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We describe a proposal for constructing a lattice theory that we argue may be capable of yielding free
Weyl fermions in the continuum limit. The model employs reduced staggered fermions and uses site parity
dependent Yukawa interactions of Fidkowski-Kitaev type to gap a subset of the lattice fermions without
breaking symmetries. The possibility for such symmetric mass generation is tied to the cancellation of
certain discrete anomalies arising in the continuum limit. The latter place strong constraints on the number
of lattice fermions—constraints that are satisfied by this model. We present numerical results for the model
in two dimensions which support this scenario.
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I. INTRODUCTION

It has long been a goal of lattice field theory to be able to
describe continuum chiral gauge theories. All of the
standard local lattice fermion prescriptions; Wilson, stag-
gered, domain wall and overlap appear only capable of
describing vectorlike theories. The central reason for this is
well known—the Nielsen-Ninomiya theorem asserts that a
wide class of fermion discretizations with exact chiral
symmetry will necessarily contain equal numbers of left
and right-handed fields [1].
Two paths have typically been followed to try and evade

this theorem. In domain wall approaches one starts from a
lattice in five dimensions and then introduces a domain wall
in the extra dimension which binds one fermion of fixed
four dimensional chirality. On a finite lattice one must
necessarily introduce an antidomain wall binding a fermion
of opposite chirality. Unfortunately in the presence of a
fluctuating gauge field these modes become coupled once
more and the continuum limit describes Dirac fermions
again. Recently Grabowska and Kaplan proposed a modi-
fication of the domain wall prescription that used a
deformation of the fermion kernel to decrease the coupling
to the mirror fermions located on the antidomain wall [2].
However, it is unclear whether this proposal will be
sufficient at the nonperturbative level.
A second way to proceed is to start with a vectorlike

theory directly in four dimensions and attempt to give
cutoff scale masses to states of one chirality using strong
multifermion interactions. Perhaps the first example of such

a mirror model was given by Eichten and Preskill [3]. The
early numerical work to test this idea made use of Wilson
and staggered lattice fermions [4–8] and appeared to
invalidate the approach—to generate large mirror masses
required large four fermion or Yukawa couplings and
typically this resulted in the formation of symmetry break-
ing condensates coupling left and right-handed states via
Dirac mass terms [9].
More recently this approach was revived for lattice

fermion actions with superior chiral properties—in a series
of papers Poppitz et al. have investigated models using
overlap fermions [10–12] while a gauge invariant path
integral measure for overlap chiral fermions in SOð10Þ was
constructed in [13]. An earlier proposal combining domain
wall fermions and appropriate four fermion interactions
was made by Creutz et al. in [14]. However, again, the
overall conclusion of these studies was that it was difficult,
if not impossible, to decouple the chiralities in the con-
tinuum limit.1

However, in recent years, a series of developments in
condensed matter physics have provided new insights into
the problem. One of the key new ingredients has been the
discovery of models capable of symmetric mass generation.
This field was launched by the seminal paper of Kitaev and
Fidkowski (FK) [16] who showed that it was possible to
design a four fermion interaction that was capable of
generating masses for precisely eight one dimensional
Majorana modes without generating symmetry breaking
fermion condensates. Subsequent work generalized this to
higher dimensions finding that sixteen Majorana fermions
are needed in three and four (spacetime) dimensions
[17–20].
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1A possible exception to this was Lüscher’s formal construc-
tion of a path integral for Uð1Þ chiral gauge theory in [15].
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It is now understood that the appearance of specific
numbers of fermions in theories where symmetric mass
generation is possible, is tied to the cancellation of certain
discrete anomalies [21,22]. Indeed, one way to understand
the observation of symmetry broken phases in some of the
earlier work on lattice four fermion theories is that they
arise as a consequence of the failure to cancel off these
discrete anomalies. To replicate a nonzero anomaly in the
UV requires massless states in the IR which can arise as
Goldstone modes arising after the spontaneous breaking of
symmetries via fermion condensates.
The phenomenon of symmetric mass generation has

been seen in recent numerical studies of vectorlike lattice
models in dimensions from two to four [23–30]. While
massive symmetric phases had been observed in early
lattice studies of Higgs-Yukawa theories, they were typi-
cally separated from the weak coupling regime by regions
where lattice symmetries were spontaneously broken by the
formation of bilinear condensates and the massive sym-
metric phases were interpreted as lattice artifacts [4–8]. In
the more recent work these massive symmetric phases in
theories can be directly connected to the massless phase via
a continuous phase transition thereby allowing for a
continuum limit. One crucial difference between the new
work and these older studies is the use of reduced staggered
fermions which carry half the number of degrees of
freedom of regular staggered fermions and can be thought
of as lattice analogs of continuumMajorana fermions. They
will form a key ingredient in this proposal for constructing
chiral lattice theories.
It was realized some years ago by Xu, Wen, and others in

the condensed matter community that symmetric mass
generation might allow one to construct anomaly free chiral
lattice gauge theories and several proposals have been made
[19,31–33]. However, these models use Hamiltonian for-
mulations and continuum topological arguments to make the
case for symmetric mass generation. The construction in this
paper aims to furnish an explicit Euclidean lattice path
integral in which single component relativistic lattice fer-
mions can be gapped by a FK type interaction thereby
producing a low energy theory which can be shown to
produce chiral fermions in the continuum limit.
We start our discussion with a quick review of reduced

staggered fermions and how they may be given a mass
without breaking symmetries using a four fermion inter-
action. However, this construction yields a continuum limit
describing massive Dirac fermions. To target a chiral theory
requires different field content and interactions. We argue
that the requirement that the lattice model yield the correct
number of massless Majorana fermions in the continuum
limit suggests a specific field content and an interaction of
Fidkowski-Kitaev type.
We then discuss numerical results from simulations of

the simplest model in two dimensions and provide evidence
that indeed the interactions we propose are capable of

decoupling the relevant lattice modes without the formation
of bilinear condensates. We summarize our conclusions and
discuss open questions in the final section of the paper.

II. REDUCED STAGGERED FERMIONS AND
SYMMETRIC MASS GENERATION

The usual staggered fermion action in D dimensions is
easily arrived at by spin diagonalizing the naive fermion
action on a hypercubic lattice and takes the form [34]

S ¼
X
x;μ

ημðxÞχ̄ðxÞDS
μχðxÞ þ

X
x

mχ̄ðxÞχðxÞ ð1Þ

where ημðxÞ ¼ ð−1Þ
P

μ−1
i¼0

xi are the usual staggered fermion
phases and the symmetric difference is given by

DS
μχ

aðxÞ ¼ 1

2
ðχaðxþ μÞ − χaðx − μÞÞ: ð2Þ

Ifm ¼ 0 a further reduction is possible by keeping only one
(single component) fermion at each lattice site. Explicitly
we introduce the projectors P� defined by

P� ¼ 1

2
ð1� ϵðxÞÞ ð3Þ

where the site parity is given by ϵðxÞ ¼ ð−1Þ
P

D−1
μ¼0

xμ. The
lattice action decomposes into

S ¼
X
x;μ

ημðxÞðχ̄þðxÞDS
μχ−ðxÞ þ χ̄−ðxÞDS

μχþðxÞÞ ð4Þ

where Pþχ ¼ χþ etc. The reduction we need corresponds
to, for example, retaining only the fields Pþχ and P−χ̄. This
results in the reduced staggered fermion action whose
continuum limit corresponds to 2D=2−1 Dirac fermions or
equivalently 2D=2 Majorana fermions [35].

S ¼
X
x;μ

χaðxÞημðxÞDS
μχ

aðxÞ ð5Þ

where we have relabeled χ̄ → χ on odd parity lattice sites.
This action is invariant under both discrete rotations and a
staggered shift symmetry:

χðxÞ → ξμðxÞχðxþ μÞ ð6Þ

where ξμ ¼ ð−1Þ
P

D
i¼μþ1

xi [35]. The reduced staggered
action is also invariant under a Uð1Þ symmetry

χðxÞ → eiαϵðxÞχðxÞ: ð7Þ

While the single flavor theory does not allow for a mass
term this can be remedied by introducing multiple flavors
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of reduced staggered field. To avoid fermion bilinear terms
the simplest model requires four reduced staggered fields
transforming under an SUð4Þ global symmetry

S ¼
X
x;μ

χaðxÞημðxÞDS
μχ

aðxÞ

−
G2

8

X
x

ϵabcdχ
aðxÞχbðxÞχcðxÞχdðxÞ: ð8Þ

Notice that the four fermion terms break the Uð1Þ sym-
metry down to Z4 which acts on the lattice fermions as

χðxÞ → iϵðxÞχðxÞ: ð9Þ

This combination of shift, Z4 and SUð4Þ symmetries forbid
any fermion bilinear operator from appearing in the
quantum effective action. One intuitive way to understand
how a fermion mass can arise in these models is to rewrite
the four fermion operator as

ϵabcdχ
aðxÞχbðxÞχcðxÞχdðxÞ ¼ ΩaðxÞχaðxÞ ð10Þ

corresponding to a bilinear mass term formed by pairing an
elementary fermion with a composite fermion ΩaðxÞ ¼
ϵabcdχ

bðxÞχcðxÞχdðxÞ. It is easy to see that a condensate of
this four fermion operator arises in the strong coupling limit
G → ∞ which can hence be interpreted as generating a
fermion mass in that same limit. Since one expects massless
fermions at G ¼ 0 there must be at least one phase
transition separating the massless and massive symmetric
regimes.2

Evidence of a continuous transition separating these
phases has been seen in both three and four dimensions
[23–28]. To underline these conclusions we include a plot
in Fig. 1 of the four fermion condensate in the four
dimensional model taken from our earlier paper [27].
The rapid increase of the condensate close to G ∼ 1 is
indicative of such a phase transition which is borne out by
further analysis as described in [27]. In this plot the
coupling κ that appears is the coefficient of an additional
scalar kinetic term which must be tuned in the four
dimensional theory to see this direct transition between
massless and massive symmetric phases. The appearance of
this additional operator is natural within a RG framework
since the scalar kinetic first becomes marginally relevant in
four dimensions.
These results encourage the belief that it is possible to

achieve symmetric mass generation in relativistic lattice
theories based on reduced staggered fermions even in four
dimensions. However, since reduced staggered fields yield
Dirac fermions in the continuum limit the mechanism

described above is only capable of generating mass in
vector-like theories. To target a chiral theory we need to
modify the quartic interactions in a manner that subjects
only a subset of the reduced staggered field to quartic
interactions. In a staggered theory there is a natural way to
do this by dividing the lattice field into its even and odd site
parity components. One is thus led to consider models in
which Yukawa interactions are applied only to say even
parity fields. We discuss the necessary structure for these
interactions in the next section.

III. MODIFIED QUARTIC INTERACTIONS

We consider an action of the form:

S ¼
X
x;μ

ημðxÞχaðxÞDS
μχ

aðxÞ

−
X
x

ðGPþ þ gP−Þ½χTðxÞΓAχðxÞ�2 ð11Þ

where ΓA are a set of antisymmetric matrices. As we will
show in the next section the requirement that we target
chiral fermions in the continuum limit requires the stag-
gered fields to transform in a real representation of any
underlying symmetry group. This will also guarantee the
absence of additional perturbative and ’t Hooft anomalies.
One simple way to ensure this constraint it to look for real
representations of a Euclidean rotation group. The smallest
such group corresponds to Spin(7) which possesses a real,
eight dimensional spinor representation. In this case the ΓA
appearing in Eq. (11) are taken to be the pure imaginary,
antisymmetric Dirac matrices appropriate for this repre-
sentation. They are given by

ΓA ¼ ðσ123; σ203; σ323; σ211; σ021; σ231; σ002Þ ð12Þ

where the notation indicates that the Dirac matrices ΓA are
built from tensor products of Pauli matrices. The resultant
term is precisely the Fikdowski-Kitaev interaction which is
known to be capable of generating mass for Majorana
fermions in one dimension [16].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5

σ +
2  -

 3
/2

G

L=8

κ=-0.05
κ=0.0

κ=0.05

FIG. 1. Four fermion condensate vs G.

2The exception to this is two dimensions where the four
fermion coupling is asymptotically free and one sees [29] a single
symmetric gapped phase for all nonzero lattice couplings.
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In practice we generate this term by coupling the bilinear
χTΓAχ to an auxiliary scalar σAðxÞ with a simple Gaussian
action

P
x
1
2
σ2A. Notice that if these scalar fields are taken

constant the Yukawa interaction just becomes a Majorana
mass term for 8 real staggered fermions. In principle these
eight real fermions can be organized into four complex
staggered fields so that the theory will be invariant under
the same Z4 symmetry seen in the previous model targeting
vectorlike theories. In the appendix we make another
argument for the appearance of such a Z4 symmetry based
on a novel anomaly of free staggered fermions propagating
on lattices with nontrivial topologies.
A crucial feature of the interaction we employ is that the

associated Yukawa coupling depends on the parity of a
lattice site. We will take G to be large to drive symmetric
mass generation in the even site parity sector while g is kept
small and serves merely to regulate a zero mode that
appears in the odd parity sector at g ¼ 0 corresponding to
the shift symmetry

χ−ðxÞ → χ−ðxÞ þ α−: ð13Þ

In the next section we will show that the remaining light
fermions after gapping are capable of being organized in
the continuum limit into 2 pairs of chiral fermions so that
the final theory will contain sixteen Weyl fermions. This
result is in accordance with the vanishing of a discrete spin-
Z4 anomaly for systems of Weyl fermions corresponding to
the transformations [20,22]:

ψL → −iψL ð14Þ

ψR → þiψR ð15Þ

and takes the form

ν4 ¼ nþ − n− mod 16 ð16Þ

where n� denote the number of left and right-handed Weyl
fields.
The Yukawa interaction we have described can be

reduced to the subgroups SpinðNÞ for 2 ≤ N < 7 by
truncating the index A to run from 1…N as described in
[19]. The resultant theories with reduced symmetry still
satisfy the anomaly cancellation condition and hence
should still be capable of symmetric mass generation.
Indeed, in the condensed matter literature the key feature
which makes this mechanism possible is the nondegener-
acy of the ground state of the FK interaction which
continues to hold even in the reduced symmetry cases.
Systems with a unique ground state cannot undergo
spontaneous symmetry breaking and hence offer the
possibility of symmetric mass generation.

IV. CHIRALITY AND THE CONTINUUM LIMIT

In this section we discuss the continuum limit and show
how the gapped theory can exhibit a chiral spectrum. As a
warm up let us first consider the free two dimensional
theory. We start by assembling the reduced staggered fields
in a unit square of the lattice into a 2 × 2 matrix field Ψ
labeled by both spinor and flavor indices. If we employ the
basis fI; σ1; σ2; σ1σ2g it is given by

Ψ¼
�ðχþðxÞþ iχþðxþ1þ2ÞÞ ðχ−ðxþ1Þþ iχ−ðxþ2ÞÞ
ðχ−ðxþ1Þ− iχ−ðxþ2ÞÞ ðχþðxÞ− iχþðxþ1þ2ÞÞ

�

ð17Þ

where the notation xþ 1 indicates the lattice site one step in
the 1-direction from site x etc. and we have suppressed the
Spin(7) indices for simplicity. Ψ is defined on a lattice with
twice the lattice spacing and we added explicit� subscripts
to χ indicating the site parity for clarity. Notice that this is a
chiral basis for the two dimensional Dirac matrices and
hence the upper row of this matrix contains right-handed
fields while the left-handed fields are located in the
lower row.
In addition, since we are employing real staggered fields

the matrix field Ψ satisfies a reality condition ψ� ¼ σ1ψσ1
corresponding to the fact that it depends on only four real
fields. This structure allows us to build two Majorana
spinors from Ψ

Ψ1 ¼
�
χ−ðxþ 1Þ þ iχ−ðxþ 2Þ
χ−ðxþ 1Þ − iχ−ðxþ 2Þ

�
ð18Þ

Ψ2 ¼
�
χþðxÞ þ iχþðxþ 1þ 2Þ
χþðxÞ − iχþðxþ 1þ 2Þ

�
: ð19Þ

Notice that each of these Majorana spinors depend only on
lattice fields of fixed parity. If we are successful in generating
a cutoff scale mass for the χþ modes we are left with a single
light continuum Majorana fermion corresponding to Ψ1. In
the g → 0 limit this becomes massless and is equivalent to a
single left-handed Weyl fermion.
There is a similar story in four dimensions where we can

build a 4 × 4 matrix field Ψ from the staggered fields in a
unit hypercube [34,36].3

Ψ ¼
X

fnμ¼0;1g
χðxþ nÞγxþn ð20Þ

where γnμ ¼ γn00 γn11 γn22 γn33 . In a chiral basis it is easy to see
that Ψ has the block structure

3In the lattice literature this is termed the spin-taste basis. It is
equivalent to the Kähler-Dirac representation used in lattice susy
constructions [37].
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Ψ ¼
�
E O0

O E0

�
ð21Þ

where the 2 × 2 block matrices E, E0 and O, O0 contain
only even and odd lattice site staggered fields. As in two
dimensions the use of a real staggered field implies that Ψ
obeys a reality condition:

Ψ ¼ γ2Ψ�γ2: ð22Þ

This in turn ensures that O0 ¼ −σ2O�σ2 and E0 ¼ σ2E�σ2.
This condition ensures that the action can be written just in
terms of the blocks O and E which depend only on the 16
real single component lattice fermions in an elementary
hypercube.
Let us assume that we are successful in removing the

even parity states from the low energy spectrum via the
strong Yukawa interaction. If Lorentz invariance is restored
in the continuum limit this would leave behind a pair of
Majorana spinors determined only by the odd parity lattice
fields:

Ψ1 ¼
�−σ2O�σ2

O

�
: ð23Þ

Notice that a conventional Majorana spinor can be written

�
iσ2χ�

χ

�
: ð24Þ

The form of Eq. (23) thus suggests we adopt a generalized
charge conjugation operation which acts both on the
Lorentz and flavor indices of a pair of Weyl spinors.
Again, if these Majorana spinors remain massless in the
continuum limit they can be replaced by the pair of left
Weyl fields contained in the block O.
Of course this analysis assumes we are able to give

masses to the even parity fields while leaving the odd parity
fields massless and noninteracting. We now give an argu-
ment in support of this conjecture. We start by rescaling the
fields according to:

χþ →
1

G
χþ χ− →

1

g
χ−

σAþ →
1

G
σAþ σA− →

1

g
σA− ð25Þ

The rescaled action (suppressing the Spin(7) indices) then
reads:

S ¼ 1

x

X
x

�
χþημDμχ− þ yχþΓAχþσAþ

þ 1

y
χ−ΓAχ−σ

A
− þ 1

2
yðσAþÞ2 þ

1

y
ðσA−Þ2

�
ð26Þ

where x ¼ Gg and y ¼ g
G. The equations of motion for the

staggered fields are then

ημDμχ− þ yðχþΓAχþÞΓAχþ ¼ 0 ð27Þ

ημDμχþ þ 1

y
ðχ−ΓAχ−ÞΓAχ− ¼ 0: ð28Þ

In the limit y → 0 we see that the odd site field χ−,
corresponding to the blocks ðO;O0Þ, is weakly coupled
while the even parity field χ−, represented by ðE;E0Þ, is
strongly coupled. In the next section we will provide
numerical evidence that the fields in ðE;E0Þ are in fact
gapped and decoupled from the long wavelength modes
given by the blocks ðO;O0Þ.

V. EVIDENCE FOR SITE PARITY DEPENDENT
MASS GENERATION

In this section we present preliminary numerical evi-
dence that the model is indeed capable of generating mass
for the even site fermions without generating symmetry
breaking fermion bilinear condensates. To avoid the need
for tuning a scalar kinetic term results are presented only
for two dimensions.4 However, both the structure of the FK
interaction, the argument for symmetric mass generation,
and appearance of chiral fermions in the continuum hold in
both the two and four dimensional models.
We use a RHMC algorithm to simulate the system. For

more details of our numerical methods see Appendix B.
Measurements of the phase of the Pfaffian resulting from
fermion integration show an absence of a sign problem for
all the ensembles presented in this paper. Figure 2 shows a
plot of the vevs of the odd and even four fermion operators
as a function of the even site coupling G. The odd site
coupling is fixed at g ¼ 0.01. We use lattices of size L ¼ 8
and L ¼ 16 and antiperiodic boundary conditions for the
fermions in the (Euclidean) temporal direction. Notice that
the two vevs differ by four orders of magnitude. We can
extract expressions for these condensates from the fermion
propagator which is given by inverting the fermion matrix
M which is given in odd/even block form by

M ¼
�
GΣþ ημDμ

ημDμ gΣ−

�
ð29Þ

where Σ� ¼ σA�ΓA. This yields

hχχi ¼
�
A B

B C

�
ð30Þ

where

4Work in four dimensions is in progress and will be reported in
a separate publication
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hχþχþi ¼ A ¼ gΦþ
hχ−χ−i ¼ C ¼ GΦ−

hχþχ−i ¼ B ¼ Σ−1þ ημDμΦ− ð31Þ

where

Φ� ¼ ðxΣ� − ημDμΣ−1∓ ημDμÞ−1: ð32Þ

For x ≪ 1 this yields

hðχþΓχþÞ2i ¼ g2

hðχ−Γχ−Þ2i ¼ G2: ð33Þ

The dashed line shows a fit to the data assuming the
coupling constant dependence shown in Eq. (33). In the
same limit the off-diagonal propagator takes the free field
form

hχþχ−i ¼
ημDμ

Δμ2
: ð34Þ

To gain more understanding of the implications of this
asymmetric four fermion condensate it is useful to look at

the spectrum of the fermion operator. Figure 3 shows a plot
of the matrix element of the site parity operatorP

x ϕ
2
nðxÞϵðxÞ for each eigenstate ϕnðxÞ of the fermion

operator as a function of its corresponding eigenvalue λn for
L ¼ 8 atG ¼ 5.0. The symmetry in the plot just reflects the
fact that the fermion eigenvalues come in equal and
opposite pairs as expected for an antisymmetric matrix.
Clearly the low lying eigenstates have odd parity ϵðxÞ ∼ −1
while the states with large eigenvalue have even parity
ϵðxÞ ∼þ1. This conclusion is reinforced if we look at the
histogram of the values of ϵðxÞ shown in Fig. 4 which
shows that the distribution of values of hnjϵðxÞjni cluster
increasingly around�1 as G increases. As G → 0 it is easy
to verify that hnjϵðxÞjni ¼ 0 for all modes i.e., the double
peaks merge back into a single peak at the origin. This is to
be expected since ϕnðxÞ and ϵðxÞϕnðxÞ are orthogonal
eigenvectors of the fermion matrix at G ¼ 0 which follows
from the fact that ϵ anticommutes with the staggered
fermion operator.
It is instructive to also examine the lowest eigenvalues of

the fermion operator M as the coupling G is varied. This is
shown in Fig. 5 which plots the lowest 32 eigenvalues ofM
for three different values of the coupling G on a 82 lattice
with periodic boundary conditions and g ¼ 0.01. Each
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FIG. 2. hðχTΓχÞ2i vs G for L ¼ 8, 16.
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eigenvalue is given a unique label in the range 0–95 with
the first 32 eigenvalues corresponding to G ¼ 0.01, the
next 32 to G ¼ 0.1 and the final 32 to G ¼ 1.0. Notice
again that the eigenvalues come in λ;−λ pairs as expected
from antisymmetry of M. At the smallest coupling we see
that all 32 eigenvalues lie close to zero. This is to be
expected since eight flavors of two dimensional massless
real staggered fermions should have 4 × 8 ¼ 32 exact
zeroes. However as G is increases half of these would
be zero modes are progressively lifted away from the origin
because of the strong Yukawa interaction. Indeed if we are
successful at gapping half of the modes we would expect
only sixteen would-be zero modes to remain corresponding
to eight Weyl fermions in two dimensions. This is exactly
what we see happens in this plot as G increases.
Of course we are most interested in whether the low

lying non-zero eigenvalues of the gapped theory corre-
spond to what one would expect for a Weyl fermion.
Figure 6 shows the lowest 256 eigenvalues ofM atG ¼ 0.5
and g ¼ 0.001 for an 82 lattice with periodic boundary
conditions. For comparison we also plot the spectrum of the
free reduced staggered fermion operator for the same
lattice. While we see a rough matching of the spectrum
to that of a free fermion the correspondence is not perfect
which presumably reflects the effects of the fluctuating
scalar field which has a small but nonzero coupling to the
odd parity fermions. However, in any case, one should be
careful in reading too much from this comparison; the
continuum Weyl fields are to be constructed from the odd
parity staggered fields in each elementary square of the
lattice and hence reside on a lattice with twice the original
lattice spacing. It is the spectrum of the effective quadratic
operator coupling these odd parity fields on this coarser
lattice that is of primary interest. Construction of the
effective quadratic operator governing these Weyl fermions
on the coarser lattice is a future goal of our work and will be
necessary to be sure the theory flows to a chiral theory in
the continuum.
The other key issue we would like to understand better is

whether the system develops a fermion bilinear condensate.

If it does the entire approach will fail. To see this go back to
the form of the action written in Eq. (25) and replace σA by
a constant. Operating with ημDμ on the equation of motion
for the light field yields

D2
μχ− − σ2χ− ¼ 0 ð35Þ

which shows that the χ− field picks up a μ independent
mass which is equal to that for the χþ field and indicates
that the continuum limit will correspond to a Dirac fermion.
To test for this we have focused our attention on two

particular bilinear operators—the site operator

O1 ¼ m0hχTΓ0χi ð36Þ

and the link operator [34,35]

O2 ¼ m1

X
μ

χTðxÞχðxþ μÞϵðxÞξμðxÞ: ð37Þ

A vev for the former would spontaneously break Spin(7)
and the Z4 symmetry while a vev for the latter would
explicitly couple the even and odd sectors. To test for these
scenarios we have added explicit sources to the action and
measured the vevs for several lattice volumes as the sources
are sent to zero. In systems exhibiting spontaneous sym-
metry the corresponding vev develops a strong volume
dependence as the source is sent to zero allowing for a
nonzero vev to survive in the thermodynamic limit.
However, as is clear in Fig. 7 and Fig. 8 which employ
G ¼ 5.0 and g ¼ 0.01 no such strong volume dependence
is seen for either bilinear and the vevs go smoothly to zero
with vanishing external source. We thus conclude that there
is no evidence for the formation of nonvanishing fermion
bilinears at least in the two dimensional model.
It is perhaps useful to pause at the point to reiterate the

basic strategy of this approach. In domain wall fermion
approaches to chiral fermions one is able to separate the
chiral modes in an extra fifth dimension. Here, in contrast,
one uses Yukawa interactions to separate the eigenstates of
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the parity operator ϵðxÞ according to their eigenvalue
(essentially separating them in momentum space). Of
course for the lattice theory to target a chiral theory in
the continuum limit requires that there be a correlation
between ϵðxÞ and γ5. For regular staggered fermions
containing both χ and χ̄ at each site there is no simple
correspondence between the site parity operator ϵðxÞ and
the continuum chirality operator γ5—lattice fields with a
given value of ϵðxÞ give rise to both left and right-handed
continuum fermions. However, the correspondence
becomes closer if one restricts to real staggered fields
where the discussion in Sec. IV shows that ϵðxÞ becomes a
proxy for γ5 at nonzero lattice spacing. However, even in
that case, the continuum limit of the noninteracting theory
is still vectorlike since it contains equal numbers of even
and odd lattice fields leading to equal numbers of left and
right-handed continuum fermions. If we now switch onG it
is no longer true that ϵðxÞ is a proxy for γ5 for the even
parity fields. But it continues to be true for the odd parity
fields since they are not subject to the Yukawa interaction.
If symmetric mass generation occurs and the even parity
modes are removed from the low energy spectrum and
given a mass of order the cutoff we will be left with a theory
that targets fermions of fixed chirality in the continuum
limit. This is the strategy being pursued in this paper.

VI. SUMMARY AND PROSPECTS

In this paper we have described a new lattice fermion
mirror model which employs reduced staggered fermions
transforming in the real eight dimensional chiral represen-
tation of a Spin(7) symmetry group. Interactions are
introduced via Yukawa interactions of Fidkowski-Kitaev
type on even parity lattice sites which we argue are capable
of generating mass for half of the lattice fermions without
producing symmetry breaking bilinear fermion conden-
sates. Gapping fermions without breaking symmetries is
called symmetric mass generation.
If these Yukawa couplings are able to generate cutoff

scale masses for the even parity modes we argue that the

remaining odd parity modes can be reorganized, in four
dimensions, into sixteen free Weyl fermions in the con-
tinuum limit. This number of Weyl fermions is precisely
what is needed to cancel off a discrete spin-Z4 anomaly in
the continuum theory and indeed the vanishing of this
anomaly is a necessary condition to decouple the mirror
fermions via symmetric mass generation. Indeed, with
hindsight, the failure to cancel off these discrete anomalies
was one of the primary reasons that many early efforts to
construct lattice mirror models failed. In the appendix we
give an argument that this fermion counting is also
consistent with the cancellation of a novel gravitational
anomaly that is unique to a generalization of staggered
fermions propagating on lattices of arbitrary topology.
We show numerical evidence in favor of this scenario

from simulations in two dimensions. The structure of this
interaction, the arguments for symmetric mass generation,
and the chiral properties of the continuum limit are identical
to the case of four dimensions. In two dimensions a reduced
staggered field contains four real degrees of freedom in a
unit cell and hence yields a single Dirac fermion in the
continuum limit. Since the model contains eight copies of
this field the continuum limit of the free theory can be
rewritten in terms of eight left and eight right-handed Weyl
fermions. If symmetric mass generation occurs and Lorentz
invariance is restored, the gapped theory will possess just
eight left Weyl fermions in the continuum limit—a number
which matches that required for cancellation of another
discrete anomaly arising from chiral fermion parity
[17,18,22,38]. For large Yukawa couplingG our simulations
shows that the low lying modes of the fermion operator do
indeed have odd parity while the even parity modes are
heavy. Furthermore, we observe that the number of zero
modes of the fermion operator agrees with what is expected
for 8 copies of a free Weyl fermion. Assuming Lorentz
invariance is restored these ingredients suggest that freeWeyl
fermions will indeed be recovered in the continuum limit.
It also seems likely that a similar construction may work

in three dimensions. In this case the unit cube on the lattice
contains eight real staggered fields. Gapping say the even
site parity fields would leave four light fields which can be
assembled into two Majorana fermions in the continuum
limit. Since these transform in an eight dimensional
representation the continuum limit would then contain
sixteen Majorana fermions again consistent with the
expectation from continuum time reversal invariance.
In this paper the Spin(7) symmetry is a global symmetry.

However, it can be straightforwardly gauged to yield a
chiral lattice gauge theory in the continuum limit. One
merely replaces the symmetric difference operator by the
appropriate gauge covariant difference operator acting on
fermions in the eight dimensional representation of Spin(7).

DcovχðxÞ ¼
1

2
ðUμðxÞχðxþ μÞ −U†ðx − μÞχðx − μÞÞ ð38Þ
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where UμðxÞ ¼ eiωAB½ΓA;ΓB� are the gauge links for the real
eight dimensional chiral representation of Spin(7). The
interaction terms being purely local are already Spin(7)
gauge invariant.
Of course, the question arises as to how one should take

the continuum limit. Naively one would expect to have to
search for a continuous phase transition in the theory as was
done for the vectorlike case. However, while such a phase
transition would presumably be needed to take a continuum
limit for the strongly interacting sector, it does not appear
necessary if the only fields of interest lie in the non-
interacting odd parity sector. Indeed it appears that keeping
x ¼ gG ≪ 1 fixed while y ¼ g

G → 0 may be sufficient.
SinceG is naively an irrelevant coupling in four dimensions
with mass dimension minus one could imagine scaling its
bare coupling G ∼ L as L → ∞ to retain a cutoff scale four
fermion condensate for the even parity fields as the lattice
size is increased. To keep x fixed one would then simulta-
neously scale g ∼ 1

L. We are currently exploring this limit in
more detail.
Some caveats are in order. We have assumed Lorentz

invariance is restored in the continuum limit in order to
identify the chirality and flavor representation of the
fermions arising from the underlying staggered lattice
fields. More specifically we have assumed that the low
lying lattice modes organize themselves into Weyl spinors
as the lattice spacing approaches zero. While this is
consistent with our counting of degrees of freedom and
the constraints from discrete anomalies it is a stronger
requirement than simply the restoration of rotational
invariance. It should be checked in future numerical work.
In addition, while we have observed no sign problems for
the simulations reported in this paper a sign problem will
likely return once one gauges the Spin(7) flavor symmetry
and/or takes the continuum limit. Finally, while we have see
no evidence for the formation of off-site fermion bilinear
condensates in two dimensions, this must be carefully
checked in four dimensions.
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APPENDIX A: ANOMALIES AND STAGGERED
FERMIONS

There is another way of understanding why the lattice
theories studied in this paper are subject to strong con-
straints on their fermion content. To exhibit these con-
straints it is necessary to generalize staggered fermions to
lattices with non trivial topology. The starting point is to

recognize that staggered fermions can be thought of as a
particular discretization of Kähler-Dirac fermions—albeit
one suitable only for regular toroidal lattices [39].
The Kähler-Dirac equation offers an alternative to the

Dirac equation for curved spaces and reduces to the latter
for flat spaces where it describes multiples of Dirac
fermions (four flavors of Dirac fermion in four dimen-
sions). It takes the form

ðd − d† þmÞΩ ¼ 0 ðA1Þ

where Ω is a collection of antisymmetric tensor fields over
the space and d, d† are the exterior derivative and its
adjoint. In flat space the tensor fields are given in terms of
the spinor components of this set of Dirac fermions and the
antisymmetry of the forms reflects the antisymmetric
properties of the Clifford algebra associated to the Dirac
gamma matrices.
A general procedure for discretizing the Kähler-Dirac

equation on simplicial lattices was given in [40]. First, the
antisymmetric component fields in Ω are placed on p-
simplices in an (oriented) triangulation of the space. Thus
lattice fields are placed on sites (0-simplices), links (1-
simplices), triangles (2-simplices) etc. Next, a discrete
boundary operator ∂ is defined whose action on some
p-simplex decomposes it into an oriented list of its (p − 1)-
simplex boundary components. It can hence be used to
create a map between p-simplex fields and (p − 1)-simplex
fields. In fact this boundary operator is the discrete analog
of the adjoint of the exterior derivative. A similar lattice
operator—the co-boundary operator ∂̄ when acting on a p-
simplex returns an oriented list of (pþ 1)-simplices that
contain that p-simplex in their boundary. The coboundary
operator replaces the exterior derivative and yields a map
between p-simplex fields and (pþ 1)-simplex fields. The
massless discrete Kähler-Dirac equation then takes the
form

ð∂ − ∂̄ÞΩ ¼ 0: ðA2Þ

Solutions of this equation go smoothly over into their
continuum cousins as the lattice spacing is reduced—there
is no additional fermion doubling.
In [41] it was shown that the corresponding Kähler-Dirac

action—both continuum and discrete—is invariant under a
Uð1Þ symmetry which distinguishes tensor fields with an
even or odd number of indices. It acts as

Ω → eiαΓΩ ðA3Þ

Ω̄ → Ω̄eiαΓ ðA4Þ

where Γ anticommutes with the lattice Kähler-Dirac oper-
ator and takes the values �1 on even and odd forms. This
transformation is the analog of eiϵðxÞα for staggered
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fermions on a torus but works on an arbitrary random
triangulation of any topology. However, as was shown in
[41] this symmetry is anomalous with the resulting partition
function transforming by an overall phase eiαχ depending
only on the Euler character of the triangulation which is
given by

χ ¼ N0 − N1 þ…ð−1ÞpNp þ � � � þ ð−1ÞDND ðA5Þ

Notice that this result holds equally well in the continuum
for Kähler-Dirac fermions and shows that the anomaly can
be computed exactly in the lattice theory since it depends
only on the topology of the background space which can be
captured exactly by the lattice. It is an example of an
anomaly which does not require the presence of an infinite
number of degrees of freedom.
Applying this result to the sphere S2n, which we can

think of as representing a compactification of R2n, one finds
that this Uð1Þ symmetry is broken to Z4 in even dimen-
sions. Thus, while a fermion bilinear operator is prohibited
by this symmetry, it is possible to introduce four fermion
operators. If want to retain Lorentz invariance we are forced
to consider theories with at least four flavors of Kähler-
Dirac field. If we restrict to real representations these four
complex Kähler-Dirac field can be decomposed into eight
real Kähler-Dirac fields which are equivalent to eight
reduced staggered fermions on a torus. This is precisely
the field content we argued was necessary to formulate a
mirror model capable of symmetric mass generation and
yields a theory after gapping with exactly eight and sixteen
massless Majorana fermions in two and four dimensions
respectively. This suggests that there is a connection
between the spin-Z4 symmetry of the continuum and this
Z4 symmetry of Kähler-Dirac fermions.

APPENDIX B: NUMERICAL METHODS

If we integrate out the fermions we obtain a Pfaffian
PfðMÞ. Provided this is positive definite we can replace it
by det ðM†MÞ14. In practice the latter is generated by
integrating over a set of commuting pseudofermion fields
with action

SPF ¼ ϕTðM†MÞ−1
4ϕ ¼

XN
i

ϕT

�
αi

M†M þ βi

�
ϕ ðB1Þ

where ϕaðxÞ is vector indexed by the lattice sites and
Spinð7Þ label. The second expression represents a rational
fraction approximation to the fractional power of the
matrix. The coefficients αi and βi are determined for a
given number of terms N by the remez algorithm—see
[42]. In practice we set N ¼ 18 and tolerate a relative error
of 10−8 over the eigenvalue interval 0.00000001–1000.0.
We use a multi-timestep Omelyan integrator to generate an
auxiliary classical dynamics that is used to sample the
partition function of the system where the configurations
are subject to a Metropolis test after each molecular
dynamics trajectory. The time consuming part of this
evolution corresponds to the calculation of the force terms
arising from the pseudofermion action, For these we use a
multi-shift CG solver. We have implemented a parallelized
version of this algorithm by using the MILC communica-
tion libraries and the code runs efficiently on clusters with
dedicated networking.
Our results derive from ensembles of 2000 configura-

tions for a given lattice size and set of couplings with
measurements taken every 10 sweeps. Errors are assessed
as usual by a jackknife procedure and a set of Z2 stochastic
sources are used to estimate condensates.
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