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Nonlinear electrodynamic models are reassessed in this paper to pursue an investigation of the
kinematics of the Compton effect in a magnetic background. Before considering specific models, we start
off by presenting a general non-linear Lagrangian built up in terms of the most general Lorentz- and gauge-
invariant combinations of the electric and magnetic fields. The extended Maxwell-like equations and the
energy-momentum tensor conservation are presented and discussed in their generality. We next expand
the fields around a uniform and time-independent electric and magnetic backgrounds up to second order in
the propagating wave, and compute dispersion relations which account for the effect of the external fields.
We obtain thereby the refraction index and the group velocity for the propagating radiation in different
situations. In particular, we focus on the kinematics of the Compton effect in presence of external magnetic
fields. This yields constraints that relate the derivatives of the general Lagrangian with respect to the field
invariants and the magnetic background under consideration. We carry out our inspection by focusing on
some specific nonlinear electrodynamic effective models: Hoffmann-Infeld, Euler-Heisenberg, generalized
Born-Infeld and logarithmic.
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I. INTRODUCTION

Maxwell electrodynamics is a highly successful theory
to describe properties of the electromagnetic interaction at
both the classical and the quantum length scales. Photon-
photon scattering in quantum electrodynamics (QED)
motivates the study of non-linear extensions of the
Maxwell electrodynamics (MED), and phenomena like
vacuum birefringence and vacuum dichroism may be a
guide to also inspect the consistency of nonlinear exten-
sions of MED [1–7]. We cite here the works by Plebanski,
Boillat, Bialynicka-Birula and Bialynicki-Birula as excel-
lent articles for all those readers who wish to be introduced
to the issue of nonlinear extensions of MED [8–11].
Different scenarios of the latter introduce new effects into
the photon-photon scattering process. To be more specific,
we quote scenarios such as Born-Infeld electrodynamics,

models with millicharged particles and models of axionlike
particles that interact topologically with hidden-photons
[12–19]. The nonlinear Born-Infeld electrodynamics was
originally introduced to remove the singularity of the
electric field of point-like charges on their space position.
Nowadays, Born-Infeld effective actions emerge in diverse
scenarios, like superstring theory, quantum-gravitational
models and theories with magnetic monopoles [20–26].
Furthermore, a number of new phenomena in cosmology
and black-hole physics have been reported in connection
with nonlinear extensions of electrodynamic systems
coupled to gravity [27–33].
The introduction of external backgrounds in field-

theoretic models is an old procedure to reproduce effects
of the vacuum polarization phenomenon. If the external
electromagnetic fields are strong enough (as compared to
the so-called Schwinger critical electric and magnetic
fields), they can induce the creation of real particle-
antiparticle pairs in the nontrivial quantum vacuum, such
as, the electron-positron pairs of QED vacuum [34,35].
Nonlinear extensions of electrodynamics in connection
with external electromagnetic fields are able to describe
effects of the vacuum structure on waves that propagate in
empty space, as already pointed out in the previous para-
graph, through the observation of birefringence and vac-
uum dichroism phenomena [36–40]. Awell-known case of
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nonlinear extension that stems from the vacuum polariza-
tion is the Euler-Heisenberg Lagrangian [41], which is an
effective photonic model with higher powers in the electric
and magnetic fields, attained upon integration over the
quantum effects of the (virtual) electron-positron pairs. We
would like to point out here the interesting paper of
Ref. [42], where the EH model is studied beyond the
1-loop level in a great deal of details. Let us also recall
that, in 1961, Franken et al. opened up the field of
nonlinear optics with the celebrated experiment in which
they successfully measured the second-harmonic (optical)
generation [43].
Motivations that strongly justify the renewed interest in

nonlinear extensions of MED are also coming from the
recent high-intensity LASERs, which are the best devices
to test both classical and quantum electrodynamics in the
strong-field regime, whose (field) scales are fixed by the
critical intensity Icrit ∼ 4.6 × 1029 W · cm−2. The Station of
Extreme Light (SEL), the Europe’s Extreme Light
Infrastructure (ELI Project) and the ExaWatt Center for
Extreme Light Studies (XCELS) shall, in a close future,
provide the facilities to pursue a very detailed inspection of
electromagnetic nonlinearities and allow a real dive into
the structure of the quantum vacuum. Powers of these
extremely-intense LASERs are expected to reach 102 PW,
hopefully getting even to the Exa-W scale in a couple of
years. We bring to the reader’s attention that high-intensity
LASER experiments designed to inspect nonlinearity
effects in QED are presented and discussed in [44–47].
Non-linearity means corrections to the Maxwell electro-

dynamics that, in general, depend on the two Lorentz-
and gauge-invariant quantities, F ¼−F2

μν=4 and G ¼
−FμνF̃μν=4. In many examples, the Lagrangian density
of the nonlinear model depends exclusively on powers ofF
[48,49]; in other situations, there may be dependence on
even powers of G (even powers avoid charge-parity (CP)
symmetry violation) [50–53]. In our present contribution,
we start off with a general Lagrangian that is a function of
these two invariants to obtain the corresponding field
equations and the energy-momentum tensor. Next, we
expand the field-strength tensor around an electromagnetic
background, initially considered nonuniform and time-
dependent. We keep the terms of the expansion in the
nonlinear Lagrangian up to second order in the propagating
excitation, and the corresponding field equations in pres-
ence of an external electromagnetic field are written down.
The expansion displays coefficients that depend on the
external background fields. The components of the energy-
momentum tensor are calculated in the case of general
space-time-dependent backgrounds. In the absence of
external sources, plane wave solutions are used to calculate
the allowed frequencies, the dispersion relations and the
refraction index of the photon in a uniform magnetic
background. The dispersion relations, and consequently,
the refraction indices both depend on the relative direction

of the wave vector with respect to the external magnetic
field.
The group velocity of the electromagnetic wave is

determined from the solutions of the frequency dictated
by the dispersion relations. The variation of the photon
wavelength in the Compton effect is investigated in terms of
the new dispersion relations and depends, of course, on the
magnetic background field. We apply these results in some
particular cases of nonlinear electrodynamics: Hoffmann-
Infeld, generalized Born-Infeld, logarithm electrodynamics
and the Euler-Heisenberg effective Lagrangian in the
regime of weak electromagnetic fields.
More recently, the use of astrophysical sources has

shown to be a very fruitful procedure to constrain modified
dispersion relations (MDRs) for photons propagating in the
vacuum [54,55]. We should also recall that, early in 2019,
the Major Atmospheric Gamma Imaging Cherenkov
(MAGIC) telescopes identified the GRB190114C above
0.2 TeV. This corresponds to photons with the highest
frequencies detected so far in gamma-ray bursts. Photons at
this energy scale may well probe the quantum structure of
the vacuum, so that nonlinear electrodynamic effects
should be taken into account. These observations motivate
the growing of interest in the activity of photonic MDRs.
Nonlinearity in association with the presence of strong
background magnetic fields yields a rich class of MDRs
which may, in turn, unveil effects of new physics beyond
the Standard Model (SM) of particles and fundamental
interactions [56]. Moreover, let us recall that, in the SM,
parity violation is verified in the weak-interaction sector.
However, physics beyond the SM may well be sensitive to
parity transformations. In this context, we could seek for
evidence of parity-violating physics by inspecting MDRs in
a special class on nonlinear extensions of electrodynamic
models, namely, the ones which explicitly depend on the
special Lorentz- and gauge-invariant quantity G which,
appearing with an odd power in a Lagrangian density,
signals parity-symmetry breaking. This directly addresses
us to the set of Planck 2018 polarization data, which could
become a rich laboratory to constrain parity-violating
nonlinear extensions of electromagnetism, which may, in
turn, be opening up trends to see for new physics beyond
the SM [57].
We organize our paper as follows. In Sec. II, we give

highlights of the nonlinear electrodynamics framework, the
corresponding field equations and energy-momentum ten-
sor in the presence of general electric and magnetic
background fields. Section III focus on the frequencies
for the plane wave solutions, the photonic dispersion
relations in presence of a uniform magnetic field and the
consequences of this background on the kinematical
description of the Compton effect. In Sec. IV, we apply
the results of the previous section for a special nonlinear
ED depending only on the F -invariant. In Sec. V, we
discuss the results by exploiting other cases of nonlinear
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ED known in the literature that depend on both the F - and
G-invariants. Our Conclusions and Final Remarks are cast
in Sec. VI.
The convention for the metric we adopt is ημν ¼

diagðþ1;−1;−1;−1Þ. We choose to work with natural
units: ℏ ¼ c ¼ 1 and 4πϵ0 ¼ 1. In this unit system, the
electric and magnetic fields have squared-energy dimen-
sion. The conversion of Volt=m and Tesla (T) to the natural
system is as follows: 1 Volt=m ¼ 2.27 × 10−24 GeV2 and
1 T ¼ 6.8 × 10−16 GeV2, respectively.

II. A QUICK GLANCE AT A GENERAL
NONLINEAR ELECTRODYNAMIC MODEL

We start off the description of the nonlinear electro-
dynamics through the most general Lagrangian, L, written
as a function of the Lorentz- and gauge-invariant bilinears,
F and G, defined, respectively, as follows below [8–11]:

F ¼ −
1

4
F2
μν ¼

1

2
ðE2

0 −B2
0Þ; ð1aÞ

G ¼ −
1

4
FμνF̃μν ¼ E0 · B0; ð1bÞ

where Fμν ¼ ∂μAν − ∂νAμ ¼ ð−E0
i;−ϵijkB0

kÞ is the skew-
symmetric field-strength tensor, F̃μν ¼ ϵμναβFαβ=2 ¼
ð−Bi

0; ϵ
ijkE0

kÞ its corresponding dual tensor, which satisfies
the Bianchi identity ∂μF̃μν ¼ 0. We decompose the Aμ

potential as Aμ ¼ aμ þ AB
μ, where aμ is identified as

the photon field, and AB
μ is a background potential. As

consequence of this decomposition, the tensor Fμν is written
as Fμν ¼ fμν þ FB

μν, in which fμν ¼ ∂μaν − ∂νaμ ¼
ð−ei;−ϵijkbkÞ is the electromagnetic field-strength tensor
of the propagating excitation, whereas FB

μν ¼ ∂μAB
ν −

∂νAB
μ ¼ ð−Ei;−ϵijkBkÞ corresponds to the field-strength

associated with the electric and magnetic background fields.
These fields, in general, depend on the space-time coordi-
nates. Therefore, by expanding the Lagrangian LðF ;GÞ
around the background fields and keeping terms up to the
second-order in the propagating field, we get

Lð2Þ ¼ −
1

4
c1f2μν −

1

4
c2fμνf̃

μν −
1

2
fμνGB

μν

þ 1

8
QB

μνκλfμνfκλ − Jμaμ − JμAB
μ; ð2Þ

where the background tensors are defined by

GB
μν ¼ c1FB

μν þ c2F̃B
μν;

QB
μνκλ ¼ d1FB

μνFB
κλ þ d2FB

μνF̃B
κλ

þ d3FB
μνF̃B

κλ þ d3F̃B
μνFB

κλ; ð3Þ

and Jμ is a classical source. By construction,GB
μν ¼ −GB

νμ

and the tensor QB
μνκλ is antisymmetric under the exchange

μ ↔ ν or κ ↔ λ, and symmetric in μν ↔ κλ. The coeffi-
cients c1, c2, d1, d2 and d3 are evaluated at the background
fields E, B:

c1¼
∂L
∂F

����
E;B

; c2¼
∂L
∂G

����
E;B

;

d1¼
∂2L
∂F 2

����
E;B

; d2¼
∂2L
∂G2

����
E;B

; d3 ¼
∂2L
∂F∂G

����
E;B

; ð4Þ

that, in a general situation, are space-time-dependent.
Using the second-order expanded Lagrangian (2), we

give below the energy-momentum, up to the second order
in the photon field strength, fμν, for a general space-time-
dependent background, FBμν. Let us consider again the
Lagrangian (2) whose corresponding field equations are as
follows:

∂μ½c1fμν þ c2f̃
μν −

1

2
QB

μνκλfκλ� ¼ −∂μGB
μν þ Jν: ð5Þ

The dual tensor f̃μν satisfies the Bianchi identity:
∂μf̃

μν ¼ 0. We contract the field equations with fνα, and
using the Bianchi identity for fνα, we obtain the continuity
equation

∂μΘph
μα ¼ hα; ð6Þ

where the energy-momentum tensor of the photon field is
given by

Θph
μα ¼ c1fμνfνα −

1

2
QB

μνκλfκλfνα

þ ημα
�
1

4
c1f2ρσ −

1

8
QB

ρσωτfρσfωτ

�
; ð7Þ

and the vector hα is

hα ¼ Jνfνα − ð∂μGBμνÞfνα þ
1

4
ð∂αc1Þf2μν

þ 1

4
ð∂αc2Þf̃μνfμν −

1

8
ð∂αQB

μνκλÞfμνfκλ: ð8Þ

Notice that the topological term, the one in c2, is cancelled
in the expression for (7); as expected, it does not contribute
to the stress-tensor by virtue of its topological nature. In the
general case, the background fields are nonhomogeneous
over space and time-dependent. Whenever Jν ¼ 0, the term
of hα is not zero and, as consequence, the components of
the energy-momentum tensor are not conserved if the
background fields are neither uniform nor constant in time.
If we consider the background fields to be constant and
uniform, hα is vanishing and, in this case, the energy-
momentum tensor (7) satisfies a continuity equation with
the conserved energy density given in what follows below:
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Θph
00 ¼ 1

2
c1ðe2 þ b2Þ þ 1

2
d1ðe · EÞ2 þ

1

2
d2ðe ·BÞ2

−
1

2
d1ðb ·BÞ2 − 1

2
d2ðb ·EÞ2 þ d3ðe ·EÞðe ·BÞ

þ d3ðb ·EÞðb · BÞ; ð9Þ

where all the coefficients depend on the external fields, E
and B. We recover the Maxwell limit by turning off the
background fields and by taking c1 ¼ 1.
The energy density can be written as

Θ00
ph ¼

1

2
Kijeiej þ

1

2
Λijbibj; ð10Þ

where Kij and Λij are, respectively, defined by

Kij ¼ c1δij þ d1EiEj þ d2BiBj þ d3ðEiBj þ EjBiÞ;
Λij ¼ c1δij − d1BiBj − d2EiEj þ d3ðEiBj þ EjBiÞ: ð11Þ

The energy density (10) is positive-definite whenever the
eigenvalues of the symmetric matrices Kij and Λij are non-
negative. Let us contemplate the case d3 ¼ 0 and assume a
purely magnetic background, i.e., Ei ¼ 0. These conditions
shall actually be the ones we are going to work with in the
forthcoming sections. Therefore, with these assumptions,
the eigenvalues of Kij are c1, c1 þ ðd2 − jd2jÞB2=2 and
c1 þ ðd2 þ jd2jÞB2=2, and the eigenvalues of Λij are c1, c1
and c1 − d1B2, respectively. If d2 < 0 or d2 > 0, to ensure
positive eigenvalues, the following conditions should be
fulfilled:

c1 > 0; c1 − d1B2 > 0 and c1 þ d2B2 > 0: ð12Þ

To elaborate more on the positivity of the energy density,
let us recall that a general nonlinear Lagrangian can be
expanded as an asymptotic series in powers of F and G:

L ¼ aijF iGj; i; j ¼ 0; 1; 2;…: ð13Þ

MED corresponds to i ¼ 1, j ¼ 0. However, except for
a10 ¼ 1, all the coefficients of the expansion above are
small, for they describe tiny nonlinear effects, even for
strong external fields, such as, for example, magnetic fields
in the neighborhood of magnetized astrophysical objects.
So, in the energy density (9) and in (11), c1 ¼ 1þ δ1, with
δ1 ≪ 1, since the latter stems from the coefficients aij that
extend the Maxwellian version. We are then arguing that, in
(9) and (11), δ1 and the coefficients di correspond all to tiny
corrections, so that it is expected that the eigenvalues above
are, in a wide range of situations, but not generally, are all
positive. In these cases, the energy density (9) is con-
sequently non-negative, once the contribution given by the
Maxwellian term, e2 þ b2, dominates over the other terms.
Nevertheless, we shall consider, further on, specific cases

of nonlinear models and the argument above may not work
if the external fields become stronger than some critical
value. In all situations, we are going to point out critical
values of the external magnetic fields above which the
average energy density of plane waves become negative,
which is, to our sense, void of physical meaning. Therefore,
for all models we shall discuss, we will be bound to
consider external fields below the critical values we are
going to derive, so as to undertake that the average energy
density of the radiation be positive.
After the previous considerations, in the incoming

Secs. IV and V, we are going to apply these results and
conditions to the particular cases of Hoffman-Infeld, the
generalized Born-Infeld, logarithm and Euler-Heisenberg
electrodynamics.

III. PHOTON DISPERSION RELATIONS
AND THE KINEMATICS OF THE

COMPTON EFFECT

In this section, we consider the expansion, up to second
order in fμν, to compute the dispersion relations and the
propagation of photons in presence of external electromag-
netic fields. Writing the components of the field-strength
tensors in terms of the photon electric and magnetic fields,
ðe;bÞ, the background given by ðE;BÞ, and the source
components Jμ ¼ ðρ; JÞ, the field equations (5) read as
follows below:

∇ · eþ
�
d1
c1

Eþ d3
c1

B

�
·∇ðE · e − B · bÞ

þ
�
d2
c1

Bþ d3
c1

E

�
· ∇ðB · eþ E · bÞ

¼ −∇ ·Eþ ρ

c1
; ð14aÞ

∇ × eþ ∂tb ¼ 0; ∇ · b ¼ 0; ð14bÞ

∇×bþ
�
−
d1
c1

Bþd3
c1

E

�
×∇ðE ·e−B ·bÞ

þ
�
d2
c1

E−
d3
c1

B

�
×∇ðB ·eþE ·bÞ¼ ∂te

þ
�
d1
c1

Eþd3
c1

B

�
∂tðE ·e−B ·bÞ

þ
�
d2
c1

Bþd3
c1

E

�
∂tðB ·eþE ·bÞ−∇×Bþ J

c1
: ð14cÞ

Since the Bianchi identity remains valid in nonlinear
electrodynamics, the divergent of b and the rotational of e
keep like in Maxwell electrodynamics.
The particular case of a Lagrangian that depends only on

the invariant F in the presence of the background fields E
and B, we have c1 ≠ 0, d1 ≠ 0 and c2 ¼ d2 ¼ d3 ¼ 0.
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The simplest case is Maxwell electrodynamics, where the
Lagrangian is given byF, the first coefficient is c1 ¼ 1, and
the other coefficients of the expansion are all vanishing. We
shall consider in this paper the case of a purely magnetic
background, i.e., E ¼ 0. Whenever the nonlinear model
also exhibits dependence on G, this dependence must be
quadratic (or an even power) in G2 to insure the charge-
parity symmetry. This fact happens in nonlinear electro-
dynamics such as the generalized Born-Infeld, Logarithm
and ArcSinh theories. If there is no electric background, we
obtain c2 ¼ 0 and the CP-symmetry is recovered. We work
with a uniform external magnetic field, B, and, as conse-
quence, the coefficients are also uniform and constant in
time. Other important fact is that whenever the electric
background field is not present, d3 ¼ 0 for all the examples
of nonlinear electrodynamics in the literature. Thereby,
using that d3 ¼ 0, the Eqs. (14a)–(14b) with no classical
sources read as below:

∇ · eþ d2
c1

B ·∇ðB · eÞ ¼ 0; ð15aÞ

∇ × eþ ∂tb ¼ 0; ∇ · b ¼ 0; ð15bÞ

∇ × bþ d1
c1

B × ∇ðB · bÞ ¼ ∂teþ
d2
c1

B∂tðB · eÞ: ð15cÞ

The usual Maxwell equations are obtained for
d1 ¼ d2 ¼ 0 and c1 ¼ 1, which is equivalent to taking
jBj → 0 in (15a) and (15c).
Considering plane wave solutions, eðx; tÞ ¼ e0eiðk·x−ωtÞ

and bðx; tÞ ¼ b0eiðk·x−ωtÞ in (15a), (15b) and (15c), the
relation between the frequency, ω, and the wave vector, k,
can be written in a matrix form:

Mije0j ¼ 0; ð16Þ

where e0j (j ¼ 1, 2, 3) are the components of the amplitude
of the electric field, e0. The matrix elements Mij take the
form

Mij ¼ αδij þ uivj þ wiBj; ð17Þ

where the coefficients α, ui, vi and wi are, respectively,
defined by

α ¼ ω2 − k2;

u ¼ d1
c1

B × k; v ¼ B × k;

w ¼ d2
c1

ω2B −
d2
c1

ðB · kÞk: ð18Þ

The matrix equation (16) has nontrivial solutions only if the
M-matrix is singular. It can be cast in the form

detM ¼ α½ðαþ u · vÞðαþ w ·BÞ − ðu · BÞðv · wÞ�; ð19Þ

and the condition detM ¼ 0 leads to the usual photon
dispersion relation ω2 ¼ jkj2 as one of the solutions. This
is so by virtue of gauge invariance, which, in a particle
scenario, corresponds to the presence of the genuine (zero
mass) photon. Along with this possibility, there appear
other solution as the zeroes of the polynomial equation that
follows:

Pω4 þQω2 þ R ¼ 0; ð20Þ
where

P ¼ 1þ d2
c1

B2;

Q ¼ −2k2 þ d1
c1

ðB × kÞ2 − d2
c1

½B2k2 þ ðB · kÞ2�

þ d1d2
c21

B2ðB × kÞ2;

R ¼ k4 −
d1
c1

k2ðB × kÞ2 þ d2
c1

k2ðB · kÞ2

−
d1d2
c21

ðB · kÞ2ðB × kÞ2: ð21Þ

The roots of (20) are ωð�Þ
1 ¼ �ω1ðkÞ and ωð�Þ

2 ¼ �ω2ðkÞ,
whose frequencies are shown below:

ω1ðkÞ ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d1
c1

ðB × k̂Þ2
s

; ð22aÞ

ω2ðkÞ ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2ðB × k̂Þ2
c1 þ d2B2

s
: ð22bÞ

The usual photon frequencies are recovered in the limit
d1 → 0 and d2 → 0, or, equivalently, whenever jBj → 0.
Notice that, if the nonlinear theory only depends on the F -
invariant, d2 ¼ 0 and the second solution recovers the usual
dispersion relation. The frequencies (22a) and (22b) are real
if c1 > d1ðB × k̂Þ2 and c1 þ d2ðB · k̂Þ2 > 0, respectively.
The (magnetized) vacuum refraction index is given as the
inverse of the phase velocity, ωi=jkj (i ¼ 1, 2):

n−11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d1
c1

ðB × k̂Þ2
s

; ð23aÞ

n−12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2ðB × k̂Þ2
c1 þ d2B2

s
: ð23bÞ

From the De Broglie duality correspondence, the energy-
momentum relations for the propagating excitations read as
below:
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E2
1 ¼ p2

�
1 −

d1
c1

ðB × p̂Þ2
�
; ð24aÞ

E2
2 ¼ p2

�
1 −

d2ðB × p̂Þ2
c1 þ d2B2

�
: ð24bÞ

The group velocity associated with the previous frequen-
cies can be read off from the equations cast in what follows:

vgjω¼ω1
¼ c1k̂þ d1B × ðB × k̂Þ

c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d1

c1
ðB × k̂Þ2

q ; ð25aÞ

vgjω¼ω2
¼ k̂c1 þ d2BðB · k̂Þ

ðc1 þ d2B2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2ðB×k̂Þ2

c1þd2B2

q : ð25bÞ

The group velocity vectors have components in the
directions of k̂ and B̂. Both results go to vg ¼ k̂ω=jkj,
in the limit jBj → 0, or if we consider the Maxwellian limit.
If the magnetic background, B, is perpendicular to the
direction of propagation, k̂, the solutions also reduce to
vg ¼ ð1 − d1B2=c1Þ1=2k̂ and vg ¼ ð1þ d2B2=c1Þ−1=2k̂,
respectively.
The Compton effect is a scattering process in which the

dispersion relations (24a) and (24b) can be applied to study
the increasing of the photon wavelength after being
scattered by the electron, taken as the target, in presence
of a magnetic background. The photon initial state has
wavelength λ ¼ 1=jpj, with energy E, where the relation
between E and the momentum, p, must now follow from
(24a) or (24b). The physical scenario consists of a photon
that propagates in the magnetic background and collides
with an electron in an atom at rest. So, before the photon
hits the atom, we consider that the external magnetic field
affects only the photon dispersion relation. The collision
causes the electron to recoil with a given energy and
momentum. Then, after the scattering process takes place,
the outgoing electron couples to the magnetic field and,
clearly, the electron dispersion relation is no longer of a free
electron. But, we are focusing on the wavelength shift and

scattering angle of the photon; this is why we are not
discussing the effect of the magnetic field on the dispersion
relation of the emergent electron. The setup corresponding
to the Compton effect whose kinematics we are studying
here is depicted in Fig. 1.
After the collision, the photon trajectory is deviated by

an angle θc, with wavelength λ0 ¼ 1=jp0j and energy E0.
From the energy and linear momentum conservation, the
variation of the photon wavelength, after the collision
process, turns out to be

λ0i − λ ¼ 2λesin2
�
θc
2

�
þ ai

�
λ0i − λþ λe

2

ðλ0i − λÞ2
λ0iλ

�
; ð26Þ

where λe ¼ m−1
e ¼ 2 ðMeVÞ−1 is the Compton wavelength

of the electron, ai (i ¼ 1, 2) means a1 ≔ jB × p̂j2d1=c1
and a2 ≔ d2jB × p̂j2=ðc1 þ d2B2Þ for both the cases of
(24a) and (24b), respectively, and λ0i are the wavelengths for
both cases i ¼ 1, 2 after the collision. We take the initial
photon wavelength in the range of the x-ray spectrum
λ ¼ 1.52 × ð1010–1013Þ MeV−1. The corresponding solu-
tions to (26) yielding the final wavelength of the photon are
given by

λ0ð�Þ
i ¼ λþ 2λe sin2ðθc=2Þ − aiðλþ λeÞ

2 − 2ai − aiλe=λ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 2λe sin2ðθc=2Þ − aiλ − aiλeÞ2 þ aiλeð2λ − 2aiλ − aiλeÞ

p
2 − 2ai − aiλe=λ

: ð27Þ

If we assume λ ≫ λe in (27), the real and positive
solutions lead us to the two wavelength variations below:

Δλ1 ≃ 2λesin2
�
θc
2

��
1 −

d1
c1

jB × p̂j2
�
−1
; ð28aÞ

Δλ2 ≃ 2λesin2
�
θc
2

��
1 −

d2jB × p̂j2
c1 þ d2B2

�−1
; ð28bÞ

that are positive if c1>d1jB×p̂j2 and c1 þ d2ðB · p̂Þ2 > 0.
Whenever d1, d2 → 0, the standard variation of the photon
wavelength in the Compton effect is recovered. The non-
linear contribution depends on the external magnetic field,
B, and the parameters c1, d1 and d2. These parameters, in
turn, also depend on the external magnetic field and the
specific dependence is governed by the nonlinear electro-
dynamics under consideration.

FIG. 1. Setup for the study of the kinematics of the Compton
effect. We consider the external magnetic field orthogonal to the
plane of the Compton array and coming out from the plane.

M. J. NEVES et al. PHYS. REV. D 104, 015006 (2021)

015006-6



IV. EXAMPLE OF AN F -DEPENDENT
ELECTRODYNAMIC MODEL

The Hoffmann-Infeld (HI) model is an example of
nonlinear electrodynamics with interesting application in
the study of special black-hole solutions [32]. The
Lagrangian is given by

LHIðF Þ ¼ β2

4
½1 − ηðF Þ − ln ηðF Þ�; ð29Þ

where ηðF Þ is defined by

ηðF Þ ¼ 4F

β2 − β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 8F

p : ð30Þ

The parameter β is introduced to guarantee a finite
electrostatic field configuration in the case the particlelike
charges. Maxwell Electrodynamics is recovered when
β → ∞. In this section, since the model depends exclu-
sively on the invariant F , the coefficient vanishes, d2 ¼ 0.
Thereby, the nontrivial dispersion relation in a magnetic
background corresponds to (24a), which depends on d1 and
c1. The nontrivial coefficients, c1 and d1, are given by

cHI
1 jE¼0;B ¼ β

4B2

−β2 þ 2B2 þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4B2

p ; ð31aÞ

dHI
1 jE¼0;B ¼ β

B2

2B2 − 3β2 þ 2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4B2

p
ðβ2 þ 4B2Þ3=2

−
β4

2B4

β −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4B2

p
ðβ2 þ 4B2Þ3=2 : ð31bÞ

The corresponding refraction index as function of the
angle θ between the magnetic background and the direction
of propagation, k̂, is shown in Fig. 2. We choose the
following values for the magnetic background: jBj ¼
1.0 MeV2 (black line), jBj ¼ 4.0 MeV2 (blue line) and
jBj ¼ 8.0 MeV2 (red line). For a strong magnetic back-
ground, i.e., jBj ≫ β, the refraction index of the HI model
is nHI ¼ j sec θj; this refraction index vanishes if B is
perpendicular to the direction k̂, and nHI ¼ 1 if B is
parallel to k̂.
The components of the group velocity (25b) for the HI

ED as functions of θ-angle are plotted in the Fig. 3. We
choose β ¼ 50.0 MeV2 and jBj ¼ 10.0 MeV2 in this case.
The black line stands for the component in the direction of
k̂, whereas the red line represents the component in the
direction of magnetic field B̂. This component is negative
for the range π=2 ≤ θ ≤ π. When jBj ≫ β, the group
velocity has the behavior

vgHI ≃ −
β

jBj j sec θjk̂þ sgnðcos θÞB̂: ð32Þ

The next analysis refers to the energy density of the HI
ED in the presence of the background, B. We use the result
(9) with the coefficients (31a) and (31b). Under the
conditions (12), the energy density in the HI ED is positive
if jBj < 0.972β, or jBj > ffiffiffi

2
p

β. To illustrate the energy
density (9), we consider the case in which the plane wave
for the electric and magnetic fields eðx; tÞ ¼ e0eiðk·x−ωtÞ

and bðx; tÞ ¼ b0eiðk·x−ωtÞ, respectively, propagate in a
medium with an uniform and constant magnetic back-
ground. We obtain thereby the time average of the energy
density of the HI ED per unit of the squared electric field:

hΘ00
phiHI

e20
¼ 1

4
cHI
1

�
1þ k2

ω2
−
dHI
1

cHI
1

k2

ω2
ðê0 · ðk̂ × BÞÞ2

�
: ð33Þ

FIG. 2. The vacuum refraction index of the HI ED appears as a
function of the θ-angle between B and the direction of k̂. We
choose β ¼ 10.0 MeV2, for the values jBj ¼ 1.0 MeV2, jBj ¼
4.0 MeV2 and jBj ¼ 6.0 MeV2.

FIG. 3. The components of the group velocity as functions of θ
in the HI ED. The black line is the velocity component in the
direction of k̂, while the red line stands for the B̂ component.
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Notice that this result depends on the frequency solutions of
ω, that in the HI case just (22a) depend on the external
magnetic field. We consider the vectors k̂, ê0 and B
perpendicular to each other in this analysis, and we also
choose β ¼ 50 MeV2. Under these conditions, the result
(33) is plotted as function of the magnetic background in
the figure (4). In this case, the energy density is positive
for all values of the B magnitude, and goes to zero if
jBj → ∞. The limit jBj → 0 recovers the known result in
Maxwell ED.

V. SOME F - AND G-DEPENDENT
ELECTRODYNAMIC MODELS

Many examples of nonlinear electrodynamics with
dependence on both F and G are discussed in the literature.
In these cases, the coefficient d2 ≠ 0 and the two frequency
solutions, (22a) and (22b), must be considered. The
models, in general, depend on G2 (simplest case) or an
even power of G, so as to ensure CP-invariance.
Let us start off by contemplating the well-known case of

the Euler-Heisenberg (EH) electrodynamics, described by
the effective Lagrangian

LEHðF ;GÞ

¼ F −
1

8π2

Z
∞

0

ds
s3

e−m
2s

×

�
ðesÞ2Gℜ cosh ðes ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−F þ iG
p Þ

ℑ cosh ðes ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ iG

p Þ þ
2

3
ðesÞ2F − 1

�
;

ð34Þ

where ℜ and ℑ stand for the real and imaginary parts,
respectively, and m ¼ 0.5 MeV is the electron mass. In the
weak field approximation, the EH Lagrangian (34) is
reduced to the form

LEHðF ;GÞ ≃ F þ 2α2

45m4
ð4F 2 þ 7G2Þ; ð35Þ

in which α ¼ e2 ¼ ð137Þ−1 ¼ 0.00729 is the fine structure
constant. Below, we quote the coefficients c1, d1 and d2 of
the expansion corresponding to the truncation given
by (35):

cEH1 jE¼0;B ¼ 1 −
8α2B2

45m4
;

dEH1 jE¼0;B ¼ 16α2

45m4
;

dEH2 jE¼0;B ¼ 28α2

45m4
: ð36Þ

Using the results (22a) and (22b) with the coefficients (36),
the two solutions for the frequencies are

ωEH
1 ðkÞ ≃ jkj

�
1 −

8α2

45m4
ðB × k̂Þ2

�
; ð37aÞ

ωEH
2 ðkÞ ≃ jkj

�
1 −

14α2

45m4
ðB × k̂Þ2

�
; ð37bÞ

and, then, the corresponding vacuum refraction index for
the EH effective model, in the approximation we are
working, turn out given by

nEH1 ≃ 1þ 8α2

45m4
ðB × k̂Þ2; ð38aÞ

nEH2 ≃ 1þ 14α2

45m4
ðB × k̂Þ2: ð38bÞ

It is worthy to highlight that these results are in agree-
ment with Ref. [1] after suitable changes in the unit system.
The second case of a ED nonlinear is the generalized

Born-Infeld (BI) Lagrangian [52],

LBIðF ;GÞ ¼ β2
�
1 −

�
1 − 2

F
β2

−
G2

β4

�
p
�
; ð39Þ

where β is a scale parameter with dimension of
squared energy (in natural units), and p is a real parameter
that satisfies 0 < p < 1. The usual Born-Infeld theory is
obtained for p ¼ 1=2. For β ≫ ðjE0j; jB0jÞ, the Lagrangian
(39) leads to

LBI ≃ 2pF þ 1

β2
½2pð1 − pÞF 2 þ pG2�: ð40Þ

Here, we recall that Maxwell electrodynamics is recovered
in the limit β → ∞, and p ¼ 1=2.
Before proceeding with the calculations of the dispersion

relations, it is interesting to consider the electrostatic case,

FIG. 4. The average (in time) of the energy density per unit of
the squared amplitude of the electric field versus the external
magnetic field in the HI ED. We choose β ¼ 50 MeV2, and the
vectors k̂, ê0 and B are perpendicular to one another.
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with B0 ¼ 0, the corresponding field equation in presence
of charges is

∇ ·D0 ¼ ρ; ð41Þ

where ρ denotes the charge density, and D0 is defined by

D0 ¼
E0

ð1 − E2
0=β

2Þ1−p : ð42Þ

In the pointlike particle case, ρðrÞ ¼ Qδ3ðrÞ, Eq. (41)
yields D0 ¼ r̂Q=r2. So, the solutions of the electric field in
(41) are difficult to obtain due to the polynomial equation
with degree ð1 − pÞ−1. The case p ¼ 3=4 is chosen and the
solution for the electric field is [52]

E0 ¼
ffiffiffi
3

p
βQr̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 9β4r8

pq : ð43Þ

The magnitude of the electrostatic field goes to zero
whenever r → ∞. In the limit r → 0, the electric field is
finite at the origin, i. e., E0ðr ¼ 0Þ ¼ ffiffiffiffiffiffiffiffi

3=2
p

βsgnðQÞ, in
which sgnðQÞ denotes the signal function. If the charge is
positive, the electric field does not blow up at the charge
position and the maximum value it reaches is
E0jmax ¼

ffiffiffiffiffiffiffiffi
3=2

p
β. Otherwise, if the charge is negative,

the electric field has a minimum at E0jmin ¼ −
ffiffiffiffiffiffiffiffi
3=2

p
β. The

electric potential associated with (43) is given by

VBIðrÞ ¼
3Q

4ð27Þ1=4

ffiffiffiffiffiffiffi
β

2Q

s �
64

ffiffiffiffiffiffi
2π

p

15

Γð9=4Þ cosðπ=8Þ
Γð3=4Þ

þ 4

3

�
sinϕ0 cosϕ0

cos2ðϕ0=2Þ
�
1=4

−
16

3

�
sinϕ0

cos2ðϕ0=2Þ
�
1=4

×2F1

�
1

8
;
3

4
;
9

8
; tan2

ϕ0

2

�	
; ð44Þ

in which ϕ0 ¼ tan−1ð3β2r4=Q2Þ. In addition, this potential
reduces to the Maxwellian case for β → ∞. Using the result
(44), the electrostatic potential of an electron, with
Q ¼ e ¼ 0.085, evaluated at the origin r → 0 is finite
given by

lim
r→0

VBIðrÞ ¼ 0.62
ffiffiffi
β

p
: ð45Þ

Now, returning to the dispersion relation analysis, the
derivations from (4) in the Lagrangian (39) yield the
coefficients c1, d1 and d2 for the generalized BI theory:

cBI1 jE¼0;B ¼ 2p
ð1þB2=β2Þ1−p ;

dBI1 jE¼0;B ¼ 4pð1 − pÞ
β2ð1þB2=β2Þ2−p ;

dBI2 jE¼0;B ¼ 2p
β2ð1þB2=β2Þ1−p : ð46Þ

The dispersion relations in this case are cast below:

ωBI
1 ðkÞ ¼ jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ð1 − pÞ ðB × k̂Þ2

B2 þ β2

s
; ð47aÞ

ωBI
2 ðkÞ ¼ jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðB × k̂Þ2
B2 þ β2

s
: ð47bÞ

Notice that the second frequency is always real (since
β2 þ ðB · k̂Þ2 > 0) and independent of the p-parameter of
the generalized BI theory. On the other hand, we need to be
more carefully with the first frequency, which is real when

β2 þ ð2p − 1ÞB2 þ 2ð1 − pÞðB · k̂Þ2 > 0: ð48Þ

For the values 1=2 ≤ p < 1, this condition is fulfilled.
However, for 0 < p < 1=2, will be necessary to impose
some constraints between β and B. In addition, for the
particular case of the BI theory ðp ¼ 1=2Þ, we obtain
ωBI
1 ¼ ωBI

2 and this frequency leads to the well-known
result in the literature of nonbirefringence [11]. Whenever
the magnetic field is strong, that is jBj ≫ β, the first
frequency depends on the p and the θ angle ωBI

1 ≃
jkj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ ð1 − pÞ cosð2θÞp
and the correspondent refraction

index is nBI1 ≃ ½pþ ð1 − pÞ cosð2θÞ�−1=2, where θ is the
angle between B and the direction of k̂. The second
frequency for jBj ≫ β is ωBI

2 ≃ jkjj cos θj, and the refrac-
tion index is nBI2 ≃ j sec θj. Thereby, when the medium is
under a strong magnetic background, the refraction index
changes with the angle θ and it does not depend on the
magnitude of the magnetic field. Notice that the result of
ωBI
2 , for jBj ≫ β, coincides with the dispersion relation of

[55] [Eq. (48)] when the propagation is not superluminal.
The refraction index related to the generalized and usual BI
theory as function of angle θ are plotted in the Fig. 5.
The top panel is the case of the generalized BI theory with
p ¼ 3=4 and β ¼ 5.0 MeV2, for the background values
jBj ¼ 8.0 MeV2 (red line), jBj ¼ 4.0 MeV2 (blue line)
and jBj ¼ 1.0 MeV2 (black line), respectively. The bottom
panel is the usual BI theory ðp ¼ 1=2Þwith β ¼ 5.0 MeV2,
for the background values jBj ¼ 10 MeV2 (red line), jBj ¼
5.0 MeV2 (blue line) and jBj ¼ 1.0 MeV2 (black line),
respectively, with β ¼ 5.0 MeV2. Notice that, in the limit
jBj → 0, both the refraction index approach the value one.

DISPERSION RELATIONS IN NONLINEAR ELECTRODYNAMICS … PHYS. REV. D 104, 015006 (2021)

015006-9



The correction to the Compton effect (26) for the usual
BI theory ðp ¼ 1=2Þ is shown in Fig. 6. We plot the curves
for the magnetic field values jBj ¼ 1.0 MeV2 (black line),
jBj ¼ 5.0 MeV2 (blue line) and jBj ¼ 10.0 MeV2 (red
line). The variation of the photon wavelength in the
Compton effect increases with the magnetic field
magnitude.
Using the plane wave for e and b, the time average of the

energy density in generalized BI theory is given by

hΘ00
phiBI
e20

¼ 1

4
cBI1

�
1þ k2

ω2
−
dBI1
cBI1

k2

ω2
ðê0 · ðk̂ ×BÞÞ2

þ dBI2
cBI1

ðê0 ·BÞ2 −
�
dBI2
cBI1

�
2 k2

ω2
ðB · k̂Þ2ðB · ê0Þ2

�
:

ð49Þ

In this case, both frequencies (47a) and (47b) depend on
the external magnetic field, and just ωBI

1 depends on the
p-parameter. Therefore, the time average of energy density

associated with the frequency ωBI
1 changes with the values

of the p-parameter. We plot the time average of energy
density by unit of e20 associated with ω

BI
1 for p ¼ 0.5 (usual

BI ED in the top panel) and p ¼ 0.75 (generalized BI ED in
the bottom panel), when β ¼ 50 MeV2, in the Fig. 7.

FIG. 5. Top panel: the refraction index of the generalized
Born-Infeld theory (47a) as function of the angle θ (between
B and k̂), when β ¼ 5.0 MeV2 and p ¼ 3=4, for the values of
jBj ¼ 1.0 MeV2, jBj ¼ 4.0 MeV2 and jBj ¼ 8.0 MeV2. Bottom
panel: the refraction index of the Born-Infeld theory (47b) for
jBj ¼ 1.0 MeV2, jBj ¼ 5.0 MeV2 and jBj ¼ 10.0 MeV2, when
β ¼ 5.0 MeV2.

FIG. 6. The Compton effect in the usual Born-Infeld theory
ðp ¼ 1=2Þ. The variation of the photon wavelength as function
of the Compton angle, θc, for the values of jBj ¼ 1.0 MeV2,
jBj ¼ 5.0 MeV2 and jBj ¼ 10.0 MeV2. We choose here
β ¼ 5.0 MeV2.

FIG. 7. The time average of energy density by unit of e20 for the
usual BI ED p ¼ 0.5 (top panel), and the generalized BI ED with
p ¼ 0.75 (bottom panel) as function of the background magni-
tude. We choose β ¼ 50 MeV2 in this plot.
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In both plots, the time average of the energy density
becomes negative for jBj>jBnj, where jBnj¼59.46MeV2

is a magnetic critical field for the case of the usual BI ED
(top panel), and jBnj ¼ 89.94 MeV2 is a magnetic critical
field for the case of the generalized BI ED (bottom panel).
Another interesting model is Logarithm ED [51]. The

corresponding Lagrangian is given by

LlnðF ;GÞ ¼ −β2 ln
�
1 −

F
β2

−
G2

2β4

�
: ð50Þ

As in the previous case, Maxwell electrodynamics is
recovered for β → ∞. In this model, we obtain the
following coefficients c1, d1 and d2:

cln1 jE¼0;B ¼ 2β2

2β2 þ B2
;

dln1 jE¼0;B ¼ 4β2

ð2β2 þ B2Þ2 ;

dln2 jE¼0;B ¼ 2

2β2 þ B2
: ð51Þ

Using these results, the combination of the coefficients cln1 ,
dln1 and dln2 in (22b) yields the same result (47b) for the
second frequency in logarithm theory. The first solution
(22a) in this case is

ωln
1 ðkÞ ¼ jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2jB × k̂j2
2β2 þB2

s
: ð52Þ

For jBj → ∞, the correspondent refraction index is
nln1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

secð2θÞp
. The energy density is positive-definite

if the magnetic background satisfies the condition
jBj < ffiffiffi

2
p

β.

VI. CONCLUSIONS AND FINAL REMARKS

Our contribution sets out to pursue a study of general
nonlinear models of electrodynamics in presence of exter-
nal electric and magnetic fields. The energy and linear
momentum of the electromagnetic field fulfill a continuity
equation if the background fields are uniform and constant.
We have consider only the case of (uniform and constant)
magnetic backgrounds for the analysis of the nonlinear
models we have picked out. The energy density is positive
if the (external) field-dependent coefficients satisfy the
conditions (12). Otherwise, the energy density may assume
negative values for sufficiently strong external fields, as our
calculations point out. Plane wave solutions are considered
to describe the nonlinear photon. Two frequency solutions
come out as it happens in the case of the usual photon; the
other two frequencies exhibit a dependence on the uniform
background magnetic field and the angle between the latter

and the direction of the wave propagation. As a conse-
quence, the refraction index also changes with the direction
of the field B relative to the direction of propagation of
the wave, k̂. We have also obtained the contribution of the
uniform magnetic background to the kinematics of the
Compton effect by employing the modified dispersion
relations. We have applied these results to four examples
of nonlinear electrodynamics: Hoffmann-Infeld, general-
ized Born-Infeld, logarithm and the Euler-Heisenberg
effective Lagrangian. In all these cases, the refraction index
depends on the angle, θ, between B and k̂, and on the
magnitude of B as well. The case of jBj ≫ β is interesting
because the results of the dispersion relation and refraction
index are independent on the B magnitude. For the gener-
alized Born-Infeld nBI1 ≃ ½pþ ð1 − pÞ cosð2θÞ�−1=2, and for
the usual Born-Infeld nBI2 ≃ j sec θj ¼ jB̂ · k̂j−1. Notice that
nBI1 ¼ nBI2 , when p ¼ 1=2. Furthermore, we have shown
that the electrostatic potential is finite at the origin for
p ¼ 3=4. The result for the logarithm electrodynamics is
nln1 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
secð2θÞp

, when jBj ≫ β.
Further research has been initiated in a scenario

involving models of scalar axions in connection with
particular nonlinear models. The purpose of this particular
investigation is to try to understand how the present
phenomenological astrophysical data known for the axi-
ons may dictate restrictions on the form of nonlinear
Lagrangian densities. On the other hand, we are also
particularly interested in contemplating CP-breaking non-
linear models in connection with the Planck 2018 polari-
zation data to eventually use the latter to derive constraints
on CP-violating nonlinearities. We intend to report on the
progress of these two lines of investigation in further
papers.
Also, we would like to bring the reader’s attention that

the study we report in this contribution, mainly the
investigation we carry out on dispersion relations, may
be applied to extract bounds on the parameters of the
nonlinear models here inspected (and others we have not
contemplated in this paper), if we consider current experi-
ments, such as PVLAS and BMV, and the future high-
power LASERs mentioned in the introduction, namely,
SEL, ELI Project and XCELS. The work of Ref. [13] raises
the interesting possibility that large-scale LASERs may
also be used in the LIGO, VIRGO and GEO interferom-
eters to constrain the parameters of nonlinear models by
measuring the birefringence of the QED vacuum.
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