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We study the chiral separation effect (CSE) in finite-density SUð2Þ lattice gauge theory with dynamical
quarks. We find that the CSE is well described by the free quark result in the high-temperature quark-gluon
plasma phase. As one enters the confinement regime with broken chiral symmetry at chemical
potential smaller than half of the pion mass, the CSE response is gradually suppressed toward low
temperatures in comparison to the free quark result. This suppression can be approximately described by
assuming that the CSE current is proportional to the charge density, rather than the chemical potential, as
suggested in the literature [Phys. Rev. D 97, 085020 (2018). We also provide an upper bound on the
contribution of disconnected fermionic diagrams to the CSE, which is consistent with zero within our
statistical errors and small compared to that of the connected diagrams. Our results are obtained mainly in
the QCD-like regime of SUð2Þ gauge theory at low densities, and hence should be at least qualitatively
applicable to QCD as well.
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I. INTRODUCTION

Anomalous transport phenomena are transport responses
of quantum matter that originate in quantum anomalies,
inevitable violations of classical symmetries upon quanti-
zation [1,2]. In particular, in strongly interacting matter
described by quantum chromodynamics (QCD) the classical
symmetry between left-handed and right-handed fermions is
violated by the Adler-Bell-Jackiw axial anomaly [3]. This
violation manifests itself in the infamous chiral magnetic
effect [4]—the generation of an electric current along a
magnetic field in chirally imbalanced matter—as well as the
closely related chiral separation effect (CSE) [5,6]—the

generation of an axial current along an external magnetic
field in a dense medium (see Fig. 1).
In the last decade, anomalous transport phenomena in

QCD matter were systematically and intensely studied in
heavy-ion collision experiments at the RHIC [7] and LHC
[8] colliders, and will also be studied at the NICA collider
[9]. These studies are not conclusive yet due to large
background effects, which contaminate the signatures of
anomalous transport [8,10–14]. A dedicated run with
isobar nuclei has been recently completed at RHIC in
order to disentangle these background effects [7,15], and
the produced experimental data is currently being
analyzed [16].
Just as the viscosity of the quark-gluon plasma is related

to hadronic elliptic flow [17], anomalous transport coef-
ficients characterizing the strengths of the chiral magnetic
and chiral separation effects can be related to correlations of
angular distributions of oppositely charged hadrons in
heavy-ion collisions [18,19].
One of the most popular ways to interpret experimental

data on these correlations relies on the anomalous-viscous
fluid dynamics (AVFD) framework [20–22]. AVFD is
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based on anomalous hydrodynamics [23–25] which incor-
porates anomalous transport along with more conventional
transport responses such as viscosity and electric conduc-
tivity. Hydrodynamic simulation codes which include
anomalous transport phenomena on an event-by-event
basis are currently being actively developed [21,26–28]
and are becoming more and more realistic.
The anomalous hydrodynamic description of QCD

matter requires the values of anomalous transport coeffi-
cients as an input. For a single-component chiral fluid,
anomalous transport coefficients are fixed by thermody-
namic consistency [24,29]. On the other hand, in a quark-
gluon plasma (nearly) chiral quarks interact with dynamical
non-Abelian gauge fields, which themselves behave as a
viscous fluid and in fact dominate the hydrodynamic flow.
When interactions with dynamical gauge fields are present,
all anomalous transport coefficients might receive both
perturbative [30] (see Fig. 1) as well as nonperturbative
[6,31–35] corrections. However, at present not much is
known about the magnitude of these corrections.
In a few lattice gauge theory simulations, the chiral

magnetic [36] and chiral vortical [37] effects were studied
by measuring the responses of naively discretized axial
currents and energy momentum tensors to constant external
magnetic or axial magnetic fields (the study [37] of the
chiral vortical effect used a trick to replace rotation by a
background axial gauge field). In both works [36,37] the
CME and CVE transport coefficients were found to be 5 to
20 times smaller than those obtained for free quarks, both
in high- and in low-temperature phases. If the corrections
in the full gauge theory should indeed have the effect to
make the anomalous transport responses so small, they
might well be unobservable in current heavy-ion collision
experiments.
However, the works [36,37] used nonchiral lattice

fermions with nonconserved currents and an energy-
momentum tensor without proper renormalization. On
the other hand, a numerical study of the CSE in quenched
SUð3Þ lattice gauge theory with exactly chiral overlap
fermions and a properly defined axial current [38] found no
noticeable corrections to the free quark result in both
confinement and deconfinement phases. For free quarks,
the axial current induced by the CSE is

jAi ¼ μCemNc

2π2
Bi ≡ σ0CSEBi; ð1Þ

where jAi ¼ P
f q̄fγ5γiqf is the axial current density with

quark fields q̄f, qf of flavor f and Nc colors, μ is the quark
chemical potential, Bi is the magnetic field, and Cem ¼P

f Qf ¼ TrðQÞ is the electromagnetic charge factor in
whichQf denotes the electric charge of quark flavor f. The
result (1) corresponds to the triangular diagram in Fig. 1 (a).
To simplify notation, in what follows we assume that Cem,
which appears in all formulae as a simple pre-factor, is
equal to unity: Cem ¼ 1. The correct value of Cem can be
restored in all results in an obvious way.
In this paper we study the chiral separation effect in the

full gauge theory with dynamical quarks, taking into
account the contributions of virtual fermion loops and
disconnected fermionic diagrams like the one in Fig. 1(b).
These contributions are expected to modify the free quark
result (1) and are thus important to estimate the detect-
ability of the chiral separation effect in heavy-ion colli-
sions. Rather than studying the theoretically clean, but
rather academic, limit of exactly chiral quarks, we address
the fate of the CSE in a more realistic setup with finite
quark and pion masses and at finite temperatures in the
vicinity of the chiral crossover. While giving some general
insight into the magnitude of nonperturbative corrections to
anomalous transport coefficients, this might also help to
estimate the observable consequences of the CSE, such as
the electric quadrupole moment of the quark-gluon plasma
[39] due to chiral magnetic waves [40].
Since the CSE is a feature of finite-density fermions,

studying it in QCD would require simulations at finite
baryon density, which are complicated by the infamous
fermion-sign problem [41]. With current simulation meth-
ods one could only obtain first-principle lattice QCD results
for μ=T ≪ 1.
In this work we circumvent the fermion sign problem

by using two-color QCD, i.e., the SUð2Þ gauge theory
with Nf ¼ 2 light quark flavors instead of QCD. The path
integral weight is manifestly positive in this case, thus the
sign problem is absent and the theory can be simulated at
finite density. The SUð2Þ gauge theory is expected to be
qualitatively similar to QCD at small densities μ < mπ=2
[42,43]. In this regime there is a conventional QCD-like
chiral crossover at some finite temperature, which separates
the quark-gluon plasma regime and the hadron gas regime
dominated by light pion states [44–49]. We expect that due
to this qualitative similarity our numerical study of the CSE
in SUð2Þ gauge theory is also at least qualitatively relevant
for real QCD at small densities.
At larger densities, for μ > mπ=2, SUð2Þ gauge theory is

no longer similar to QCD, since the chiral condensate hq̄qi
is rotated into the diquark condensate hqqi. Diquarks are
bound states of two quarks which are color singlets and
hence “bosonic baryons” in the SUð2Þ gauge theory.

(a)

(b)

FIG. 1. (a) Feynman diagrams which contribute to the chiral
separation effect at leading order and (b) one of the possible
corrections to it in a gauge theory with dynamical fermions.
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Instead of the first-order liquid-gas transition of nuclear
matter, one therefore observes Bose-Einstein condensation
together with a BEC-BCS crossover inside the diquark
condensation phase [50,51]. Similarity to QCD, although at
a different conceptual level, can be again expected at very
large densities and low temperatures, in the conjectured
quarkyonic and color-superconducting phases [52,53].

II. LINEAR RESPONSE APPROXIMATION FOR
THE CHIRAL SEPARATION EFFECT

Within the linear response theory, the chiral separation
effect is characterized by the spatial correlator of vector and
axial-vector currents hjAi ðkÞjVj ð−kÞi, where k is the space-
like momentum. Assuming that the only nonzero momen-
tum component is the spatial component k3 [54], at small
momenta this correlator can be written as

hjA1 ðk3ÞjV2 ð−k3Þi ¼ σCSEk3; ð2Þ

where σCSE is the anomalous transport coefficient in (1)
characterizing the strength of the CSE. For free quarks,

σ0CSE ¼ μNc

2π2
: ð3Þ

It is therefore convenient to define a momentum-dependent
transport coefficient σCSEðkÞ as

σCSEðk3Þ≡ hjA1 ðk3ÞjV2 ð−k3Þi=k3: ð4Þ

In the low-momentum hydrodynamic regime, the anoma-
lous transport coefficient σCSE in (1) is given by the zero-
momentum limit of σCSEðkÞ.
For exactly chiral fermions which may interact with each

other, but not with other dynamical degrees of freedom
(like dynamical gauge fields), σCSE is expected to be
universal and equal to the free fermion result due to the
relation with the Adler-Bell-Jackiw axial anomaly [5].
However, corrections are still possible for nonzero quark
mass [6] and due to fermionic disconnected diagrams like
1(b) in Fig. 1. As calculations of [6] suggest, corrections to
the CSE can be related to the amplitude gπ0γγ for the π0 →
γγ decay:

σCSE ¼ μNcCem

2π2
ð1 − gπ0γγ þOðμÞÞ: ð5Þ

Within the linear sigma model gπ0γγ ¼ 7ζð3Þm2

4π2T2 , where m is
the constituent quark mass. In this case, σCSE is still
approximately linear in μ.
Another calculation of the flavor nonsinglet CSE axial

current j⃗aA generated by a finite isospin chemical potential
was carried out within chiral effective field theory in [35]. It
suggests that in the low-temperature phase, where the CSE
current is saturated by pions, σCSE is proportional to the

isospin charge density ρaV rather than the isospin chemical
potential,

j⃗aA ¼ NcTrðQÞ
ð2πfπÞ2

ρaVB⃗: ð6Þ

While this calculation is not directly applicable to the
flavor-singlet axial current in (1) and (5), at least in the
large-Nc limit the flavor-singlet axial current should behave
similarly to the flavor nonsinglet one [55]. Our numerical
results presented in Sec. IV below suggest that a para-
metrization similar to (6) might also work at finite density
in the SUð2Þ gauge theory with dynamical quarks.

III. LATTICE SETUP

In this work we use the same lattice setup and the same
ensembles of gauge field configurations as in our recent
works [44,56], so here we will provide only a brief
summary. We use the standard Hybrid Monte-Carlo algo-
rithm with a tree-level improved Symanzik gauge action
and Nf ¼ 2 flavors of mass-degenerate rooted staggered
fermions with bare lattice quark mass amstag

q ¼ 5 × 10−3.
This yields a pion mass of amstag

π ¼ 0.158� 0.002 and the
ratio of pion to ρ-meson masses mπ=mρ ¼ 0.40� 0.05.
Our lattices have spatial sizes Ls ¼ 24 (amπLs ¼ 3.8)

and Ls ¼ 30 (amπLs ¼ 4.7) and varying temporal extent
Lt ¼ 4; 6;…; 22 to control the temperature T ¼ 1=aLt. We
use a single value of the lattice gauge coupling β ¼ 1.7,
thus working in a fixed-scale approach, which significantly
simplifies the analysis of renormalization of lattice
observables.
Most of our low-temperature ensembles with Lt ≥ 12

were generated with a small diquark source λqq in the
action with aλ ¼ 5 × 10−4 in order to facilitate diquark
condensation, which would otherwise be impossible in a
finite volume. This diquark source has very little effect on
current-current correlators outside of the diquark conden-
sation phase [44], see also Fig. 4. Estimates of phase
boundaries based on our data sets are shown in Fig. 2 (see
[44] for full details).
We use domain wall (DW) and Wilson-Dirac (WD)

valence fermions to measure the correlators of axial and
vector currents in (2). On the one hand, for DW fermions
the renormalization factor ZA for the flavor-singlet axial
current is expected to deviate from unity by at most few
percent [57], which is below our the statistical uncertainty
of our Monte-Carlo simulations (and also well below
experimental uncertainties). On the other hand, DW fer-
mions are computationally very expensive, and we use the
cheaper WD fermions to produce results with better
precision covering more points on the phase diagram. A
comparison between the results obtained with DWand WD
fermions further demonstrates the smallness of axial
current renormalization. We do not use staggered valence
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fermions in order to avoid artifacts related to the unphysical
taste symmetry. Such a mixed lattice action with staggered
sea fermions and DW valence fermions has already been
used in a number of studies of the nucleon axial
charge [57,58].
We tune the bare quark masses amDW

q ¼ 0.01 and
amWD

q ¼ −0.21 in the DW/WD Dirac operators to match
the pion mass amstag

π ¼ 0.158� 0.002 obtained with stag-
gered valence quarks. The ratio of pion to rho-meson mass
is mπ=mρ ≈ 0.4. To improve the chiral properties of DW
and WD fermions without using much finer and larger
lattices, we follow [58] and use HYP smearing [59] for
gauge links in the DW and WD Dirac operators. For DW
fermions the lattice size in the fifth dimension is L5 ¼ 16,
which is typically sufficient to suppress additive mass
renormalization [57,58].
For WD fermions, we use the conserved vector current

jVz;μ ¼
X
x;y

q̄xðjz;μÞx;yqy;

ðjz;μÞx;y ≡
∂Dxy

∂θz;μ
¼ iPþ

μ Uz;μδx;zδy;zþμ̂ − iP−
μU

†
z;μδx;zþμ̂δy;z; ð7Þ

whereDxy is the Dirac operator, x; y; z;… label lattice sites,
γμ are the Euclidean gamma-matrices, with P�

μ ¼ð1� γμÞ=
2, Uz;μ are the SUð2Þ-valued link variables, μ̂ denotes the
unit lattice vector in the direction μ, and θz;μ is an external
Uð1Þ gauge field. We also use the conventional point-split
definition of the axial current for WD fermions [60],

ðjAz;μÞx;y ¼ iγμγ5Uz;μδx;zδy;zþμ̂ − iγμγ5U
†
z;μδx;zþμ̂δy;z: ð8Þ

For DW fermions, the four-dimensional vector and axial
currents are defined in the standard way by summing the
five-dimensional conserved current over the fifth dimen-
sion. For the vector current a unit weight is used, for the
axial current the summation weight changes fromþ1 to −1
in the middle of the lattice extending in fifth dimension
[61]. The five-dimensional conserved current has a form
similar to (7), except that the index μ takes five values and
x, y, z live on the five-dimensional lattice with open
boundary conditions along the fifth dimension.
We measure the contributions of both connected and

disconnected fermionic diagrams to the axial-vector cur-
rent-current correlator in (2). In coordinate space these
contributions are

hjAx;μjVy;νiconn ¼ hTrðjAx;μD−1jVy;νD−1Þi; ð9Þ

hjAx;μjVy;νidisc ¼ hTrðjAx;μD−1ÞTrðjVy;νD−1Þi; ð10Þ

where the traces are taken over the lattice site, spinor
and color indices of the quark fields q̄, q. The disconnected
contribution is measured using standard stochastic
estimator techniques. After measuring hjAx;μjVy;νiconn and
hjAx;μjVy;νidisc in coordinate space, we perform a discrete
Fourier transform to obtain the momentum-space correla-
tors which enter the linear response relations (2).

IV. NUMERICAL RESULTS

In Fig. 3 we present our lattice results for the momentum-
dependent CSE transport coefficient σCSEðkÞ defined in (4).
For comparison, we combine the results obtained with DW
andWD fermions, and with the spatial lattice sizes Ls ¼ 24
and Ls ¼ 30. For WD fermions on the Ls ¼ 24 lattices we
show the contributions (9) and (10) of both connected and
disconnected fermionic diagrams, for other data sets only the
connected contributions are shown.
We also compare the gauge theory results with the results

obtained for free WD quarks on same lattices. For the free
WD quarks, we use a bare quark mass of amWD

q ¼ 0.01 (as
compared to amWD

q ¼ −0.21 in the full gauge theory),
since for free quarks there is obviously no mass renorm-
alization. Therefore, in this case we choose the same bare
quark mass as for the DW fermions, for which mass
renormalization is expected to be weak.
In our calculations we also combine results obtained

with zero diquark source λ at high temperatures (Lt < 14)
and with aλ ¼ 5 × 10−4 at low temperatures (Lt ≥ 14). In
Fig. 4 we demonstrate that for these two values of λ the
CSE transport coefficients σCSEðkÞ are practically
indistinguishable.
We see from Fig. 3 that for most values of temperature

and chemical potential the momentum-dependent CSE
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FIG. 2. Numerical estimate of the phase diagram of finite-
density SUð2Þ gauge theory with Nf ¼ 2 rooted staggered
fermions. Blue and red points correspond to inflection points
in the Lt dependence of the chiral and diquark condensates,
respectively. Configuration sets with lattice size Ls ¼ 24 only are
shown as empty circles, and sets with both Ls ¼ 24 and Ls ¼ 30
are shown as double circles.
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transport coefficient σCSEðkÞ is very close to the corre-
sponding free quark result. An explicit calculation of
σCSEðkÞ for free quarks at finite temperature in the
continuum is sketched in Appendix A. The results of this
continuum calculation are shown in all plots of Fig. 3 as
solid black lines.
The gauge theory result for σCSEðkÞ only becomes

noticeably smaller than the free quark result at small values
of the chemical potential aμ ≲ 0.10 and low temperatures
Lt ≳ 16 (see e.g., the plot for Lt ¼ 20 and aμ ¼ 0.05
corresponding to μ ¼ 0.32mπ in Fig. 3). In this regime

SUð2Þ gauge theory is expected to be qualitatively similar
to real QCD, thus the observed suppression of the CSE in
the confined and chirally broken phase is also likely to
happen in low-temperature, low-density QCD.
For aμ ¼ 0.05 and aμ ¼ 0.20 we have also calculated

σCSEðk → 0Þ for two different spatial lattice sizes, Ls ¼ 24
and Ls ¼ 30. Since the discrete momentum values for both
lattices do not coincide, the low-momentum data for both
lattices cannot be compared in a direct way. To overcome
this difficulty, we construct a third-order spline interpola-
tion of the data for both lattices, which is shown on Fig. 3 as
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FIG. 3. Momentum-dependent CSE transport coefficient σCSEðkÞ as function of lattice momentum k at selected temperatures and
chemical potentials, corresponding roughly to: μ ≃ 0.32mπ for three temperatures across the chiral transition (left column), as well as
μ ≃ 1.3mπ and μ ≃ 3.2mπ for temperatures approaching the boundary of diquark condensation from above (right column).
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solid lines going through the corresponding data points.
Spline interpolations for both lattice sizes coincide with a
very good precision for almost all available datasets. We
only observe a noticeable difference between the interpo-
lations of the Ls ¼ 24 and Ls ¼ 30 data on the plot for
Lt ¼ 12 and aμ ¼ 0.20, with Ls ¼ 30 data being much
closer to the free quark results. Our data therefore suggest
that the suppression of CSE that we observe at low

temperatures and densities is not a finite-volume artifact.
In fact, the observable finite-volume effects are somewhat
stronger in the high-temperature and high-density regime
than at low temperatures.
The contribution of disconnected fermionic diagrams is

consistent with zero within our statistical errors for all
values of chemical potential and temperature. The upper
bound which we are able to set on these disconnected
contributions appears to be least strict for low temperatures
and small μ—that is, exactly in the corner of the phase
diagram where also the connected contributions deviate
most strongly from the free quark result (see Fig. 3, plot for
Lt ¼ 20 and aμ ¼ 0.05). We note, however, that the
calculation of axial-vector current-current correlators is
most difficult precisely in this regime, since because of
the small chemical potential the CSE signal is also small
compared to statistical fluctuations.
The values of σCSEðkÞ calculated with Wilson-Dirac

(WD) and domain wall (DW) fermions appear to be very
close to each other. This suggests that the effect of
multiplicative renormalization of the axial-current operator
is small and plays a minor role in comparison with our
statistical errors. Indeed, the renormalization factor for the
axial singlet current typically appears to be close to unity on
fine lattices with sufficiently light pions, especially for
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FIG. 4. CSE transport coefficient σCSEðkÞ for different values of
the diquark source λ.
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domain wall fermions [57,58]. For these reasons, we have
not determined the precise value of ZA in this work. Small
deviations of ZA from unity can also be expected to be
significantly smaller than any systematic and statistical
uncertainties in the experimental detection of anomalous
transport phenomena.
Let us now investigate the CSE transport coefficient

σCSEðk → 0Þ in the low-momentum limit, which is most
relevant for anomalous hydrodynamics [54]. To this end in
Fig. 5 we illustrate the temperature dependence of σCSEðkÞ
at the smallest nonzero value of the lattice momentum,
akmin ¼ 2π=Ls, and at different values of the chemical
potential μ, and compare it with the corresponding results
for free quarks on lattices of the same size and for the same
momentum.
Again, we observe that σCSEðkminÞ becomes significantly

smaller than the free quark result only at low temperatures
Lt ≳ 14 and small values of the chemical potential
μ≲ 0.10. This region of the phase diagram almost coin-
cides with the QCD-like regime with spontaneously broken
chiral symmetry, which should be dominated by pions. In
this regime, the free quark result for σCSEðkminÞ has a rather
weak temperature dependence, but the gauge theory result
is strongly suppressed toward lower temperatures.
A comparison of the values of σCSEðkminÞ for Ls ¼ 24

and Ls ¼ 30 might make an impression that the suppres-
sion of σCSEðkminÞ becomes weaker for larger volumes.
However, the apparent deviation of the results for Ls ¼ 24
and Ls ¼ 30 is caused simply by the difference of the
minimal nonzero momenta akmin ¼ 2π

Ls
for different lattice

sizes. As one can see from Fig. 3, the data interpolated to
continuum momentum values does not show significant
volume dependence.
Let us now try to describe the observed CSE suppression

at low temperatures and densities in terms of some
phenomenological formula. Let us try a formula of the
form (6), but with a flavor-singlet current and chemical
potential:

σCSEðk → 0; μÞ ¼ αρVðμÞ;
j⃗A ¼ αρVðμÞB⃗: ð11Þ

To this end, in Fig. 5 we also show the rescaled charge
density αρVðμÞ=μ, tuning the coefficient α to achieve the
best coincidence between the data points for σCSEðkminÞ=μ
and αρVðμÞ=μ. To achieve this we minimize the mean
squared deviation of αρVðμÞ=μ from σCSEðkminÞ=μ at aμ ¼
0.05 for the lattice size Ls ¼ 30. We find that at low
temperatures Lt ≳ 14 the dependence of σCSEðkminÞ=μ for
aμ ¼ 0.05 on Lt can be indeed well described by the
formula (11) with α ≈ 14a2 (here we simply express α in
lattice units, without implying that α scales as a2). The
same value of α also describes the data for aμ ¼ 0.10 and
Lt ≳ 16 reasonably well.

For larger values of the chemical potential, aμ ¼ 0.20
and aμ ¼ 0.50, the formula (11) does not seem to work.
Interestingly, Fig. 5 suggests that for these values of μ the
CSE coefficient σCSEðkminÞ appear to be even slightly
larger than the free quark result on the same lattice,
although the deviations do not exceed 20%. According to
Fig. 2, the data points for aμ ¼ 0.20 and aμ ¼ 0.50 are
within the quark-gluon plasma regime or at the boundary
of the diquark condensation phase, except for the point
with aμ ¼ 0.50 and Lt ¼ 20 that is in the diquark
condensation regime. While one can see a drop of
σCSEðkminÞ=μ by around 20% for this single data point,
this change is comparable to statistical errors, and we
cannot make definite conclusions on the behavior of
σCSEðkminÞ in the diquark condensation phase. We can
only rule out a significant suppression of the CSE around
the boundary of this regime.
According to the formula (6) with Cem ¼ TrðQÞ ¼ 1,

the coefficient α in (11) should be related to the pion
decay constant fπ via α¼Nc=ð2πfπÞ2. Using our
estimate α≈14a2, from this relation we roughly estimate
afπ ≈ 0.06, which has a reasonable order of magnitude
when compared to the mass of the ρ meson, amρ ≈
amπ=0.4 ≈ 0.4 in our calculations. Thus fitting our data
with the formula (11) implies the ratio fπ=mρ ≈ 0.15, as
compared to fπ=mρ ≈ 0.12 with fπ ≈ 93 MeV, mρ ≈
770 MeV in QCD.
In order to present further evidence for the scaling of

σCSE with ρV , in Fig. 6 we show the dependence of the
ratios σCSEðkminÞ=μ (on the left) and σCSEðkminÞ=ða2ρVðμÞÞ
(on the right) on the chemical potential μ at different
temperatures with Lt ≥ 16. It is quite obvious from these
figures that the ratio σCSEðkminÞ=ða2ρVðμÞÞ shows smaller
relative deviations from a constant value αa−2 ¼ 14 than
the ratio σCSEðkminÞ=μ does from Nc=ð2π2Þ. In particular,
for Ls ¼ 30 all data points contain the value αa−2 ¼ 14
within their error bars. The data points for other ensembles
deviate from this value by not more than 50%, whereas for
the ratio σCSEðkminÞ=μ the relative deviation between
different data points is much larger, up to a factor of 5.
Note that the ratio σCSEðkminÞ=ða2ρVðμÞÞ has larger error
bars than σCSEðkminÞ=μ because ρVðμÞ also has statistical
errors, in contrast to μ.
While these observations give some qualitative support

to the formula (11), because of a conceptually different
status of axial-singlet and axial-nonsinglet currents in
low-energy chiral effective theory, at the quantitative level
one can expect further corrections to this formula.
A general conclusion that we can make based on our
results is that the CSE becomes more and more suppressed
for low temperatures in the confinement regime and for
values of the chemical potential roughly smaller than half
of the pion mass. At higher temperatures and densities,
the CSE transport coefficient approaches its value for
free quarks.
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V. CONCLUSIONS

To summarize, we have found that in a gauge theory
with dynamical quarks the chiral separation effect is very
close to the free quark result in the high-temperature
quark-gluon plasma regime, and is gradually suppressed
toward lower temperatures and densities in the low-
temperature hadron resonance-gas regime with broken
chiral symmetry at T ≲ Tc and μ≲mπ=2. Exactly this
regime of SUð2Þ gauge theory is similar to the low-
temperature, low-density phase of real finite-density
QCD, thus our findings should be also relevant for real
QCD at least qualitatively.
Note that our conclusions on the CSE suppression do not

contradict the results of a previous study [38] in quenched
SUð3Þ lattice gauge theory, where exactly chiral valence
quarks were used, thus the pion mass was formally zero and
the region with μ≲mπ=2 was absent.
The suppression of the CSE at low densities and

temperatures can be approximately described if one
assumes that the CSE current is proportional to the charge
density rather than chemical potential, as in Eq. (6). While
the formula (6) was derived in [35] for the axial nonsinglet
current, we see that at the qualitative level it also applies to
the axial singlet current, which has a different status within
the chiral effective theory.
Contributions from disconnected fermionic diagrams to

the chiral separation effect appear to be consistent with
zero within our statistical errors. The latter are relatively
large at low temperatures and densities. For this reason we
cannot rule out that the disconnected contribution might
become important when the connected one is strongly
suppressed. This scenario would certainly be interesting
from a theoretical viewpoint. However, as the sum of
both contributions still appears to be small when com-
pared to the free massless fermion result, it is probably not

very relevant for the experimental detection of anomalous
transport phenomena.
One potential source of systematic errors in our study is

the multiplicative renormalization of the axial current.
However, comparison of the data obtained with domain
wall and Wilson-Dirac fermions, as well as previous lattice
studies of axial current renormalization, suggest that the
renormalization effects are small.
Another potential improvement of our study would be

the use of twisted boundary conditions in one of the
spatial directions in order to access σCSEðkÞ for nonzero
momenta k that are smaller than kmin ¼ 2π

Ls
and perform a

proper extrapolation of the numerical data for σCSEðkÞ to
the limit k → 0. Figure 3 suggests that extrapolation
from kmin toward k ¼ 0 can potentially make the
estimates of the limit σCSEðk → 0Þ considerably larger.
To avoid this uncertainty of extrapolation to k ¼ 0, in the
present work we have compared our data with the free
quark result for σCSEðkÞ at the same nonzero momentum
kmin, but comparison at smaller values of k would be
more reliable.
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APPENDIX: MOMENTUM-DEPENDENT CHIRAL
SEPARATION EFFECT FOR FREE QUARKS IN
THE CONTINUUM AT FINITE TEMPERATURE

For free Dirac fermions, the axial-vector current-current
correlator in (2) is given by the one-loop integral of the
form [63]:

hjAμ ðkÞjVν ð−kÞi ¼ T
X
l0

Z
d3l
ð2πÞ4

Trðγμγ5ðm − iγαðlα þ kα=2ÞÞγνðm − iγβðlβ − kβ=2ÞÞÞ
ððlþ k=2Þ2 þm2Þððl − k=2Þ2 þm2Þ ; ðA1Þ

where
P

l0 denotes summation over fermionic Matsubara frequencies l0 ¼ 2πTðnþ 1=2Þ − iμ (shifted into the complex
plane in order to account for the chemical potential μ). We explicitly substitute the values μ ¼ 1, ν ¼ 2, k ¼ ð0; 0; 0; k3Þ and
represent the integrand as a sum of simple fractions of the form 1

l0−iμV�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð⃗l�k⃗=2Þ2þm2

p (see e.g., Appendix A in [63] for the full

derivation). The timelike momentum l0 can then be summed over using the identity

T
X
l0

1

l0 − iϵ
¼ i

2
tanh

�
ϵþ μ

2T

�
: ðA2Þ

After some algebraic manipulations, we obtain the following expression which is suitable for numerical integration:

hjA1 ðk3ÞjV2 ð−k3Þi ¼
i
2

Z þ∞

−∞

dl3
2πl3

Z þ∞

0

dl2⊥
4π

×

�
tanh

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2⊥ þ ðk3=2þ l3Þ2

p
2T

�
− tanh

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2⊥ þ ðk3=2 − l3Þ2

p
2T

�

þ tanh

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2⊥ þ ðk3=2þ l3Þ2

p
2T

�
− tanh

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2⊥ þ ðk3=2 − l3Þ2

p
2T

��
; ðA3Þ
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