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This paper focuses on extending our previous discussion of an Abelian U(1) gauge theory involving
infinite derivatives to a non-Abelian SU(N) case. The renormalization group equation (RGEs) of the SU(N)
gauge coupling is calculated and shown to reproduce the local theory β-function in the limit of the nonlocal
scale M → ∞. Interestingly, the gauge coupling stops its running beyond the scale M, approaching an
asymptotically conformal theory.
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I. INTRODUCTION

With no clinching evidence of new particles in physics
beyond the Standard Model (BSM) by any of the current
searches at experiments world-wide, such as the Large
Hadron Collider (LHC), an alternative philosophy for
BSM could be the modification of the standard canonical
kinetic terms through the introduction of infinite deriva-
tives, instead of introducing new particles (new states).
Motivated by string field theory [1–10], infinite derivative
formulation is expressed in the form of an entire function
[11] and the higher order derivatives are accompanied by a
suppression by a scale M, which we call the “nonlocal
scale.” The choice of this derivative function does not
appear to be unique, as long as it acts to suppress terms in
the high energy regime.
We have previously considered a nonlocal Abelian U(1)

gauge theory within this framework and have shown
that the evolution of the gauge coupling becomes fixed
or “UV-insensitive” in the energy regime well above the
nonlocal scale M [12]. It was also shown that Higgs
vacuum instability problem [13] is cured, leading to a
stable Abelian Higgs theory. The theory is ghost-free [14]
and predicts a unique scattering phenomenology leading to
transmutation of energy scales which has its own cosmo-
logical and astrophysical implications [15]. The phenom-
enology of dark matter in this theory is also investigated in
Ref. [16] and shown DM experiments can be a novel probe
for the scale on nonlocality. Strongly coupled regime of the

theory was considered in Refs. [17,18] in Higgs and Yang-
Mills versions and it was found that the mass gap generated
gets diluted due to nonlocal effects. On aspects of gravity,
Ref. [19] showed that the most general quadratic curvature
gravitational action (parity-invariant and torsion-free) with
infinite covariant derivatives makes the gravitational sector
free from the Weyl ghost and is devoid of any classical
singularities, such as black hole [19–28]1 and cosmological
singularities [29–34].2
In this paper, we extend the same idea involving infinite

series of higher-order derivatives to a non-Abelian SU(N)
gauge theory, investigate the gauge invariance, and com-
pute the running of the SU(N) gauge coupling. Here too we
expect that within this framework, the standard renormal-
ization group equations (RGEs) should be reproduced in
the local limit ðM → ∞Þ.

II. NON-ABELIAN EXTENSION

For local non-Abelian SU(N) gauge theory, the
Lagrangian includes the gauge boson kinetic term,

Lg ¼ −
1

2
tr½FaμνFaμν� ¼ −

1

4
FaμνFaμν: ð1Þ

The trace is over the SU(N) group indices and the field-
strength tensor is given by

Fa
μν ¼ ∂ ½μAa

ν� − gfabcAb
μAc

ν; ð2Þ
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1For previous arguments related to nonsingular solutions,see
Refs. [8,10].

2For supersymmetric versions on nonlocality in the matter
section, see for instance, Refs. [35,36].
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where the fabc represents the group structure constant. For
implementation of the nonlocal modification, we follow
our approach in Ref. [12]. The gauge boson kinetic term is
then described as

Lg ¼ −
1

2
tr½Faμνe−

D2

M2Faμν� þ H:c:; ð3Þ

where the covariant derivative is given by Dμ ¼
∂μ − igTaAa

μ. The fermionic part of the Lagrangian is
given by the standard form as in Refs. [11,12]:

L ¼ ψ̄e
D2

M2iγμDμψ ð4Þ
where D2 ¼ ημνDμDν ðμ; ν ¼ 0; 1; 2; 3Þ, assuming all
gauge and fermionic particles being massless.
The exponential term is introduced by the nonlocal

modification and the Lagrangian includes an infinite
series of higher dimensional operators that are all sup-
pressed by the nonlocal scale M. As a result, their
contribution can be largely ignored at energies lower than
M. In other words, the conventional Lagrangian is repro-
duced in the limit of M → ∞. We take the metric with
η ¼ diagðþ1;−1;−1;−1Þ to implement our procedure for
UV completion upon the Wick rotation.

A. Non-Abelian gauge field propagator

To find the massless non-Abelian gauge boson propa-
gator, we follow the same gauge-fixing prescription as in
Ref. [11], and the non-Abelian gauge and ghost
Lagrangians are given by

Lghost ¼ −c̄afð□Þð∂μDab
μ Þcb; ð5Þ

and

Lg ¼
1

2
Aa
μe

− □

M2ð□ημν − ∂μ∂νÞAa
ν

þ 1

2ξ
Aa
μðfð□ÞÞ2∂μ∂νAa

ν ; ð6Þ

where ξ is the gauge fixing parameter and Dab
μ ¼ ∂μδ

ab −
igAc

μðTcÞab is the covariant derivative in the adjoint
representation. In order to have consistency with the
standard gauge fixing procedure, we choose the entire

function fð□Þ ¼ e−
□

2M2 . The nonlocal Faddeev-Popov pro-
cedure is given in the Appendix. In the Euclidean space, the
gauge boson and ghost propagators have the following
forms:

Πgðp2Þ ¼ iημνδabe
−p2

M2

p2 þ iϵ
;

Πghostðp2Þ ¼ iδabe−
p2

2M2

p2 þ iϵ
; ð7Þ

in the Feynman-’t Hooft gauge ξ ¼ 1. And the massless
fermion propagator is given by [11]:

ΠψðpEÞ ¼ −
ipEe

−
p2
E

M2

p2
E þ iϵ

: ð8Þ

III. GAUGE COUPLING RUNNING

In Ref. [12], we have obtained the RGE for the gauge
coupling in the Abelian U(1) gauge theory with one Dirac
fermion having a unit U(1) charge:

μ
dg
dμ

¼ 1

16π2

�
4

3

�
g3e−2

μ2

M2 : ð9Þ

The standard result for the beta function is obtained in the
local limit of M → ∞. Interestingly, for the nonlocal U(1)
theory is “UV-complete,” as the beta function is vanishing
beyond the nonlocal scale. This behavior is opposed to the
local U(1) theory where the running is asymptotically
nonfree. In the case of a non-Abelian theory, we expect
a similar behavior, namely, the gauge coupling stops
running beyond the nonlocal scale. The beta function for
the non-Abelian gauge coupling incorporates the gauge and
ghost field contributions; we break up the derivation of
each contribution below for clarity.

A. Gauge wave function renormalization

First we consider the wave function renormalization for
the gauge fields. We use the standard group theory
parameterizations: facdfbcd ¼ TðAÞδab and Tr½TaTb� ¼
TðRÞδab with the Dynkin indices for the adjoint
(TðAÞ ¼ N) and the fundanmental (TðRÞ ¼ 1=2) represen-
tations, respectively. The quadratic Casimir for the adjoint
representatio is C2ðAÞ ¼ N. All the following calculations
are performed with the Feynman gauge (ξ ¼ 1).
Our methodology for calculating the wave function

renormalization follows from the same procedure in
Ref. [12]. In our calculation, we employ the cutoff
regularization scheme. Although one should use a gauge
invariant regularization scheme such as the dimensional
regularization, the cutoff regularization scheme can be
practically used, since there is a one-to-one correspondence
between the two schemes (at the one-loop level),
logΛ2 ¼ 1

ϵ, where Λ is the cutoff parameter and ϵ is the
dimensional regularization parameter. For the gauge-
gauge-gauge contribution:

Γ2 ¼
−g2TðAÞδab

2

Z
d4p
ð2πÞ4

Nμν

p2ðpþ qÞ2 e
−βðpÞ2e−βðpþqÞ2 ;

where β≡ 1=M2, and Nμν is given by
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Nμν ¼ ½gμρðq−pÞσ þgρσð2pþqÞþgσμð−p−2qÞρ�
× ½δνρðp−qÞσ þgρσð−2p−qÞνþδνσðpþ2qÞρ�: ð10Þ

Using the Schwinger parameters, α1 and α2, the integral is
recast as

Γ2 ¼
−g2TðAÞδab

32π2

Z
p2dp2

Z
dα1dα2Nμν

× e−ðβðp2þðpþqÞ2Þþα1ðpþqÞ2þα2p2Þ: ð11Þ

It is convenient to introduce new parameters, s∶f0;∞g and
α∶f0; 1g, which are defined as α1 þ α2 ¼ s and α ¼ α1s
[which gives α2 ¼ sð1 − αÞ]. In addition, we take the
momentum shift p → p − αsþβ

sþ2β q and then

Γ2 ¼
−g2TðAÞδab

32π2

Z
p2dp2

Z
1

0

dα
Z

∞

0

sdsN̄μν

× e−ððsþ2βÞp2þαð1−αÞs2þβsþβ2

sþ2β q2Þ; ð12Þ

where N̄μν is given by

N̄μν ¼ ½gμρðAq − pÞσ þ gρσð2pþ BqÞ þ gσμð−p − CqÞρ�
× ½δνρðp − AqÞσ þ gρσð−2p − BqÞν þ δνσðpþ CqÞρ�;

ð13Þ

and A ¼ 1þ αsþβ
sþ2β, B ¼ 1 − 2αsþ2β

sþ2β , and C ¼ 2 − αsþβ
sþ2β. To

find the corrections ΔZGauge, we focus on the coefficient of
terms only proportional to qμqν, which gives

Γ2 ¼
−g2TðAÞδabqμqν

16π2

Z
p2dp2

Z
1

0

dα
Z

∞

0

sdsðAðC− BÞ

þBC− 2B2Þ× e−ðsþ2βÞp2 ½1þOðq2Þ�: ð14Þ

Here, Oðq2Þ contains higher order momentum terms which
are subleading and ignored:

Γgauge
2 ≈

−g2TðAÞδabqμqν
16π2

Z
p2dp2

Z
1

0

dα
Z

∞

0

sds

× ð1þ 5α − 5α2Þe−ðsþ2βÞp2

≈
−g2TðAÞδabqμqν

16π2

�
11

6

�Z
Λ2

0

d2p
e−2βp

2

p2
ð15Þ

Employing the same procedure for the ghost contribu-
tion, we find

Γghost
2 ¼ −g2TðAÞδab

16π2

Z
p2dp2

Z
1

0

dα
Z

∞

0

sds

×

�
pþ

�
1 −

αsþ β0

sþ 2β0

�
q

�
μ
�
p −

αsþ β0

sþ 2β0
q

�
ν

× e−ðsþ2β0Þp2Þ½1þOðq2Þ�; ð16Þ

where β0 ¼ β=2 due to the ghost propagator’s exponential
factor in (B4). Again, picking up the qμqν terms and
ignoring the further subleading terms,

Γghost
2 ≈

g2TðAÞδabqμqν
16π2

Z
p2dp2

Z
1

0

dα
Z

∞

0

sds

×
ðð1 − αÞsþ β0Þðαsþ β0Þ

ð2β0 þ sÞ2 e−ðsþ2β0Þp2

≈
g2TðAÞδabqμqν

16π2

�
1

6

�Z
Λ2

0

dp2
e−βp

2

p2
: ð17Þ

Contributions from the fermion loops are the same as in
Ref. [12] with the addition of the SU(N) group factor TðRÞ,
for NF fermions

Γfermion
2 ≈

g2NFTðRÞδabqμqν
16π2

�
4

3

�Z
Λ2

0

dp2
e−2βp

2

p2
: ð18Þ

Extracting all the relevant terms from (15) and (17),

ΔZgauge ¼
g2

16π2

Z
Λ2

0

dp2

p2

��
−
11

6
TðAÞ þ 4

3
NFTðRÞ

�

× e−2βp
2 þ 1

6
e−βp

2

TðAÞ
�
: ð19Þ

B. Fermion wave function renormalization

Proceeding in a similar manner, lastly, the non-Abelian
gauge contribution to the fermion wave function renorm-
alization is

ΔZfermion ¼
g2C2ðRÞ
16π2

Z
Λ2

0

dp2

p2
e−2βp

2

: ð20Þ

C. Non-Abelian vertex correction

Next we consider the corrections to the non-Abelian
fermion-fermion-gauge vertex. They are evaluated in a
similar fashion, with the main difference being external
momentum is set to zero. We work in the Feynman-’t Hooft
gauge, and find

Δg¼ g3

16π2

Z
Λ2

0

dp2

p2

��
C2ðRÞ−

1

2
TðAÞ

�
þ3

2
TðAÞ

�
e−3βp

2

ð21Þ
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Having derived wave function renormalization and
vertex correction we proceed to investigate the β-function
studies.3

D. Nonlocal non-Abelian beta function

Bringing these contributions together in the standard
way we culminate with the beta function4 for the gauge
couplings in the infinite derivative framework.
According to the standard QFT procedure, we extract the

β-function from Γ2 by taking ∂=∂ logΛ and replacing the
cutoff Λ with the renormalization scale μ.5

μ
dg
dμ

¼ −g3

16π2

�
−
1

6
C2ðAÞe−βμ2

−
�
−
11

6
C2ðAÞ þ

4

3
NFTðRÞ þ 2C2ðRÞ

�
e−2βμ

2

þ 2ðC2ðRÞ þ TðAÞÞe−3βμ2
�
: ð22Þ

In the limit M → ∞ (β → 0) we recover the standard
SU(N) RGE, which is what we expect in the infrared (IR)
limit of the nonlocal theory:

μ
dg
dμ

¼ −g3

16π2

�
11

3
N −

2

3
NF

�
: ð23Þ

In Fig. 1 we show the gauge coupling running of the
nonlocal (local) non-Abelian SU(N) gauge theory repre-
sented by the solid (dashed) line, where we have set N ¼ 3
and NF ¼ 6 & NF ¼ 0. Beyond the nonlocal scale that we
set M ¼ 105 GeV, the running becomes “conformally
complete,” in the sense that the running becomes frozen.
On the other hand, the standard gauge coupling running
exhibits the usual asymptotic free behavior.

IV. CONCLUSIONS AND DISCUSSIONS

The central attractive feature of our nonlocal extension of
QFT is that the theory becomes scale free (scale invariant)
at energies beyond the nonlocal scale M. In other words,
the theory becomes conformal, and M signifies the
UV-fixed point.6 The UV behavior of the non-Abelian
Higgs model is expected to be very similar to what we have
discussed in the Abelian case [12]. The RG evolution of the

Higgs self-coupling freezes beyond M and the Higgs
potential never develops any instability.
Classically scale-invariant models are of immense inter-

est in QFT. Usually the conformal symmetries are anoma-
lous in QFT in four-dimensions except for a specific system
such as N ¼ 4 supersymmetric Yang-Mills theory. We may
classify scale-invariant theories as:

(i) Exact scale invariance is always maintained;
(ii) Scale Invariance breaks only at the quantum level.
In infinite derivative non-Abelian gauge theory, we find a

unique scenario where the theory does not possess the scale
invariance in the IR, but theory becomes scale invarinat in
the UV whose scale is set by the nonlocal scale M. Thus,
the symmetry breaking (to generate a scale) maybe con-
sidered as an artefact of only the low energy behavior of the
theory leading to the concept of scale-dependence, or in
other words, the running of the coupling constants. This is
very similar to the classical scale invariant theory with
“soft” symmetry-breaking, which would not suffer from the
naturalness issue arising from the UV sensitivity of scalar
mass squared corrections. However, in nonlocal theory, the
beta function is exponentially suppressed for μ > M, so
that energy M practically works as the conformal fixed
point. This leads to scale invariance in the UV in spite of
“quantum” interactions and the presence of “scale” in the
IR, thereby denoting a “scale-insensitivity” of the tree-level
action.7

In the infinite derivative theory, the Higgs mass squared
corrections are exponentially suppressed at the scale
beyond M, and the nonlocal scale works as an effective
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FIG. 1. The SU(3) gauge coupling running with NF ¼ 6 and
NF ¼ 0, shown in solid (dashed) black lines for the nonlocal
(local) theories. Here, we have set M ¼ 105 GeV.

3In deriving the RGE, one may consider 1-loop corrections to
the gauge boson self-interactions or 1-loop corrections to the
gauge coupling of the ghost. Thanks to the gauge invariance, the
RGE devised in this way is coincide with the one presented in this
paper.

4The RGE is described as δg ¼ Δg − gðΔZfermion þ 1
2
ΔZgaugeÞ.

5Also see Ref. [12] for details of the procedure.
6See Refs. [37,38] for UV-fixed points in supersymmetric

context.

7The idea of scale invariance in context to Higgs naturalness
issue was proposed long time ago [39,40], it has recently received
great attention with respect to UV-complete framework to address
the hierarchy problem [41–57].
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cutoff for the corrections, Δm2
H ∼M2 [11]. This means that

the Higgs mass fine-tuning is reduced to M2
EW

M2 from the

usual M2
EW

M2
Planck

, with MPlanck being the Planck mass. Beyond

the scale of nonlocality to infinite energy, all the beta-
functions are vanishing and all the couplings are approach-
ing a fixed point, determined by the nonlocal scale (see
Fig. 1). This means that no Landau-pole exists in the
theory.
We end our discussion with the speculation that the

nonlocal extension of gauge field theories may allow us to
provide a unified framework of Conformal Invariance
without having to encounter with Landau poles, and thus
paves a theoretical pathway for theories being perturba-
tively stable and valid to infinite energy. However, the
details are beyond the scope of the current investigation,
and we will take this issue up explicitly in a future
publication.
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APPENDIX A: NL NON-ABELIAN
FADDEEV-POPOV PROCEDURE

Focusing solely on the kinetic term of the non-Abelian
gauge field, the partition function in the Euclidean space is
given by

ZðJÞ ¼
Z

DAa

Z
DαaδðGaðxÞÞdet

�
δGaðxÞ
δαa

�

× e−
R

d4xð−1
4
Faμνe

− □

M2FaμνÞ; ðA1Þ

where GaðxÞ ¼ fð□Þ∂μAa
μðxÞ − waðxÞ and GaðxÞ trans-

forms as GaðxÞ → fð□Þ∂μðAa
μðxÞ þDab

μ αbðxÞÞ − waðxÞ
under a SU(N) gauge transformation. Because the function
ZðJÞ is independent of waðxÞ we introduce the arbitrary
functional dependent on waðxÞ and employ the usual gauge
fixing procedure to arrive at

ZðJÞ ∝
Z

Dw
Z

DA

×
Z

DαδðGðxÞÞdetðfð□Þ∂μDab
μ δ4ðx − yÞÞ

× e−
R

d4xð−1
4
Faμνe

− □

M2Faμν− 1
2ξw

2Þ: ðA2Þ

Using the familiar relation between a functional determi-
nant and a path integral over complex Grassmann variables,
we obtain the Lagrangians given in Eqs. (5) and (6). In
order to provide consistency with the gauge fixing pro-
cedure in the local limit, we have chosen fð□Þ ¼ e−□=2M2

.

APPENDIX B: RENORMALIZABILITY AND
BRST INVARIANCE

1. Power counting

In conventional quantum field theories, the kinetic terms
of gauge fields contain up to two derivatives. In momentum
space this means that the propagators behave as k−2. In four
dimensions each momentum loop provides a k4 factor in
any quantum loop integral. The superficial degree of
divergence of a Feynman diagram in the local theory is
therefore given by

D¼ no: of factors of internal momentum in the numerator

− no: of factors in the denominator ¼ 4L− 2Iþ 2V;

where L is the number of loops, V is the number of vertices,
and I is the number of internal propagators.
When one has exponential factors in the loops, vertices

and propagators, an exponential suppression will always be
dominant over a polynomial growth. Therefore, we see that
as long as these exponential factors come with a negative
power, the integrals should be manifestly convergent. In the
counting of the superficial degree of divergence in the
infinite derivative theory, we note that each propagator
comes with an exponential suppression, (see Eq. (7) and
Ref. [12]) and each vertex also comes with an exponential
suppression. Thus, the power of exponential suppression
factor should be:

E ¼ −V − I: ðB1Þ

By using the topological relation:

V ¼ I þ 1 − L; ðB2Þ

we have

E ¼ 1 − 2V − L: ðB3Þ

Since V is an integer, E < 0, for all loops and the
corresponding scattering amplitudes are superficially
convergent.

2. BRST invariance

Next we discuss the convergence in the complete BRST-
invariant infinite-derivative gauge theory action. The con-
clusion is exactly the same. The quantized action is of the
form:
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Stotal;quantized¼SgþSGauge−FixingþSghost

¼
Z

d4x

�
−
1

4
ðFa

μνe
−D2

M2 ðFaÞμνÞ

þ ξ

2
ðBaÞ2þBa∂μAa

μþ c̄að−∂μe
−□
2M2Dac

μ Þcc
�
;

ðB4Þ

where ξ is the gauge fixing parameter, B is the auxiliary
field, and c and c̄ are the ghost and anti-ghost fields,
respectively. The BRST transformations for non-Abelian
gauge theories express a residual symmetry of the effective
action which remains after the original gauge invariance
has been broken by the addition of the gauge-fixing and
ghost action terms. In our theory, we introduce the
following BRST transformations:

δBRSTðAμÞa ¼ ðDμ
cÞaccδλ; ðB5Þ

δBRSTca ¼ −
1

2
gfabccacbδλ; ðB6Þ

δBRSTc̄a ¼ ðδλÞe □

M2Ba; ðB7Þ

δBRSTBa ¼ 0: ðB8Þ

where δλ is an infinitesimal anti-commuting constant
parameter. We show the BRST-invariance of Stotal;quantized
(following Refs. [58,59]): the BRST transformation
of the gauge field is just a gauge transformation of Aμ

generated by caδλ. Therefore, any gauge-invariant func-
tionals of Fμν, like the first term in Eq. (B4) gives

δBRSTð− 1
4
ðFa

μνe
−D2

M2 ðFμνÞaÞÞ ¼ 0. The second term in
Eq. (B4) gives δBRSTðξ2 ðBaÞ2Þ ¼ 0 from Eq. (B8). For
the third term in Eq. (B4), the transformation of Aa

μ cancels
the transformation of c̄ in the last term, due to Eqs. (B5),
(B6) and (B7) leaving us with

δBRSTðDac
μ ccÞ ¼ Dac

μ δcc þ gfabcδAb
μcc; ðB9Þ

which is equal to 0, using the Jacobi identity (see
Ref. [60]). The transformation of cσ is nilpotent,

δBRSTð∂μcacbÞ ¼ 0; ðB10Þ

while the transformation of Aμ is also nilpotent,

δBRSTððDμ
bÞacbÞ ¼ 0: ðB11Þ

Hence, the action in Eq. (B4) is BRST-invariant. Noting
the fact that the only part of the ghost action which varies
under the BRST transformations is that of the antighost
ðc̄aÞ, the central idea behind our proof of BRST-invariance
is that we have chosen the BRST variation of the antighost

(c̄a) [see Eqs. (B7)] to cancel the variation of the gauge-
fixing term.
Next we proceed in the same manner as in Ref. [59]

and introduce BRST-invariant couplings of the ghosts and
gauge bosons to external fields Kμ (anticommuting) and Lσ

(commuting), so that the effective action S̃ is

S̃ ¼ Stotal;quantized þ KμD
μ
aca þ Lσfabccacb; ðB12Þ

which is also BRST-invariant.
Let us now compute the superficial degree of divergence

for the BRST-invariant action. To proceed, we introduce the
following notations:

(i) nA is the number of gauge boson vertices,
(ii) nG is the number of antighost-gauge boson-ghost

vertices,
(iii) nK is the number of K-gauge boson-ghost vertices,
(iv) nL is the number of L-ghost-ghost vertices,
(v) IA is the number of internal gauge boson

propagators,
(vi) IG is the number of internal ghost propagators,
(vii) Ec is the number of external ghosts,
(viii) Ec̄ is the number of external antighosts.
By counting the exponential contributions of the propa-
gators and the vertex factors, as discussed earlier, we can
now obtain the superficial degree of divergence, which is
given by

E ¼ −nA − IA: ðB13Þ

By using the following topological relation,

L ¼ 1þ IA þ IG − nA − nG − nK − nL; ðB14Þ

we obtain

E ¼ 1 − Lþ IG − nG − nK − nL − 2nA: ðB15Þ

Employing the momentum conservation law for ghost and
antighost lines,

2IG − 2nG ¼ 2nL þ nK − Ec − Ec̄; ðB16Þ

we obtain

E ¼ 1 − L −
1

2
ðnK þ Ec þ Ec̄Þ − 2nA: ðB17Þ

It is clear that the degree of divergence reduces as nK,Ec and
Ec̄ increase. Thus, one may conclude the most divergent
diagrams are those for which nK¼Ec¼Ec̄¼0, i.e., the
diagrams whose external lines are all gauge bosons. In this
case, the degree of divergence is given byE ¼ 1 − 2nA − L.
Since nA is an integer, E < 0, namely, the corresponding
loop amplitudes ðL ≥ 1Þ are superficially convergent.
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Here, we have utilized power-counting-in-exponentials to
understand the degree of divergence. In the local QFT
limit of M → ∞, all the exponential suppression factors
disappear, and we will obtain divergences according to

power-counting-in-polynomials as usual in the standard
QFT. We justify our procedure in the way that by taking
M → ∞, our results should reproduce the local theory
results.
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