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Using a recently introduced tensor network method, we study the density of states of the lattice
Schwinger model, a standard testbench for lattice gauge theory numerical techniques, but also the object of
recent experimental quantum simulations. We identify regimes of parameters where the spectrum appears
to be symmetric and displays the expected continuum properties even for finite lattice spacing and number
of sites. However, we find that for moderate system sizes and lattice spacing of ga ∼Oð1Þ, the spectral
density can exhibit very different properties with a highly asymmetric form. We also explore how the
method can be exploited to extract thermodynamic quantities.
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I. INTRODUCTION

Interacting quantum many-body systems represent a
challenge for analytical and numerical methods, yet
they are key to the understanding of many fundamental
physical phenomena. For this reason, and because most of
the interesting systems are not exactly solvable, consid-
erable effort is devoted to the development of very different
numerical techniques to address these problems. Prominent
examples include Monte Carlo algorithms [1] and tensor
network (TN) methods [2–4].
One of themost significant properties of a quantummany-

body problem is the density of states (DOS). Knowing the
distribution of energy eigenstates gives access to the
partition function and consequently to all the thermody-
namic properties of the system. In the context of lattice
gauge theories (LGT), approximating the DOS has been
proposed [5] as a method to overcome the sign problem [6]
that appears, for instance, in the presence of a finite chemical
potential. But computing the DOS of a many body problem
in general, or a LGT in particular, is a difficult task.
Several approximate methods have been devised to

address this question. For classical statistical models broad
histogram methods exist, as the Wang-Landau algorithm
[7,8], and they have inspired variants that can be used
for some quantum problems [9,10]. A different technique is
the kernel polynomial method (KPM) [11]. Based on a
Chebyshev expansion of the Dirac delta function, it is

widely used in the single-particle quantum scenario. Only
recently the application of tensor network algorithms to this
problem has been explored [12,13]. The advantage of TN
methods is that, in principle, they are free from the sign
problem, and thus suitable for scenarios out of reach for
Monte Carlo based algorithms. The method introduced in
[13] precisely adapts the KPM method to an interacting
scenario where the Hamiltonian can be expressed as a
matrix product operator (MPO) [14–16] and can be used to
estimate DOS, microcanonical averages and other spectral
properties, but also to probe thermalization.
Specific methods have been proposed in the particular

context of LGT. They include the linear logarithmic relax-
ation method (LLR) [5,17], based on the Wang-Landau
algorithm, which was introduced to improve the precision in
the calculation of the DOS, with the specific aim of
determining observables at finite density lattice field theo-
ries, and the functional fit approach (FFA) [18–20] and have
been used in a variety of models, such as compact Uð1Þ,
SUð2Þ and SUð3Þ LGT [5], SUð2Þ gauge theory at finite
densities with heavy quarks [21] and the Z3 spin model at
finite density, where the sign problem is present [22]. These
methods rely on Monte Carlo techniques and therefore
present challenges when applied to systems with dynamical
fermions [23,24].
In this work, we explore the performance of the TN

method introduced in [13] in aUð1Þ LGT. More concretely,
we consider the lattice Schwinger model, which includes
gauge and dynamical fermionic degrees of freedom. The
features of the Schwinger model, one of the simplest LGT
that nonetheless exhibits nontrivial phenomena common to
more complex theories, have established it as a usual
testbench for lattice techniques. It has also been the object
of the first experimental quantum simulation of a LGT
using trapped ions [25], and efficient representations of the
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model have been suggested for its study in a quantum
computer [26]. More recently also a closely related model
with Uð1Þ gauge symmetry has been experimentally
realized with ultracold atoms [27]. Many properties of
the Schwinger model, including its mass spectrum, thermal
equilibrium properties and dynamics, have been system-
atically investigated using TN approximations for the
relevant states [28,29]. These studies have demonstrated
the suitability of TN to describe the physically relevant
states in LGT scenarios, and to attain precise continuum
extrapolations. However, the standard techniques used in
such studies do not provide easy access to high energy
eigenstates, or to the spectral properties at energy densities
far from the edges of the spectrum.
Using the above mentioned technique, allows us to

directly study the DOS of the lattice model. In particular,
we examine the dependence of the DOS with system size
and lattice spacing, parameters that need to be varied in the
(classical or quantum) simulation in order to approach the
continuum limit. We find that the shape of the DOS
changes dramatically between a lattice-dominated regime,
where it is highly asymmetrical and exhibits sharp features,
and a regime more similar to the continuum, in which it
resembles a Gaussian distribution. The last observation is in
accordance with the results of [30], to our knowledge the
only previous study of the DOS of the model. As a second
goal, we explore the potential of the DOS approximation to
calculate different observables in the canonical ensemble,
in the spirit of the LLRmethod, and what are the limitations
of this method in comparison to directly approximating
thermal states with TN.
The rest of the paper is organized as follows: In Sec. II

we briefly introduce Schwinger model on the lattice with
the Kogut-Susskind formulation of staggered fermions, that
is then mapped to a system of long range spin-spin
interactions. We then proceed with presenting the methods
used in Sec. III and the results follow in Sec. IV. We close
with a discussion in Sec. V.

II. MODEL

In this paper we focus on QED in two space-time
dimensions, known as the Schwinger model, and, more
concretely, on its discrete lattice version. The Schwinger
model is one of the simplest gauge theories, yet shares
some of the most interesting features of quantum chromo-
dynamics (QCD) [31,32], such as confinement and a
broken chiral symmetry. This justifies its role as a standard
testbench for LGT techniques. The model has also con-
stituted a natural first target to benchmark the performance
of TNS techniques for LGT. This enterprise started with a
successful application of the density matrix renormalization
group (DMRG) algorithm in [33], and has led in more
recent years to the systematic exploration of spectral
properties, thermal equilibrium or dynamics of the lattice
model and its continuum extrapolation (see e.g., [28] for a

review). Also the quantum simulation of the model has
been proposed for various experimental platforms [29].
Specifically, the Kogut-Susskind staggered fermion for-

mulation [34] of the lattice Schwinger model reads:

H ¼ g2a
2

X
n

L2
n þm

X
n

ð−1ÞnΦ†
nΦn;

−
i
2a

X
n

ðΦ†
neiθnΦnþ1 − H:c:Þ; ð1Þ

with a the lattice spacing, m the fermion mass and g the
coupling constant. OperatorsΦnðΦ†

nÞ annihilate (create) the
(single component) fermion mode on each lattice site n, and
satisfy canonical anticommutation relations fΦ†

n;Φmg ¼
δnm and fΦn;Φmg ¼ 0. Gauge degrees of freedom residing
on the link between sites n and nþ 1 are represented by
canonically conjugate operators θn and Ln, which satisfy
½θn; Lm� ¼ iδnm and, in the continuum limit, respectively
correspond to the vector potential and the electric
field. Additionally, physical states need to satisfy the
discrete version of Gauss law Ln − Ln−1 ¼ Φ†

nΦn −
1
2
½1 − ð−1Þn� [35].
The Hamiltonian of Eq. (1) can be mapped to a

spin model via the Jordan-Wigner transformation Φn ¼Q
k<nðiσzkÞσ−n with σ� ¼ 1

2
ðσx � iσyÞ, where σα, for α ¼ x,

y, z, are the Pauli matrices. Additionally, for a system with
open boundary conditions, it is possible to explicitly solve
Gauss law, which results in a spin chain with long-range
interactions [35,36]. Usually, the Hamiltonian is multiplied
by a factor 2

g2a to result in an adimensional operator which,

for a chain of N sites, reads

W ≔
2

g2a
H ¼ x

XN−2

n¼0

½σþn σ−nþ1 þ σ−nσ
þ
nþ1�

þ μ

2

XN−1

n¼0

½1þ ð−1Þnσzn�

þ
XN−2

n¼0

�
lþ 1

2

Xn
k¼0

ðð−1Þk þ σzkÞ
�
2

; ð2Þ

where the relevant (adimensional) parameters are now x ¼
1

g2a2 and μ ¼ 2m
g2a, while l represents the background field.

Written in this form the model is suitable to be studied
numerically with TNS methods.

III. METHODS

In order to compute the density of states of the model (2)
we use the TNS techniques introduced in [13], which we
summarize here for completeness.
Given a HamiltonianH and an operator O we can define

a generalized density of states function
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gðE;OÞ ¼
X
k

δðE − EkÞhkjOjki; ð3Þ

where the sum runs over all energy eigenstates jki of the
Hamiltonian, Hjki ¼ Ekjki. Notice that, up to a normali-
zation factor, the usual density of states corresponds to the
function for the identity operator gðE; 1Þ.
The functions (3) can be approximated by a finite sum of

M Chebyshev polynomials (see the Appendix), based in the
corresponding approximation of the Dirac delta function
δðxÞ ≈ δMðxÞ. Explicitly,

δMðx − x0Þ ¼
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
XM−1

n¼0

ð2 − δn0ÞγMn Tnðx0ÞTnðxÞ; ð4Þ

with the coefficients γMn (explicitly shown in Appendix)
corresponding to the Jackson kernel in the kernel poly-
nomial method [11].
Specifically we define

gMðE;OÞ≡X
k

δMðE − EkÞhkjOjki; ð5Þ

and by substituting Eq. (4) we get

gMðE;OÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ẽ2

p
XM−1

n¼0

ð2 − δn0ÞγMn μnðOÞTnðẼÞ; ð6Þ

where we have defined the rescaled and shifted energy
Ẽ ¼ αEþ η, and correspondingly the Hamiltonian
H̃ ¼ αH þ η, such that the spectrum lies in the interval
½−1; 1�, and we identify the moments [13]

μnðOÞ ≔ αtrðTnðH̃ÞOÞ: ð7Þ

As described in [13] (see also [37–39]), if the
Hamiltonian is written as a matrix product operator
(MPO) [14–16], one can also construct MPO approxima-
tions to its Chebyshev polynomials, starting from the
exact T0 ¼ 1 and T1 ¼ H̃, and sequentially applying
the recurrence relation Tnþ2ðH̃Þ ¼ 2H̃Tnþ1ðH̃Þ − TnðH̃Þ.
The bond dimension of the resulting polynomial increases
with n, and truncating it to a fixed valueD produces a MPO

approximation TðDÞ
n ðH̃Þ. Using the latter, we can estimate

the moments in Eq. (7) for operators of interest, and thus
approximate the desired functions (see [13] for details).
The above method allows access to thermodynamic

observables. The partition function in the canonical ensem-
ble at inverse temperature β can be obtained from the
density of states,

ZðβÞ ¼
Z

dEe−βEgðE; 1Þ; ð8Þ

and, consequently, different thermodynamic quantities can
be computed, such as the energy

EðβÞ ¼ −
∂ðlnZðβÞÞ

∂β ; ð9Þ

the specific heat

cðβÞ ¼ 1

N
∂EðβÞ
∂T ; ð10Þ

or the entropy

SðβÞ ¼ 1

T
½EðβÞ − FðβÞ�; ð11Þ

with FðβÞ ¼ − 1
β lnZðβÞ the free energy. Also for a general

observable O, the expectation value in the canonical
ensemble can be expressed as

OðβÞ ¼
R
dEe−βEgðE;OÞ

ZðβÞ : ð12Þ

Using the expansion and MPO approximations gMðE;OÞ
described above, and performing the one-dimensional
integration with the Boltzmann factor e−βE, we can obtain
approximations for the partition function ZMðβÞ and the
observablesOMðβÞ. For the partition function, in particular,

ZMðβÞ∝
Z

Ẽmax

Ẽmin

dẼ
XM−1

n¼0

ð2−δn0ÞγMn μnð1Þ
e−

βẼ
α TnðẼÞ

π
ffiffiffiffiffiffiffiffiffiffiffiffi
1− Ẽ2

p : ð13Þ

with Ẽmin and Ẽmax the rescaled estimates of the edges of
the spectrum. The proportionality sign accounts for a factor

e
βη
α =α, which is not explicitly written in the expres-

sion above.
We can approximate the functions as an alternative series

using the Chebyshev expansion of the exponential [40]

ebx ¼ I0ðbÞ þ 2
X∞
n¼1

InðbÞTnðxÞ; ð14Þ

where InðbÞ are the modified Bessel functions of order n.
Substituting the Boltzmann factor by this expansion in
Eq. (8) or the numerator of (12), and using the orthogon-
ality relation of the Chebyshev polynomials (shown in
Appendix), we can analytically integrate each term of the
sum and express the result as a series of the modified Bessel
functions Inð−β=αÞ.
Specifically,

ZMðβÞ ∝
XM−1

n¼0

Nn½ð2 − δn0Þ�2γMn μnð1ÞInð−β=αÞ; ð15Þ

where Nn ¼ ð1þ δn0Þπ=2 are the norms of the
polynomials.
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In the same way, we get for the approximation of the
numerator of Eq. (12)

Z
dEe−βEgMðE;OÞ∝

XM−1

n¼0

Nn½ð2−δn0Þ�2γMn μnðOÞInð−β=αÞ:

ð16Þ

IV. RESULTS

The Hamiltonian (2) can be represented exactly as a
matrix product operator with small bond dimension
(D ¼ 5) [41]. This allows us to employ the method
described in Sec. III to approximate the density of states

of the model. To the best of our knowledge, the only
previous estimate of this quantity was performed in [30],
using discrete spectra obtained by the method of discretized
light-cone quantization (DLCQ) [42–44]. The calculation
was limited to finite sizes, but the authors observed that the
form of the DOS, after an extrapolation to the continuum,
appeared to roughly represent a Gaussian.
It is interesting to notice that, while for local

Hamiltonians it is not surprising that the DOS resembles
a Gaussian, because it weakly converges to this shape as the
system size increases [45,46], this is not necessarily the
case for the model in Eq. (2), as it contains long-range
interactions. Here we explore in more detail how the DOS
of the lattice model changes with the system size and the
lattice spacing, and try to understand how the approx-
imately Gaussian behavior arises as the parameters
approach a regime close to the continuum. We also evaluate
thermodynamic observables like the energy, the entropy,
the chiral condensate and the specific heat.

A. The DOS of the lattice Schwinger Model

In this work we consider exclusively the case of massless
fermions μ ¼ 0 and zero background field l ¼ 0. We

TABLE I. Range of lattice spacing parameters used in the
calculation of the DOS for different system sizes.

N xmin xmax

20 1 40
30 1 80
40 1 120
50 5 200
60 5 300

FIG. 1. Dependence of the DOS with system size and lattice spacing. The main panels show the DOS as a function of the energy in a
system withN ¼ 40 (upper row) andN ¼ 50 (lower row) lattice sites for two different values of the lattice spacing parameter, x ¼ 5 (left
column) and x ¼ 100 (right column). We also plot the Gaussian fit that describes the left of the peak (purple dashed lines) and (for small
x) the exponential tails on the right (black dashed lines). The insets show a close up of the same data (with Gaussian and exponential fits)
in logarithmic scale. The truncation parameters used for the simulations were M ¼ 2000, D ¼ 400 for the cases with x ¼ 5 and
M ¼ 500, D ¼ 400 for x ¼ 100.
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calculate the DOS of systems with system sizes between 20
and 60 sites and lattice spacing corresponding to x is 1 ≤
x ≤ 300 (see Table I for the precise parameters used for
each size). In the following, the DOS is normalized to one,R
dEg̃ðE; 1Þ ¼ 1, which we denote as g̃ðE; 1Þ.
We observe that the lattice effects dramatically affect the

shape of the DOS, as shown in Fig. 1. For small lattice
spacing (corresponding to large values of x), the distribu-
tion looks similar to a Gaussian, a behavior which was
suggested in [30] for the continuum limit[47]. For a fixed
system size N, as we decrease the value of x the peak
becomes sharper in accordance with the behavior suggested
in [30]. For a fixed system size N, as we decrease the value
of x the peak becomes sharper and closer to the lower edge
of the spectrum, and the DOS takes a very asymmetric
form, with a fast increment of the density close to the
lowest energy and a much slower decrease after the peak.
We further appreciate that in the small x regime (see left
panels of Fig. 1 for x ¼ 5), this heavier right tail of the
distribution is approximately exponential.
In order to investigate quantitatively the deformation of

the DOS, we first notice that to the left of the peak the shape
of the probability distribution is still close to Gaussian. If
the position of the peak is Ep, we can then find the
Gaussian distribution that best describes the DOS for

E ∈ ½Emin; Ep�, namely GðEÞ ¼ Ne−
ðE−EpÞ2

2σ2 , i.e., the
Gaussian distribution with the peak at the same position
and with variance σ2 fixed by the half-width at half
maximum. Specifically, σ ¼ ðEp − E1=2Þ=

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
, where

E1=2 is the value of the energy to the left of the peak
satisfying g̃ðE1=2; 1Þ ¼ g̃ðEp; 1Þ=2. Finally, the normaliza-
tion constant N ensures that the maximum value matches
the peak of the DOS. The resulting Gaussian function is
shown as a purple dashed line for each of the cases
illustrated in Fig. 1. For small x, the right tail of the
DOS decays much slower than the right tail of this
Gaussian fit. Instead, an exponential decay provides a
much better fit (shown in Fig. 1 with black dashed lines).
We can quantify the asymmetry of the distribution by

computing the difference between the areas under the DOS
curve to the right and to the left of the peak,

A ¼
Z

Emax

Ep

g̃ðE; 1ÞdE −
Z

Ep

Emin

g̃ðE; 1ÞdE: ð17Þ

This difference approaches zero as the DOS becomes
closer to a symmetric distribution. The actual values of this
asymmetry for a range of system sizes N are shown in
Fig. 2 as a function of x. We observe that for all system
sizes, the asymmetry vanishes as x grows (i.e., toward small
values of the lattice spacing), more slowly for larger system
sizes. To further analyze this, we fit the last few data points
for each system size, in Fig. 2, to an exponential decay
A ¼ A0e−λx, where the parameters A0 and λ depend on N.

The decay constant λ decreases as the system size grows
(see inset of Fig. 2), consistent with a faster approach to a
symmetric shape for smaller systems.
As mentioned above, to the left of the peak, the

distribution is very close to a Gaussian form. To quantify
this observation, we compute the difference between the
area of the Gaussian GðEÞ and the area of the DOS, to the
left of the peak,

ΔGL ¼
Z

Ep

Emin

GðEÞdE −
Z

Ep

Emin

g̃ðE; 1ÞdE: ð18Þ

As we can see from the lower panel of Fig. 2, for all system
sizes and values of x this value is very small, indicating

FIG. 2. Asymmetry in the probability distribution, as defined in
Eq. (17), as a function of the parameter x, for various system sizes
(upper panel). As we approach bigger values of x, we notice that
the form of the DOS becomes symmetric. For each system sizeN,
the decay of the asymmetry can be fitted to an exponential
A ∝ e−λx, with a faster decay for smaller systems. The resulting
parameter λ is shown in the inset as a function of the system size.
The lower panel shows the deviation with respect to a Gaussian in
the area of the DOS to the left of the peak, as defined in Eq. (18).
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that, as x increases, the DOS approaches a symmetric
distribution that resembles a Gaussian.
We note here that in the case of approaching the

continuum limit, with x → ∞, the Hamiltonian of Eq. (2)
reduces to the exactly solvable XY model multiplied by a
factor. In that case, there exists a unitary transformation U
such that

UWU† ¼ −W ð19Þ
which implies a symmetric spectrum. This is not necessarily
the case when x is finite and the long-range interactions are
present.

B. Physical observables

As argued above, the DOS determines the values of
thermodynamic properties, because it gives us access to the
partition function and all thermal observables in the
canonical ensemble through Eq. (12). We can thus inves-
tigate how the features of the distribution observed in the
previous subsection affect different thermal properties.
Specifically, we compute the energy EðβÞ and the entropy
SðβÞ, as well as the value in thermal equilibrium [denoted
ΣðβÞ] of the chiral condensate operator

Σ̂ ¼ g
ffiffiffi
x

p
N

X
n

ð−1Þn 1þ σzn
2

; ð20Þ

which corresponds, in the continuum limit, to the order
parameter of chiral symmetry breaking. In the massless
case, the temperature dependence of this parameter in the
continuum limit has been solved analytically [48], while for
massive fermions, it has been studied numerically using
MPS techniques [49–51].
As described in Sec. III, the partition function and

thermal observables can be directly approximated as finite
sums of modified Bessel functions Inð−β=αÞ, where α is
the Hamiltonian rescaling factor, proportional to its oper-
ator norm. However, because the norm of the Hamiltonian
grows with the system size (scaling as fast as N3 for fixed
small x), the argument of the functions involved, and thus
the magnitude of the functions, grows fast for fixed β,
leading to numerical instabilities, except for very small
values of β. [52] Thus, we find it more convenient to
evaluate numerically the integrals of Eq. (8) and of the
numerator and denominator of Eq. (12).
In Fig. 3 we plot the energy, the entropy and the

condensate obtained with this method for system sizes N ¼
20 and N ¼ 30 and x ¼ 5. It is also possible to compute the
observables by finding a MPO approximation to the Gibbs
ensemble of the model [2,14,16]. For the Schwinger model
this MPO produces very precise results for thermal observ-
ables [49–51], and we use it here as Ref. [53]. While we
observe that the results obtained with the method of Sec. III
(blue line) agree well with the reference (grey line) for the
energy, the figure shows that, specially for the condensate,

the agreement only holds for small values of β. We attribute
the limitations of our calculation to the fact that for larger
values of β, the Boltzmann factor e−βE in the integrals
enhances the contributions of the lower edge of the
spectrum, where the DOS is many orders of magnitude
smaller than at the peak and the truncated approximation is
less accurate. For more detailed explanation see Sec. IV C.
In [30] it was suggested that the shape of the DOS gave

rise to a peak in the specific heat Eq. (10) which appeared to
diverge in the continuum limit. These conclusions were
contradicted by later, more precise studies [54,55], and
attributed to the limited precision of the simulations which
would not allow for a reliable continuum extrapolation. It is
interesting to investigate whether limiting the study to finite
systems and lattice spacing could show similar spurious

FIG. 3. The energy (main plot), entropy (left inset) and
condensate (right inset) as a function of the inverse temperature
β in the canonical ensemble. The quantities are obtained for a
system with N ¼ 20 sites and x ¼ 5, bond dimension D ¼ 500
and M ¼ 2000 (upper panel). The same quantities are calculated
for a system with N ¼ 30 sites, x ¼ 5, D ¼ 500 and M ¼ 2000
(lower panel). For comparison, we show the results obtained with
standard MPS techniques as described in Ref. [49] (grey lines).
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signals in the specific heat. To this end, and because the
precision obtained with our method is limited for large
systems, we examine the specific heat using a standard
MPS simulation [49–51]. We fix a system size N ¼ 80 and
systematically increase the parameter x. Notice that in this
way we are exploring properties of the (finite) lattice
model, since this does not correspond to approaching the
continuum (which would require increasing the system size
as N ∝

ffiffiffi
x

p
to maintain a consistent physical volume).

Figure 4 shows the dependence of the specific heat with the
inverse temperature as x increases. We observe a smooth
peak in the specific heat, that drifts slowly toward infinite
temperature as x increases (as mentioned before, in the limit
x → ∞ the Hamiltonian reduces to the exactly solvable XY
model with a multiplication factor x). In order to connect
the observed quantities to their continuum correspondence,
it is important to highlight here that β used in Figs. 3 and 4
is adimensional since the Hamiltonian of Eq. (2) is also
adimensional. It is related to the physical inverse temper-
ature βphys (the inverse temperature in the continuum) in the
following way [49]

β ¼ βphysg

2
ffiffiffi
x

p : ð21Þ

C. Convergence and error analysis

The calculated quantities, gMðE;OÞ and gMðE; 1Þ, have
two sources of errors, as discussed in [13]. One type of
error comes from truncating the Chebyshev expansion up to
order M. As shown in [11], when the Jackson kernel is

used, and the function being approximated is continuous in
the interval ½−1; 1�, the errors are of order Oð1=MÞ and
consequently are reduced as we increase the Chebyshev
cutoff M. The second source is the truncation of the MPOs
used to represent the polynomials to a finite bond dimen-
sion TD

n ðH̃Þ, with D ≤ Dmax. The observation in [13]
indicates that the bond dimension required to approximate
the nth polynomial with fixed precision grows fast (even
exponentially) with the order n.
The effect of these errors is that of effectively limiting the

energy resolution attainable with a given bond dimension,
since the latter limits the number of moments that can be
reliably extracted. When applied to the DOS and related
functions, written as sums of Dirac delta terms, we expect
that the effect of this limited resolution becomes more
significant wherever the DOS exhibits sharp features or
where its absolute value is small. In our case, this
corresponds to the edges of the spectrum, where eigenstates
become more sparse, while the effect is minor where the
DOS is sufficiently large, such as near the peak.
In the computation of the spectral quantities gMðE;OÞ

and gMðE; 1Þ, only traces of the polynomials or (of their
product with a given operator) appear. These appear more
converged in bond dimension than the global error ana-
lyzed in [13], which allows us to explore relatively large
values of the Chebyshev truncation parameter M. In
particular, we found that characterizing the overall shape
of the DOS, as discussed in Sec. IVA, was possible with
moderate computational resources. Concretely, forN ¼ 60,
we found M ¼ 500 to be sufficient for large values of x,
100 ≤ x ≤ 300. For smaller x, the peak of the DOS is
sharper and requires a larger number of polynomials,
growing to M ¼ 1000 for 30 ≤ x ≤ 50 and up to M ¼
2000 for x ¼ 5, as shown in Fig. 5. For all these cases,
we found bond dimension D ¼ 400 to be enough to
accurately capture the shape of the DOS (see right panels
in Fig. 5), and to have convergence of the results shown in
Figs. 1 and 2.
For the same parameters, however, the edges of the

spectrum are not converged, as can be appreciated in Fig. 5.
Although the same moments are used to compute the DOS
at all energies, the final result is the sum of a large number
of terms with energy dependent coefficients that can
oscillate with large frequencies (increasing with the order).
Near the peak the sum is large, and the relative contribution
of large order moments (more affected by truncation) is
small. However, close to the edges precise cancellations of
terms are required to recover the much smaller value of the
DOS. Hence, in such areas, the result is much more
sensitive to truncation errors in the moments of all orders.
In practice, the computed DOS exhibits large fluctuations
that depend on the truncation parameters in the regions
where the true magnitude of the spectral density is small, up
to the spectral edges. Because of the small magnitude of the
DOS, these fluctuations do not appear to be present in

FIG. 4. The specific heat for a system size with N ¼ 80, for
different values of x. As the lattice spacing decreases and x
increases, the peak of the specific heat becomes sharper. The inset
shows how the rescaled inverse temperature, βmaxx, with βmax the
inverse temperature that corresponds to the peak, behaves as we
increase the parameter x. The grey line indicates the exact value
for the XY model, to which the Hamiltonian converges in the
limit x → ∞. The specific heat was computed using standard
MPS methods.
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Fig. 1, but they are visible when we plot the DOS in a
logarithmic scale in Fig. 5.
Very close to the edges, we may expect that the

discreteness of the energy spectrum for finite systems
further contributes to the fluctuations. The typical energy
gaps are exponentially small in the system size, but close to
the edges, the gaps can be much larger. In order to be able to
capture the sparse spectrum in these regions with our
method,M would need to take much larger values, which in
turn would require even bigger bond dimension D.
The discussion above refers to the determination of the

DOS. The thermodynamic observables shown in Fig. 3 are
computed using the same approximation to the Chebyshev
moments, but combined with different coefficients, to
compute Eq. (12). The truncation parameters that allow
us to determine the form of the DOS are not enough to
explore the whole range of temperatures. Instead, even if
the errors at the edges do not affect the form of the DOS,
they do constrain the interval of temperatures that is
accessible when calculating thermodynamic quantities with
our method (see Fig. 3). Specifically, as β increases,
because of the Boltzmann factor, so does the contribution
from the energies near the lowest edge of the spectrum Emin
to the quantities gðE; 1Þ and gðE;OÞ. Because the compu-
tation with fixed truncation parameters is less accurate near
the edges, attaining a precise calculation of the different
thermodynamic quantities becomes more computationally

expensive as β increases. The truncation errors related to
the bond dimension D at the edges of the spectrum appear
to be more significant as we increase the system size N,
consistent with a narrower spectral density with much
smaller relative magnitude of the DOS in the tails of the
distribution, as compared to the peak, and smaller gaps that
require better energy resolution. We do not carry out a
detailed error analysis for the observables, but instead show
in Fig. 3 the best results obtained, as compared to the exact
results. These correspond to the biggest value of M that is
accessible and a fixed bond dimensionD ¼ 500. We notice
that, with the given bond dimension, our results seem to
improve significantly as we increase M, for most of the
observables of interest.

V. DISCUSSION

In this work, we have applied the recently introduced
method [13] to characterize the density of states of the
lattice Schwinger model.This technique gives access to the
overall shape of the DOS over the full range of energies and
can be used to derive thermodynamic quantities that are
expressed as integrals of the DOS with Boltzmann factors.
We have shown how the shape of the distribution for

the lattice Schwinger model changes with the system size
and the lattice spacing parameter, from a very asymmetric
spectrum at large spacings, to an approximately Gaussian

FIG. 5. Error analysis in the calculation of the DOS for a system of size N ¼ 60 and different lattice spacing x ¼ 5 (upper panels) and
x ¼ 300 (lower panels). The left panels show the effect of truncating the Chebyshev series to finite value M, using large enough bond
dimension D for convergence of all the cases (as demonstrated by the right panels).
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form for sufficiently small ones. It is worth noticing that,
for any finite system size, there appear to be values of the
parameters for which the DOS strongly deviates from a
Gaussian behavior. Furthermore, the density of states for
large lattice spacing exhibits a sharper feature at low
energies, with a very fast increase, and a narrow peak,
decaying much more slowly toward high energies.
Our observations on the spectral properties may be

relevant for the interpretation of experimental realizations
of the model, which has already been simulated in some
pioneering quantum simulations. Since experiments are
necessarily limited to finite (for the moment relatively
small) system sizes, it is interesting to understand which
ranges of parameters ensure a behavior close to the
continuum limit for the spectrum, and the thermal proper-
ties. Our analysis can be similarly carried out for other LGT
models in one spatial dimension.
Regarding physical observables, our method gives in

principle access to all thermodynamic quantities. However,
we found that in practice the computation is limited to only
relatively high temperatures, and exploring lower temper-
atures has a much higher computational cost compared to
the determination of the DOS.
In conclusion, the method employed here opens another

aspect of the quantum many-body problem, and in par-
ticular LGT, to the exploration with tensor networks. The
DOS method allows us to distinguish the features of the
density of states, but directly using it for thermodynamic
observables seems to be limited to relatively high temper-
atures. Since this limitation does not affect other standard
MPS techniques, a combination of methods seems to be the
most promising strategy to explore other LGT problems in
the future.
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APPENDIX: CHEBYSHEV EXPANSION

For the sake of completeness, we summarize here the
basic ingredients of the expansions used in the paper.
A complete review can be found in [11].
In general, any function fðxÞ that is piecewise and

continuous, with xwithin the interval ½−1; 1�, can bewritten
as an expansion in terms of Chebyshev polynomials,

fðxÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
μ0 þ 2

X∞
n¼1

μnTnðxÞ
�
; ðA1Þ

where TnðxÞ are the Chebyshev polynomials of the first
kind, defined for non-negative order n, and the coefficients
of the expansion are determined by the moments
μn ¼

R
1
−1 fðxÞTnðxÞdx. The polynomials can be defined

by their recurrence relation

Tnþ2ðxÞ ¼ 2xTnþ1ðxÞ − TnðxÞ; ðA2Þ

with the first two polynomials defined as T0ðxÞ ¼ 1 and
T1ðxÞ ¼ x. Furthermore, the polynomials TnðxÞ satisfy the
following orthogonality relations

hTnjTmi ¼
Z

1

−1

TnðxÞTmðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx ¼ ð1þ δn;0Þ
π

2
δn;m; ðA3Þ

Truncating the sum of Eq. (A1) to a finite orderM defines an
approximation to the function. The kernel polynomial
method (KPM) improves the properties of the approxima-
tion by including additional coefficients γMn , which can be
chosen in order to suppress the oscillations that come from
having a finite series of polynomials [11]. The correspond-
ing approximation fMðxÞ, for M terms in the sum reads

fMðxÞ ≔
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
γM0 μ0 þ 2

XM−1

n¼1

γMn μnTnðxÞ
�
: ðA4Þ

For the Jackson kernel, which we use in our calculations,

γMn ¼ ðM − nþ 1Þ cos πn
Mþ1

þ sin πn
Mþ1

cot π
Mþ1

M þ 1
: ðA5Þ
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