
Quantum simulation of light-front parton correlators

M. G. Echevarria ,1,* I. L. Egusquiza,2,† E. Rico ,3,4,‡ and G. Schnell 2,4,§

1University of Alcalá, Department of Physics and Mathematics, 28805 Alcalá de Henares (Madrid), Spain
2Department of Physics, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

3Department of Physical Chemistry, University of the Basque Country UPV/EHU,
Apartado 644, 48080 Bilbao, Spain

4IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

(Received 11 November 2020; accepted 2 July 2021; published 30 July 2021)

The physics of high-energy colliders relies on the knowledge of different nonperturbative parton
correlators, such as parton distribution functions, that encode the information on universal hadron structure
and are thus the main building blocks of any factorization theorem of the underlying process in such
collision. These functions are given in terms of gauge-invariant light-front operators, that are nonlocal in
both space and real time, and thus intractable by standard lattice techniques due to the well-known sign
problem. In this paper, we propose a quantum algorithm to perform a quantum simulation of these type of
correlators, and illustrate it by considering a space-time Wilson loop. We discuss the implementation of the
quantum algorithm in terms of quantum gates that are accessible within actual quantum technologies such
as cold atoms setups, trapped ions or superconducting circuits.
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I. MOTIVATION

Quantum chromodynamics (QCD), the quantum field
theory of the strong interaction between quarks and gluons,
has been an incredibly successful but at the same time
challenging part of the Standard Model of particle physics.
The strong force, mediated by gluons, acts therein on
particles that carry one of the three color charges within an
SU(3) symmetry group. The success of QCD is for instance
manifested in precise predictions of high-energy phenom-
ena based on factorization theorems. These separate the
computational description of observables—such as scatter-
ing cross sections—into calculable matrix elements on one
hand, and on the other, corrections arising from the change
of energy or factorization scale of the process (“evolution”),
starting from presently often noncalculable but universal
quantities, which parametrize, among others, the compo-
sition or formation of those hadrons—such as protons—
involved in the process [1]. The latter aspect constitutes one
of the challenges: a long history of experimental as well as
theoretical analyses have revealed a tremendously rich
internal structure of the proton. On the other hand, QCD
has so far failed to provide an equally reliable tool for
precision calculation of a seemingly simple ground state,
quite in contrast to the hydrogen atom in the framework of
quantum electrodynamics (QED). Part of the challenge is

the non-Abelian nature of QCD, with gluons (the gauge
bosons) themselves carrying color charges, again quite in
contrast to QED. This leads to color interaction not only
between quarks, but also between quarks and gluons or
even just between gluons, providing a mechanism for
peculiar aspects of hadron structure and formation, such
as the still hypothetical glueballs, or confinement.
The modern view of the proton structure goes far beyond

the original quark-parton model of collinear moving quarks
(and gluons) in a highly energetic proton [2,3]. It now
includes correlations between the various spin orientations
of the parent proton as well as of its constituents and the
constituents’ longitudinal and transverse momentum com-
ponents (or even position), where the latter are with respect
to the xþ (“light-front time”) light-front direction.1 These
correlations are typically cast in terms of parton distribution
functions (PDFs), or—in the particular case of including
transverse-momentum degrees of freedom—transverse-
momentum-dependent PDFs. They are complementary to
other characteristics such as form factors or generalized
parton distributions (see, e.g., Ref. [8]). All these functions
encode the multi-dimensional structure of nucleons in
terms of different correlations between the momentum/
spin of the considered parton and its parent hadron, and are
currently constrained through experimental data.

*m.garciae@uah.es
†inigo.egusquiza@ehu.es
‡enrique.rico.ortega@gmail.com
§gunar.schnell@desy.de

1The light-front coordinate system [4], with x� ≡ ðx0 �
x3Þ= ffiffiffi

2
p

and x⊥ ≡ ðx1; x2Þ, where x ¼ ðct; x⃗Þ, is a natural choice
for describing high-energy interactions [5–7].
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A recurring challenge in this respect is the formulation of
physical quantities in a quantum field theory. Basically all
high-energy probes, hadron-structure studies in deep-
inelastic scattering (DIS), or searches for physics beyond
the Standard Model in proton-proton collisions at the Large
Hadron Collider, involve nonlocal operators. To complicate
issues, these operators are not only separated in space but
often involve lightlike and thus real-time separation as well.
Let us consider the DIS process in more detail. It can be

proven that in the so-called Bjorken limit, the cross section
σ for DIS (see Fig. 1) can be approximated as a factorized
product of a partonic cross section, σ̂f, which can be
calculated perturbatively and describes the elementary
scattering of a lepton and an f-flavor quark, and the
nonpertubative PDFs for an f-flavor quark, ff=P, which
characterize the partonic structure of the nucleon and gives
the probability to find a parton of flavor f inside the proton.
More explicitly, the cross section (where a sum over all
parton flavors that can contribute to the process is per-
formed) can be written as (see, e.g., Ref. [9]):

σðξ; Q2Þ ¼
X
f

Z
1

ξ
dξ̄σ̂fðξ̄; Q2Þff=Pðξ=ξ̄Þ þO

�
ΛQCD

Q

�
:

ð1Þ
Here, ξ ¼ Q2=ð2pqÞ, with p the momentum of the proton,
and −Q2 ¼ q2 is the squared invariant mass of the
exchanged virtual photon of momentum q. In order to
keep power corrections under control, i.e., for the factori-
zation theorem to be a good approximation, Q2 should be
large (larger than the typical infrared QCD scale
ΛQCD ∼ 1 GeV).2 The operator definition of the quark
PDF, e.g., appearing in the integrand of Eq. (1), is

ff=PðξÞ ¼
X
S

Z
dy−

2π
e−iξp

þy−

× hPSj½ψ̄U�ðy−Þ γ
þ

2
½U†ψ �ð0ÞjPSi; ð2Þ

where ff=PðξÞ gives the number density of unpolarized
quarks of flavor f with a longitudinal fraction ξ of the
proton momentum p inside an unpolarized nucleon, which
has spin S. Here, y− (pþ) is the− (þ) light-front coordinate
(momentum), γþ is the adequate Dirac matrix to single out
unpolarized quarks, jPSi denotes the proton state, and ψ
the quark field. TheWilson line U ensures gauge invariance
when bracketing wave functions at different space-time
coordinates (0 and y−, separated here on the light-front). In
general, the actual path of the Wilson line depends on the
quantity of interest and process used as the probe. In the
case of DIS, one has a future-pointing Wilson line3

UðyÞ ¼ P exp

�
−igs

Z
∞

0

dsn− · Aðyþ sn−Þ
�
; ð3Þ

where P denotes path ordering, gs the strong coupling, and
A is the gauge field. Physically, a Wilson line accounts for
an infinite number of gluon emissions from a fast-moving
parton, parallel to its direction of motion. For the PDF in
Eq. (2), relevant for DIS, one can see that the path followed
by the Wilson lines consists in a Wilson line that goes from
0 to infinity in the − light-cone direction, and then comes
back from infinity to y−. By contrast, for the Drell-Yan
process—the annihilation of a quark and an antiquark from
two colliding protons into a virtual photon, subsequently
decaying into a lepton pair—the path extends to negative

FIG. 1. Schematic view of the deep-inelastic-scattering process. Left panel: cartoon of the experimentally observable initial- and final-
state particles. Middle panel: sketch of the partonic interpretation in terms of interactions between elementary particles. Right panel: its
field-theoretical description as a leading-order Feynman diagram, which depicts the factorization in terms of the partonic process, i.e.,
electron-quark scattering through the exchange of a virtual photon γ�, and the nonperturbative parton distribution function, which gives
the probability to find such a quark inside the proton (see the text for more details). The vertical cut and the resulting mirror symmetry
implies summation over all possible final hadronic states, leaving only a dependence of the cross section on the proton structure.

2More precisely, the Bjorken limit corresponds to large photon
virtuality Q2 and squared hadronic center-of-mass energy
ðpþ qÞ2, with ξ staying fixed.

3A generic vector aμ is decomposed as aμ ¼ aþnμþ þ a−nμ− þ
aμ⊥ with aþ ¼ n− · a, a− ¼ nþ · a, nþ ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

,
n− ¼ ð1; 0; 0;−1Þ= ffiffiffi

2
p

, n2þ ¼ n2− ¼ 0, and nþ · n− ¼ 1.
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infinity and then back to y−. Nevertheless, these two PDFs
with seemingly different paths turn out to be exactly the
same. They are thus universal, i.e., PDFs constrained in one
process can be used directly in the calculation of another
process, which makes the formalism used here predictive
and so attractive. It may be noted that this strict universality
is valid for a selected class of such nonperturbative
quantities, while others might be subject to a certain degree
of process dependence.
This analysis can be generalized to other and in parts

more complicated processes, such as Higgs-boson or jet(s)
production in proton-proton collision, fragmentation into
hadrons in DIS, electron-positron annihilation, or proton-
proton collision, as well as including dependence on the
polarization(s) of involved hadrons and/or partons. In all
these processes, if factorization can be proven to hold, the
general structure is always schematically given by

σ ¼ σ̂ ⊗ ½nonperturbative functionðsÞ�;

where σ̂ is the perturbatively calculable partonic version of
the full cross section, the ⊗ stands for the necessary
kinematical convolutions, and the nonperturbative func-
tions are the relevant ones for the considered process. These
comprise (un)polarized PDFs, transverse-momentum-
dependent functions (TMDs), generalized parton distribu-
tions (GPDs), jet functions, fragmentation functions, to
name a few.
Most of the nonperturbative hadronic quantities are

given in terms of nonlocal operators in both space and
time. They cannot be calculated in perturbation theory, and
two main procedures have been followed to deter-
mine them.
On one hand, global QCD analyses, which make use of

factorization theorems, model them and fit the parameters
using experimental data. Thanks to their universality, they
can be extracted from a given set of processes and applied
in others. However, this approach has several limitations,
starting from the lack of data to fully constrain their
functional dependence, model bias, and limited precision
of factorization theorems.
On the other hand, lattice QCD has evolved into a very

successful tool during the last decade, in particular for
calculating various static properties of the proton. However,
the main problem for lattice QCD in treating PDFs, TMDs,
GPDs and alike, which are given in terms of nonlocal
operators in space-time, is that it faces the well-known sign
problem [10] which, in principle, prevents Monte Carlo
techniques from being applied.
Time dependence in lattice QCD, as needed for dynamic

properties, is currently achieved only via detours (see, e.g.,
the recent reviews [11–14]). One of the traditional and most
widely used techniques consists in calculating the Mellin
moments of the distributions, but this allows only their

partial reconstruction through an operator product expan-
sion (OPE). In addition, it is limited by the practical
challenge to reliably calculate higher moments, since the
signal-to-noise ratio rapidly decreases and an unavoidable
power-law mixing starts beyond the third nontrivial
moment. Alternatively, other approaches have been devel-
oped in the last years, the so-called pseudodistributions
within the large momentum effective field theory (LaMET)
[15–17] being the one that has attracted more attention.
Within this approach, the light-cone PDFs (and alike) are
obtained through an OPE onto their corresponding spacelike
operators. However, even if promising, this approach is still
under development and faces several theoretical and com-
putational challenges, some of them shared with standard
lattice calculations, which prevent it from being able to
achieve in the near future a reliable calculation of a full PDF
(see, e.g., [18] for a discussion of the different sources of
uncertainties and their size in a typical calculation with
pseudodistributions). Anyhow, all these classical simula-
tions require vast amounts of computing resources.
Therefore, already during the early times of lattice QCD,

the use of quantum simulators and quantum computers to
overcome these problems had been put forward. Regarding
the newer approaches in lattice QCD, any alternative
computational framework that can provide at least bench-
marks will also be welcome. But only with the advent of
modern quantum technologies does it appear possible to
solve problems in QCD where classical approaches fail or
face enormous computational requirements [19–24].
Quantum information science and technology (QuIST) is

currently one of the fastest growing interdisciplinary fields
of research. QuIST has brought new tools and perspectives
for the calculation and computation of strongly correlated
quantum systems. Understanding a dynamical process as a
quantum circuit and the action of a measurement as a
projection in a Hilbert space are just two instances of this
quantum framework. In recent years, the scientific com-
munity has been considering several quantum technologies
such as cold atoms [25], trapped ions [26], or super-
conducting circuits [27] as promising candidates for the
realization of a wide variety of dedicated quantum evolu-
tions with high degree of control.
Given these advances, it is clear that the applicability of

QuIST to the study of physical problems is a burning
question. One possible approach is to build a multipurpose
(universal, programmable) quantum computer. Yet another
one has its roots in Feynman’s first intuition of quantum
computers [28,29]: if quantum hardware able to precisely
reproduce another physical quantum model exists, this
would provide us with a powerful investigation tool for
computing the observables of the model, and to verify or
compare its prediction with the physical system. In other
words, having a quantum simulator for the physical problem
of interest.

QUANTUM SIMULATION OF LIGHT-FRONT PARTON … PHYS. REV. D 104, 014512 (2021)

014512-3



Quantum simulators and quantum computers directly
exploit quantummechanical concepts such as superposition
and entanglement of quantum states [30]. A fundamental
reason for the exponential increase in computational power
in these quantum devices is quantum entanglement, i.e.,
quantum correlations, among the local degrees of freedom.
A general quantum state for a set of n sites, with d

possible quantum levels at each site requires dn complex
amplitudes for its description (setting normalization aside).
A classical computer will need to keep track of all these
amplitudes, which means an exponential growth of
memory requirements with the quantum system size. In
addition to this, some quantum protocols achieve a much
better scaling of computational time with the system size
than any classical algorithm for the same problem [31,32].
Today, the research frontier is at the edge of having

universal quantum computers and quantum simulators able
to perform such investigations beyond proof-of-principle
analysis. Indeed, the quantum platforms mentioned above
(cold atoms, trapped ions, superconducting circuits) are
genuine quantum systems where the available experimental
techniques offer an impressive degree of control together
with high-fidelity measurements, thus combining two
fundamental requirements for a quantum simulator. In this
way, detailed studies and proposals have been put forward
to perform quantum simulations of lattice QCD in the near
and mid-term (e.g., [33–36]). Also, light-front Hamiltonian
methods to perform quantum computations of QCD matrix
elements have recently been proposed as a promising
alternative to equal-time lattice approaches, since they
address the computation of matrix elements directly in
Minkowski space-time rather than in Euclidean space-
time [37,38].
Let us therefore consider the conceptual requirements for

quantum simulation of the quantities of interest in proton
structure, such as ff=PðξÞ in Eq. (2). We would need to
encode in the quantum degrees of freedom at our disposal
both matter and gauge fields. We would need to carry out
measurements associated with the state jPSi. And we need
time evolution, since the Wilson line UðyÞ is nonlocal in
time. Furthermore, we need to ensure that we are actually
simulating gauge-invariant quantities.
Recently, the simulation of dynamical gauge field has

been the subject of many theoretical proposals [23,24] and
the experimental realization of a scalable minimal coupling
between gauge and matter field has been achieved in cold
atom setups [35]. The implementation of spatial Wilson
loops was considered initially in the context of topological
quantum computation [39] and more recently in the context
of quantum simulation of lattice gauge models [40–43].
The central open problem is the one we address here: to

have a quantum simulation algorithm for time-dependent
quantities that are gauge invariant. Thus, as a first step
toward that goal, we will consider a pure gauge model and
the relevant gauge-invariant quantity: a space-time Wilson

loop. Notice that this has been indeed the main stumbling
block in the construction of space and time gauge-invariant
quantities, and its implementation in any of the current
platforms would open the floodgates of conceptual and
practical developments in the topic.
This paper is organized as follows. In Sec. II, we tackle

the discretized construction of space-time Wilson loops
along two approaches (cf. Fig. 2), equivalent for the
Abelian case: first the plaquette-based approach, valid
for Abelian models, and then a link-based approach, valid
for any gauge group. In the plaquette approach we present a
new crucial component, the time-oriented fundamental
plaquette. For the link-based approach we construct in
detail the opening, propagation, and closing of the relevant
lines in terms of fermionic hopping terms with gauge
mediation, which preserve gauge invariance throughout. In
Sec. III, we discuss the quantum simulation of space-time
Wilson loops in both approaches for the concrete case of a
pure Zð2Þ gauge model, in terms of circuits of quantum
gates. In Sec. IV, we present a proof-of-principle compu-
tation that makes use of the algorithm. Finally, in Sec. V, we
discuss the main findings with a view toward further
developments.

(a)

(b)

(c)

FIG. 2. (a) Wilson loop in the light front split in spatial and
temporal planes. (b) Every space-time Wilson loop in an Abelian
model can be built as the product of minimal Wilson loops in a
stroboscopic evolution of spatial and temporal Wilson loops
(filled squares). (c) From a link-based construction for any
(Abelian and non-Abelian) Wilson loop, the stroboscopic se-
quence is given by spatial Wilson lines (red solid lines) and
temporal Hamiltonian evolutions (red dashed lines).
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II. SPACE-TIME WILSON LOOPS: DEFINITION

The primary goal of this paper is the investigation of
quantum algorithms for the simulation of operators non-
local in time and space, a vital step for the calculation of
hadronic matrix elements. In particular, the focus will be on
space-time Wilson loops. For simplicity, a pure gauge
theory will be considered, in which we can develop the key
features of the algorithm without introducing further
complications (such as the hadronic state, matter fields,
etc.). The discussion of the algorithm for other hadronic
quantities, such as PDFs, will be pursued in the future.
In fact, space-time Wilson loops are very relevant matrix

elements by themselves as well, in the context of nucleon
structure and in particular for TMDs. For instance, a Wilson
loop along both light-cone directions, the so-called “TMD
soft function,” determines the nonperturbative anomalous
dimension which controls the rapidity evolution of the
TMDs (see, e.g., Refs. [44,45]). Also, a Wilson loop along
one light-cone direction can be related to gluon TMDs at
high energy, or the so-called small-ξ limit (see, e.g.,
Refs. [46,47]).

A. Plaquette-based space-time Wilson loop

To quantum simulate space-time Wilson loops, first we
should define these operators in an explicit gauge-invariant
form in a Hamiltonian formulation. From the classical
statistics definition of a gauge-invariant model [48–51], a
Wilson loop WC ¼ Tr½UðCÞ� is a path-ordered unitary
operator built as the product of unitary elements of the
representation of the gauge group UðeiÞ at each link ei of a
closed path C. We shall also use the name links for these
unitary operators. The trace is taken in the color indices and
the Wilson loop is an operator acting on the quantum
Hilbert space of the corresponding degrees of freedom. As
we are dealing with loops, that is, closed paths, gauge
invariance is guaranteed. In order to simulate them, notice
that every Wilson loop in an Abelian gauge theory can be
built out of the composition of minimal Wilson loops
defined in a minimal plaquette which will be our start-
ing point.
So as to consider space-time Wilson loops, we need to

take into account the special character of the temporal
direction. In the search of the definition of the quantum
Hamiltonian [52,53], this temporal direction is taken as
continuous, and the transfer matrix method provides us
with the Hamiltonian. It is convenient to choose the
temporal gauge, in which the links in the temporal
directions are set to the identity.
Back to the composition of a space-time Wilson loop in

terms of minimal plaquettes, we see that we need two types
of minimal plaquettes. First, the pure spatial ones
Tr½Uðe1; tÞUðe2; tÞUðe3; tÞUðe4; tÞ�, where the time instant
t is fixed, and the four links ei form the boundary of a
minimal square plaquette. Second, the temporal ones given

by Tr½Uðei;τ=2ÞUðei;−τ=2Þ�¼Tr½UðeiÞe−iτHUðeiÞ�, where
the spatial index ei is fixed and as stated above the temporal
gauge has been chosen, which explains why only two
unitaries appear for the four links of the plaquette, namely
ei at instant −τ=2, the same link at later time τ=2 traversed
in the opposite direction, and the two links in the temporal
direction connecting the ends of the two spatial ones. For
Abelian gauge models these two types of plaquettes
complete the required set, and any space-time Wilson
loop will be approximated by sequences of fundamental
plaquettes.
Let us now make use of the temporal gauge to give

explicit expressions for the temporal plaquettes in some
Abelian examples:
(a) Discrete Abelian Zð2Þ gauge model. In a Zð2Þ gauge

theory, the group element UðeiÞ ¼ σ3ðeiÞ is given by
the third Pauli matrix. Notice that the local Hilbert
space is C2 and, as an Abelian theory, there is no
color index. The spatial plaquettes are given by
σ3ðe1; tÞσ3ðe2; tÞσ3ðe3; tÞσ3ðe4; tÞ acting on ðC2Þ⊗4.
The temporal plaquettes are given by

σ3ðei; τ=2Þσ3ðei;−τ=2Þ ¼ σ3ðeiÞe−iτHσ3ðeiÞ
¼ e−iτ½Hþ2σ1ðeiÞ�; ð4Þ

with Hamiltonian

H ¼ −
X
i

σ1ðeiÞ − λ
X
□

σ3ðe1Þσ3ðe2Þσ3ðe3Þσ3ðe4Þ;

ð5Þ

where σ1ðeiÞ is the first Pauli matrix, such that
σ1σ3 ¼ −σ3σ1, λ is the coupling constant, and the
first sum in the Hamiltonian is over all links i in the
lattice and the second sum is over all minimal square
plaquettes □. We shall further examine this Hamil-
tonian in Sec. IV.

(b) Continuous Abelian Uð1Þ gauge model. In a Uð1Þ
gauge-invariant model, the Hamiltonian is given by

H¼
X
i

g2

2
L2ðeiÞ−

1

g2
X
□

Re½Uðe1ÞUðe2ÞUðe3ÞUðe4Þ�;

where g is the coupling constant and ½LðeiÞ; UðeiÞ� ¼
UðeiÞ are conjugate variables. UðeiÞ is the group
element and LðeiÞ the electric field. In this case, the
minimal temporal Wilson loop reads

Tr½U†ðeiÞe−iτHUðeiÞ� ¼ e−iτ½Hþg2

2
ð2LðeiÞþ1Þ�: ð6Þ

Thus, as we have seen in the examples of Eqs. (4)
and (6), elementary temporal Wilson loops appear as
unitary temporal evolution, with the Hamiltonian H,
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obtained from the transfer matrix method, being modified
by the additions of an operator OðemÞ localized on the
relevant link em, i.e., Wτm ¼ e−iτm½HþOðemÞ�. This structure
is universal, while the concrete additional operatorOðemÞ is
model dependent.
Restating our objective of constructing Wilson loops,

spatialWilson loopsWCn correspond to path-ordered unitary
operators UðeiÞ on contiguous links forming a closed loop
Cn, i.e.,WCn ¼ P⊗ei∈Cn

UðeiÞ [39,42,43]. Thus the complete
space-timeWilson loop can be stroboscopically decomposed
in spatial and temporal Wilson loops given by

W ¼ WC1Wτ1WC2Wτ2 � � �WCkWτk � � � ; ð7Þ

and in the next section we shall examine its realization in
terms of quantum gates.

B. Link-based space-time Wilson loop

In a second approach (see Fig. 3), we explicitly build a
non-Abelian space-time Wilson-loop operator by
(1) inserting a quark-antiquark pair in adjoining sites that
are part of the path of the Wilson loop; (2) parallel transport
of the quark and antiquark quantum states in opposite
directions along the loop; and (3) annihilation of the
quark-antiquark pair to close the loop [40,41]. Each of these
three set of actions is achieved, in the simulation, by acting on
reference states of gauge and matter with gauge-invariant
hopping operators. As they are hopping terms, they pertain to
the spatial part of theWilson loop. Thus, to have a space-time
Wilson loop we need to incorporate in this description the
temporal links. These are simply achieved by temporal
evolution with the transfer matrix Hamiltonian of the gauge
model, with no evolution for the quarks and antiquarks. That
is to say, the matter fields are nondynamical and ancillary.
In other words, by quark here we mean that an ancillary

degree of freedom has been loaded with a fermion,
jαi ¼ ψ†

αj0i, where we use the label α as in the color
indices of the unitaries of the group. The initial action of the
construction is loading a couple of adjoining sites along the
path with an N-quark singlet state of SUðNÞ, thus totally
antisymmetric, that can be understood as a maximally
entangled state of a quark-antiquark pair (meson),

jmi≡ 1

N1=2

XN
α¼1

jαð1Þ; ᾱð2Þi; ð8Þ

where

jᾱi ¼ 1

ðN − 1Þ!
X
βi

ϵαβ1���βN−1ψ†
β1
� � �ψ†

βN−1
j0i;

with ϵαβ1���βN−1 being the totally antisymmetric tensor and N
the number of colors, is understood as an “antiquark” with
color α.

The labels 1 and 2 in the meson state (8) correspond to
the sites where the quark and antiquark are located. In this
context, sites are the endpoints of links, and will con-
ceptually be locations for the ancillary matter fields. In the
actual process of simulation the ancillary fermionic states
could be coded in a different physical location and in fact
be reused to describe different sites of the simulation.
Leaving that for the implementation, in what follows we
will be working with fermionic operators acting on
different sites, the ancillary matter sites or lattice vertices,
where the matter field operators ψα;j, with color index α
and spatial index j, live. Their statistics is fermionic, i.e.,
fψα;j;ψ

†
β;kg ¼ δα;βδj;k, and there is a local reference state

(vacuum or empty singlet) j0ðjÞi such that ψα;jj0ðjÞi ¼ 0,
∀ α, j; there is a second reference state (full singlet)
j0̄ðjÞi¼ 1

N!

P
βi
ϵβ1���βNψ†

β1
���ψ†

βN
j0ðjÞi such that ψ†

β;jj0̄ðjÞi ¼
0, ∀ β, j; notice that jᾱi ¼ ψαj0̄i. Note that the anti-
symmetry of the creation and annihilation operators is
only needed locally. The process of creating a link-based
Wilson loop is based on single-particle physics where the
statistics of the operators is not relevant.

FIG. 3. Preparation of a meson state and minimal quark
transport in the lattice. (a) Starting from a completely empty
and completely full state j0i ⊗ j0̄i, a meson state jmi≡
1

N1=2

P
N
α¼1 jα; ᾱi is built (b) By sequentially applying the parallel

transport of a single quark in the lattice, the link-based Wilson
loop is built.
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Other than the two sites referenced in the meson state (8),
all ancillary matter sites are initialized to a reference state,
either j0ðjÞi or j0̄ðjÞi. In fact, the meson state jmi will be
obtained by applying on the total vacuum state j0ð1Þij0̄ð2Þi
the creation/annihilation hopping term of Eq. (11), that we
will describe shortly. For the time being, consider the initial
meson state as given, and we shall now propagate the quark
and antiquark states along spatial links, until a point where
a temporal evolution is necessary. When the discretization
of the Wilson loop that is desired requires again spatial
links, the propagation of the quark and antiquark resumes
as we now describe.
The (spatial) propagation of the quark state proceeds by

acting on a succession of j0ðjÞi states sequentially with
gauge-invariant hopping terms of the form

u12 ¼ exp

�
−iπ
2

X
αβ

½ψ†
α;1UαβðeÞψβ;2 þ H:c:�

�

→ ð−iÞ½ψ†
α;1UαβðeÞψβ;2 þ H:c:�; ð9Þ

where e corresponds to the link between sites 1 and 2 along
the minimal Wilson line, and the last assignment is valid
in the single quark sector. We have to identify on which part
of the Wilson line we shall propagate the quark and on
which one the antiquark. In the quark propagation part all
the matter sites will be initially set to the j0i state, while
those deemed to support the antiquark will be prepared in
the j0̄i state.
For definiteness, let us assume an initial spatial part of the

Wilson line to be of odd length Lþ 1. We initialize two
ancillary sites in the entangled singlet state,

P
α jαðAL=2Þ;

ᾱðBL=2Þi.We use the notationAL=2 andBL=2 to signal thatwe
will be moving out of the center at L=2 and take this
entanglement to the two boundaries of the line. The links
enumeratedwith 1 toL=2 − 1will be carrying the quark, and
thus set to j0i, while those branching out from BL=2 to L,
corresponding to the spatial propagation of the quark, will be
initialized to j0̄i.
The quark will move out of the center because of the

action of hopping term (9) on this initial state with the
central meson, as follows:

uL=2−1;L=2j0ðL=2 − 1Þi ⊗ jαðAL=2Þ; ᾱðBL=2Þi
¼ jβðAL=2−1ÞiUβαðeL=2−1Þ ⊗ j0ðL=2Þ; ᾱðBL=2Þi:

Iterating this process with contiguous links toward the
initial point of the line, a Wilson line operator of the form
jαðA1ÞiUαβðe1ÞUβγðe2Þ � � �UμνðeL=2−1Þjν̄ðBL=2Þi is built,
where all the internal color indices are contracted in a path
order product of parallel transporters, the initial and final
color indexes are contracted with the ancillary matter sites
and the intermediate matter sites are uncoupled in a product
state of empty states.

In a similar way, the antiquark state jν̄i can be parallel
transported toward the end of the line, if the contiguous
ancillary antimatter sites are initialized to the full reference
states j0̄ðjÞi, ∀ j > L=2. Then, the complete Wilson line
operator will be

UðA1; BLÞ ¼
1

N1=2

X
αβ���μνω·θϕ

jαðA1Þijϕ̄ðBLÞi

Uαβðe1Þ � � �UμνðeL=2−1ÞU�
ωνðeL=2Þ � � �U�

ϕθðeL−1Þ

¼ 1

N1=2

X
αϕ

jαðA1ÞiUαϕðe1;…; eL−1Þjϕ̄ðBLÞi:

ð10Þ

This operator acts in a space slice of constant time t in the
space-time. Then wewill evolve the system with the unitary
operator e−iτH for a time interval τ. The Hamiltonian in our
construction only involves the gauge degrees of freedom
and the ancillary matter degrees of freedom have no
dynamics, as stated previously. Their only role is as
registers of the color indices.
After the final spatial Wilson line, that leaves the first and

last matter sites as neighbors, and in order to complete the
loop, we need a different hopping term between the first
and the last matter sites. This comes about because in the
Wilson loop there is a clear path ordering with a definite
orientation. We introduce an ancillary qubit such that we
have at our disposal the following hopping term

uBL1
¼ exp

�
−iπ
2N1=2

X
β

½ψ†
β;BL

σþψβ;A1
þ H:c:�

�
: ð11Þ

This will be applied to a Wilson lines with ancillary
degrees of freedom jϕ̄ðBLÞij↓ijαðA1Þi, where the state j↓i
is the extra qubit degree of freedom such that σþj↓i ¼ j↑i.
In fact, we can understand this additional qubit as a local
Uð1Þ gauge element, thus justifying our understanding of
this term as hopping with a Uð1Þ mediator.
Specifically for the case at hand, the action of this

operator on the matter sites couples just two quantum
states:

uBL1

1

N1=2

X
γ

jγ̄ðBLÞ↓γðA1Þi

¼ ið−1ÞN j0̄ðBLÞ↑0ðA1Þi:

If we measure the ancillary qubit, the probability to be in
the j↑i state is proportional to the Wilson loop,

P↑ ¼ j TrðUÞN j2, with Tr the standard trace over color indices.
Thus, when the outcome of our measurement is ↑, we are
assured that our Wilson loop has been constructed and is
applied to the gauge links in the many-body quantum state,
nondestructively [54].
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Notice furthermore that if the central pair of sites in the
first spatial part of the line were adjoined with the same
ancillary qubit, and the latter were prepared in the j↑i state,
then the action of (11) would create the desired meson state.
As we see, the link approach we have presented requires,
other than the Hamiltonian for the gauge degrees of
freedom, two types of hopping terms. The second kind
of hopping, Eq. (11), requires an additional qubit, that can
be reused with no additional overhead. The first hopping
term, Eq. (9), acts just on the quark/antiquark vacuum and
the previously evolved state.

III. SPACE-TIME WILSON LOOPS: QUANTUM
SIMULATION

A. Plaquette-based space-time Wilson loop

Every step in the stroboscopic decomposition of Eq. (7),
be it WCn or Wτm, is gauge invariant by construction. This
digital (stroboscopic) approach renders any possible
Abelian gauge symmetry amenable to quantum simulation.
The decomposition presented in Eq. (7) leads to products of
local or electric terms and minimal plaquette or magnetic
terms. We therefore need implementable simulations of
these minimal gauge-invariant operators.
For clarity, in what follows, we will describe fully this

algorithm for the simplest pure Zð2Þ gauge-invariant model
[55–57].
A reasonable minimal demand for the physical

implementation of this process is the availability of two
types of unitary gates: (i) local ones of the form eiτσ1ðeiÞ
for some given time interval τ, and (ii) collective
ones that are the exponentiation of plaquette operators
σ3ðe1Þσ3ðe2Þσ3ðe3Þσ3ðe4Þj□ for a time interval τ.
Given this set, the relevant temporal plaquette Eq. (4) is

at our disposal as well by means of a Trotter approximation,
while the spatial plaquettes correspond to the particular
value τ ¼ π=2 of the collective unitaries.

In actual fact, it is rather unlikely that we will have a four-
link unitary operator at our disposal, so it behoves us to
provide a constructive method for it (for illustration see
Fig. 4). In particular, it can be achieved by the action of a two-
qubit gate, controlled by an ancillary qubit (denoted by
subindex a), and acting on the ei link, Vi ¼ σ0ðeiÞ ⊗
jþiahþj þ σ3ðeiÞ ⊗ j−iah−j, where j�i are eigenstates of
σ1j�i ¼ �j�i, and σ0 is the identity. For a given spatial
loop, one applies an ordered sequence of these two qubit
gates with a common ancilla, from the first to the last
qubit around the closed loop, V123���n;a ¼V1V2V3 � � �Vn ¼
jþiahþjþσ3ð1Þσ3ð2Þσ3ð3Þ � � �σ3ðnÞj−iah−j.
In this manner, were the ancillary qubit prepared in the

state j−ia, then

V123���n;aj−ia ¼ WCj−ia ¼ P⊗ei∈Cn
σ3ðeiÞj−ia; ð12Þ

thus constructing the spatial Wilson loop operator.
We also require the exponentiated form of a minimal

loop for a given time τ. We start by preparing the ancillary
qubit in the state j↓ia. Here, j↑=↓ia are defined by
σ3j↑=↓i ¼ þ= − j↑=↓i. Next we apply the unitary oper-
ator V1234;a, followed by the local evolution e−iλτσ3ðaÞ and
finally V†

1234, i.e.,

V†
1234;ae

−iλτσ3ðaÞV1234;aj↑ia
¼ eiτλσ3ðe1Þσ3ðe2Þσ3ðe3Þσ3ðe4Þj□ j↓ia: ð13Þ

In this manner, we have achieved both the spatial (12) and
temporal (13) plaquettes, as promised.

B. Link-based space-time Wilson loop

The link-based approach presented in the previous
section is applicable to both Abelian and non-Abelian
gauge invariant models. Nonetheless, for the sake of
definiteness, we shall again present the quantum simulation

FIG. 4. Quantum controlled gates as the core for the quantum evolution and the quantum measurement. (a) A two-qubit quantum-
controlled gate is the basis of plaquette or magnetic interactions in the gauge-invariant model (b) Entangling a quantum many-body
system with an ancillary qubit using a controlled Wilson gate is the basis for measuring any Wilson loop in the many-body system.
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for the pure Zð2Þ gauge invariant model, now in this
approach.
Our starting point is the assumption that we have access

to two types of interactions: (i) as in the previous section,
local ones of the form eiτσ1ðeiÞ for some given time interval
τ, and (ii) collective ones that involve the matter-gauge
interaction of the form H ¼ σþj σ3ðejÞσ−jþ1 þ H:c:, where
the matter field plays an ancillary role in the whole process
and presents no dynamics on its own.
With the matter-gauge interaction acting for a time π=2

on the matter states j↓j↑jþ1i, the result is the minimal
Wilson line j↑jiσ3ðejÞj↓jþ1i. Iterating the process, any
Wilson line on a time slide t can be built. For instance, the
minimal plaquette Wilson loop is built by the action of the
matter-gauge interaction in a closed loop around a plaquette
σ3ðe1Þσ3ðe2Þσ3ðe3Þσ3ðe4Þj□. Notice that the actual state of
the ancillary matter degrees of freedom are completely
decoupled from the Wilson loop. Finally, the dynamics of a
single plaquette follows the description of Eq. (13), thus
completing the necessary set of links and dynamics.

C. Nondemolition measurement
of a space-time Wilson loop

Once the object of interest has been built, in our case the
space-time Wilson loop, it is now necessary to obtain
information from and about it. Let us put forward two
schemes pertaining the quantum simulation of space-time
Wilson loops.

(i) Local measurement in the local basis that diago-
nalizes the “electric” field, i.e., in a gauge-invariant
basis. In this way, the experiment has to be repeated
several times to obtain the distribution of the electric
field in the lattice. This distribution is determined by
the Wilson loop operator and the initial states of the
gauge degrees of freedom.

(ii) Alternatively, a quantum nondemolition measure-
ment of a spatial-temporal Wilson loop is possible,
using a controlled Wilson loop with an ancillary
qubit (see Fig. 4).

Let us define, for a general unitary operatorU, a controlled
version of it as c-U ¼ Isystj↓iah↓j þUsystj↑iah↑j. Its
action on an arbitrary state of the system jψisyst and the
state jþia ¼ 1ffiffi

2
p ðj↑ia þ j↓iaÞ results in c-Ujψisystjþia ¼

1þUsyst

2
jψisystjþia 1−Usyst

2
jψisystj−ia, whence, on measuring

the probability of obtaining the state þ, we obtain the
expectation value of the Wilson loop

pþ ¼syst hψ j
2þ Usyst þU†

syst

4
jψisyst ð14Þ

In view of this, we now face the problem of building the
controlled spatial-temporal Wilson loop. Let us first con-

sider local terms eiτ
P

r⃗
σ1ðr⃗Þ, for which the system-ancilla

interaction given by HΓ
syst−a ¼ σ3ðaÞþ1

2
σ1ðr⃗Þ, when acting

during an interval of time τ, results in the gate

c-UΓ ¼ Isystj↓iah↓j þ eiτ
P

r⃗
σ1ðr⃗Þj↑iah↑j. The spatial

Wilson loops can be achieved in a similar way, with an

interaction of the form HC
syst−a ¼ σ3ðaÞþ1

2

P
r⃗∈□ σ3ðr⃗Þ for a

time τ ¼ π
2
, in which case the resulting quantum gate is

c-UC ¼ Isystj↓iah↓jþ ⊗r⃗∈C σ3ðr⃗Þj↑iah↑j. As to the pla-
quette interaction, we can achieve it sequentially with
two ancillary qubits, i.e.,

c-U□¼ Isystj↓iah↓jþeiτλ
P

□
σ3σ3σ3σ3j□ j↑iah↑jj↓ib

¼V†
1234;b½Isystj↓iah↓jþe−iτσ3ðbÞj↑iah↑j�V1234;bj↓ib

In summary, after the application of the sequence of
controlled unitaries we have presented here, measurement
of the ancillary qubit provides Eq. (14), the expectation
value of the Wilson loop of interest.

D. Scaling

In any quantum simulation it is crucial to have at least an
estimate of the number of qubits and gates that it requires.
Even though this information does not suffice to determine
its viability, since usually some gates will be more prone to
error and will become a bottleneck for its application, it is
relevant to assess its usefulness. In the case at hand, there
are more aspects to consider, as we now analyze. There are
two main differences between the plaquette and the link
approaches in this regard.
In the plaquette proposal we have put forward for

Abelian gauge theories we need a few ancillary qubits
that can be systematically reused, so in fact when it comes
to the number of qubits it is determined by the coding of the
Abelian degrees of freedom plus a rather small ancillary
overhead. Gatewise, the number of different types of gates
that need implementing is also moderate, as noted in this
section. As to the actual number of gates, it will generally
scale as L2, where L is the total length of the Wilson loop
under investigation, in an area scaling law.
Passing now to the link-based approach, its ancillary

content is somewhat more sophisticated, and dependent on
the number of colors. On the other hand, the ancillary
fermionic degrees of freedom need not be at our disposal
for all vertices of the lattice. The system that codes a matter
site can be reused straightforwardly with a reset to j0i or
j0̄i, as the case might be. In the systematics of quark-
antiquark propagation we actually only need four matter
sites, in total. To these we should add a qubit for the
opening/closing hopping unitary, as well. The coding of the
non-Abelian gauge degrees of freedom will also be more
demanding in terms of qubits than the Abelian case, if a
digital coding is desired or available. The fact that the
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closing of the Wilson loop is probabilistic will add runtime
to a simulation as well, certainly. To make up for these
drawbacks, the link-based approach has the definite ad-
vantage that the number of gates will scale linearly with the
length of the Wilson loop, L. In order to estimate fully the
number of gates the degree of Trotterization [58,59] would
need to be determined, but the overall Lα scalings we have
indicated here will be controlling.

IV. PROOF OF PRINCIPLE SIMULATION

In this last section, we explicitly compute the space-time
Wilson loop shown in Fig. 2 and we check the effect of the
Trotterization [58,59] in the dynamics of the quantum
simulation of a Zð2Þ space-time Wilson loop.
The quantum Hamiltonian of a pure Zð2Þ gauge-invari-

ant model is given by Eq. (5), that we present here again for
reference

H ¼ Hel þ λHmag

¼ −
X
i

σ1ðeiÞ − λ
X
□

σ3ðe1Þσ3ðe2Þσ3ðe3Þσ3ðe4Þ;

where λ is the coupling constant and Hel (Hmag) corre-
sponds to the electric (magnetic) interaction in the lattice
gauge model. The local constraint around every vertexþ of
the lattice due to the gauge symmetry reads
as ⊗

ei∈þ
σ1ðeiÞjphysi ¼ jphysi. Alternatively, at each full

vertex the projector onto physical states Pphys ¼
ð1þ ⊗

ei∈þ
σ1ðeiÞÞ=2 is of rank 8, and halves the number

of degrees of freedom. Notice that in the full lattice one of
the vertex projectors is redundant. It is well known [48]
that the phase diagram of this model has two phases: for
λ ≪ 1 the system is in a confined phase, while for λ ≫ 1 in
a deconfined one. At λ ∼ 1, the model is critical, the mass
gap goes to zero, and the correlation length to infinity in the
thermodynamical limit.
For the numerical simulation, we assume a minimal

setup with 16 qubits in a “cross” configuration as shown in
Fig. 5. Due to the gauge constraints around every vertex,
the gauge-invariant or physical Hilbert space is of dimen-
sion 25. We set the value of the coupling constant to λ ¼ 10,
as the system is thus close to its critical point.
We are targeting the simulation of light-front physics. As

a consequence it is convenient to select the spatial and
temporal lattice spacings to be of the same order. By this we
mean that one time step entails the evolution of the
quantum Hamiltonian for a continuous time interval, τ,
of the same order as the lattice spacing, τ ∼ 1. Thus, each
one time step is obtained by the application of the
unitary e−iH ¼ e−iðHelþλHmagÞ.
This fundamental one time step evolution will be Trotter

expanded as

e−iH ≃ ½e−iHel=2nT e−iλHmag=nT e−iHel=2nT �nT ; ð15Þ

with nT Trotter steps, in the second order symmetric
Trotter–Suzuki approximation. We are assuming homo-
geneous Trotterization for all elementary time evolutions.
In other words, nT is the same for all evolutions from one
time slice to the next. In more refined implementations of
the algorithm, an adaptive Trotterization might prove
advantageous. Given a Wilson loop W, we denote as
WnT its Trotterized version, i.e., the one obtained from the
plaquette construction where the elementary evolution is
decomposed according to Eq. (15).
We will consider two figures of merit for the quality of

the quantum simulation of the space-time Wilson loop:
(i) the operator fidelity between the continuous time
operator and the Trotterized one jTr½W†WnT �j, with nor-
malized trace (Tr½1� ¼ 1); and (ii) the ground-state fidelity
jhg:s:jW†WnT jg:s:ij, where jg:s:i corresponds to the
ground state of the quantum Hamiltonian with a given
coupling λ. Notice that the operator fidelity and the ground-
state fidelity will in general be different. For a general
investigation of the Wilson loop, the operator fidelity will

FIG. 5. (a) Lattice setup for the quantum simulation of a
minimal space-time Wilson loop. At every link of the lattice,
there is a qubit. The total Hilbert space is of dimension 216, the
gauge invariant or physical Hilbert space is of dimension 25.
(b) Minimum Trotter steps nT such that the fidelity of the Wilson
loop is closed to one. (c) Numerical results for the operator
infidelity and ground state infidelity, where the error in the
Wilson loop operator scales with the number of Trotter steps nT
like a power law, with an exponent n−4.010ð1ÞT for the operator

infidelity and n−3.9997ð2ÞT for the ground state infidelity.
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be more relevant; for the explicit construction at hand, in
which we have a reference state (in particular, the ground
state of the gauge model Hamiltonian), the second figure of
merit will be of interest.
These figures of merit will be applied to investigate two

questions. First, a numerical estimation of the range of
sensible number of Trotter steps required for a reliable
simulation. Second, the general scaling of fidelities with the
number of Trotter steps. As is well known, the estimate
bounds for fidelities in the Trotter approximation [59] are
notoriously not sharp in general (see for instance how
interference can suppress error so that it falls below the
standard estimate in [60]). Thus it is of interest to inves-
tigate whether or not the asymptotic behavior for infidel-
ities (one minus the fidelity) deviates from the standard
estimate, namely Oðn−4T Þ.
We therefore carry out numerical estimations of these

figures of merit in the cross configuration we have
described, as depicted in Fig. 5. First, we depict the
fidelities as a function of nT , the number of Trotter steps
for each evolution in the discrete time interval τ. As usual,
the fidelities are not a simple linear function in nT , with a
peculiar dip in the ground state fidelity for intermediate
values. We see that for nT ∼ 9, the ground state fidelity is
jhg:s:jW†WnT jg:s:ij ∼ 0.95, which can be competitive for
many applications. One should bear in mind in this respect
that this is the total fidelity for a highly nonlocal operator.
Second, we depict the asymptotic behavior of the infidelity
with the number of Trotter steps. In this second scenario,
both the ground state and operator infidelities behaviors are
similar, decreasing the errors in the Wilson-loop operator
with a power-law dependence Oðn−4T Þ, as expected for a
second order Trotter–Suzuki approximation. Notice
that the scaling regime appears already in the first decade,
with a transient that will be, in general, dependent on
implementation.
Finally, the link based approach will not be of particular

advantage in this proof-of-principle example, with 14 links
and 6 plaquettes. The result of a link approach will be
identical in this Abelian case to the plaquette result, and
only to be advocated for much larger Wilson loops. This
applies for the Abelian case, while the essential advantage
of the link approach comes when actually considering non-
Abelian gauge theories.

V. CONCLUSION AND OUTLOOK

Our objective in this work was to understand quantum
simulation for nonlocal gauge-invariant quantities with
time evolution. In particular, we have successfully con-
centrated our efforts on the quantum simulation of space-
time Wilson loops, for which we have presented a
plaquette-based approach adequate for Abelian gauge
models and a link-based approach applicable both to
Abelian and non-Abelian gauge models. For the plaquette

approach we have explicitly computed the time-oriented
elementary plaquette in the temporal gauge for two models,
and we have shown that the structure that appears in those
two examples is general for models with a general electric
plus magnetic (plaquette sum) Hamiltonian. Coming now
to the link-based approach, we have introduced the two
basic hopping operators, the quark/antiquark spatial line
propagation hopping and the quark-antiquark creation/
annihilation hopping Hamiltonian, out of which one can
construct any space-time Wilson loop. The number of
ancillary degrees of freedom, additional to the pure gauge
ones, is moderate, as they are reusable. The algorithm based
on the link-approach is probabilistic in its success for non-
Abelian models, deterministic for Abelian ones, and certain
on success for both.
The space-time Wilson loop is relevant by itself and also

in the context of transverse-momentum distributions, for
instance, and the algorithm we propose here for its
simulation can be implemented with current technologies
for small-sized Wilson loops. We have carried out a proof-
of-principle numerical calculation for a small system size,
that informs us as to the level of Trotterization likely to be
required in a digital implementation.
This algorithm can potentially be applied to any light-

front parton correlator, thus addressing one of the main
obstacles of current lattice techniques, namely time
dependence in parton correlators. In the current work we
have discussed only pure gauge models. This comes about
because of the centrality of the Wilson line for any gauge
invariant, nonlocal, space-time quantity. Thus, our proposal
paves the way toward the quantum simulation of the
generic situation. Indeed, for any realistic parton distribu-
tion matter fields are needed, and the next logical step in the
development of the topic is the connection between our
proposal for space-time dependent pure gauge objects with
these matter fields. It should be emphasized though that the
simulation of minimal coupling between the gauge and
matter field has been the subject of many theoretical
proposals [23,24] and there already exist scalable exper-
imental realizations in cold atom setups [35]. While not
trivial, a combination of those techniques with the algo-
rithms presented here is certainly implementable in the
foreseeable future, thus providing additional information
and insight for hadron structure.
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