PHYSICAL REVIEW D 104, 014504 (2021)

Tensor renormalization group approach
to (1+1)-dimensional Hubbard model

Shinichiro Akiyama"" and Yoshinobu Kuramashi®'

'Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
*Center Jfor Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

® (Received 14 May 2021; accepted 10 June 2021; published 7 July 2021)

We investigate the metal-insulator transition of the (1 + 1)-dimensional Hubbard model in the path-
integral formalism with the tensor renormalization group method. The critical chemical potential x. and the
critical exponent v are determined from the y dependence of the electron density in the thermodynamic
limit. Our results for 4, and v show consistency with an exact solution based on the Bethe ansatz. Our
encouraging results indicate the applicability of the tensor renormalization group method to the analysis of

higher-dimensional Hubbard models.
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I. INTRODUCTION

The tensor renormalization group (TRG) method,' which
was originally proposed to study two-dimensional (2D)
classical spin systems in the field of condensed matter
physics [1], has been now used to study wide varieties of
models in particle physics taking several advantages over
the Monte Carlo method. (i) The TRG method does not
suffer from the sign problem as already confirmed by
studying various quantum field theories [3,7-14]. (i) Its
computational cost depends on the system size only
logarithmically. (iii) It allows direct manipulation of the
Grassmann variables [3,4,7,15]. (iv) We can obtain the
partition function or the path integral itself.

The sign problem is common both in particle physics and
condensed matter physics. A typical example in particle
physics is the lattice QCD at finite density, where an
introduction of the chemical potential causes the sign
problem, and the Hubbard model is notorious in the
condensed matter physics. Recently the authors have
successfully applied the TRG method to analyze the phase
transition of the 4D Nambu-Jona-Lasinio (NJL) model at
high density and very low temperature [7]. The study of the
NJL model has two important aspects. First, the NJL model
is a prototype of QCD. Their phase structures are expected
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to be similar so that the study of the NJL model at finite
density is a good testbed before investigating the finite
density QCD. Second, the NJL. model has a similar path-
integral form to the Hubbard model: both consist of a
hopping term and a four-fermi interaction term. This
indicates that the technical details of the TRG method
employed in the analysis of the NJL model could apply to
the Hubbard model. It is interesting to investigate whether
or not the TRG method overcomes the sign problem in the
Hubbard model.

In this paper, we investigate the metal-insulator transition
of the (1 + 1)d Hubbard model in the path-integral for-
malism by calculating the electron density as a function of
the chemical potential u. After examining the imaginary-
time discretization effects and the temperature dependence,
we determine the critical value of the chemical potential
and the critical exponent v in the thermodynamic limit at
the zero temperature. Our results for u,. and v show
agreement with the theoretical prediction based on the
Bethe ansatz [16,17].

This paper is organized as follows. In Sec. II we define
the Hubbard model in the path-integral formalism and
explain the numerical algorithm. In Sec. III we show our
results and compare them with theoretical predictions.
Sec. IV is devoted to summary and outlook.

II. FORMULATION AND NUMERICAL
ALGORITHM

A. (1+1)-dimensional Hubbard model
in the path-integral formalism

We consider the partition function of the Hubbard model
in the path-integral formalism on an anisotropic rectangular
lattice with the physical volume V = L x 3, whose spatial
extension is defined as L = aN, with a the spatial lattice
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spacing. f denotes the inverse temperature, which is
divided as f = 1/T = eN,. The path-integral expression
of the partition function is given by

describes the spin-1/2 fermions, they are labeled by
s =1, ], corresponding to the spin-up and spin-down,
respectively. Introducing the notation,

2= [(TI I omtnamin)es )

nERin s=1.) p(n) = (w4 (n),,(n), (2)

o= (i)

the action S is defined as

where n = (n,,n,) € Ay, (C Z?*) specifies a position in
the lattice |A;,;| = N, X N,. Since the Hubbard model
|

The kinetic term in the spatial direction contains the hopping parameter . The four-fermi interaction term represents the
Coulomb repulsion of electrons at the same lattice site. The chemical potential is denoted by the parameter . Note that the
half-filling is realized at 4 = U/2 in the current definition. We assume the periodic boundary condition in the spatial
direction, w(N,+ 1,n,) =w(1,n,), while the antiperiodic one in the temporal direction, w(n,, N, + 1) = —w(n,, 1). In the
following discussion, we always set a = 1.

B. Tensor network representation

Now, we introduce the tensor network representation for Eq. (1), based on Ref. [21]. At each lattice site, we define the
Grassmann tensor 7 by

PP DD DD

io‘.T'io.i'j{r,T-j(r.L ir.Tsir.i i;-T’i:’-i'j;-T'j/ﬂ'-l l;T.l;¢

T‘ynw,\i!,\i}ﬂ =

X T i oo Wi e 0y oy V)
where T is called the coefficient tensor, whose components are in R and all the subscripts of the coefficient tensor take
0 or 1. We have introduced the auxiliary Grassmann fields ¥, = (¥, 1, W51, P03, Ysu)s Py = (Pos, U3, Pyns Pt ),
¥, = (¥,1.¥,,),and y = ‘i’,,z, @1,1 ). In Eq. (3), we have two types of hopping terms in the spatial direction. On the other
hand, we have just one type of hopping in the temporal direction. Since the model describes spin-1/2 particles, the spatial
auxiliary Grassmann field ¥, has 2 (hopping terms) x2 (spin degrees of freedom) components and the temporal one ¥, has

1 x 2 components. Using the Grassmann tensor 7 in Eq. (4), the path integral Z is expressed by

Z_/ < H dli-‘f(n)d‘PT(n)d\ild(n)dlpa(n)e—(‘f’g(n)q’a(n)+‘f’f(n)‘?f(n))> H T‘I’U(n)‘l’,(n)‘i’,(n—%)‘i‘,,(n—&)‘ (5)

nEN

See the Appendix for the detailed explanation to derive
the above Grassmann tensor and its tensor network.

C. Numerical algorithm

We employ the higher-order TRG (HOTRG) algorithm
[2] to evaluate the Grassmann tensor network in Eq. (5).
Using the HOTRG, we first carry out m, times of
renormalization along the temporal direction. This pro-
cedure converts the initial Grassmann tensor 7y y g _into
the coarse-grained one 7z y g g - Second, we employ the

’See Ref. [18] or Refs. [19,20] for the conversion procedure
from the operator formalism to the path-integral one.

SN

|

2d HOTRG procedure, regarding 7z y g = as the initial
tensor, to obtain the coarse-grained Grassmann tensor
T 2y z - Note that with sufficiently small e(< 1), little
truncation error is accumulated with the first m, times of
renormalization along the 7 direction. This is because the
contribution from the spatial hopping terms, which are of
O(e), is smaller than that from the temporal one, which is
of O(1). For the (1 4 1)d Hubbard model, we found that
the optimal m, satisfied the condition €2 ~ O(1071).?

3A similar remark is also mentioned in Ref. [2], where the 3d
HOTRG is applied to 2d quantum transverse Ising model in the
path-integral formalism.
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TABLE 1. Mapping of spatial subscripts.

X 123456789 10 11 12 13 14 15 16
i,y 0011100011 0 O 1 0 1 1 0
i,;, 0100110101 0 1 0 1 0 1
Jory 0010101100 1 I 0 0 1 1
oy 06001011100 0 0 1 1 1 1
TABLE II. Mapping of temporal subscripts.

t 1 2 3

[ 0 0 1 1

ir) 0 1 0 1

When one applies the TRG approach to evaluate the path
integral over the Grassmann fields, it is practically useful to
encode the Grassmann parity of the auxiliary Grassmann
fields into the subscripts of the coefficient tensor. We
identify the coefficient tensor in Eq. (4) as a four-rank
tensor Ty, wWhere x,x' =1,...,2% and ¢,/ =1,...,2°.
These new indices are defined as in Tables I and II. Notice
that x(x') = 1,...,8 correspond to the Grassmann-even
sector and x(x') =9,...,16 the Grassmann-odd one in
¥ (¥,). Similarly, #(#)=1, 2 correspond to the
Grassmann-even sector and #(¢') = 3, 4 the Grassmann-
odd one in ¥, (P,). These mappings help us to carry out the
singular value decompositions with some block-diagonal
representations as explained in Ref. [7].

III. NUMERICAL RESULTS

The partition function of Eq. (1) is evaluated using
the numerical algorithm explained above on lattices
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FIG. 1. Thermodynamic potential at U/t =4 on V = 4096 x

1677.7216 lattice as a function of chemical potential u.f is
divided with e =22 x 107,28 x 1074,2* x 10™*, and 107%.
The bond dimension is chosen to be D = 80.

with the physical volume V =L xf =N, X (eN,)
(Ny N, =2",m € N) with the periodic boundary condi-
tion for the spacial direction and the antiperiodic one for the
temporal direction. We employ ¢ =1 for the hopping
parameter and U =4 for the four-fermi coupling. In
Fig. 1 we plot the x dependence of the thermodynamic
potential InZ/V on V = L x § = 4096 x 1677.7216 with
the bond dimension D =80 in the HOTRG algorithm
choosing € = 212 x 1074,28 x 1074,2% x 107#,10*. For
each value of e, m, is decided via the condition
€2 =212 x 107 = 0(107!). We find clear discretization
effects for the ¢ = 212 x 10~ case. On the other hand, the
results with € = 2* x 107 and 10~ show good consis-
tency. This means that the discretization effects with e =
10~* are negligible.

We investigate the convergence behavior of the thermo-
dynamic potential defining the quantity

_|InZ(D) —InZ(D = 80)

0= InZ(D = 80) (6)

on V = 4096 x 1677.7216 lattice with e = 107*. In Fig. 2,
we plot the D dependence of 6 at u = 2.75 and 2.00, which
are near and far away from the critical point y., respec-
tively, as we will see below. We observe that 6 decreases as
a function of D and reaches O(10~*) at D = 75 for both
values of u. Hereafter we present the results with D = 80
except Fig. 3.

Before presenting the U/t = 4 results let us consider
the (U, t) = (4,0) and (0,1) cases. Since these cases are
analytically solvable, it is instructive to compare the
numerical results for the electron density with the exact
ones. The electron density (n) is obtained by the numerical
derivative of the thermodynamic potential in terms of u:

1x10" ‘ ‘ ‘ — 3
E o u=200|
O u=275 4
X107 F =
P 1
L ]
O i
8 g

Rl PITU S g g 5 E
@ (@) —
Ix10™ Y4
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D

FIG. 2. Convergence behavior of thermodynamic potential with
o of Eq. (6) at 4 = 2.00 and 2.75 as a function of D on V =
4096 x 1677.7216 lattice.
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FIG. 3. Electron density (n) in the (U,t) = (4,0) case at f =

1677.7216 with € = 107* as a function of u. The solid line shows
the exact solution and the blue circles are the results obtained by
the TRG approach.
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FIG. 4. Electron density (n) in the (U,7) = (0,1) case at N, =
4096 and B = 1677.7216 with ¢ = 107 as a function of .
The solid line shows the exact solution on N, = 4096 and the
blue circles are the results obtained by the TRG approach
with D = 80.
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In Figs. 3 and 4 we compare the numerical and analytic
results for the u dependence of (n). In both cases we
observe good consistencies over the wide range of u. Note
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FIG. 5. Electron density (n) at several lattice sizes with ¢ =
107 as a function of u. The bond dimension is chosen to
be D = 80.
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FIG. 6. Electron density (n) at # = 1677.7216 with e = 10™* as
a function of y. The bond dimension is chosen to be D = 80.

that for the case of (U, t) = (4,0) in Fig. 3, we set m, = 24
because this case is equivalent to the model defined on
V =1 x f lattice. Thanks to the vanishing hopping struc-
ture in the spatial direction, we can always perform an exact
tensor contraction in Eq. (5). In Fig. 4 we employ finer
resolution of y around 1 < |u| <2 in order to follow the
complicated p dependence of (n).

Now let us turn to the (U,f) = (4,1) case. Figure 5
shows the lattice size dependence of (n) with ¢ = 10~* and
m, = 12. The results indicate that the size (N,,N,) =
(2!2,2%%), which corresponds to V = 4096 x 1677.7216, is

TABLE III.  Critical chemical potential y.(D) and critical exponent v at each D.

D 60 65 70 75 80 ©

fit range [2.72,3.00] [2.70,3.00] [2.70,3.00] [2.69,3.00] [2.68,3.00] -
Ue(D) 2.720(3) 2.710(1) 2.7068(8) 2.701(1) 2.698(1) 2.642(05)(13)
v 0.49(3) 0.52(1) 0.50(2) 0.51(2) 0.51(2) -
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FIG. 7. Critical chemical potential y.(D) as a function of 1/D.
Solid line represents the fitting result with the function
ue(D) = p. + aD™!. Dotted curve also shows the fitting result
with the function p (D) = p. + bD™°.

sufficiently large to be identified as the thermodynamic
and zero-temperature limit. The half-filling state is char-
acterized by the plateau with (n) =1 in the range of
1.3 < u < 2.7. We also observe the continuous change from
(n) =1 to (n) =2 over the range of 2.7 Su <6.5.
Figure 6 shows p dependence of (n) near the criticality
on V =4096 x 1677.7216. The abrupt change of (n) at
u~2.70 in Fig. 6 indicates a metal-insulator transition.

We determine the critical chemical potential y.(D) and
the critical exponent v on V = 4096 x 1677.7216 lattice by
fitting (n) in the metallic phase around the transition point
with the following form:

(n) = A+ Blu—pu(D)], (8)

where A, B, u.(D) and v are the fit parameters. The solid
curve in Fig. 6 shows the fitting result over the range of
2.68 < u <3.00. We obtain u.(D) =2.698(1) and v =
0.51(2) at D = 80. Our result for the critical exponent is
consistent with the theoretical prediction of v =1/2. A
previous quantum Monte Carlo simulation with small spatial
extensionup to L = 24 also yielded the same conclusion [22].

In order to extrapolate the result of u.(D) to the limit
D — o, we repeat the calculation changing D. The
numerical results are summarized in Table III. In Fig. 7,
we plot u.(D) as a function of 1/D, providing two types of
fittings. The solid line shows the fitting result with the

function p.(D) = p, +aD~', which gives us p, =
2.642(5) and a = 4.5(4) with y?/d.o.f = 0.447093. We
have also fitted the data with the function p.(D) = p. +
bD~¢, shown as the dotted curve in Fig. 7, to estimate an
uncertainty in the choice of the fitting function. The
difference between the central values of y, obtained by
these two types of fittings is considered to be a systematic
error. Finally, we obtain y, = 2.642(05)(13) as the value
of limp_, uc(D), which shows good consistency with
the exact solution of u. = 2.643--- based on the Bethe
ansatz [16,17].

IV. SUMMARY AND OUTLOOK

We have investigated the metal-insulator transition of the
(1 + 1)d Hubbard model in the path-integral formalism
employing the TRG method. Extrapolating u.(D) to the
limit D — co, we have estimated the critical chemical
potential, which shows good consistency with the theo-
retical prediction based on the Bethe ansatz. We have
determined the critical exponent v, which is also consistent
with the exact solution. These encouraging results show the
effectiveness of the TRG approach for the study of the
Hubbard model and the related fermion models being free
from the sign problem. It is worth emphasizing that the
TRG approach is efficient not only in the lower-dimen-
sional systems but also in the higher-dimensional ones, as
confirmed in the earlier works [2,4-7,14,15,23-26]. As a
next step, we are planning to investigate the phase diagram
of the higher-dimensional Hubbard models, improving the
TRG method successfully applied in this work.
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APPENDIX: GRASSMANN TENSOR FOR
(d +1)-DIMENSIONAL HUBBARD MODEL

In this Appendix, we consider the tensor network
representation for the path integral of the (d + 1)-dimen-
sional Hubbard model, whose action is given by

s= 3 efwtn (w)—r2<w<n+a>w<n>+w<n>w<n+a>>+§<w<n>w<n>>2—mp(n)w(n)}, (A1)

n€Ns1y ¢

where n = ((n,),_,

..... 4+ 1z) € Ayyq, which denotes the (d + 1)-dimensional anisotropic lattice. Since the hopping terms in

Eq. (A1) are all diagonal in the internal space, we can immediately have the following decompositions,
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eeronns) — T / ity (1) ()7 0) exp [V e, (), o (1) + Vil (W) (n +8)). (A2)

s=1.0

etell/(nJrO’ et /dga K déo’ N ) C,,\ é‘n\ exp [ \/_Wr(n + )ga,s(n) + \/Eéla,s(n)llls (l’l)], (A3)
s=1.

evvintd = TT / A, 5 ()i, o (1) eTes 16 0) exp (=7 ()11, o (1) + Tlpy (R)yrs(m + 7)) (A4)
s=11

One can now easily integrate out y and i at the each site n € A, | independently and this defines the Grassmann tensor,

T ()W ()W, (1) (=), (=) / < Hldwsdw> e~UerunPuyy et i+t iy,

- d _

<o 30 3 (Vi) 4 msg,s<n>ws}]
Lo=1 s=1
rd

X exp z {ﬂwsnﬂ.xn)+¢Zéﬁﬁ,s<n—a>ws}}
Lo=1 s=1.]

xexp | S (= (n) +r;,,s<n—%>ws}] (A3)
L=t

with ‘Pa = (’10,@ UPRR CO'.T’ Cc,i)’ lil” - (ga,iﬂ EG.T’ ﬁa.i’ 7_70,?)’ lPT = (’lm, '71,¢>’ and li,r = (ﬁf,i’ 77]1',?)' USing this Grassmann
tensor 7, one obtains the tensor network representation for the path integral Z of the (d + 1)-dimensional Hubbard model as

d
Z= /( H dlilr(n)dlpr(n)e_ll’r(n)‘{’f(n)Hdlila(n)dq}g(n)e—‘l’u(n)‘l’g(n)>

n€N 4 o=1
X H T, (1) ()W, (1) 9. (1—2) B,y (=) P, (1) (A6)
n€N g1

Let us now carry out the integration over y and ¥ in Eq. (AS5). One finds the expression,

TW.-~-‘IA,W,@,%-~@I_<1£[ > >Z<ﬁ ) >,Z

o=1 io.T’ia.isjo,TJ{r,i ir.Tvir.L o=1 i/ﬂ~T’i/ﬂ~i’j;-T’j/ﬂ'-¢ ;T’llri

1 )Z lzr: (\/»)Za:(ierx+jn'.s+i£rA5+j£r.s)

X

(-
X [5 PN P Sy y L
1 l,‘LJrZ n¢+] ] l,lJrZ (H,i*’]a.i) 1’I‘LT+Z (10,T+J[,_T) l’lT +E (IUT+](LT)
(,Lt ) 0,i <¢+Z (iaﬁ-j Ol ¢4—2: o Tiel) 1’fT+Z lGT+j ll T+Z T4—]M
(/l(:‘ + ) 1.i ¢+Z i-&-jw 1 11¢+Z ¢r¢+j“ 0’1T+Z T-HM 0’1T+Z 5T+j"T)
—{Ue — (ue + 1) }501 A+ oy +i) So.i LA i Fie) ¥ et (s il 4 60’ Dl aﬁf”?)}
X]’]T <H’7101€6T>’7};1T\ <Hf](:7t JUT) 11L<H7116L )ﬁfi((Hﬁ(:iCjai), (A7)

where we have assigned the indices i, (n), j,s(n), and i, (n) as the labels of the Taylor expansion for Egs. (A2)—~(A4),
respectively. They take just O or 1 because of the nilpotency of the Grassmann numbers. For simplicity, we have omitted
the lattice site dependences both from the auxiliary Grassmann fields and the indices of the Taylor expansion, introducing
the notation i), ((n) = i, (n — D). Then we sort the auxiliary Grassmann fields in Eq. (A7) as those in Eq. (A8) and the
Grassmann tensor 7 is finally written as

)
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T\Fl'"q’d\pr\ilr\ild'"q}l - <H Z

o=V ispils | Jorsdol” Tepsinl
X T(
i1 l'w le Ji.l
X( m 1¢ 28 (n
/

CM Maii

In the above expression, the coefficients of the auxiliary
d = 1(c = 1), the coefficient tensor T is given by

T, . . . ;
(CARRPARY RS SRR NS [CAPUARRY APy D [P )

I >

O'—ll |

)= (I

)>

o
ai']er IJL rTlf.l

ipedn iy Gansdaydar-day) Gersie )@ gty o0y ody ) iy Ty ady D008 )

d i ./ ./ lr lr
J% a1 CatCa)niiny)

o EH AR, (A8)

Grassmann fields are identified as a multirank tensor 7. When

= (_1)2\.1‘@- (\/E)ZY(in,s+j(,‘.,-+i’n,s+j'm)

X [51,i,<¢+ig,¢+j;¢51.,i;¢+i;¢+jg,¢51,i,_T+i(,_¢+j;.T51,i;AT+i’M+/’M

- (,ue + 1)50,i,_¢+iw+j’a_l50,i;<¢+i’”vi+j0,¢51,i,,¢+ig_¢+j’w51,1”{_T+i;y¢+ja,¢

= (ue + 1)61sir,¢+ia.¢+jﬁr.¢5'-ii‘ﬁ"’aﬁjm50’ir,¢+im¢+j;,¢ 50”'2.1+";.¢+-/'m

— - 2 S S S P
{U€ <M€ + 1) }50,z,_¢+z,,,¢+]’w 50,z;l+z,’j.¢+j,,¢ 50v’r.T+’6.T+/:;,¢ 50’12AT+11’:.T+J”'T}

R,. . . . A g g ]
(i pig, | o do Nig i VGGG )
x (_1) oot o et el 0 g dg | Jo o e o)) (A9)

with

R(in.T~io'.¢an'.T!j6.¢)( LERSUD LA ARV AV D [ PR AT))

= io‘,TiT,T + lo’l(er + Jo—ﬁ + lr,T + l;T + ja,T + i'r,i)
ol + s +Hipy His) Fioylich Hios Hiy+ip s +ioy +Jjo i +1i )

ey Upa H ey Fin ) T i oy H iyt ina+ 75 ) i ados 7o, Uoy Tina) +ip 104

(A10)
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