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We present a calculation of the charged pion electric polarizability using the background field method.
To extract the mass-shift induced by the electric field for the accelerated charged particle we fit the lattice
QCD correlators using correlators derived from an effective model. The methodology outlined in this study
(boundary conditions, fitting procedure, etc) is designed to ensure that the results are invariant under gauge
transformations of the background field. We apply the method to four Nf ¼ 2 dynamical ensembles to
extract απ� at pion mass of 315 MeV.
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I. INTRODUCTION

Electromagnetic polarizabilities are important properties
that shed light on the internal structure of hadrons. The
charged quarks inside a hadron respond to applied electro-
magnetic fields, revealing the deformation (or “stiffness”)
of the composite system as a fraction of its volume for
uniform fields, and charge and current distributions for
varying fields. There is an active community in nuclear
physics partaking in this endeavor. Experimentally, polar-
izabilities are primarily studied by low-energy Compton
scattering. On the theoretical side, a variety of methods
have been employed to describe the physics involved, from
dispersion relations [1], to chiral perturbation theory
(ChPT) [2–4] or chiral effective field theory (EFT) [5],
to lattice QCD. References [2,5] also contain reviews of the
experimental status.
Understanding electromagnetic polarizabilities has been

a long-term goal of lattice QCD. One challenge is that it
requires the application of both QCD and QED first
principles. The standard tool to compute polarizabilities
is the background field method [6–24]. Although such
calculations are relatively straightforward, the challenge
lies in determining very small energy shift relative to the
mass of the hadron. An alternative is based on evaluating
derivatives with respect to the external field directly, which

requires evaluation of four-point functions (current-current
correlators). This directly mimics the Compton scattering
process on the lattice, but is significantly more demanding
computationally [25,26]. Methods to study higher-order
polarizabilities have also been proposed [27–30].
In this work, we focus on the electric polarizability of

charged pions in the background field method, which
presents its own challenge because the entire system
accelerates in the presence of electric field. This motion
is unrelated to polarizability and must be isolated from the
deformation due to quark and gluon dynamics inside the
hadron. Standard plateau technique of extracting energy
from the large-time behavior of the two-point correlator
fails. Our goal is to find a robust methodology to take the
motion into account so that the polarizability can be
reliably extracted. In this study we employ Dirichlet
boundary conditions and address a number of related
theoretical issues.
In Sec. II, we discuss the effective model we use to

capture the behavior of the charged pion. In Sec. III, we
describe our fitting procedure incorporating the effective
model and present results on the polarizability from lattice
QCD simulations. Conclusions are given in Sec. IV.

II. METHODOLOGY

A. Background field method

To extract the polarizability, we compute the pion mass
shift induced by an external electric field. For technical
convenience we use imaginary electric fields and the mass
shift is then

Δm ¼ 1

2
αE2: ð1Þ
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The imaginary background electric field is introduced by
multiplying the SUð3Þ gauge links by the Uð1Þ links

UμðxÞ ¼ e−iqaAμðxÞ: ð2Þ

Note that here the charge q is the charge of the relevant
quark field: for down quarks qd ¼ −e=3 and for up quarks
qu ¼ 2e=3, with e the absolute value for the electron
charge. There are an infinite number of Uð1Þ gauges that
produce the same electric field; one such gauge is the
t-dependent vector potential on the x-links,

Aμðx; tÞ ¼ Eðt − t0Þδμ;x; ð3Þ

where t0 is the origin of the potential. Since the calculation
will be performed in a gauge-invariant manner, the value of
t0 can be shifted via a gauge transformation; we set t0 ¼ 0.
The potential produces a constant electric field in the x
direction except at the edges of the lattice.
Note that the interaction with the background field is

physical only if the electric field is real. In this case the
electric field leads to a real-valued exponential factor in
Eq. (2). Using an imaginary electric field is convenient since
in this case the factor in Eq. (2) is a complex factor of
modulus one and the implementation for the discretizied
Dirac operator is basically unchanged. Using imaginary
fields is justified because the theory, with Dirichlet boundary
conditions, is analytic for small values of E and we can use
analytically continuation to make the fields imaginary. The
two formulations are equivalent as long as analytic continu-
ation is valid and the sign is corrected in the interpretation of
Eq. (1) (see discussion of the issue in Refs. [13,31]). We note
in passing that there is no such ambiguity for introducing a
constant magnetic field on the lattice where only spatial
coordinates are involved. A real magnetic field leads to a
Uð1Þ phase factor and the magnetic polarizability term in the
mass shift has the negative sign: Δm ¼ −βB2=2.

B. Relativistic effective correlator

In the presence of the background field the two-point
correlator for charged particles is not expected to be a
simple sum of exponentials, as is the case for the neutral
particles. A work around is to fit the hadron correlators
against the functional form expected for a charged particle
propagator in the presence of an electric field [32]. As it
turns out the proposed correlation function computed in the
infinite-volume is not a good fit for our correlators since the
finite volume effects are important. We proposed a method
that incorporates these effects [33]. In this section we
outline the method used to compute the fit correlator. We
show that our correlator converges in the infinite volume
limit to the expected correlator and that the finite volume
effects are important.
To extract polarizabilities, we fit the lattice QCD

correlator for pions to the correlator for a relativistic scalar

particle in two-dimensions. As we discuss later in the paper
we use Dirichlet boundary conditions in the direction of the
electric field. For transverse directions we use periodic
boundary conditions and we expect that the low energy
pion states have zero momentum in the transverse direc-
tions. As such calculating the particle propagator in 3þ 1
dimensions reduces to a two-dimensional problem. We start
with the continuum action in Euclidean space for a massive
scalar particle

SE ¼
Z

dt dx½∂μϕ
�∂μϕþm2ϕ�ϕ� ð4Þ

where ϕ is a complex scalar field. A background electro-
magnetic field can be introduced via a vector potential Aμ

through minimal coupling to the charge,

SE ¼
Z

dt dx½ð∂μ þ iqAμÞϕ�ð∂μ − iqAμÞϕþm2ϕ�ϕ�:

ð5Þ

Note that here the charge corresponds to the pion charge
q ¼ e. Our effective model is a two-dimensional, discre-
tized version of the action given by [34]

SE ¼
X
n;m

ϕ�
nKnmϕm ð6Þ

with

Knm ¼ ½4þ ðamÞ2�δnm
−
X
μ̂>0

h
δnþμ̂;me−iqaAμðnÞ þ δn−μ̂;meþiqaAμðmÞ

i
ð7Þ

where n denotes the sites on the lattice, a is the lattice
spacing, and μ̂ accounts for the nearest neighbors of every
site on the lattice, i.e., �x̂ and �t̂. The two-point corre-
lation function is the inverse of the K-matrix:

hϕnϕ
�
mi ¼

1

2
K−1

nm: ð8Þ

This effective correlator can be compared to its infinite-
volume, continuum version which can be derived using
Schwinger’s proper time method [11,35]

GðtÞ ¼ 1

2

Z
∞

0

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qE

2π sinhðqEsÞ

s
e−

1
2
m2s−1

2
qEt2 cothðqEsÞ: ð9Þ

The comparison is shown in Fig. 1 for the effective mass
function

meffðtÞ ¼ − ln
GðtÞ

Gðt − 1Þ ; ð10Þ
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where the continuum and infinite volume limits are taken.
The effective model correlator is computed using Dirichlet
boundary conditions. We see that our effective model
converges to the correct infinite-volume, continuum
version, with or without background electric field. The
discontinuity at mt ≈ 10 is due to the boundary conditions
in the temporal direction. The effective mass in the
presence of the field is not constant even at large times.
In fact, it grows as a function of time, probably due to the
acceleration of the particle in the field. As we advertised
earlier, a different fitting procedure must be developed for
the new functional form. We also note large differences
between the finite-volume and infinite-volume forms for
values of mL ≈ 5 encountered in typical lattice QCD
simulations (in this study we focus on the pion and m is
the pion mass). Since we are relying on tiny mass shifts
to extract polarizabilities, such differences can have a
large impact on the results. We will develop in this work
a fitting method incorporating the full content of the

effective correlator and test it out on a number of lattice
QCD ensembles.

C. Boundary conditions

In a finite volume the background field method requires
careful handling of the external field at the boundaries.
Even though the electric field is constant, the electrostatic
potential Aμ has discontinuities at the edges of the box. For
real electric fields, these discontinuities cannot be avoided.
One workaround is to use imaginary fields with quantized
values such that the ratio qELxLt=2π is an integer. This
ensures uniform electric flux through all the xt plaquettes
and while the electrostatic potential is still discontinuous.
One problem with this approach is that there is no obvious
analytical continuation that connects this setup to a sit-
uation involving physical electric fields, so it is unclear
whether the results computed in this setup are directly
relevant for polarizability. Another problem is that in this

FIG. 1. Comparison of effective mass function extracted from the effective correlator and the infinite-volume one in Eq. (9). For plots
on the left we study the continuum limit: we make the lattice spacing finer and finer at fixed box size until convergence. For plots on the
right, we focus on the finite volume effects. For the lower plots we use a value of the electric field of a2qE ¼ 0.005. For all plots the
effective correlator is computed using Dirichlet boundary conditions in both directions. The lattice size in the time direction is
Lt ¼ 10 m−1 and the source for the propagator is at t0 ¼ m−1.
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setup different equivalent gauge choices for the external
fields lead to results that are not connected by a gauge
transformation. For example, in a gauge similar to the one
used in Ref. [24], of the form corresponding to Eq. (3), the
Polyakov loops in the spatial directions depend on the
choice of t0 and, since the Polyakov loops are invariant
under gauge transformations, different t0 choices could lead
to different results. This might not be a problem if the two
gauges produce the same results, but it has to be verified,
a posteriori. We choose to work with Dirichlet boundary
conditions in both x and t directions. In this setup gauge
invariance in the external field is guaranteed as we will
discuss later. We can use either real or imaginary electric
fields, and nonquantized values for the field strength, as
small as needed for the quadratic terms due to polarizability
to dominate.
On the other hand, using Dirichlet boundaries intro-

duces a number of issues that must be dealt with. First
issue is that the lowest energy state corresponds to a
moving hadron. This is because the wave function is zero
on the boundaries and the ground state is a standing wave
corresponding to a momentum of the order p ≈ πa=L. For
neutral hadrons, when extracting the energy from expo-
nential decay of the correlators, we need an estimate of
the hadron momentum to correct for the effect on the
mass shift [7]. When fitting the lattice QCD correlator to
the one from the effective model, this adjustment is done
automatically and the value extracted is directly the rest
mass of the particle.
Another important effect is due to the pion interactions

with the Dirichlet walls. Since hadrons are extended
objects, they interact with the walls differently than the
pointlike particles described by the effective model. Away
from the walls the hadrons move freely and the center-of-
mass wave function corresponds to a free particle wave, but
this does not hold true near the walls. The net effect is that
the free wave function for the hadrons away from the walls
has nodes that are not exactly aligned with the walls. To
account for this difference we use a different distance
between the walls in the effective model. The difference is
related to the reflection scattering length introduced to
capture the effect of this interaction for extended objects
[36,37]. This effect will be studied using the pion correlator
in the absence of an external field.

III. TECHNICAL DETAILS AND RESULTS

To fit the effective model we need to construct the
hadron wave function profile between the Dirichlet walls.
This requires us to calculate lattice QCD correlators as a
function of both x and t, the directions where we use
Dirichlet boundary conditions. In the y and z directions we
use periodic boundary conditions and we project the
correlator to zero momentum in these directions,

Gðx; t;Aμ; LÞ ¼
X
y;z

h0jÔðx; y; z; tÞÔ†ðxs; ys; zs; tsÞj0i;

ð11Þ

where Ô ¼ d̄γ5u is the interpolator for πþ in the two-point
function, is ðxs; ys; zs; tsÞ is the source for the quark
correlators. Note that due to isospin symmetry between
the u and d quarks, πþ and π− (Ô ¼ ūγ5d) have identical
polarizability.
For the effective model we use the propagator derived in

Eq. (8)

G0ðx; t;Aμ; L̃Þ ¼ K−1
ðx;tÞ;ðx;tÞs : ð12Þ

Above we emphasized that the correlators are functions of
the external field Aμ and the distance between the walls: L̃
for the effective correlator and L for QCD calculation.
We have generated the correlators with the position

of quark sources fixed at xs=a ¼ Nx=2þ 1 and ts=a ¼ 6.
We use a coordinate system where the Dirichlet walls are
positioned at x ¼ 0 and x ¼ L in the lattice QCD box.
The effective model is aligned such that the source is at the
same position and the walls are at x ¼ ðL − L̃Þ=2 and
x ¼ ðLþ L̃Þ=2. In effect the setup keeps the source
position the same and changes the distance to the
x-direction walls by the same amount. For both QCD
and the effective model the time boundaries are t ¼ 0, and
t=a ¼ ðNt þ 1Þ. For QCD correlator, we take advantage of
translation invariance of the system in y and z directions,
and use sources at 64 locations for each configuration to
obtain more statistics. The sources are spaced regularly at
8 positions on a y − z grid and we use 8 different time
translations. Note that since the gauge fields are generated
with (anti-)periodic boundary conditions in time, time-
translation is a symmetry of the ensemble. We apply the
Dirichlet boundary conditions in time after the translation.
A similar symmetry exists also in the x-direction but we did
not take advantage of it in this study.
To find the appropriate distance between the walls for the

model, we fit the lattice correlator to the effective model
using different sizes for the model. We fit the correlators
away from the walls to ensure that the difference in the
interactions with the walls do not affect the fit. The fit
ranges, in both x- and t-directions are reported in Table I.

A. Fitting procedure

To extract the mass from the lattice correlator we
determine the mass in the effective model that minimizes
the distance between the QCD correlator G and the
effective one G0. The distance between the two correla-
tors is defined via a χ2 function. The design of this dis-
tance function was guided by two main concerns: the
fit procedure should produces the same results for all
possible equivalent external field gauges and we want to
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accommodate the fact that the correlator is a complex
valued function.
Assume that we perform on each configuration the

measurements yi that are complex valued. The effective
model value that is designed to match yi is assumed to be
fi. We define the χ2-function

χ2 ≡ δ†C−1δ with the residues δi ≡ hyii − fi; ð13Þ

and the covariance matrix

Cij ≡ hðyi − hyiiÞðyj − hyjiÞ�i: ð14Þ

The i index runs over all individual data points used in the
fit (in our case that will include contributions from separate
correlation functions, as detailed below). The covariance
matrix is hermitian and the χ2-function is real and positive-
definite. The minimization process will vary the parameters
of the effective model to minimize χ2.
We are now interested in the action of the gauge

transformations on the distance functions through the
observables yi. Assuming that the transformation acts
linearly on the observables such that y0 ¼ Ty (that is
y0i ¼ Tijyj), with T the same matrix for all configurations.
Then hy0i ¼ Thyi and if we have f0 ¼ Tf, then δ0 ¼ Tδ.

Similarly for the covariance matrix we have C0 ¼ TCT†

and the distance function is then invariant, that is
ðχ2Þ0 ¼ ðδ0Þ†ðC0Þ−1δ0 ¼ χ2. This condition is satisfied if
the observables yi are any subset of the point-to-point
propagator function Gðx; t;Aμ; LÞ since under a gauge
transformation, ðA;ϕÞ → ðA0;ϕ0Þ with

A0
μðx; tÞ ¼ Aμðx; tÞ þ ½Λððx; tÞ þ μ̂Þ − Λðx; tÞ�=a
ϕ0ðx; tÞ ¼ eiqΛðx;tÞϕðx; tÞ; ð15Þ

we have

Gðx; t;A0
μ; LÞ ¼ eiq½Λðx;tÞ−Λðxs;tsÞ�Gðx; t;Aμ; LÞ: ð16Þ

Above we assumed that we use imaginary electric field.
The same relation holds for the effective theory propagator
G0 so the distance between the point-to-point propagators
is invariant under gauge transformations.
Given the discussion above it is then tempting to fit the

lattice propagator at a subset of the ðx; tÞ positions, in the
range included in Table I. The problem is the presence of
high frequency modes in the propagators close to the
ultraviolet cutoff that are distorted due to lattice discretiza-
tion. These modes can have an important contribution to the
χ2-function. The smallest eigenvalues of the covariance
matrix C will have the biggest contribution to the χ2. This
means that the lowest eigenvalues will drive the fitter and
force the minimizer to a point in the parameter space that
matches the distorted high frequency modes in the lattice
QCD data instead of the physical long-range two-point
function we are interested in. This is indeed the case for our
calculation. In Fig. 2 we show the modes corresponding to
the lowest and the highest eigenvalue in the covariance
matrix, when we take the observables to be all space-time
points in the range indicated in Table I for ensemble EN3.
We see that the most important modes for the fitter, the ones
that correspond to the lowest eigenvalue of the correlation

FIG. 2. Eigenvectors corresponding to the largest (left) and smallest (right) eigenvalue of the covariance matrix, when including all
points in the range listed in Table I for EN3. The thin vertical lines are the lines separating different time-slices; within each time slice,
x changes from left to right from xi to xf .

TABLE I. Dynamical QCD ensembles on elongated lattice used
in our study. In all cases a ¼ 0.1245 fm and mπ ¼ 315 MeV.
The last three columns show the effective spatial size and fit
ranges.

Ensemble NxNyNzNt Ncfg L̃=a xi − xf ti − tf

EN1 16 × 162 × 32 450 14.00(13) 07–10 15–24
EN2 24 × 242 × 48 300 21.50(17) 07–18 15–32
EN3 30 × 242 × 48 300 26.50(18) 07–24 15–32
EN4 48 × 242 × 48 300 44.00(72) 07–42 15–32
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matrix, are the ones that fluctuate rapidly along the spatial
directions, the distorted high-frequency modes. To remedy
this problem, we need to filter out the high frequency
modes from our observables.
For the zero-field propagators, we can just sum over the

spatial position to filter out the high-frequency modes. This
is akin to zero momentum projection used when fitting
propagators with periodic boundary conditions. For our
case this is only used to reduce the influence of the high-
frequency modes, not to project to a particular momentum
state. Our summation only extends over the interior points,
away from the Dirichlet walls. However, this does not work
for non-zero field propagators since gauge transformations
act nonlinearly on the observable defined via this summa-
tion. A different form is required to preserve gauge-
invariance. In this work we use the following observables:

yðtÞ ¼
Xxf
x¼xi

Lðx; tÞGðx; t;Aμ ¼ 0; LÞ

fðtÞ ¼ A
Xxf
x¼xi

Lðx; tÞG0ðx; t;Aμ ¼ 0; L̃Þ: ð17Þ

where

Lðx; tÞ ¼
Yx−a
x0¼xi

e−iqaAμðx0;tÞ; ð18Þ

and we fit for the amplitude A and mass am that enters the
definition of G0. For the zero field case Lðx; tÞ ¼ 1 and
the summation produces the usual filtering. For the
non-zero case, the gauge line Lðx; tÞ transforms as
L0ðx; tÞ ¼ eiq½Λðxi;tÞ−Λðx;tÞ�Lðx; tÞ. The observables then
change under gauge transformation as

y0ðtÞ ¼ eiqa½Λðxi;tÞ−Λðxs;tsÞ�yðtÞ ð19Þ

and similarly for fðtÞ, and the distance function becomes
gauge invariant.
The energy shift induced by the background field is very

small, much smaller than the stochastic error on the
extracted hadron masses. To extract the shift reliably we
need to take into account the correlations between zero-
field and nonzero field correlators. We perform simulta-
neous fits of the zero-field and nonzero field correlators.
The residue vector δ ¼ fδ0; δEg includes the zero-field
residue δ0 and the residue in the presence of the field δE
defined using the fit form

fðtÞ ¼ ðAþ ΔAÞ
Xxf
x¼xi

LðxÞG0ðx; t;Aμ; L̃; amþ ΔamÞ:

ð20Þ

The enlarged covariance matrix can be written as

C ¼
�
C00 C0E

CE0 CEE

�
: ð21Þ

The enlarged χ2 remains gauge invariant. Above we made
explicit the dependence on the mass parameter. The fit
parameters are A, am, ΔA, and Δam. The mass shift Δam
is used to compute the polarizability.

B. Effective range

As discussed earlier, the effective size L̃, the distance
between the Dirichlet walls in the effective model, is
slightly different from the distance between the walls in
the QCD ensemble due to the interaction between the
hadrons and the walls. To determine L̃ we use zero-field
lattice QCD correlators. The ensembles used in this study
are summarized in Table I. For details about the generation
of the ensembles see [38].
For each ensemble, we have done multiple fits to map

out the dependence of the extracted mass on L̃. We choose
the x and t ranges as wide as possible while maintaining
a reasonable χ2, and look for an effective size L̃ that
reproduces the mass obtained from periodic boundary
conditions on the same ensembles [39]. For the three larger
ensembles the finite-volume corrections for the pion mass
are small and we used amπ ¼ 0.1936ð2Þ. For the smallest
ensemble, EN1, we used amπ ¼ 0.1986ð22Þ [7]. The error-
bars on L̃ were determined by jackknife. The dependence
of the extracted mass on L̃ for our ensembles is shown in
Fig. 3. We will discuss later the sensitivity of the mass-shift
extraction on the effective size. The L̃ values determined
from our ensembles and the fit ranges used are added to
Table I and will be used in all of our subsequent fits. Note
that the L̃ values were rounded up to the nearest half lattice-
spacing to make the effective model calculations easier.
To see how well the effective model describes the lattice

QCD correlators, we show in Fig. 4 some snapshots of the
spatial profile (wave function) in the absence of electric
field. Indeed, the Dirichlet walls force a standing wave in
the x direction. For the effective model there are no excited
states in contrast to QCD where other excitations are
present. However, in the pion channel the excited states
lie much higher and the ground state pion becomes
dominant as we move away from the source. We can
see from the figure that this is indeed the case: the two
correlators match very well as time progresses. This
suggests that our effective models correctly captures the
relevant dynamics. We note here that the correlators match
well only after we adjust the effective distance L̃ appro-
priately. The same match is observed in the time decay of
the correlation at fixed x locations, as shown in Fig. 5.
In the presence of the background electric field the

correlators become complex. We show in Fig. 6 and Fig. 7
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FIG. 3. Dependence of am on the distance between the Dirichlet walls for zero-field case. This is used to determine the effective lattice
size L̃ in Table I.

FIG. 4. Spatial profile of the lattice correlator Gðx; tÞ (black) in zero electric field for EN3 is compared to the effective one (blue) at
fixed time slices. The corresponding Dirichlet boundaries are represented by vertical lines.
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the real and imaginary parts separately of the charged
particle correlator. For the effective correlator we use the
same parameters, am andA, as in the zero-field case above.
The agreement is very good since the corrections, Δam

and ΔA, associated with the external field (a2qdE ¼ 10−2

in this case) are minute. Interestingly, the wave function
develops nodes between the walls in the presence of
background electric field. It is tempting to think that this

FIG. 6. Real part of the lattice correlator Gðx; tÞ (black) in the presence of the electric field for EN3 is compared to the effective one
(blue) at fixed time slices. The corresponding Dirichlet boundaries are represented by vertical lines.

FIG. 5. Similar to Fig. 4, but for amplitude decay of the correlator at fixed x locations.

FIG. 7. Similar to Fig 6, but for the imaginary part.
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is due to the acceleration in the presence of the field, but
in fact this is due to the gauge choice for the external field.
We used a t-dependent gauge field on the x-links to
generate the data [the gauge indicated in Eq. (3)]; if we
use a x-dependent t-link gauge the wave functions will look
different and the nodes will not be present in these figures.

C. Polarizability extraction

To determine the pion polarizability, we computed the
lattice QCD correlators Gðx; tÞ on the four ensembles in
Table I for charged pions, and carried out correlated fits as
described above. We have used the same fit region that we
had used when determining L̃ of the effective model in
Table I. Furthermore, for ensembles EN2, EN3, and EN4
which have the same temporal extension, we have fixed the
temporal fit range to be the same for all of them.
To make sure that we are extracting the quadratic response

to the electric field, we compute the mass shift for a sequence
of increasing values for the electric field strength. In Fig. 8
we plot the mass shift as a function of field strength for the
smallest ensemble (EN1) and the largest (EN4). We see that

the value of the electric field used in this study is indeed in
the regime where the mass shift scales quadratically with the
electric field strength. For our study we used the smallest
value of the electric field where the mass-shift is not
statistically compatible with zero on the smallest ensemble
(EN1): a2qdE ¼ 0.01. We note that for periodic boundary
conditions we can only choose quantized values for the
electric field: a2qdE ¼ 2πn=ðNxNtÞ. For the volumes used
in this study our value for E is one to four times larger than
the smallest quanta.
The fit results are summarized in Table II. The mass

shifts are indeed small when compared to the particle mass.
The conversion from lattice units to physical units from
Eq. (1) is given by

απ� ¼ 2

aE2
δam ð22Þ

where a ¼ 0.1245 fm, e2 ¼ 1=137, and a2qdE ¼ 0.01.
The dominant sources of systematic errors are the choice

of the fit range in the spatial and temporal direction, and the
value of L̃ using in the effective model. To determine their
contribution we analyze the sensitivity of the polarizability
to expected changes in these parameters. For the fitting
range, we reduced both the x and t-ranges by one unit of
lattice spacing. For L̃ we vary it within the error bands
reported in Table I. The results are included in Table III. We
note here that for the three largest ensembles used in our
study the finite-volume corrections estimate from ChPT is
less than 10% [40].
In Fig. 9 we plot the results for polarizability as a

function of the lattice extent in the field direction. Our
results are compared with the ChPT value of [41]

FIG. 8. Mass shift as a function of the electric field for EN1
(top) and EN4 (bottom). The curves plotted here are the quadratic
function which goes through zero and the central value of Δam at
a2qdE ¼ 0.01. The quadratic behavior breaks down for larger
values of the electric field since the higher-order corrections to the
energy of the pion dominate.

TABLE II. Mass shift in lattice units and extracted electric
polarizability for charged pions for a pion mass of 315 MeV.

Ensemble Δam απ� ½10−4 fm3� χ2=dof

EN1 0.0041(27) 1.30(84) 1.4
EN2 0.0013(14) 0.41(43) 1.6
EN3 0.0040(16) 1.26(50) 1.4
EN4 −0.0101ð28Þ −3.17ð87Þ 1.6

TABLE III. Sensitivity of the results on the choice of fit ranges
and the model size. We compare the polarizability απ� extracted
using our choice for the fit ranges with the value extracted for
slightly different choices. In this table δL̃ is the error on L̃
reported in Table I.

Ensemble Original
xi þ 1

ti þ 1 L̃ − δL̃xf − 1

EN1 1.30(84) 1.22(85) 1.18(87) 1.57(85)
EN2 0.41(43) 0.35(43) 0.51(47) 0.68(43)
EN3 1.26(50) 1.26(50) 1.34(54) 1.50(50)
EN4 −3.17ð87Þ −3.13ð85Þ −4.4ð1.2Þ −3.00ð87Þ
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απ� ¼ αem
8π2mπf2π

hA
hV

¼ 0.93ð6Þ × 10−4 fm3; ð23Þ

evaluated at our pion mass of mπ ¼ 315 MeV. To compute
the pion decay constant for our pion mass we used NLO
ChPT expression with low-energy constant l̄4 from the
FLAG review [42] to get fπ ¼ 106 MeV. For the form
factors ratio hA=hV we used the experimental value
0.469� 0.031 [41] which also gives the dominant source
of error to the ChPT estimate. For the smallest ensembles,
our results are in agreement with the ChPT estimate.
For the largest volume (EN4) the polarizability turns,
surprisingly, negative. We do not have an explanation
for this behavior but we note that there are other lattice
calculations of pion polarizability for comparable quark
masses that are at variance with ChPT expectations. One is
on magnetic polarizability that is expected to satisfy
βπþ ¼ −απþ , a calculation for mπ ¼ 296 MeV finds
βπþ ¼ 0.35ð11Þ × 10−4 fm3. Another calculation of the
“connected” neutral pion electric polarizability—where
the disconnected diagrams are not included—finds that
the polarizability turns negative for mπ < 350 MeV [7,8]
although the ChPT expectations are that this value should
be positive [32].

IV. CONCLUSION

Computing electric polarizability for charged hadrons
has been a challenge for lattice QCD due to the acceleration
experienced by charged particles in the background electric
field. Using the lightest charged hadron, the pion, as an
example, we presented a method to extract the electric
polarizability. The method relies on an effective field model
that is designed to capture the behavior of the charged pion
in a box with the same geometry as that used in lattice
simulations. This has proven crucial since the infinite-
volume version of the model fails to account for the

significant finite-volume effects. This is important to isolate
the energy shift due only to the deformation of the hadron
from the effects due to its motion in the electric field.
To fit the lattice QCD correlators we need to compute its

x and t dependence separately to match the effective model.
We construct a χ2-function that utilizes information in both
the real and imaginary parts of the correlator simultane-
ously and is invariant under gauge transformations of the
background field.
Since we use Dirichlet boundary conditions, we are not

limited to just quantized values under periodic boundary
conditions. We can dial the electric field continuously and
choose values that give better signals.
We extract the pion polarizability on a set of ensembles

with different distance between the Dirichlet walls. For the
pion mass mπ ¼ 315 MeV used in this study, the results on
the smallest three ensembles are compatible with a small
positive value for α, a value in agreement with ChPT
predictions. However, on the largest ensemble the polar-
izability is negative, a puzzling result. We have checked the
sensitivity of the polarizability on the fitting range and
the effective distance between the walls employed in the
effective model. The effect of varying these parameters is
smaller than the stochastic error and cannot explain the shift
to negative values for the polarizability. We note that there
are other lattice calculations of electromagnetic polariz-
abilities at similar pion mass that are in tension with
ChPT predictions.
In this paper we focused more on the technical aspects of

the extraction method. Looking to the future, in order to
compare with experiments, we need to extrapolate to
physical quark masses. We expect that as we approach
the physical mass ChPT predictions become more reliable
and should offer a strong check for our results. In particular
we plan to investigate the puzzling result we got on the
largest volume in this study. ChPT predicts a 1=mπ rise as
the pion mass is lowered [see Eq. (23)] so the signal might
be stronger at smaller pion masses. Another direction we
plan to investigate is the effect of lattice discretization. As
an additional check of the fitting procedure, we plan to
apply the same method to neutral mesons on the same set of
ensembles where simple exponential fits were previously
employed [7,8]. Another systematic effect, namely charg-
ing the sea quarks, is not addressed here, though such
effects are expected to be small. One strategy to include
these effects is via reweighting of the fermionic determi-
nant, where in principle the reweighting factors computed
for the neutral hadron correlators [9,10] could be reused.
Another strategy is to evaluate 4-point functions either from
a perturbative expansion in the background electric field
[16] or following a recent proposal [43]. In the long run,
an extension to baryons would be desirable with an eye
toward the proton electric polarizability which is more
precisely measured than charged pions but is less well
studied on the lattice.

FIG. 9. Volume dependence of the extract polarizability at pion
mass of mπ ¼ 315 MeV. The dotted line is prediction from
leading-order ChPT.
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