

ϕ0

f
þ 6

N

�
ð119Þ

is positive. We have introduced the parameter

N ¼ vmh

fmϕ
: ð120Þ

The quadratic term of the effective potential is dominated
by the cubic interaction when the density satisfies

ρ >
N2

2j6þ N tanϕ0j
f2ðm2

ϕ − sin2 θm2
hÞ2

m2
ϕ

: ð121Þ

In this region of parameter space of the relaxion, the
screening mechanism can be at play. We note that the role
of higher order terms in the expansion of the relaxion
potential have also been explored in Ref. [63].

B. A generalized relaxion

The analysis of the dynamics of the relaxion models
along the flat direction can be simplified by writing the
effective potential as

10We have changed the sign of the linear term with no physical
consequences. In particular, with this choice the mixing angle
sin θ is positive when r > 0 complying with the convention used
in the rest of the paper.
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Veffðh;ϕÞ

¼m2
ϕf

2

�
N2h2

8v2

�
h2

v2
− 2

�
þN

2

�
h2

v2

�
ϕ

f
−
ϕ0

f

�
−
ϕ

f

�
ð122Þ

þ h2

v2

�
1þ

�
ϕ0

f
−
ϕ

f

�
tan

ϕ0

f
−

cosϕ=f
cosϕ0=f

�	
þ h

v
ρ ð123Þ

where N is a dimensionless parameter which is identified
with Eq. (120) for the relaxion model. We find that sin θ ¼
mϕ=mh as expected for models with a flat direction. The
cubic parameter is given by

U000 ¼ −
m2

ϕ

f

�
tan

ϕ0

f
þ 6

N

�
ð124Þ

which must be positive for stable models. This can be
achieved, for instance, by taking

ϕ0 ¼
3π

2
þ ϵ0 ð125Þ

where ϵ0 is positive and small. This guarantees thatm2
ϕ > 0

and U000 > 0 as long as ϵ0 < 6=N. We have represented the
stabilization of the flat direction by matter in the case of
ϵ0 ¼ 10−2 and N ¼ 100 in Fig. 1. Screening depends on
the variation of the mixing angle inside matter, which is
given by

δ ¼ −3 sin2 θϵ ð126Þ

as a result the screening radius is given by

Rscr ¼
4

9 sin4 θϵ2mh
: ð127Þ

We can now briefly sketch the constraints imposed by
laboratory and solar system experiments on the relaxion
models.

C. The allowed parameter space of nearly
massless relaxion models

We focus on models for which the relaxion is nearly
massless, i.e., sin θ0 ∼

mϕ

mh
. This condition means that the

linear-response theory fails and nonlinear screening is
potentially active. In this case the relaxion field is of
nearly infinite range in vacuum. The parameter space of
nearly massless relaxion models is best described by two
dimensionless parameters sin θ and U000=mh. A tight bound
on U000

mh
is given by the condition on the quantum stability of

the flat direction which requires that

U000

mh
≲ ðsin θÞ1=3

�
ρ

m3
hv

�
1=3

: ð128Þ

The fermionic corrections to the flat direction are also
under control provided that

U000

mh
≳
mψ

mh
sin3 θ: ð129Þ

The two quantum conditions are compatible when

sin θ ≲
�
mh

mψ

�
3=8
�

ρ

vm3
h

�
1=8

: ð130Þ

≲5 × 10−4
�
mt

mψ

�
3=8
�

ρ

gcm−3

�
1=8

: ð131Þ

where mt is the mass of the top quark. Taking mψ ¼ mt,
and density of matter to be ρ ≃ 1 g=cm3, we find that
sin θ ≲ 10−3 for quantum corrections to be under control,
see Fig. 2 where the upper bound on sin θ can be
clearly seen.
Let us now discuss the screening radius. Objects of size

R are screened provided that

Rscr ≲ R ð132Þ

For test objects in the laboratory, planets and the Sun,
which have an average density of ρ ≃ 10 g=cm3, this
leads to

FIG. 1. The stable potential along the flat direction for a
relaxion model defined by ϵ0 ¼ 0.01 and N ¼ 100. The potential
with a flat direction (mauve) is perturbed by matter (blue) and
develops a minimum in field space which depends on the square
root of the matter density.
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U000

mh
≲ sin5 θ

ρR
v3

: ð133Þ

When combined with the quantum stability constraints, this
implies a lower bound on sin θ which reads

sin θ ≳
�
v3

ρR

mψ

mh

�
1=2

: ð134Þ

≳3 × 104
�
m
R

�
1=2
�
g=cm3

ρ

�
1=2
�
mψ

mt

�
1=2

: ð135Þ

where, again,mt is the mass of the top quark. The bound on
θ in Eq. (134) is only compatible with the bound in
Eq. (130) for sufficiently large and dense bodies. Hence
we find that common laboratory test masses are not
screened. The nonlinear screening is not strong enough
to guarantee that laboratory tests of gravity, such as the
ones of the Eöt-wash experiment or atomic interferometry
are evaded. This can only be achieved if the Compton
wavelength of the scalar field in the near-vacuum of
experiments with densities around ρvac ≃ 10−10 g=cm3 is
smaller than typically d ≃ 0.1 mm. This imposes the
constraint

U000

mh
≳

v
mh

1

sin θ
1

ρvacd4
ð136Þ

Within the parameter space allowed by the quantum
bounds, this is never restrictive. In fact, the Yukawa
suppression is effective down to sizes around one nano-
metre. Hence all laboratory tests are easily evaded. As the
mass of the relaxion in matter scales with the density as ρ1=4,
we find that in the atmosphere with ρatm ≃ 10−4 g=cm3 the
range is smaller than 3 microns, in the galactic vacuum of
density ρatm ≃ 10−23 g=cm3 it is shorter than 20 centimeters,
and finally in the cosmological vacuum of density ρatm ≃
10−29 g=cm3 the range is smaller than 10 metres. In effect,
although the relaxion is massless in vacuum, the presence of
matter in the Universe even down to extremely low baryonic
densities implies that the range of the relaxion is extremely
short. This is enough to evade all the solar system tests.
The parameter space of nearly massless relaxion

models can be seen in Fig. 2. Restrictions on the parameter
space of relaxion models come from imposing the quantum
stability of the flat direction. In Fig. 2, the mixing angle is
constrained between 4 × 10−21 and 2 × 10−3 while U000

mh
can

vary between 10−14 and 2 × 10−8. In all this parameter
space, the range of the relaxion field is always short
implying that all tests of gravity in the laboratory and
the solar system are all always satisfied.

D. Screening in more general models

In the relaxion case, we have found that the nonlinear
screening is not strong enough to screen small test masses
such as the ones used in laboratory experiments. This
follows from the incompatibility between the bounds on
the mixing angle deduced by requiring quantum stability
and the existence of screening for objects larger than the
screening radius. The quantum bounds determine an upper
bound on sin θ which is fixed when the density ρ is given,
see Eq. (130). For densities of order ρ ≃ 1 g=cm3, this
corresponds to

sin θ ≲ 10−3: ð137Þ

This bound applies to all models and implies an upper
bound of the order mϕ ≲ 10−1 GeV for the mass parameter
of the scalar field. On the other hand screening requires that
the shift of the mixing angle in dense matter should be

δ ≳
2ffiffiffiffiffiffiffiffiffi
mhR

p ≃ 10−7 ð138Þ

for objects of sizes of order of 1 mm and the same density to
be screened. In the relaxion case, the shift δ cannot be as
large as this. For more general models, this would require
some tuning of the parameters involved in the μðϕÞ term for
instance. Introducing the detuning parameter ζ defined as

FIG. 2. The parameter space of nearly massless relaxion
potentials as a function of U000

mh
versus sin θ that is stable under

quantum corrections (the colored region is allowed). The re-
strictions imposed by the quantum stability of the flat direction
are stronger than the gravitational experimental bounds such as
the Cassini test of fifth forces or the MICROSCOPE and Lunar
Ranging tests of the equivalence principle.
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δ ¼ ζ sin2 θϵ ð139Þ

and identified with

ζ ¼
���� ðμ2Þ00ðϕ0Þ

λsin2θ
− 1

����; ð140Þ

and imposing that ϵ ≲ 10−2 to guarantee that the vev’s of
the scalar and the Higgs field in matter are within the reach
of lowest order perturbation theory along the flat direction,
we see that typically one should expect to have ζ ≳ 10 to
comply with the quantum bounds and screening. When ϵ is
much lower as in the relaxion case, this would require even
larger values of ζ. As a result, this would certainly entail
some degree of tuning in the parameters of the model.
Provided this is realized then small objects would be
screened. In fact as most objects in the solar system have
the same typical average density, we can conclude that
screening would most likely be present in the whole solar
system. The construction of such models is left for
future work.

VI. CONCLUSION

Light scalar fields coupled to matter through the Higgs
portal, are a common component of theories that go beyond
the standard models of particle physics and cosmology. As
the light scalar mixes with the Higgs field, a light mode of
the two-field system can interact with matter, and mediate a
long-range fifth force. Such forces are tightly constrained
by experiments and solar system observations and for light
masses provide the tightest bounds on scalars coupled
through the Higgs portal.
In this work we have shown that there are regions of

parameter space for these models where the linearized
treatment, usually used to analyse the phenomenology of
these models, breaks down. This happens because the
lightest mass-eigenstate of the system becomes massless
and it appears possible for both the Higgs and the light
scalar to experience large field excursions. This also makes
clear why it is not sufficient to “integrate-out” the Higgs
field in a naive fashion. The low-energy physics is best
captured by studying the effective field theory along the flat
direction corresponding to the massless field. Along this
direction, the effective field description involves a mixing
of the Higgs and the scalar field in a nontrivial way.
Despite the apparent presence of a massless mode, the

theory may remains perturbative and be stabilized at second
order. As a result it remains possible to compute the
strength of the long-range fifth force mediated by the light
mode. We find that in this nonlinear regime the light mode
couples less strongly to matter and so the fifth force is
weaker and the field is less constrained by experiments for
large enough bodies or large enough Newtonian potentials.
This suppression of the fifth force by nonlinearities in the
theory is commonly known as screening. Thus we have

presented a novel way in which light scalar fields can exist
in our universe, and couple to the fields of the Standard
Model without being strongly constrained by experiment.
We have also commented on the implications of this

nonlinear regime for the relaxion model, which attempts to
explain the hierarchy problem, and have identified the
regime of parameter space in which nonlinear effects need
to be taken in to account.

ACKNOWLEDGMENTS

We would like to thank the Light Scalars: Origin,
Cosmology, Astrophysics and Experimental Probes meet-
ing at the Centro de Ciencias de Benasque where the idea
for this work was first sparked. We would like to thank
Brando Bellazzini for a careful reading of the manuscript
and interesting questions, and Joerg Jaeckel for very
helpful discussions. C. B. is supported by a Research
Leadership Award from the Leverhulme Trust and a
Royal Society University Research Fellowship.

APPENDIX A: HIGGS-SCALAR MODELS TO
SECOND ORDER

1. The minimum of the effective potential
to second order

We consider here a Higgs-portal model with one scalar
and a potential

Veffðh;ϕÞ ¼ Vðh;ϕÞ þ h
v
ρ ðA1Þ

in the presence of matter. In vacuum, the vev’s of the fields
satisfy

Vhðv;ϕ0Þ ¼ 0; Vϕðv;ϕ0Þ ¼ 0: ðA2Þ

The perturbation by matter induces variations in the vev’s
which can be obtained to second order

δh ¼ −
Vϕϕ

Vϕh
δϕ

−
1

Vϕh

�
Vϕϕϕ þ Vϕhh

V2
ϕϕ

V2
ϕh

− 2Vϕϕh
Vϕϕ

Vϕh

�
δϕ2

2
ðA3Þ

leading to the equation for δϕ

λ−δϕþ Uð3Þ δϕ
2

2
¼ Vhϕ

Vhh

ρ

v
ðA4Þ

where

λ− ¼ Vϕϕ −
V2
hϕ

Vhh
ðA5Þ
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and we have introduced the parameter

Uð3Þ ¼ Vϕϕϕ −
�
Vhϕ

Vhh
þ 2

Vϕϕ

Vϕh

�
Vhϕϕ

þ 3
Vhϕ

Vhh

Vϕϕ

Vhϕ
Vhhϕ −

Vhϕ

Vhh

V2
ϕϕ

V2
hϕ

Vhhh: ðA6Þ

All the derivatives are taken at ðv;ϕ0Þ. The minimum
equation of the main text can be obtained from the effective
potential

UðδϕÞ ¼ λ−
δϕ2

2
þ Uð3Þ δϕ

3

6
−
Vhϕ

Vhh

ρ

v
δϕ: ðA7Þ

Linear perturbation theory holds when the quadratic term

dominates. A nonlinear solution exists when Uð3Þ and Vhϕ

Vhh

are positive and the quadratic term is negligible.

2. Properties of Higgs-Scalar mass matrices

The mass matrix of the models defined in Appendix A 1
reads

M2 ¼
�
Vhh Vhϕ

Vhϕ Vϕϕ

�
ðA8Þ

where a derivative with respect to one of the fields is
denoted by a subscript. We assume that jVhhj ≫ jVϕϕj and
jVhhj ≫ jVhϕj. Within this approximation, the two eigen-
states of this matrix are given by

λþ ¼ Vhh; λ− ¼ Vϕϕ −
V2
hϕ

Vhh
: ðA9Þ

Stability imposes that they should be both positive. The
smallest eigenvalue is characterized by an eigenvector

α⃗− ¼
�
c − sin θ

cos θ

�
ðA10Þ

where the mixing angle is given by

tan θ ¼
�
1 −

λ−
Vhh

�
−1 Vhϕ

Vhh
: ðA11Þ

In the large Vhh limit this is simply

tan θ ≃ sin θ ≃
Vhϕ

Vhh
: ðA12Þ

The mass matrix can be diagonalized as

M2 ¼ RT
θM

2
DRθ ðA13Þ

where

M2
D ¼

�
λþ 0

0 λ−

�
ðA14Þ

and the rotation matrix is

Rθ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ðA15Þ

When the vacuum of the theory, obtained as a minimum of
the effective potential in the absence of matter, is perturbed
by the small matter contribution, see (A4), the eigenvalues
and eigenvectors of the mass matrix are perturbed. The
perturbation to the lowest eigenmass is

δλ− ¼ λð1Þϕ δϕ ðA16Þ

where we have defined

λð1Þϕ ¼ Vϕϕϕ −
�
2
Vhϕ

Vhh
þ Vϕϕ

Vhϕ

�
Vhϕϕ

þ
�
2
V2
hϕ

V2
hh

þ Vϕϕ

Vhh

�
Vhhϕ −

Vϕϕ

Vhh

Vhϕ

Vhh
Vhhh: ðA17Þ

The variation of the mixing angle is given by

δθ ¼
�
Vhϕϕ − Vhhϕ

�
Vhϕ

Vhh
þ Vϕϕ

Vhϕ

�
þ Vhhh

Vϕϕ

Vhh

�
δϕ

Vhh
:

ðA18Þ

We apply these results to the case where the potential is

given by Vðh;ϕÞ ¼ − μ2ðϕÞ
2

h2 þ λ h4
4
in the main text.

3. The effective potential in the nearly massless case

When λ− is nearly vanishing, i.e., when the quadratic
term in UðδϕÞ is subdominant then we have

VϕϕVhh ≃ V2
hϕ: ðA19Þ

In this case we have also the identity

Uð3Þ ≃ λð1Þϕ ≃ U000 ðA20Þ

where

U000 ¼ Vϕϕϕ− 3sinθVhϕϕþ 3sin2 θ
Vϕϕ

Vhϕ
Vhhϕ− sin3 θVhhh

ðA21Þ

is the third derivative of the potential Vðh;ϕÞ along the
direction α⃗−, i.e., we have
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UðδϕÞ ¼ Vðv − sin θδϕ;ϕ0 þ δϕÞ − Vðv;ϕ0Þ ðA22Þ

from which we can identify the perturbation to the lowest
mass-eigenvalue

δα− ¼ d2U
dδ2ϕ

¼ U000δϕ: ðA23Þ

Stability imposes to choose as perturbed minimum the one
with δϕ > 0.

APPENDIX B: THE COEFFICIENT B−
The expression for B− in the general case is given by

B−ffiffiffi
y

p
−R

¼ b −
A

detX
ðB1Þ

where

detX ¼ c2δ

�
cþ þ zþ

sþ
xþ

��
c− þ z−

s−
x−

�

þ s2δ

�
cþ þ z−

sþ
xþ

��
c− þ zþ

s−
x−

�
ðB2Þ

and

A ¼ ð1þ zþÞ
�
cþ

s−
x−

− c−
sþ
xþ

�
cδsδa

þ ð1þ z−Þ
�
zþ

sþ
xþ

s−
x−

þ s2δc−
sþ
xþ

þ c2δcþ
s−
x−

�
b: ðB3Þ

We have defined

a ¼ cos θoδhþ sin θoδϕ; b ¼ − sin θoδhþ cos θoδϕ

ðB4Þ

and s� ¼ sinh x�, c� ¼ cosh x�, cδ ¼ cos δ, sδ ¼ sin δ
where x� ¼ ffiffiffiffiffi

λ�
p

R. We have also defined z� ¼ ffiffiffiffiffiffi
y�

p
R.

In the limit xþ ≫ 1 and x− ≪ 1 with zþ ∼ xþ we find that

B−ffiffiffi
y

p
−R

¼ x2−
3

b
c2δ þ s2δ

zþ
2

−
yþsδ

2c2δ þ s2δzþ
ðcos θiδhþ sin θiδϕÞ

ðB5Þ

where θi ¼ θo − δ. Expanding

cos θiδhþ sin θiδϕ ≃ − sin δδϕ ðB6Þ

at linear order in δ. Combining these results we find that

B−ffiffiffi
y

p
−
¼

x2−
3
þ s2δ

xþ
2

c2δ þ s2δ
xþ
2

Rδϕ: ðB7Þ

We use this expression in the main text to discuss the
screening of the Higgs portal.

APPENDIX C: THE UNSTABLE VACUUM

We are interested in the situation where the Higgs
mass dominates, i.e., mh ≫ mϕ, and the potential admits
a flat direction starting at ðh;ϕÞ ¼ ðv;ϕ0Þ along the
massless direction parametrized by the eigenvector α⃗−.
When the cubic parameter U000 is negative, the presence
of matter destabilizes the flat direction, see Fig. 4. This
destabilization was previously noticed in Ref. [64]. The
dynamics of the Higgs-scalar system along this valley can
be simplified by decoupling the fast mode along the
eigenvector α⃗þ of the largest mass-eigenvalue αþ and the
slow mode along the vector α⃗−. As the fields move away
from the vacuum value, the slow modes lie at the bottom
of the valley constructed as the integral curve tangent to
α⃗−. The valley starting at ðh;ϕÞ ¼ ðv;ϕ0Þ is parametrized
as d

ds v⃗ ¼ λ⃗−ðv⃗Þ where the field values along this valley
are given by

v⃗ðsÞ ¼
�
chðsÞ − v

ϕðsÞ − ϕ0

�
: ðC1Þ

It is more convenient to parametrize the valley by ϕ after
eliminating the dummy parameter s. Along the valley the
potential for the slow mode can be expressed as

Uðϕ − ϕ0Þ ¼ VðhðϕÞ;ϕÞ − Vðv;ϕ0Þ þ
hðϕÞ − v

v
ρ ðC2Þ

in the presence of matter. When approximating the valley
as a straight line as mh ≫ mϕ, we retrieve that hðϕÞ −
v ¼ − sin θðϕ − ϕ0Þ and the potential UðδϕÞ that we
expanded to cubic order in the main text. Spherical
solutions correspond to the motion of a ball in a potential
−UðϕÞ with friction. If we assume that −UðϕÞ does not
admit stable minima for ϕ < ϕ0, no spherical and static
solution can interpolate between the vacuum value ϕ0 at
infinity and another minimum of −UðϕÞ in the centre of
the overdensity. This is the case of relaxion models as
can be seen in Fig. 3. On the contrary, the presence of the
matter density ρ destabilizes the vacuum and a time
dependent solution develops. As there is no friction, the
field will carry out large oscillations, see Fig. 4 for
the relaxion case. As the potential is flat around the
vacuum value, the field lingers around the origin for a
time given by

tins ¼
4
ffiffiffi
3

pffiffijp U000j

�
v
6ρ

�
1=4

: ðC3Þ

For a body of density 10 g=cm3, this is around 10−20

seconds for U000 ¼ 1 GeV. Hence for nontuned values, the
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field starts oscillating and a bubble of oscillating field
forms around the body. It is likely that this bubble
eventually expands and fills all the Universe. In fact
the vacuum configuration would certainly have been

destabilized by the matter density of the Universe in
the matter era and after damped oscillations due to
the Hubble friction the field would have settled to one
stable vacuum, see Fig. 4 for the relaxion case. In
conclusion, models with an unstable flat direction are
not physical.
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