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We investigate the metal-insulator transition of the (1þ 1)-dimensional Hubbard model in the path-
integral formalism with the tensor renormalization group method. The critical chemical potential μc and the
critical exponent ν are determined from the μ dependence of the electron density in the thermodynamic
limit. Our results for μc and ν show consistency with an exact solution based on the Bethe ansatz. Our
encouraging results indicate the applicability of the tensor renormalization group method to the analysis of
higher-dimensional Hubbard models.
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I. INTRODUCTION

The tensor renormalization group (TRG) method,1 which
was originally proposed to study two-dimensional (2D)
classical spin systems in the field of condensed matter
physics [1], has been now used to study wide varieties of
models in particle physics taking several advantages over
the Monte Carlo method. (i) The TRG method does not
suffer from the sign problem as already confirmed by
studying various quantum field theories [3,7–14]. (ii) Its
computational cost depends on the system size only
logarithmically. (iii) It allows direct manipulation of the
Grassmann variables [3,4,7,15]. (iv) We can obtain the
partition function or the path integral itself.
The sign problem is common both in particle physics and

condensed matter physics. A typical example in particle
physics is the lattice QCD at finite density, where an
introduction of the chemical potential causes the sign
problem, and the Hubbard model is notorious in the
condensed matter physics. Recently the authors have
successfully applied the TRG method to analyze the phase
transition of the 4D Nambu-Jona-Lasinio (NJL) model at
high density and very low temperature [7]. The study of the
NJL model has two important aspects. First, the NJL model
is a prototype of QCD. Their phase structures are expected

to be similar so that the study of the NJL model at finite
density is a good testbed before investigating the finite
density QCD. Second, the NJL model has a similar path-
integral form to the Hubbard model: both consist of a
hopping term and a four-fermi interaction term. This
indicates that the technical details of the TRG method
employed in the analysis of the NJL model could apply to
the Hubbard model. It is interesting to investigate whether
or not the TRG method overcomes the sign problem in the
Hubbard model.
In this paper, we investigate the metal-insulator transition

of the (1þ 1)d Hubbard model in the path-integral for-
malism by calculating the electron density as a function of
the chemical potential μ. After examining the imaginary-
time discretization effects and the temperature dependence,
we determine the critical value of the chemical potential μc
and the critical exponent ν in the thermodynamic limit at
the zero temperature. Our results for μc and ν show
agreement with the theoretical prediction based on the
Bethe ansatz [16,17].
This paper is organized as follows. In Sec. II we define

the Hubbard model in the path-integral formalism and
explain the numerical algorithm. In Sec. III we show our
results and compare them with theoretical predictions.
Sec. IV is devoted to summary and outlook.

II. FORMULATION AND NUMERICAL
ALGORITHM

A. (1 + 1)-dimensional Hubbard model
in the path-integral formalism

We consider the partition function of the Hubbard model
in the path-integral formalism on an anisotropic rectangular
lattice with the physical volume V ¼ L × β, whose spatial
extension is defined as L ¼ aNσ with a the spatial lattice
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not only the original numerical algorithm proposed by Levin and
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spacing. β denotes the inverse temperature, which is
divided as β ¼ 1=T ¼ ϵNτ. The path-integral expression
of the partition function is given by2

Z ¼
Z � Y

n∈Λ1þ1

Y
s¼↑;↓

dψ̄ sðnÞdψ sðnÞ
�
e−S; ð1Þ

where n ¼ ðnσ; nτÞ ∈ Λ1þ1ð⊂ Z2Þ specifies a position in
the lattice jΛ1þ1j ¼ Nσ × Nτ. Since the Hubbard model

describes the spin-1=2 fermions, they are labeled by
s ¼ ↑;↓, corresponding to the spin-up and spin-down,
respectively. Introducing the notation,

ψðnÞ ¼
�
ψ↑ðnÞ
ψ↓ðnÞ

�
; ψ̄ðnÞ ¼ ðψ̄↑ðnÞ; ψ̄↓ðnÞÞ; ð2Þ

the action S is defined as

S ¼
X
nτ;nσ

ϵa
�
ψ̄ðnÞ

�
ψðnþ τ̂Þ − ψðnÞ

ϵ

�
− tðψ̄ðnþ σ̂ÞψðnÞ þ ψ̄ðnÞψðnþ σ̂ÞÞ þ U

2
ðψ̄ðnÞψðnÞÞ2 − μψ̄ðnÞψðnÞ

�
: ð3Þ

The kinetic term in the spatial direction contains the hopping parameter t. The four-fermi interaction term represents the
Coulomb repulsion of electrons at the same lattice site. The chemical potential is denoted by the parameter μ. Note that the
half-filling is realized at μ ¼ U=2 in the current definition. We assume the periodic boundary condition in the spatial
direction, ψðNσþ1;nτÞ¼ψð1;nτÞ, while the antiperiodic one in the temporal direction, ψðnσ; Nτ þ 1Þ ¼ −ψðnσ; 1Þ. In the
following discussion, we always set a ¼ 1.

B. Tensor network representation

Now, we introduce the tensor network representation for Eq. (1), based on Ref. [21]. At each lattice site, we define the
Grassmann tensor T by

T ΨσΨτΨ̄τΨ̄σ
¼

X
iσ;↑;iσ;↓;jσ;↑;jσ;↓

X
iτ;↑;iτ;↓

X
i0
σ;↑;i

0
σ;↓;j

0
σ;↑;j

0
σ;↓

X
i0
τ;↑;i

0
τ;↓

× Tðiσ;↑;iσ;↓;jσ;↑;jσ;↓Þðiτ;↑;iτ;↓Þði0σ;↑;i0σ;↓;j0σ;↑;j0σ;↓Þði0τ;↑;i0τ;↓ÞΨ
iσ;↑
σ;1Ψ

iσ;↓
σ;2Ψ

jσ;↑
σ;3Ψ

jσ;↓
σ;4Ψ

iτ;↑
τ;1Ψ

iτ;↓
τ;2 Ψ̄

i0
τ;↓

τ;2 Ψ̄
i0
τ;↑

τ;1 Ψ̄
j0
σ;↓

σ;4 Ψ̄
j0
σ;↑

σ;3 Ψ̄
i0
σ;↓

σ;2 Ψ̄
i0
σ;↑

σ;1 ; ð4Þ

where T is called the coefficient tensor, whose components are in R and all the subscripts of the coefficient tensor take
0 or 1. We have introduced the auxiliary Grassmann fields Ψσ ¼ ðΨσ;1;Ψσ;2;Ψσ;3;Ψσ;4Þ, Ψ̄σ ¼ ðΨ̄σ;4; Ψ̄σ;3; Ψ̄σ;2; Ψ̄σ;1Þ,
Ψτ ¼ ðΨτ;1;Ψτ;2Þ, and Ψ̄τ ¼ Ψ̄τ;2; Ψ̄τ;1Þ. In Eq. (3), we have two types of hopping terms in the spatial direction. On the other
hand, we have just one type of hopping in the temporal direction. Since the model describes spin-1=2 particles, the spatial
auxiliary Grassmann fieldΨσ has 2 (hopping terms) ×2 (spin degrees of freedom) components and the temporal oneΨτ has
1 × 2 components. Using the Grassmann tensor T in Eq. (4), the path integral Z is expressed by

Z ¼
Z � Y

n∈Λ1þ1

dΨ̄τðnÞdΨτðnÞdΨ̄σðnÞdΨσðnÞe−ðΨ̄σðnÞΨσðnÞþΨ̄τðnÞΨτðnÞÞ
� Y

n∈Λ1þ1

T ΨσðnÞΨτðnÞΨ̄τðn−τ̂ÞΨ̄σðn−σ̂Þ: ð5Þ

See the Appendix for the detailed explanation to derive
the above Grassmann tensor and its tensor network.

C. Numerical algorithm

We employ the higher-order TRG (HOTRG) algorithm
[2] to evaluate the Grassmann tensor network in Eq. (5).
Using the HOTRG, we first carry out mτ times of
renormalization along the temporal direction. This pro-
cedure converts the initial Grassmann tensor T ΨσΨτΨ̄τΨ̄σ

into
the coarse-grained one T ΞσΨτΨ̄τΞ̄σ

. Second, we employ the

2d HOTRG procedure, regarding T ΞσΨτΨ̄τΞ̄σ
as the initial

tensor, to obtain the coarse-grained Grassmann tensor
T Ξ0

σΨ0
τΨ̄0

τΞ̄0
σ
. Note that with sufficiently small ϵð< 1Þ, little

truncation error is accumulated with the first mτ times of
renormalization along the τ direction. This is because the
contribution from the spatial hopping terms, which are of
OðϵÞ, is smaller than that from the temporal one, which is
of Oð1Þ. For the ð1þ 1Þd Hubbard model, we found that
the optimal mτ satisfied the condition ϵ2mτ ∼Oð10−1Þ.3

2See Ref. [18] or Refs. [19,20] for the conversion procedure
from the operator formalism to the path-integral one.

3A similar remark is also mentioned in Ref. [2], where the 3d
HOTRG is applied to 2d quantum transverse Ising model in the
path-integral formalism.
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When one applies the TRG approach to evaluate the path
integral over the Grassmann fields, it is practically useful to
encode the Grassmann parity of the auxiliary Grassmann
fields into the subscripts of the coefficient tensor. We
identify the coefficient tensor in Eq. (4) as a four-rank
tensor Txtx0t0, where x; x0 ¼ 1;…; 24 and t; t0 ¼ 1;…; 22.
These new indices are defined as in Tables I and II. Notice
that xðx0Þ ¼ 1;…; 8 correspond to the Grassmann-even
sector and xðx0Þ ¼ 9;…; 16 the Grassmann-odd one in
ΨσðΨ̄σÞ. Similarly, tðt0Þ ¼ 1, 2 correspond to the
Grassmann-even sector and tðt0Þ ¼ 3, 4 the Grassmann-
odd one inΨτðΨ̄τÞ. These mappings help us to carry out the
singular value decompositions with some block-diagonal
representations as explained in Ref. [7].

III. NUMERICAL RESULTS

The partition function of Eq. (1) is evaluated using
the numerical algorithm explained above on lattices

with the physical volume V ¼ L × β ¼ Nσ × ðϵNτÞ
(Nσ; Nτ ¼ 2m;m ∈ N) with the periodic boundary condi-
tion for the spacial direction and the antiperiodic one for the
temporal direction. We employ t ¼ 1 for the hopping
parameter and U ¼ 4 for the four-fermi coupling. In
Fig. 1 we plot the μ dependence of the thermodynamic
potential lnZ=V on V ¼ L × β ¼ 4096 × 1677.7216 with
the bond dimension D ¼ 80 in the HOTRG algorithm
choosing ϵ ¼ 212 × 10−4; 28 × 10−4; 24 × 10−4; 10−4. For
each value of ϵ, mτ is decided via the condition
ϵ2mτ ¼ 212 × 10−4 ¼ Oð10−1Þ. We find clear discretization
effects for the ϵ ¼ 212 × 10−4 case. On the other hand, the
results with ϵ ¼ 24 × 10−4 and 10−4 show good consis-
tency. This means that the discretization effects with ϵ ¼
10−4 are negligible.
We investigate the convergence behavior of the thermo-

dynamic potential defining the quantity

δ ¼
���� lnZðDÞ − lnZðD ¼ 80Þ

lnZðD ¼ 80Þ
���� ð6Þ

on V ¼ 4096 × 1677.7216 lattice with ϵ ¼ 10−4. In Fig. 2,
we plot theD dependence of δ at μ ¼ 2.75 and 2.00, which
are near and far away from the critical point μc, respec-
tively, as we will see below. We observe that δ decreases as
a function of D and reaches Oð10−4Þ at D ¼ 75 for both
values of μ. Hereafter we present the results with D ¼ 80
except Fig. 3.
Before presenting the U=t ¼ 4 results let us consider

the ðU; tÞ ¼ ð4; 0Þ and (0,1) cases. Since these cases are
analytically solvable, it is instructive to compare the
numerical results for the electron density with the exact
ones. The electron density hni is obtained by the numerical
derivative of the thermodynamic potential in terms of μ:
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FIG. 1. Thermodynamic potential at U=t ¼ 4 on V ¼ 4096 ×
1677.7216 lattice as a function of chemical potential μ:β is
divided with ϵ ¼ 212 × 10−4; 28 × 10−4; 24 × 10−4, and 10−4.
The bond dimension is chosen to be D ¼ 80.
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FIG. 2. Convergence behavior of thermodynamic potential with
δ of Eq. (6) at μ ¼ 2.00 and 2.75 as a function of D on V ¼
4096 × 1677.7216 lattice.

TABLE II. Mapping of temporal subscripts.

t 1 2 3 4

iτ;↑ 0 1 1 0
iτ;↓ 0 1 0 1

TABLE I. Mapping of spatial subscripts.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

iσ;↑ 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0
iσ;↓ 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1
jσ;↑ 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1
jσ;↓ 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1
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hni ¼ 1

V
∂ lnZðμÞ

∂μ ≈
1

V
lnZðμþ ΔμÞ − lnZðμ − ΔμÞ

2Δμ
: ð7Þ

In Figs. 3 and 4 we compare the numerical and analytic
results for the μ dependence of hni. In both cases we
observe good consistencies over the wide range of μ. Note

that for the case of ðU; tÞ ¼ ð4; 0Þ in Fig. 3, we setmτ ¼ 24
because this case is equivalent to the model defined on
V ¼ 1 × β lattice. Thanks to the vanishing hopping struc-
ture in the spatial direction, we can always perform an exact
tensor contraction in Eq. (5). In Fig. 4 we employ finer
resolution of μ around 1≲ jμj≲ 2 in order to follow the
complicated μ dependence of hni.
Now let us turn to the ðU; tÞ ¼ ð4; 1Þ case. Figure 5

shows the lattice size dependence of hni with ϵ ¼ 10−4 and
mτ ¼ 12. The results indicate that the size ðNσ; NτÞ ¼
ð212; 224Þ, which corresponds to V ¼ 4096 × 1677.7216, is

-4 -2 0 2 4
μ

0.0

0.5

1.0

1.5

2.0

<
n>

TRG
Exact

FIG. 4. Electron density hni in the ðU; tÞ ¼ ð0; 1Þ case at Nσ ¼
4096 and β ¼ 1677.7216 with ϵ ¼ 10−4 as a function of μ.
The solid line shows the exact solution on Nσ ¼ 4096 and the
blue circles are the results obtained by the TRG approach
with D ¼ 80.
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FIG. 5. Electron density hni at several lattice sizes with ϵ ¼
10−4 as a function of μ. The bond dimension is chosen to
be D ¼ 80.
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FIG. 6. Electron density hni at β ¼ 1677.7216with ϵ ¼ 10−4 as
a function of μ. The bond dimension is chosen to be D ¼ 80.
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FIG. 3. Electron density hni in the ðU; tÞ ¼ ð4; 0Þ case at β ¼
1677.7216 with ϵ ¼ 10−4 as a function of μ. The solid line shows
the exact solution and the blue circles are the results obtained by
the TRG approach.

TABLE III. Critical chemical potential μcðDÞ and critical exponent ν at each D.

D 60 65 70 75 80 ∞
fit range [2.72,3.00] [2.70,3.00] [2.70,3.00] [2.69,3.00] [2.68,3.00] –
μcðDÞ 2.720(3) 2.710(1) 2.7068(8) 2.701(1) 2.698(1) 2.642(05)(13)
ν 0.49(3) 0.52(1) 0.50(2) 0.51(2) 0.51(2) –
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sufficiently large to be identified as the thermodynamic
and zero-temperature limit. The half-filling state is char-
acterized by the plateau with hni ¼ 1 in the range of
1.3≲ μ≲ 2.7. We also observe the continuous change from
hni ¼ 1 to hni ¼ 2 over the range of 2.7≲ μ≲ 6.5.
Figure 6 shows μ dependence of hni near the criticality
on V ¼ 4096 × 1677.7216. The abrupt change of hni at
μ ≈ 2.70 in Fig. 6 indicates a metal-insulator transition.
We determine the critical chemical potential μcðDÞ and

the critical exponent ν on V ¼ 4096 × 1677.7216 lattice by
fitting hni in the metallic phase around the transition point
with the following form:

hni ¼ Aþ Bjμ − μcðDÞjν; ð8Þ

where A, B, μcðDÞ and ν are the fit parameters. The solid
curve in Fig. 6 shows the fitting result over the range of
2.68 ≤ μ ≤ 3.00. We obtain μcðDÞ ¼ 2.698ð1Þ and ν ¼
0.51ð2Þ at D ¼ 80. Our result for the critical exponent is
consistent with the theoretical prediction of ν ¼ 1=2. A
previous quantumMonte Carlo simulation with small spatial
extensionup toL ¼ 24 alsoyielded the sameconclusion [22].
In order to extrapolate the result of μcðDÞ to the limit

D → ∞, we repeat the calculation changing D. The
numerical results are summarized in Table III. In Fig. 7,
we plot μcðDÞ as a function of 1=D, providing two types of
fittings. The solid line shows the fitting result with the

function μcðDÞ ¼ μc þ aD−1, which gives us μc ¼
2.642ð5Þ and a ¼ 4.5ð4Þ with χ2=d:o:f ¼ 0.447093. We
have also fitted the data with the function μcðDÞ ¼ μc þ
bD−c, shown as the dotted curve in Fig. 7, to estimate an
uncertainty in the choice of the fitting function. The
difference between the central values of μc obtained by
these two types of fittings is considered to be a systematic
error. Finally, we obtain μc ¼ 2.642ð05Þð13Þ as the value
of limD→∞ μcðDÞ, which shows good consistency with
the exact solution of μc ¼ 2.643 � � � based on the Bethe
ansatz [16,17].

IV. SUMMARY AND OUTLOOK

We have investigated the metal-insulator transition of the
(1þ 1)d Hubbard model in the path-integral formalism
employing the TRG method. Extrapolating μcðDÞ to the
limit D → ∞, we have estimated the critical chemical
potential, which shows good consistency with the theo-
retical prediction based on the Bethe ansatz. We have
determined the critical exponent ν, which is also consistent
with the exact solution. These encouraging results show the
effectiveness of the TRG approach for the study of the
Hubbard model and the related fermion models being free
from the sign problem. It is worth emphasizing that the
TRG approach is efficient not only in the lower-dimen-
sional systems but also in the higher-dimensional ones, as
confirmed in the earlier works [2,4–7,14,15,23–26]. As a
next step, we are planning to investigate the phase diagram
of the higher-dimensional Hubbard models, improving the
TRG method successfully applied in this work.
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APPENDIX: GRASSMANN TENSOR FOR
(d + 1)-DIMENSIONAL HUBBARD MODEL

In this Appendix, we consider the tensor network
representation for the path integral of the (dþ 1)-dimen-
sional Hubbard model, whose action is given by

S¼
X

n∈Λdþ1

ϵ

�
ψ̄ðnÞ

�
ψðnþ τ̂Þ−ψðnÞ

ϵ

�
− t

Xd
σ¼1

ðψ̄ðnþ σ̂ÞψðnÞþ ψ̄ðnÞψðnþ σ̂ÞÞþU
2
ðψ̄ðnÞψðnÞÞ2 −μψ̄ðnÞψðnÞ

�
; ðA1Þ

where n ¼ ððnσÞσ¼1;…;d; nτÞ ∈ Λdþ1, which denotes the (dþ 1)-dimensional anisotropic lattice. Since the hopping terms in
Eq. (A1) are all diagonal in the internal space, we can immediately have the following decompositions,

0.000 0.005 0.010 0.015 0.020
1/D

2.64

2.66

2.68

2.70

2.72

2.74
μ c(D

)

μ
c
+aD

-1

μ
c
+bD

-c

FIG. 7. Critical chemical potential μcðDÞ as a function of 1=D.
Solid line represents the fitting result with the function
μcðDÞ ¼ μc þ aD−1. Dotted curve also shows the fitting result
with the function μcðDÞ ¼ μc þ bD−c.
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etϵψ̄ðnÞψðnþσ̂Þ ¼
Y
s¼↑;↓

Z
dη̄σ;sðnÞdητ;sðnÞe−η̄σ;sðnÞησ;sðnÞ exp ½

ffiffiffiffi
tϵ

p
ψ̄ sðnÞησ;sðnÞ þ

ffiffiffiffi
tϵ

p
η̄σ;sðnÞψ sðnþ σ̂Þ�; ðA2Þ

etϵψ̄ðnþσ̂ÞψðnÞ ¼
Y
s¼↑;↓

Z
dζ̄σ;sðnÞdζσ;sðnÞe−ζ̄σ;sðnÞζσ;sðnÞ exp ½−

ffiffiffiffi
tϵ

p
ψ̄sðnþ σ̂Þζ̄σ;sðnÞ þ

ffiffiffiffi
tϵ

p
ζσ;sðnÞψ sðnÞ�; ðA3Þ

e−ψ̄ðnÞψðnþτ̂Þ ¼
Y
s¼↑;↓

Z
dη̄τ;sðnÞdητ;sðnÞe−η̄τ;sðnÞητ;sðnÞ exp ½−ψ̄ sðnÞητ;sðnÞ þ η̄τ;sðnÞψ sðnþ τ̂Þ�: ðA4Þ

One can now easily integrate out ψ and ψ̄ at the each site n ∈ Λdþ1 independently and this defines the Grassmann tensor,

T Ψ1ðnÞ���ΨdðnÞΨτðnÞΨ̄τðn−τ̂ÞΨ̄dðn−d̂Þ���Ψ̄1ðn−1̂Þ ¼
Z � Y

s¼↑;↓

dψ̄ sdψ s

�
e−Uϵψ̄↑ψ↑ψ̄↓ψ↓þðμϵþ1Þψ̄↑ψ↑þðμϵþ1Þψ̄↓ψ↓

× exp

�Xd
σ¼1

X
s¼↑;↓

f− ffiffiffiffi
tϵ

p
ψ̄ sζ̄σ;sðn − σ̂Þ þ ffiffiffiffi

tϵ
p

ζσ;sðnÞψ sg
	

× exp

�Xd
σ¼1

X
s¼↑;↓

f ffiffiffiffi
tϵ

p
ψ̄ sησ;sðnÞ þ

ffiffiffiffi
tϵ

p
η̄σ;sðn − σ̂Þψ sg

	

× exp

�X
s¼↑;↓

f−ψ̄ sητ;sðnÞ þ η̄τ;sðn − τ̂Þψ sg
	
; ðA5Þ

with Ψσ ¼ ðησ;↑; ησ;↓; ζσ;↑; ζσ;↓Þ, Ψ̄σ ¼ ðζ̄σ;↓; ζ̄σ;↑; η̄σ;↓; η̄σ;↑Þ, Ψτ ¼ ðητ;↑; ητ;↓Þ, and Ψ̄τ ¼ ðη̄τ;↓; η̄τ;↑Þ. Using this Grassmann
tensor T , one obtains the tensor network representation for the path integral Z of the (dþ 1)-dimensional Hubbard model as

Z ¼
Z � Y

n∈Λdþ1

dΨ̄τðnÞdΨτðnÞe−Ψ̄τðnÞΨτðnÞ
Yd
σ¼1

dΨ̄σðnÞdΨσðnÞe−Ψ̄σðnÞΨσðnÞ
�

×
Y

n∈Λdþ1

T Ψ1ðnÞ���ΨdðnÞΨτðnÞΨ̄τðn−τ̂ÞΨ̄dðn−d̂Þ���Ψ̄1ðn−1̂Þ: ðA6Þ

Let us now carry out the integration over ψ and ψ̄ in Eq. (A5). One finds the expression,

T Ψ1���ΨdΨτΨ̄τΨ̄d���Ψ̄1
¼

�Yd
σ¼1

X
iσ;↑;iσ;↓;jσ;↑;jσ;↓

� X
iτ;↑;iτ;↓

�Yd
σ¼1

X
i0
σ;↑;i

0
σ;↓;j

0
σ;↑;j

0
σ;↓

� X
i0
τ;↑;i

0
τ;↓

× ð−1Þ
P

σ;s
iσ;sð ffiffiffiffi

tϵ
p Þ

P
σ;s
ðiσ;sþjσ;sþi0σ;sþj0σ;sÞ

×
h
δ
1;iτ;↓þ

P
σ
ðiσ;↓þj0

σ;↓Þδ1;i0τ;↓þ
P

σ
ði0
σ;↓þjσ;↓Þδ1;iτ;↑þ

P
σ
ðiσ;↑þj0

σ;↑Þδ1;i0τ;↑þ
P

σ
ði0
σ;↑þjσ;↑Þ

− ðμϵþ 1Þδ
0;iτ;↓þ

P
σ
ðiσ;↓þj0

σ;↓Þδ0;i0τ;↓þ
P

σ
ði0
σ;↓þjσ;↓Þδ1;iτ;↑þ

P
σ
ðiσ;↑þj0

σ;↑Þδ1;i0τ;↑þ
P

σ
ði0
σ;↑þjσ;↑Þ

− ðμϵþ 1Þδ
1;iτ;↓þ

P
σ
ðiσ;↓þj0

σ;↓Þδ1;i0τ;↓þ
P

σ
ði0
σ;↓þjσ;↓Þδ0;iτ;↑þ

P
σ
ðiσ;↑þj0

σ;↑Þδ0;i0τ;↑þ
P

σ
ði0
σ;↑þjσ;↑Þ

− fUϵ − ðμϵþ 1Þ2gδ
0;iτ;↓þ

P
σ
ðiσ;↓þj0σ;↓Þδ0;i0τ;↓þ

P
σ
ði0σ;↓þjσ;↓Þδ0;iτ;↑þ

P
σ
ðiσ;↑þj0σ;↑Þδ0;i0τ;↑þ

P
σ
ði0σ;↑þjσ;↑Þ

i

× η
iτ;↑
τ;↑

�Y
σ

η
iσ;↑
σ;↑ζ̄

j0
σ;↑

σ;↑

�
η̄
i0
τ;↑

τ;↑

�Y
σ

η̄
i0
σ;↑

σ;↑ζ
jσ;↑
σ;↑

�
η
iτ;↓
τ;↓

�Y
σ

η
iσ;↓
σ;↓ζ̄

j0
σ;↓

σ;↓

�
η̄
i0
τ;↓

τ;↓

�Y
σ

η̄
i0
σ;↓

σ;↓ζ
jσ;↓
σ;↓

�
; ðA7Þ

where we have assigned the indices iσ;sðnÞ, jσ;sðnÞ, and iτ;sðnÞ as the labels of the Taylor expansion for Eqs. (A2)–(A4),
respectively. They take just 0 or 1 because of the nilpotency of the Grassmann numbers. For simplicity, we have omitted
the lattice site dependences both from the auxiliary Grassmann fields and the indices of the Taylor expansion, introducing
the notation i0ν;sðnÞ ¼ iν;sðn − ν̂Þ. Then we sort the auxiliary Grassmann fields in Eq. (A7) as those in Eq. (A8) and the
Grassmann tensor T is finally written as
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T Ψ1���ΨdΨτΨ̄τΨ̄d���Ψ̄1
¼

�Yd
σ¼1

X
iσ;↑;iσ;↓;jσ;↑;jσ;↓

� X
iτ;↑;iτ;↓

�Yd
σ¼1

X
i0σ;↑;i

0
σ;↓;j

0
σ;↑;j

0
σ;↓

� X
i0τ;↑;i

0
τ;↓

× Tði1;↑;i1;↓;j1;↑;j1;↓Þ���ðid;↑;id;↓;jd;↑;jd;↓Þðiτ;↑;iτ;↓Þði01;↑;i01;↓;j01;↑;j01;↓Þ���ði0d;↑;i0d;↓;j0d;↑;j0d;↓Þði0τ;↑;i0τ;↓Þ

× ðηi1;↑1;↑η
i1;↓
1;↓ζ

j1;↑
1;↑ζ

j1;↓
1;↓Þ � � � ðη

id;↑
d;↑η

id;↓
d;↓ζ

jd;↑
d;↑ζ

jd;↓
d;↓Þðη

iτ;↑
τ;↑η

iτ;↓
τ;↓Þ

× ðη̄i
0
τ;↓

τ;↓η̄
i0
τ;↑

τ;↑Þðζ̄
j0d;↓
d;↓ ζ̄

j0d;↑
d;↑ η̄

i0d;↓
d;↓η̄

i0d;↑
d;↑Þ � � � ðζ̄

j0
1;↓

1;↓ ζ̄
j0
1;↑

1;↑ η̄
i0
1;↓

1;↓η̄
i0
1;↑

1;↑Þ: ðA8Þ

In the above expression, the coefficients of the auxiliary Grassmann fields are identified as a multirank tensor T. When
d ¼ 1ðσ ¼ 1Þ, the coefficient tensor T is given by

Tðiσ;↑;iσ;↓;jσ;↑;jσ;↓Þðiτ;↑;iτ;↓Þði0σ;↑;i0σ;↓;j0σ;↑;j0σ;↓Þði0τ;↑;i0τ;↓Þ ¼ ð−1Þ
P

s
iσ;sð ffiffiffiffi

tϵ
p Þ

P
s
ðiσ;sþjσ;sþi0σ;sþj0σ;sÞ

× ½δ1;iτ;↓þiσ;↓þj0
σ;↓
δ1;i0

τ;↓þi0
σ;↓þjσ;↓δ1;iτ;↑þiσ;↑þj0

σ;↑
δ1;i0

τ;↑þi0
σ;↑þjσ;↑

− ðμϵþ 1Þδ0;iτ;↓þiσ;↓þj0σ;↓
δ0;i0τ;↓þi0σ;↓þjσ;↓δ1;iτ;↑þiσ;↑þj0σ;↑

δ1;i0τ;↑þi0σ;↑þjσ;↑

− ðμϵþ 1Þδ1;iτ;↓þiσ;↓þj0σ;↓
δ1;i0τ;↓þi0σ;↓þjσ;↓δ0;iτ;↑þiσ;↑þj0σ;↑

δ0;i0τ;↑þi0σ;↑þjσ;↑

− fUϵ − ðμϵþ 1Þ2gδ0;iτ;↓þiσ;↓þj0
σ;↓
δ0;i0

τ;↓þi0
σ;↓þjσ;↓δ0;iτ;↑þiσ;↑þj0

σ;↑
δ0;i0

τ;↑þi0
σ;↑þjσ;↑ �

× ð−1ÞRðiσ;↑ ;iσ;↓ ;jσ;↑ ;jσ;↓Þðiτ;↑ ;iτ;↓Þði0σ;↑ ;i
0
σ;↓

;j0
σ;↑

;j0
σ;↓

Þði0
τ;↑

;i0
τ;↓

Þ ; ðA9Þ
with

Rðiσ;↑;iσ;↓;jσ;↑;jσ;↓Þðiτ;↑;iτ;↓Þði0σ;↑;i0σ;↓;j0σ;↑;j0σ;↓Þði0τ;↑;i0τ;↓Þ

¼ iσ;↑iτ;↑ þ iσ;↓ðiτ;↑ þ j0σ;↑ þ i0τ;↑ þ i0σ;↑ þ jσ;↑ þ iτ;↓Þ
þ jσ;↑ðiτ;↑ þ j0σ;↑ þ i0τ;↑ þ i0σ;↑Þ þ jσ;↓ðiτ;↑ þ j0σ;↑ þ i0τ;↑ þ i0σ;↑ þ iτ;↓ þ j0σ;↓ þ i0τ;↓ þ i0σ;↓Þ
þ iτ;↓ðj0σ;↑ þ i0τ;↑ þ i0σ;↑Þ þ i0τ;↓ðj0σ;↑ þ i0τ;↑ þ i0σ;↑ þ j0σ;↓Þ þ i0τ;↑j

0
σ;↑ þ j0σ;↓ðj0σ;↑ þ i0σ;↑Þ þ i0σ;↓i

0
σ;↑: ðA10Þ
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