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We present results for the 2-jettiness differential distribution for boosted top quark pairs produced in
eþe− collisions in the peak region accounting for QCD large-logarithm resummation at next-to-next-to-
next-to-leading logarithmic order and fixed-order corrections to matrix elements at next-to-next-to-leading
order calculated in the framework of soft-collinear effective theory and boosted heavy quark effective
theory. Electroweak and finite-width effects are included at leading order. We study the perturbative
convergence of the cross section in the pole and MSR mass schemes, with and without soft gap
subtractions. We find that there is a partial cancellation between the pole mass and soft function
renormalons. When renormalon subtractions concerning the top mass and the soft function are
implemented, the perturbative uncertainties are, however, systematically smaller and an improvement
in the stability of the peak position is observed. We find that the top MSR mass may be determined with
perturbative uncertainties well below 100 MeV from the peak position of the 2-jettiness distribution. This
result has important applications for Monte Carlo top quark mass calibrations.
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I. INTRODUCTION

The top quark mass mt is one of the most important
parameters of the StandardModel (SM). In conjunction with
theHiggs bosonmass, it is an essential input for studies of the
stability of the SMelectroweak vacuum [1–6], and it plays an
important role in precision electroweak fits [7]. The most
precise determinations of the top mass to-date come from
so-called “direct measurements,” that are based on the
kinematic reconstruction of the final-state top quark decay
products and the comparison of the resulting kinematic
distributions with parton-shower Monte Carlo (MC) simu-
lations. The current world average for direct measurements
readsmMC

t ¼ 172.76� 0.30 GeV [8] andprojections for the
HL-LHC indicate that uncertainties as small as 200MeV can
be reached for individual measurements [9].

The interpretation of these measurements is, however,
(as reviewed below) impacted by an additional ambiguity
from the lack of understanding of the field-theoretic
meaning of the top mass parameter encoded in the MC
event generators [9–12]. This ambiguity is not yet precisely
quantified and should be considered at the GeV level, i.e., it
is comparable to the uncertainties quoted by the exper-
imental analyses [13]. Carrying out first-principle theoreti-
cal predictions of kinematic distributions that exhibit high
sensitivity to the top mass is a challenging program in light
of the disparate energy scales that enter the top production
and the measurements on the decay products. These lead to
large logarithms of ratios of these scales that require
resummation. Furthermore, due to nonperturbative correc-
tions it is necessary to take into account the hadronic nature
of the final state. While these effects can be accounted for
via MC event generators, it comes at the cost of the limited
perturbative [14,15] and conceptual precision of the MC
description of perturbative and nonperturbative effects.
This is the origin of the interpretation problem of the
top mass parameter employed in the MC generators (see
Ref. [13] for further discussion).
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In order to achieve a precise top quark mass determi-
nation we therefore need an observable that has the required
kinematic sensitivity and is theoretically tractable, such that
(a) it can be reliably calculated in perturbation theory
within a specific short-distance top quark mass scheme, and
(b) nonperturbative effects can be consistently quantified
from a field theory perspective. Such calculations can be
carried out in the framework of effective field theories
(EFTs) that are systematically improvable in their power-
counting expansion, as well as in perturbation theory where
resummation of large logarithms now reaches next-to-next-
to-next-to-leading logarithmic (N3LL) accuracy for a num-
ber of applications [16–19]. Moreover, the framework of
EFTs offers ways to rigorously describe and quantify
nonperturbative effects due to hadronization [20–23].
Therefore, for such an observable, EFT-based calcula-

tions may naturally incorporate all the distinct features of
parton-shower MC simulations while retaining a systematic
connection to field theory and thus theoretical control.
Hence, EFTs offer promising prospects for precision
collider physics and for developing diagnostic tools for
improving MC simulations [23,24]. Such a framework has
recently been applied to the broad program of top quark
mass measurements, including a factorized description of a
hadron-level differential top jet mass spectrum for jets
initiated by boosted top quarks in the peak region at a future
eþe− collider [25,26], boosted top jets with soft drop
grooming at the LHC [23], a calibration of the MC top
quark mass parameter [27] (based on the work of
Refs. [25,26]), and parton-level studies of the correlation
of the MC top quark mass parameter with the parton shower
evolution cutoff [15]. The sensitivity of event-shape var-
iable definitions with respect to quark mass effects has also
been recently studied in Refs. [28,29] in the context of
fixed-order and resummed perturbation theory.
In this work we continue this effort by extending the

perturbative calculations of boosted tops in the peak region at
an eþe− collider from the N2LL resummation of logarithms
and OðαsÞ fixed-order matrix elements used in Ref. [27],
to N3LL resummation with next-to-next-to-leading-order
(NNLO) [Oðα2sÞ ] fixed-order matrix elements.

A. Status of top mass measurements

Recent direct top quark mass measurements have yielded
the results mMC

t ¼ 172.26� 0.61 GeV (CMS) [30] and
mMC

t ¼ 172.69� 0.48 GeV (ATLAS) [31] at the LHC, and
mMC

t ¼ 174.34� 0.64 GeV [32] at the Tevatron. The top
mass superscript MC signifies that the direct measurements
extract the top quark mass parameter coded in the MC
generators used for the analyses. The lack of understanding
of a precise field-theoretic definition of mMC

t (and hence its
relation to short-distance masses defined in the context of
quantum field theory, which is the preferred input param-
eter for high-precision theoretical predictions) results in an

additional conceptual uncertainty in how mMC
t should be

related to the pole mass mpole
t or a short-distance mass such

as the MS mass mð6Þ
t ðμÞ or the MSR mass mMSR

t ðRÞ
[33–35]. This ambiguity is not included in the individual
quoted experimental uncertainties but should be considered
to be (at least) comparable [13]. Analyses that can shed light
on a more complete and quantitative understanding of these
issues, as well as more first-principle aspects of MC event
generators, are underway [15,27,36]. Other recent related
studies include analyses of the theoretical limitations con-
cerning the modeling of the dynamics in the top quark
production and decay [37], finite lifetime [38], hadroniza-
tion effects [39], and observable infrared sensitivity [40].
The so-called top quark pole-mass measurements based

on the total cross section [41], for which precise theoretical
predictions expressed in terms of the pole mass renorm-
alization scheme have been employed, have generally
yielded results with larger uncertainties than the direct
measurements: mpole

t ¼ 172.9þ2.5
−2.6 GeV (ATLAS) [42] and

mpole
t ¼ 172.7þ2.4

−2.7 GeV (CMS) [43]. The relatively large
errors result from the uncertainty in the normalization of the
inclusive cross section (both in the measurement and the
theoretical prediction) and its relatively weak dependence
on mt. Employing differential cross sections such as
leptonic distributions, and using matched NLOþ PS (par-
ton shower) MC simulations results in an enhanced top
mass sensitivity [44]. Such differential measurements have
been included in the world averagempole

t ¼172.4�0.7GeV
[8] for the pole mass measurements which is in good
agreement with the corresponding world average of direct
measurements mentioned above. Recent precision mea-
surements, also using matched NLOþ PS MC simulations
for the theoretical predictions, accounting for tt̄þ jet
final states [45] (mpole

t ¼ 171.1þ1.2
−1.0 GeV [46]) and the

reconstructed top-antitop invariant mass distribution
(mpole

t ¼ 170.5� 0.8 GeV from a simultaneous αs fit
[47]) have comparable uncertainties but have, however,
resulted in significantly lower mt values, posing some
tension that may partly arise from missing theoretical input
in predictions for the corresponding differential cross
sections [13,48,49].
It is well known that the pole mass additionally suffers

from a conceptual OðΛQCDÞ renormalon ambiguity which
in dedicated analyses was estimated to amount to 110 MeV
in Ref. [50] and to 250 MeV in Ref. [35].1 This ambiguity
does not represent an uncertainty due to perturbative
truncation or limited information, but signifies the principle
conceptual imprecision in assigning a definite value to
mpole

t . The ambiguity is not related to any physical effect,

1The quoted numbers for the pole mass renormalon ambiguity
arise in the context of finite bottom and charm masses. When
charm and bottom quarks are treated as massless quarks, the
infrared sensitivity decreases and pole mass ambiguity is smaller.
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but inherent to the unphysical nature of the pole mass
renormalization condition. It can therefore be avoided by
expressing cross sections obtained in perturbation theory in
terms of a short-distance mass scheme at an appropriate
renormalization scale, which can also improve the overall
convergence of the perturbative series at the first few
orders. As far as the spread of the above-mentioned recent
pole mass measurements is concerned, the pole mass
renormalon ambiguity likely plays no role, because it is
smaller than the quoted uncertainties of these measure-
ments. For the direct top quark mass measurements, the
pole mass renormalon problem has been discussed
intensely in the context of the frequently used approach
of identifying mMC

t and mpole
t . However, in Ref. [15] it was

shown analytically for the simple case of the 2-jettiness
distribution in eþe− → tt̄þ X, that the quark mass param-
eter associated to a NLL-precise parton shower is in general
not the pole mass, but a low-scale short-distance mass that
depends on the value of the shower cut and may differ from
the pole mass by an amount larger than the pole mass
ambiguity.2 So the problem of how to properly interpret the
MC top quark mass mMC

t in terms of a well-defined and
ambiguity-free field theory mass is not related to the pole
mass renormalon ambiguity, but to the limited theoretical
precision of the state-of-the-art MC event generators and to
ignorance concerning MC systematics.
Motivated by the interpretation issues of the direct top

mass measurements and the still large uncertainties in the
pole mass measurements from inclusive and differential
cross sections, a number of alternative methods to measure
mt have been proposed, which are based on differential
cross sections with respect to variables constructed from
top decay products exhibiting strong kinematic top mass
sensitivity. The observables these analyses are based on
include the MT2 variable and variants of it [51,52], the
lepton b-jet invariant mass [53], the shape of b-jet and
B-meson energy distributions [54], and the J=ψ and lepton
invariant masses [55,56]. Conceptually, these observables
are governed by parton shower dynamics as well as various
nonperturbative effects, in a way analogous to the direct
reconstruction method (albeit with differing systematics).
This is because they are also based on the idea of assessing
the kinematics of decaying (colored) top quark particles
through simulations obtained from parton-shower MCs.
Their reliance on these MCs further makes their potential
extension to higher logarithmic precision nontrivial, as the
theoretical precision of parton showers is quite observable
dependent. Additionally, the nonperturbative effects of
hadronization are accounted for through a multiparameter

MC hadronization model. Here, since a systematic way to
quantify the intrinsic MC hadronization uncertainty does
not yet exist, uncertainties are typically being estimated by
comparing predictions based on different models.

B. Top mass determination using
effective field theories

In Refs. [25,26] a framework of EFTs was developed to
describe boosted top quarks in the peak region at a future
eþe− collider. Using soft-collinear effective theory (SCET)
[57–61] a factorization theorem for the double-differential
hemisphere-mass cross section in eþe− → tt̄þ X was
derived in the boosted top quark limit, with center-of-mass
energy Ecm ¼ Q ≫ mt. The two invariant masses Mt and
Mt̄ are defined using all particles in each of the two
hemispheres that are determined by the event’s thrust axis
described below. The peak refers to the region where the
Mt −Mt̄ double-differential distribution exhibits the hemi-
sphere-mass top and antitop resonances. One key feature of
this factorization formula is that the most important
hadronization effects are parametrized via a convolution
with a top-mass- and Q-independent nonperturbative shape
function, which is field-theoretically defined from a vac-
uum matrix element of Wilson lines. The universality of the
factorization formula states that, at least in principle, data
for massless dijet events (obtained even at past experiments
such as LEP) could be used to fix the nonperturbative shape
function and to make the analysis independent of estimates
of nonperturbative corrections obtained from MC event
generators. The other key feature is that the dependence
on the renormalization scheme of the top quark mass is
fully controlled so that one can make and test predictions in
any scheme to the extent that higher-order perturbative
corrections are incorporated. In the tail of the distribution an
operator expansion can be applied such that the nonpertur-
bative corrections are dominated by a single parameter.
The dijet hemisphere-mass cross section exhibits a clear

peak at the top and antitop resonances which are directly
sensitive to the value of the top quark mass. However, the
resonance location in Mt and Mt̄ is not directly at the top
quark mass due to radiative effects related to ultra-collinear
and large-angle soft radiation, as well as hadronization and
finite-width effects. The ultra-collinear radiation refers to
radiation that is soft in the (anti)top quark rest frame, but
becomes collinear due to the (anti)top quark boost. In the
factorization theorem this ultra-collinear radiation is
described by boosted versions of heavy quark effective
theory (HQET) [62–66], called boosted HQET or simply
bHQET.3 The typical scales of the ultra-collinear radiation
in the peak region range between the top width Γt and
∼10 GeV, which also quantifies the typical “off-shellness”2In Ref. [15] it was shown that the quark mass parameter

associated to a NLL-precise parton shower based on the coherent
branching algorithm with shower cutQ0 is aQ0-dependent short-
distance mass mCB

t ðQ0Þ that differs from the pole mass by the
amount mCB

t ðQ0Þ −mpole
t ¼ −ð2=3ÞαsðQ0ÞQ0.

3Here the letter “b” in bHQET stands for the fact that the two
HQET theories for the top and antitop quarks are boosted in
opposite directions.
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∼ðq2 −m2
t Þ=mt of the decaying top quarks. The top mass

dependence of the location and shape of the observable
peak, along with the top quark scheme dependence, is
specified by ultra-collinear radiation effects which can be
calculated perturbatively. Furthermore, the leading-order
electroweak effects come from the top width which is fully
encoded in Breit-Wigner-modified top quark propagators.
The large-angle soft radiation is only sensitive to the
collinear top quark color flow (which is fully taken over
by the top decay products in the boosted limit) and
describes soft momentum exchange between the two
hemispheres. It is governed by scales below the top quark
width, and its nonperturbative contributions constitute the
shape function. Due to the boost of the top quarks, the
effect of large-angle soft radiation on the peak locations is
enhanced by a factor Q=mt.
The above-mentioned framework was employed in

Ref. [27], where a calibration of the mMC
t parameter in

Pythia 8.205 was carried out using the N2LLþOðαsÞ
prediction for the 2-jettiness event shape in eþe− → tt̄þ X
collisions defined as

τ2 ≡ 1 −max
n̂t

P
ijn̂t · p⃗ij
Q

; ð1Þ

where the sum runs over all produced particles i in the event
and n̂t is the thrust axis that maximizes the sum in Eq. (1).
Since a sum over all final-state momenta is involved in
Eq. (1), we restrict ourselves to hadronically decaying top
and antitop jets, which is accomplished by simply includ-
ing the corresponding branching fraction in the Born cross
section σ0 in the factorization formula discussed below. In
the limit τ2 − 2m2

t =Q2 ≪ 1, i.e., when focusing on the peak
region, the event shape corresponds (up to power correc-
tions) to the sum of the hemisphere-invariant masses,
such that

τ2 ¼
M2

t þM2
t̄

Q2
þOðτ22Þ; ð2Þ

and thus has the same kinematic sensitivity to the top mass
as the double-differential cross section considered in
Refs. [25,26]. Being a global event shape, the τ2 differential
cross section is furthermore free from nonglobal logarithms
[67,68]. The results of the calibration carried out in
Ref. [27] showed that mMC

t in Pythia 8.205 cannot be
simply identified with the pole mass, but it is numerically
close to the MSR massmMSR

t ð1 GeVÞ. Compatible numeri-
cal results were obtained in the analysis of jets from top
quarks produced in pp collisions with soft drop grooming
in Ref. [36] based on theoretical calculations at NLL order.
In this work we improve the calculation of the 2-jettiness

event shape cross section in eþe− → tt̄þ X by including
NNLO fixed-order matrix elements with N3LL resumma-
tion [ referred to as N3LLþOðα2sÞ ]. By now, all the

ingredients that enter the factorization formula in Eq. (3)
below are individually known to the accuracy needed to
achieve this precision for the 2-jettiness cross section, in
particular the 2-loop heavy quark jet function [69], full
2-loop thrust soft function [70,71], and the N3LL result for
the Wilson coefficient for the matching at the top mass
scale [72]. We also include the recently calculated analytic
4-loop result for the cusp anomalous dimension [73], which
despite having a tiny numerical impact, is an important
formal ingredient to obtain N3LL accuracy. We consistently
combine these ingredients to obtain the N3LLþOðα2sÞ
boosted top cross section fully analytically, and study the
convergence of the resummed perturbation theory. We
exclusively consider the eþe− 2-jettiness cross section in
the boosted and bHQET limits where power corrections in
mt=Q and in the top quarks’ off-shellness ∼ðq2 −m2

t Þ=mt
are neglected. These corrections, even though they are
formally power-suppressed, can be non-negligible for
phenomenological analyses in the peak region. With the
inclusion of these power corrections, the results obtained in
this article will serve to improve analyses such as the top
quark mass calibration carried out in Ref. [27], which we
leave to future work.
The outline of the paper is as follows. We first present the

factorization formula in Sec. II, describing its key features
and elements. We describe in Sec. III the implementation of
the cross section in terms of short-distance mass schemes
and a renormalon-free soft function in Sec. IV. The setup of
observable-dependent renormalization scales is discussed
in Sec. VI. Finally, in Sec. VII we combine all of the pieces
to calculate the resummed cross section and study its
perturbative convergence when the renormalons in the
pole mass and the soft function are either subtracted or
left unsubtracted. Using an analysis of the 2-jettiness peak
location we draw conclusions on the perturbative uncer-
tainties of a determination of the MSR mass and the pole
mass. In the Appendices we review and state additional
details for the various ingredients that are needed in this
analysis. We conclude in Sec. VIII.

II. FACTORIZATION THEOREM
IN THE PEAK REGION

In Ref. [25] two factorized expressions for the differential
cross section were derived that are valid in the peak and tail
regions of the double hemisphere-mass, or equivalently
2-jettiness, distribution. In the tail region the fluctuations in
the top mass can be large, such that M2

t;t̄ −m2
t ∼m2

t , and a
factorization formula based on SCETwith massive particles
can be derived. On the other hand, in the peak region, the off-
shellness of the decaying top is constrained such that
M2

t;t̄ −m2
t ≪ m2

t , necessitating an additional factorization
and a resummation accounting for the top width as an
additional relevant scale that is carried out in the bHQET
framework. As already mentioned, in this work we focus on
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the factorization in the peak region accounting exclusively
for the bHQET contributions, leaving off-shellness power
corrections described in the SCET factorization (that
become essential in the tail region) and the inclusion of
mt=Q SCET power corrections to future work. The factori-
zation formula in the peak region is given by

1

σ0

dσ
dτ2

¼mtQ2Hð5;6Þ
evol ðQ;mt;ϱ;μ;μH;μmÞ

×
Z

dldŝUð5Þ
B ðŝτ−ϱl− ŝ;μ;μBÞJð5ÞB;τ2

ðŝ;Γt;δm;μBÞ

×
Z

dl0dkUð5Þ
S ðl−l0;μ;μSÞŜð5Þτ2 ðl0−k; δ̄;μSÞ

×Fðk−2ΔÞ; ð3Þ

where we have the boost parameter ϱ given by

ϱ≡ Q
mt

ð4Þ

and have defined the off-shellness variable ŝτ as
4

ŝτ ≡Q2τ2 − 2m2
t

mt
: ð5Þ

Equation (3) involves various perturbative ingredients,

including an evolved matching function Hð5;6Þ
evol , jet and soft

functions Jð5ÞB;τ2
and Ŝð5Þτ2 , and evolution kernelsU

ð5Þ
B andUð5Þ

S .
It also includes a nonperturbative shape function F, whose
independence from other parameters is a prediction of the
factorization theorem. These ingredientswill be discussed in
detail in the subsections below. Equation (3) applies in the
peak region where ŝτ ∼ Γ ≪ mt, with Γ≳ 2Γt being the
effective width of the distribution broadened by radiation,
hadronization, and finite-width effects. In this region, where
the τ2 distribution exhibits a resonance, the 2-jettiness
variable is (up to power corrections) directly related to
the sum of the squared hemisphere masses defined with
respect to the thrust axis, as given in Eq. (2). It is therefore
convenient to define the inclusive jet mass variable MJ,

M2
J ≡ 1

2
Q2τ2; ð6Þ

which inherits some of the features of a reconstructed top
invariant mass, albeit being based on a hemisphere top jet.
The MJ distribution peaks close to mt, but is in addition
affected (with respect to peak position as well as thewidth of
the observed peak resonance) by large-angle soft radiation
exchanged between the two hemispheres. The widening of
the peak due to top-decay width and soft QCD effects,

however, does not affect the kinematic sensitivity of the
observable, and normalizing theMJ distribution enables the
uncertainties in theMJ peak location to be taken as a direct
measure for the uncertainties in the associated top mass
determination.
The factorization formula separates perturbative contri-

butions from the hard local interactions involving the scales

Q and mt (encoded in the hard factor Hð5;6Þ
evol ), dynamical

effects associated to large-angle soft radiation (accounted

for in the soft function Sð5Þτ2 ), and dynamical effects due to

ultra-collinear radiation (contained in the jet function Jð5ÞB;τ2
).

The jet function Jð5ÞB;τ2
incorporates the leading-order effects

due to the top quark width Γt and also carries, because of its
peaked structure, the main top quark mass sensitivity of the
τ2 distribution. This allows testing at high precision the
impact of using either the pole mass scheme mpole

t or a
suitable short-distance mass msd

t . This is indicated by the
argument δmt, where

5

δm≡mpole
t −msd

t ð7Þ

is the perturbative series for the difference between the pole
and the adopted short-distance masses. The choice δm ¼ 0
implies the use of the pole mass scheme. We note that there
is also top quark mass (scheme) dependence in the hard

factor Hð5;6Þ
evol , indicated by the argument mt, which, how-

ever, only affects the normalization of the τ2 distribution
and is very subdominant compared to the main sensitivity
to the top quark mass. The different character of the top
mass dependence in the hard and bHQET jet functions is
discussed in more detail below.
For the τ2 distribution in the peak region for boosted top

quarks, we have the hierarchy Q ≫ mt ≫ fŝτ;Γg. This
leads to large logarithms, which are resummed via renorm-
alization group (RG) equations for the corresponding
perturbative matrix elements. This resummation is imple-

mented through the evolution factors UðnÞ
i [i ¼ H, v (or

mÞ; S; B], which RG evolve each of the functions appearing
in the factorization theorem from their natural scales μi to a
common final scale μ. The quantities μi (i ¼ H, m, S, B)
are renormalization scales indicating the natural physical
values of the quantum fluctuations encoded in the respec-
tive factors. These scales are varied in the final results in
order to assess the theoretical uncertainties due to missing
higher-order contributions. The choice of μ is arbitrary and
the factorized prediction is (strictly) invariant under
changes of this μ. In contrast the dependence on the initial
scales μi only cancels out order by order in resummed
perturbation theory. The scale μ is typically set equal to one

4The limit ŝτ → 0 corresponds to the tree-level kinematics for
eþe− → tt̄, where τ2 ¼ 2m2

t =Q2.

5In the context of HQET, the mass scheme correction δm is
called the residual mass term.
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of the renormalization scales μi (i ¼ H, m, S, J) such that
one of the renormalization evolution factors disappears.
The superscripts “(5)” and “(5,6)” indicate the number of

active dynamical flavors relevant for the momentum scales
of the respective quantum effects, where “(5)” and “(6)”
indicate scales below and above the top mass, respectively.
Due to the simple inclusive character of the 2-jettiness

(or the MJ) distribution, the leading-order nonperturbative
effects arise from the low-energy dynamics of the large-
angle soft radiation and are encoded in the (hadronization)
shape function F, which is convolved with the perturbative

soft function Sð5Þτ2 . Physically, the shape function incorpo-
rates the leading effects of hadronization and controls the
amount of nonperturbative radiation being exchanged
between the two hemispheres. Even though the details
of the shape function form must be determined from
experimental data, the way how the shape function appears
in the factorized cross section represents a very strong
theoretical constraint on hadronization.
In the following we briefly review the physical aspects of

all functions appearing in the factorization theorem one by
one. For a detailed discussion on how the bHQET factori-
zation theorem of Eq. (3) connects to the corresponding
formula in the tail region, and possible alternative setups to
organize the renormalization group evolution, we refer
to Ref. [74].

A. The hard function

The factorized cross section involves a two-step match-
ing from QCD to SCET, and then from SCET to bHQET, at
the scales μH ∼Q and μm ∼mt, respectively. Therefore, the
difference between 6 or 5 flavors is related to the top quark
being a dynamical degree of freedom or not. The resulting
hard matching coefficients in Eq. (3), together with their
RG evolution kernels, are collectively written as

Hð5;6Þ
evol ðQ;mt; ϱ; μ; μH; μmÞ
≡Hð6Þ

Q ðQ; μHÞ
× Uð6Þ

HQ
ðQ; μH; μmÞHð6Þ

m ðmt; ϱ; μmÞUð5Þ
v ðϱ; μm; μÞ: ð8Þ

The termUHQ
evolves the SCET hard functionHQ [75–80]

from μH ∼Q to μm ∼mt and resums large logarithms of
Q=mt in the cross section. Uv is responsible for the
evolution of the bHQET current between μm ∼mt and μ,
which we assume is smaller than μm, and only depends on
the top quark boost factor ϱ defined in Eq. (4). The hard
matching at the top quark mass scale μm, which encodes
off-shell top quark quantum fluctuations that arise in the
heavy quark limit, is given by Hm [26,72]. Since the
matching is performed at the top quark mass, one can
express Hm in terms of αs with either 5 or 6 active flavors.
In the numerical analysis below we choose six. The effect

of this freedom in the scheme choice is, however, tiny and
numerically irrelevant.
We now discuss the parameter ϱ ¼ Q=mt [see Eq. (4)]

appearing in the mass mode matching factor Hð6Þ
m and the

bHQET current evolution kernel Uð5Þ
v . In the peak region,

for the bHQET factorization treatment of the top quark
dynamics, the momentum of the nearly on-shell top quarks
is parametrized as pμ

t;t̄ ¼ mtv
μ
t;t̄ þ kμ, where vμt;t̄ (with

v2t;t̄ ¼ 1) is the 4-velocity of the energetic (anti)top quarks
and kμ is a small residual momentum accounting for the
fluctuations caused by the low-energy radiation [in the
(anti)top quark rest frame], such that kμ ≪ mt and one
can expand the dynamical effects to leading power in
kμ=mt ∼ Γt=mt [in the (anti)top rest frame]. The reference
4-velocities vμt;t̄ are defined by

vμt ¼ ðϱ−1; ϱ; 0⃗⊥Þ; vμt̄ ¼ ðϱ; ϱ−1; 0⃗⊥Þ; ð9Þ

using light-cone coordinates defined relative to the thrust
axis nμ ¼ ð1; n⃗tÞ (which we take along the top direction),
such that pμ ¼ ðn · p; n̄ · p; p⃗⊥Þ, where n̄μ ¼ ð1;−n⃗tÞ is an
auxiliary vector satisfying n · n̄ ¼ 2 and n2 ¼ n̄2 ¼ 0. The
parameter ϱ appearing in the definition of the reference
velocities is related to the top quark boost and defined in
Eq. (4), such that the on-shell (anti)top 4-velocity would
approach vμtt̄ in the boosted limit Q ≫ mt in the absence of

any radiation. The mass mode matching factorHð6Þ
m and the

bHQET current evolution kernel Uð5Þ
v depend on the

reference velocities vμt and vμt̄ and thus on ϱ through the
scalar products vt;t̄ · k appearing in the bHQET Feynman
diagrams.
The choice of vμt;t̄ is ambiguous with respect to higher-

order power corrections of Oðkμ=mtÞ [∼OðΓt=mtÞ in the
(anti)top rest frame] and entails a symmetry of bHQET
factorization with respect to changes of vμt;t̄ and thus of ϱ,
which is one aspect of a more general class of symmetry
transformations called reparametrization invariance [81] that
connects different orders in the bHQET 1=mt expansion.
As a consequence, there is a power-suppressed freedom

in the choice of the boost parameter ϱ, which in the
factorization theorem of Eq. (3) appears in the function

Hð5;6Þ
evol and the momentum argument of the jet-function

evolution factor Uð5Þ
B . The mt parameter appearing in ϱ is,

however, not associated to any particular top mass renorm-
alization scheme, but for the final evaluation it just has to be
numerically chosen close to the invariant mass of the
top quark in the resonance region. It is therefore not
mandatory to reexpand the boost parameter ϱ when
expressing the top quark mass in a short-distance renorm-
alization scheme. The other consequence is, that variation
ϱ → ϱþ δϱ with δϱ ∼QΓt=m2

t in the peak region account
for uncertainties due to the truncation of power corrections
in the context of the leading-power bHQET factorization.
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We conclude by noting that actually setting the parameter
mt in ϱ equal to the pole mass artificially reintroduces the
pole mass renormalon (albeit with formally power-
suppressed numerical effects) which cannot be cured by
a reexpansion in terms of a short-distance mass, because
there are no associated factorially divergent perturbative
corrections in other parts of the factorization theorem. It is
therefore not advisable to identify the parameter mt in ϱ as
the pole mass.
The topmass parametermt that appears in the argument of

Hð6Þ
m in Eq. (8) is identical to the mass used in the threshold

decoupling relationof the strong couplingwhen transitioning
between 6 and 5 flavors. This mt can be expressed in either
the pole or MS scheme (with the same mass scheme

employed in the αð6Þs ↔ αð5Þs decoupling relation). Since
Hm only involves logarithms of the ratio μm=mt (in addition
to logs of ϱ) it is also insensitive to theOðΓtÞ fluctuations at
the top threshold that are suppressed by OðΓt=mtÞ. The
difference between the choice of pole or MS masses is
accordingly found to be also numerically subleading.

B. The ultra-collinear sector

Upon integrating out the off-shell (small) components of
the top quark field in bHQET, the leading-order dynamics
of the remaining ultra-collinear fluctuations along the top
and antitop quark directions is captured by the 2-jettiness
bHQET jet function, defined as

Jð5ÞB;τ2
ðŝτ;Γt;δm;μBÞ

¼
Z

dŝJð5ÞB ðŝ;Γt;δm;μBÞJð5ÞB ðŝτ− ŝ;Γt;δm;μBÞ: ð10Þ

Here “ultra” distinguishes the collinear modes in the peak
region ŝτ ≳ 2Γt [which are soft in the (anti)top quark rest
frame] from higher virtuality collinear modes appearing in
the tail region ŝτ ∼mt, where bHQET off-shellness power
corrections become large and SCET provides the adequate
description for collinear radiation. Here JBðŝt; δmt;Γt; μBÞ
is the familiar bHQET jet function that appears in di-
hemisphere-mass and jet mass distributions [15,26,69]. At
leading order, the finite top width effects of the bHQET jet

function Jð5ÞB;τ2
ðŝτ;Γt; δm; μBÞ can be expressed as a con-

volution of its stable-top version Jð5ÞB;τ2
ðŝτ;Γt ¼ 0; δm; μBÞ

with an inclusive Breit-Wigner function [26],

Jð5ÞB;τ2
ðŝτ;Γt; δm; μBÞ ¼

Z
dŝ0

π

2Γt

ð2ΓtÞ2 þ ðŝτ − ŝ0Þ2
× Jð5ÞB;τ2

ðŝ0;Γt ¼ 0; δm; μBÞ; ð11Þ

where the factor 2Γt arises from accounting for the widths
from both top and antitop quarks. This implies that the
measurement on tt̄ final states is fully inclusive in the decay

products as well as any radiation from them. The consis-
tency of this inclusive treatment is ensured by considering
the boosted limit Q ≫ mt where the decay products from
the top and antitop quarks are collimated back to back
along the direction of the thrust axis in distinct hemi-
spheres. Both the boosted top decay products as well as
gluon and light-quark radiation encoded in JB have typical
angles ∼2mt=Q relative to these axes.6 The variable ŝt
appearing in the (single) hemisphere jet functions Jð5ÞB in
Eq. (10) is equivalent to ŝt ¼ 2vt · k, where k is the total
residual momentum of the collimated system (after remov-
ing the contribution from the top quark mass). This captures
the invariant mass of the decaying top quark system
together with its ultra-collinear radiation, up to terms of
Oðŝ2t =mtÞ [25]. In the peak region, the ultra-collinear
fluctuations have a virtuality of Oðŝt;t̄ ≳ ΓtÞ, which leads
to ŝτ ¼ ŝt þ ŝt̄ ≳ 2Γt. The natural choice for the renorm-
alization scale of the 2-jettiness bHQET jet function
is μB ∼ ŝτ ∼ ðQ2τ2 − 2m2

t Þ=mt.
For Γt ¼ 0 the 2-jettiness bHQET jet function Jð5ÞB;τ2

has
support only for non-negative ŝτ and equals δðŝτÞ=mt at tree
level. It is this threshold behavior which causes the strong
top mass sensitivity of the τ2 distribution in the peak region.
We emphasize, however, that while the partonic threshold is
at ŝτ ¼ 0, the observable peak position exhibited by the
entire factorization theorem of Eq. (3) is determined
coherently from the effects of the ultra-collinear and
large-angle soft radiation together with the Breit-Wigner
smearing. The well-known pole mass renormalon problem

arises from higher-order perturbative corrections in Jð5ÞB;τ2
in

the pole mass scheme, and is encoded in the size of the
coefficients of plus distributions in ŝτ. The pole mass
renormalon can be remedied by using, instead of the pole
massmpole

t , a suitable short-distance mass schememsd
t in the

definition of ŝτ in Eq. (5). Because the bHQET jet functions
are defined strictly at leading order in the 1=mt expansion,
switching the topmass renormalization scheme requires that
one also accounts for the mass scheme correction

δmðRÞ ¼ mpole
t −msd

t ðRÞ ¼
X
i¼0

�
αð5Þs ðμBÞ

4π

�
i
δmiðRÞ; ð12Þ

strictly to leading order in the 1=mt expansion. This leads to
the generic form

Jð5ÞB;τ2
ðŝτ;Γt ¼ 0;δmðRÞ;μBÞ

≡ 1

m2
t

X
i¼0

�
αð5Þs ðμBÞ

4π

�
i X2iþ1

j¼−1

Bij

μB
Lj

�
ŝτ − 4δmðRÞ

μB

�
; ð13Þ

6Other global event shapes such as the C-parameter are more
sensitive to the kinematical distribution of the top decay products,
such that the Breit-Wigner approximation is inaccurate even in
the boosted limit [82].
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where the Bij are constant coefficients. This yields the
2-jettiness bHQET jet function for stable top quarks in an
arbitrary (short-distance) mass scheme msd

t , where it is still
strictly mandatory to expand the dependence on δm con-

sistently in powers of the strong coupling αð5Þs ðμBÞ such that
the pole mass renormalon cancels order by order. Setting
δm ¼ 0, one recovers the corresponding result in the pole
mass scheme, which was calculated up to Oðα2sÞ in

Refs. [26,69]. Here, LkðxÞ ¼ ½ΘðxÞ logkðxÞx �þ is the standard
plus function distribution with a vanishing integral over the
range x ∈ ½0; 1� for k ≥ 0 and L−1ðxÞ ¼ δðxÞ.
From the expression in Eq. (13) we can also clearly see

that the bHQET power counting requires that the perturba-
tive series for the mass scheme correction δmðRÞ obeys the
scaling δm ∼ ŝτ ≪ mt. This shows from a power-counting
point of view why low-scale short-distance masses have to
be employed and the MS mass, which has δm ∼mt, is
forbidden. Such low-scale short-distance masses always
involve an infrared subtraction scaleR, which is necessary to
eliminate the large OðΛQCDÞ renormalon corrections
appearing in the pole mass scheme [33]. To avoid upsetting
the bHQET jet function power counting it is important that
the series coefficients defining the low-scale short-distance
mass in Eq. (12) have the property δmiðRÞ ∝ R, where the
infrared scale R is parametrically close to the typical ultra-
collinear scale, i.e., R ∼ μB ∼ ŝτ. In our analysis we employ
the MSR mass mMSR

t ðRÞ [33–35,83] that satisfies this
requirement, as explained in more detail in Sec. III.
We finally note that the overall factor ð1=mtÞ2 appearing in

the generic expression for the 2-jettiness bHQET jet function

Jð5ÞB;τ2
in Eq. (13) arises fromEq. (10) since each JB has a 1=mt

factor [26]. The renormalization scheme dependence of this
factor is power suppressed in the leading-order bHQET
expansion and therefore in principle not specified at the level
of the factorization theorem of Eq. (3).

C. The soft sector and nonperturbative effects

The thrust partonic soft function Ŝð5Þτ2 accounts for the
effects of large-angle soft radiation with respect to the
thrust axis [16,17,70,71,84,85]. In the context of inclusive
observables, such as the global event shape 2-jettiness, it
accounts for the so-called ultrasoft modes, which have scale
fluctuations of the order of μS ∼ ŝτ=ϱ, parametrically
smaller than the typical scale μB for the ultra-collinear
modes. Thus, μS represents the smallest perturbative scale
relevant for the τ2 distribution.
For global event shapes such as τ2 or jet-based observ-

ables without jet grooming, the leading nonperturbative
effects from hadronization can be described via convolution
with a shape function Fðk − 2ΔÞ,

Sτ2ðl;μSÞ ¼
Z

l

0

dkŜð5Þτ2 ðl− k; δ̄¼ 0;μSÞFðk− 2ΔÞ; ð14Þ

where FðkÞ has support for k ≥ 0, peaks at k ∼ ΛQCD

[21,86], and is by definition normalized to unity,R∞
0 dkFðkÞ ¼ 1. Here, Δ is a model parameter which
accounts for the minimum hadronic energy deposit in each
hemisphere (hence the factor of 2), referred to as the “gap.”
In the tail region where l ∼ μS ≫ ΛQCD, one can expand
for large l and the most important nonperturbative effect is
encoded in the first moment Ω1 of the shape function,

Sτ2ðl ≫ ΛQCD; μSÞ ¼ Ŝð5Þτ2 ðl; δ̄ ¼ 0; μSÞ
− 2Ω1Ŝ

ð5Þ0
τ2 ðl; δ̄ ¼ 0; μSÞ þ…;

2Ω1 ≡ 2Δþ
Z

∞

0

dk kFðkÞ; ð15Þ

where Ω1 can also be expressed as a vacuum matrix
element of soft Wilson lines [20,22], and the ellipses
represent higher-order terms in the expansion. The concrete
form of the shape function we use for the generic numerical
examination carried out in Sec. VII is provided in
Appendix G.
As we move further into the peak region, μS decreases

and eventually approaches the nonperturbative scale ΛQCD.
Thus, in the peak region μS ∼ 1 GeV > ΛQCD and the
effects of the shape function have to be accounted for
exactly in terms of the convolution of Eq. (14). Even
though this in principle implies that an infinite amount of
information could be required to fix the analytic form of the
shape function, the normalization and the requirement
that all moments of F exist, together with the fact that
factorization strictly demands convolution, allow us to
reliably constrain the form of the shape function in terms
of a few parameters by means of an expansion in optimally
designed basis functions [87]; see, e.g., Refs. [27,88]. In
practice, determining the first moment of the shape function
fixes the bulk of the information encoded in it for the whole
τ2 spectrum.
The factorization into partonic soft and nonperturbative

shape functions displayed in Eq. (14) depends on the
regularization and renormalization schemes that are
employed for the computation of the partonic soft function.
The argument “δ̄ ¼ 0” shown in Eq. (14) stands for the
standard MS scheme. As was shown in Ref. [21], these
prescriptions entail that the partonic soft function has an
OðΛQCDÞ renormalon which affects the partonic threshold
at l ¼ 0 for the perturbative ultrasoft radiation [21,89] in a
way very similar to how the OðΛQCDÞ pole mass renorma-
lon affects the threshold ŝτ for the partonic ultra-collinear
radiation. Both features are physically disentangled by the
fact that the factorization theorem in Eq. (3) predicts that
the ultrasoft effects on the hemisphere jet masses (and thus
τ2) are enhanced by a factor ϱ compared to the ultra-
collinear effects. This also entails that for a top quark mass
determination, different c.m. energies Q and simultaneous
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fits including parameters of the shape function must be
considered to lift the degeneracy between mt and hadro-
nization effects. This is in close analogy to the αs
determinations from eþe− event-shape data carried out
in Refs. [19,90,91], where nonperturbative effects were not
fixed from hadronization corrections in MC event gener-
ators, but from a simultaneous fit using data obtained for
different c.m. energies Q.
The difference between the OðΛQCDÞ renormalons

affecting the partonic soft and bHQET jet functions is that
the former cancels inside Eq. (15) with the nonperturbative
matrix element Ω1, while the latter is only an artifact of the
pole mass and nonexistent when employing a short-
distance mass scheme. One can remove the partonic soft
function renormalon in an analogous way by reexpressing
the first moment Ω1 in a new scheme that includes a
perturbative subtraction:

2Ω1ðRsÞ≡
Z

∞

0

dk kFðkÞ þ 2ΔðRsÞ;

ΔðRsÞ≡ Δ − δ̄ðRsÞ; ð16Þ

where

δ̄ðRsÞ ¼ Rs

X
i¼0

�
αð5Þs ðμSÞ

4π

�
i
δ̄i ð17Þ

is a perturbative series constructed such that it has exactly
the same renormalon as Ω1 and the MS renormalized

partonic soft function Ŝð5Þτ2 ðl; δ̄ ¼ 0; μSÞ. Equation (16)
implies that

Ω1ðRsÞ ¼ Ω1 − δ̄ðRsÞ
¼ Ω1 − Δþ ΔðRsÞ: ð18Þ

This entails the introduction of the scale Rs ≳ ΛQCD (in
analogy to the scale R for the MSR mass discussed below),
which effectively represents an infrared cut for the partonic
soft function which is then free from the OðΛQCDÞ
renormalon ambiguity. This results in ΔðRsÞ, and hence
Ω1ðRsÞ, being renormalon free, and that instead of the MS

renormalized partonic soft function Ŝð5Þτ2 ðl; δ̄ ¼ 0; μSÞ one
employs the “gap subtracted” partonic soft function [21]:

Ŝτ2ðl; δ̄ðRsÞ;μSÞ≡ Ŝτ2ðl−2δ̄ðRsÞ;μSÞ

¼
X
i¼0

�
αð5Þs ðμSÞ

4π

�
i X2iþ1

j¼−1

Sij
μS

Lj

�
l−2δ̄ðRsÞ

μS

�
:

ð19Þ

In analogy to the partonic 2-jettiness bHQET jet function, it
is strictly mandatory to expand the dependence on δ̄

consistently in powers of the strong coupling αð5Þs ðμSÞ such
that the soft function OðΛQCD) renormalon consistently
cancels order by order. Furthermore, to avoid upsetting the
soft function power counting and to avoid the appearance
of large logarithms in the subtraction it is mandatory that Rs
is parametrically close to the typical soft scale, i.e.,
Rs ∼ μS ∼ ŝτ=ϱ. Setting δ̄ ¼ 0, one recovers the MS renor-
malized partonic soft function. Hence, the hadron-level soft
function becomes

Sτ2ðl;μÞ¼
Z

l

0

dkŜτ2ðl−k;δ̄ðRsÞ;μÞFðk−2ΔðRsÞÞ: ð20Þ

We discuss the precise definition of the scheme that defines
ΔðRsÞ in Sec. IV.
At this point we note that there is a partial cancellation

between the OðΛQCDÞ renormalons in the partonic soft and
bHQET jet functions as the corresponding ambiguities and
the associated diverging behavior of the perturbative series
are equally severe but have opposite sign [15]. The extent
of the cancellation is Q dependent through the factor ϱ that
enters the factorization convolution between the partonic
soft and bHQET jet functions in Eq. (3). As a consequence,
the impact of the soft function renormalon in the 2-jettiness
distribution increases with Q, while the impact of the jet
function renormalon does not. This means that the overall
effect of both OðΛQCDÞ renormalons may be hidden for a
certain range of Q values when the pole mass is used in the
jet function and no gap subtraction is carried out for the
partonic soft function. As we show in Sec. VII this indeed
happens within the range of Q values relevant for top mass
determinations. However, since simultaneous fits for differ-
ent c.m. energies Q are mandatory to independently
determine the top mass and the parameters of the shape
function without degeneracy, the impact of the individual
OðΛQCDÞ renormalons cannot be avoided, so that the
perturbative uncertainties in analyses accounting for
both types of renormalon subtractions are systematically
smaller than those when renormalon subtractions are not
implemented.

III. TOP MASS SCHEMES

In our analysis we employ two renormalization schemes
for the top quark mass: the pole mass mpole

t and the scale-

dependent MSR mass mMSR;ð5Þ
t ðRÞ [33–35]. The pole mass

scheme has—from a technical point of view—the simplest
implementation because we can set the residual mass term
δm appearing in Eqs. (3) and (13) to zero and all entries of
mt discussed before to mpole

t . However, employing the pole
mass scheme entails an OðΛQCDÞ renormalon ambiguity,
which visibly destabilizes the order-by-order behavior of
the cross section in the peak region, as we show explicitly
in Sec. VII. This can be systematically avoided by using a
suitable short-distance mass scheme. The MSR mass
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mMSR;ð5Þ
t ðRÞ is a short-distance scheme that is derived from

the MS mass and represents an extension of the MS mass

concept: while the MS mass mð6Þ
t ðμÞ is suitable for scales

μ ≥ mt, the MSR mass is appropriate for scales R ≤ mt.
For the MS mass we will use the notation

mð6Þ
t ≡mð6Þ

t ðμ ¼ mð6Þ
t Þ below. In the approximation that

all quark flavors lighter than the top are massless
(which we adopt in our analysis), the defining series for

mpole
t −mMSR;ð5Þ

t ðRÞ is obtained7 from the corresponding

series for mpole
t −mð6Þ

t by removing all corrections arising
from the self-energy diagrams with top quark loops and by

setting mð6Þ
t → R as well as αð6Þs → αð5Þs :

δmðRÞ ¼ mpole
t −mMSR;ð5Þ

t ðRÞ ¼ R
X
i¼1

�
αð5Þs ðRÞ
4π

�
i
ai: ð21Þ

We give the details of the MSR scheme definition and the
numerical values of the coefficients in Appendix D. This
means that the MSR mass is a scheme derived from the MS
mass, but where the virtual off-shell fluctuations in the on-
shell self-energy from scales beyond R (which includes
virtual top quark effects) are integrated out. The MSR mass
is therefore designed for top-mass-dependent observables
sensitive to soft QCD dynamics.
The scale R can be interpreted as the resolution scale

below which virtual self-energy and real ultra-collinear
radiation is treated as unresolved, so that only self-energy
contributions above R are absorbed into the mass. This

means thatmMSR;ð5Þ
t ðRÞ for R < mt andm

ð6Þ
t ðRÞ for R > mt

contain self-energy contributions coming only from scales
above R. This interpretation entails that in the limit R → 0,
where all virtual self-energy and real ultra-collinear radi-
ation is treated as resolved and all virtual self-energy
contributions are absorbed in the mass, we approach the
pole mass, which is precisely expressed in Eq. (21). The
renormalon ambiguity of the pole mass can thus be seen to
be associated with the problem that the limit R → 0
involves crossing the Landau pole of the strong coupling
which a priori cannot be carried out in an unambigu-
ous way.
Here we use the interpretation in Ref. [34], where the top

MSR mass mMSR;ð5Þ
t ðRÞ is regarded as the 5-flavor exten-

sion of the 6-flavor MSmassmð6Þ
t ðRÞ for scales R below the

top quark mass and where both mass schemes are matched

at the scale R ¼ mð6Þ
t . The matching relation is given in

Eq. (D3). For scales R < mt the MSR mass evolves with
the R-evolution equation

d
d logðRÞm

MSR;ð5Þ
t ðRÞ ¼ −R

X
n¼0

γRn

�
αð5Þs ðRÞ
4π

�
nþ1

; ð22Þ

where γRn are obtained from the coefficients ai in Eq. (21)
using the procedure outlined in Appendix F.
As explained in Sec. II B, the consistent use of a short-

distance mass in Eq. (3) entails that the MSR mass scale R
satisfies the parametric relation R ∼ μB ∼ ŝτ, which means

that R depends on τ2 and mMSR;ð5Þ
t adopts the status of a

dynamical scale-dependent “mass coupling” in complete
analogy to the well-known concept of the scale- and flavor-
number-dependent strong coupling αs. This dynamical
treatment of the top quark MSR scheme resums important
large logarithms via R-evolution as shown in Eq. (22). The
reader should note that the RHS of the R-evolution
equation is linear in R, which differs from the common
logarithmic renormalization group equations. This linear
evolution is an essential aspect of properly treating the
physical mass effects that govern the resonance/close-to-
mass-shell dynamics of heavy colored particles.

In our numerical analysis we use mð6Þ
t ¼ mð6Þ

t ðmð6Þ
t Þ as

the standard reference mass value, which we quote as our
main input and from which we then calculate the MSR or
MS masses at the respective scales needed within the
factorization formula in Eq. (3). For the flavor-number-

dependent strong coupling αð5;6Þs ðμÞ we always use match-
ing at 4 loops [92–94] and running at 4 loops [95,96],

where the flavor matching is carried out at μ ¼ mð6Þ
t .

We finally note that the analytic properties of the pole
mass OðΛQCDÞ renormalon in terms of knowledge on the
large-order behavior of the perturbation series obtained in
the pole mass scheme are by now very well understood;
see, e.g., Refs. [34,50] for the case where all quarks except
for the top are assumed massless and Ref. [35] where finite
bottom and charm masses are included systematically.8

One of the most interesting observations in this context
is that the large-order asymptotic behavior (for some
unknown reason) universally sets in atOðαsÞ and is already
well saturated atOðα2sÞ, which is one of the reasons why the
pole mass renormalon has received significant attention in
the literature. Another useful (but also confusing) conse-
quence of this fact is that it is very easy to devise different
types of low-scale short-distance masses from either
physical [25,69,97–101] or conceptual considerations
[33–35,102]. All are—as long as the resolution scale R
is assigned appropriate values—similarly effective in min-
imizing mass-related QCD corrections and stabilizing the
perturbation series already at Oðα1;2s Þ. The MSR mass

mMSR;ð5Þ
t ðRÞ provides a unifying concept to connect all

7Here we employ the scheme that was called “natural MSR”
mass in Ref. [34].

8This knowledge implies a more precise understanding of the
size of the renormalon ambiguity, but not that the ambiguity itself
is eliminated.
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low-scale short-distance masses with the MS mass via its
renormalization group equation given in Eq. (22).

IV. SOFT GAP SUBTRACTION

The OðΛQCDÞ renormalon of the soft function Ŝð5Þτ2 has
large-order properties very similar to the OðΛQCDÞ pole
mass renormalon in the bHQET jet function. It is known to
differ from the latter just due to a different normalization
[21] and the sign difference already mentioned at the end of
Sec. II. However, compared to the pole mass renormalon,
the soft functionOðΛQCDÞ renormalon is harder to pinpoint
quantitatively at low orders due to the soft function
anomalous dimension and hadron mass effects [22,103].
Therefore, the soft function renormalon does not seem to
exhibit the same universality as the pole mass renormalon
(even though it is phenomenologically equally relevant).
Apart from eþe− event shapes [104], it is still largely
unknown whether or in which way the OðΛQCDÞ renorma-

lon in Ŝð5Þτ2 appears in a universal manner in soft functions
relevant for collider observables which are linearly sensi-
tive to large-angle soft radiation.
It has so far been the practice to define the renormalon

subtraction series δ̄ðRsÞ in Eq. (17) directly from the soft
function; see Refs. [21,84] for such approaches. In our
analysis we employ a modified version of the prescription
suggested in Ref. [84]. It is based on the Fourier transform
of the renormalon-subtracted partonic soft function

S̃ð5Þτ2 ðy; δ̄ðRsÞ; μSÞ ¼
Z

dl e−iylŜð5Þτ2 ðl; δ̄ðRsÞ; μSÞ

¼ S̃ð5Þτ2 ðy; δ̄ ¼ 0; μSÞe−2iδ̄ðRsÞy; ð23Þ

where the gap subtraction series δ̄ðRsÞ is factored into the
exponential factor shown in the second line. It is therefore
possible to define an expression for δ̄ðRsÞwhich cancels the
OðΛQCDÞ renormalon of the soft function by the condition

δ̄ðRsÞ≡ Rs

2
log

�
S̃ð5Þτ2

�
1

iRs
; δ̄ ¼ 0; Rs

��

¼ Rs

2

X
i¼1

�
αð5Þs ðRsÞ

4π

�
i Xiþ1

j¼0

sijγ
j
E; ð24Þ

where sij are coefficients of the fixed-order series expan-

sion of log½S̃ð5Þτ2 ðy; μÞ� shown below explicitly in Eq. (28).
When the gap subtraction series δ̄ðRsÞ is used in the
factorization theorem, it is crucial that the renormalization
scale of the strong coupling αsðRsÞ is reexpressed in terms
of αsðμSÞ, the coupling used in the series for the soft
function, to ensure a systematic order-by-order cancellation
of the renormalon. This is detailed in Appendix E.
This definition of the gap subtraction can be contrasted

with the one used in Ref. [84] where the subtraction series

was instead related to a derivative of the soft function
logarithm:

δ̄Ref:½84�ðμS; RsÞ≡ RseγE

2

d log S̃ð5Þτ2 ðy; μSÞ
d logðiyÞ

����
iyeγE¼ 1

Rs

: ð25Þ

In this definition, the scale of the strong coupling is μS by
construction, and the gap subtraction inherits a nontrivial
anomalous dimension in μS from the soft function. In
Appendix E we describe a set of generic gap subtraction
schemes that include Eqs. (24) and (25) as special cases.
While both definitions in Eqs. (24) and (25) are perfectly

viable subtraction schemes (i.e., equally effective at asymp-
totic large orders), the series δ̄Ref:½84� in Eq. (25) is numeri-
cally zero at OðαsÞ for μS ¼ Rs because the one-loop
noncusp anomalous dimension vanishes, γSτ0 ¼ 0. This
necessitates choosing Rs strictly below μS in the peak
region to reduce the size of the OðαsÞ correction. This can,
however, be problematic when considering Oðα2sÞ correc-
tions because in the peak region the soft scale μS ∼ ŝτ=ϱ is
already parametrically smaller than the top quark width
such that setting Rs > μS can lead to instabilities. On the
other hand, for the gap subtraction definition in Eqs. (24),
we have s10 ¼ 15.053 at one loop which, in addition to
being nonzero, is also numerically sizable allowing for the
implementation of an effective gap subtraction for the more
natural setting Rs ¼ μS. We will therefore adopt the gap
subtraction scheme defined in Eq. (24) in our analysis.
The R-evolution of the gap parameter corresponding to

the scheme defined by δ̄ in Eq. (24) is given by

ΔðR1Þ − ΔðR0Þ ¼ −
X∞
n¼0

γ̄Rn

Z
R1

R0

dR
�
αð5Þs ðRÞ
4π

�
nþ1

; ð26Þ

where the anomalous dimension coefficients γ̄Rn are derived
from the fixed-order coefficients sij in Eq. (24) following
the steps laid out in Appendix F.
In our numerical analysis we take the first moment value

for ΩRef:½84�
1 ð2 GeVÞ obtained in Ref. [91] as the input and

determine from it Ω1ð2 GeVÞ in the gap scheme defined in
Eq. (24) as well as Ω̄1 for the case of no gap subtraction.
For the no-gap case we use Δ ¼ 0.1 GeV as the input value
of the gap parameter in Eq. (15) which fixes the analytic
form of the shape function FðkÞ. From this we calculate
ΔðRs ¼ 2 GeVÞ in the scheme of Eq. (24) using Eq. (16).
This input then unambiguously fixes the value of ΔðRsÞ at
any scale Rs using the R-evolution equation (26), thus
determining the form of the gap-subtracted shape function
Fðk − 2ΔðRsÞÞ in Eq. (20). For the R-evolution in Eq. (26)
we employ 2-loop precision [70,71,84]. For FðkÞwe adopt
the parametrization given in Ref. [87]; see Appendix G for
explicit expressions. We note that this approach implies that
the form of the shape function Fðk − 2ΔðRsÞÞ entering the
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factorization theorem shown in Eq. (3) depends dynamically
on the value of the physical 2-jettiness variable τ2. In the peak
region this dependence is, however, quite weak because the
scale μS saturates; see Sec. VI.

V. N3LL RESUMMED CROSS SECTION

For the numerical evaluation of the factorization formula
in Eq. (3), we find it convenient to work in the position
(Fourier) space where the convolutions involving the
bHQET jet and and soft functions and their respective
renormalization evolution factors become simple products.
(The results in this section could equally well be expressed
using the Laplace transform.)

A. Stable-top cross section without
renormalon subtractions

We first discuss the stable top quark cross section for the
case of having neither soft function gap nor mass sub-
tractions. The Fourier transforms of the stable top
2-jettiness bHQET jet and soft functions are defined via

Jð5ÞB;τ2
ðŝτ; μÞ ¼

Z
dx
2π

eixŝτ J̃ð5ÞB;τ2
ðx; μÞ;

Ŝð5Þτ2 ðlþ; μÞ ¼
Z

dy
2π

eiyl
þ
S̃ð5Þτ2 ðy; μÞ; ð27Þ

where for brevity we have dropped the zero arguments
δm ¼ 0, δ̄ ¼ 0, and Γt ¼ 0. Thus, the position space jet and
soft functions have the form

m2
t J̃

ð5Þ
B;τ2

ðx; μBÞ

¼ exp

�X
i¼1

�
αð5Þs ðμBÞ

4π

�
i Xiþ1

j¼0

bijlogjðieγExμBÞ
�
;

S̃ð5Þτ2 ðy; μSÞ

¼ exp

�X
i¼1

�
αð5Þs ðμSÞ

4π

�
iXiþ1

j¼0

sijlogjðieγEyμSÞ
�
; ð28Þ

such that Eq. (3) can be written as

dσ̂Γt→0

dτ2
ðŝτÞ ¼ σ0mtQ2

Z
dx
2π

eixŝτ

×Hð5;6Þ
evol ðQ;mt;ϱ;μ;μH;μmÞeK

ð5Þ
B ðμ;μBÞþKð5Þ

S ðμ;μBÞ

× ðieγExμBÞω
ð5Þ
B ðμ;μBÞðieγEϱxμSÞω

ð5Þ
S ðμ;μSÞ

× J̃ð5ÞB;τ2
ðx;μBÞS̃ð5Þτ2 ðϱx;μSÞ; ð29Þ

where due the convolution in Eq. (3) the soft function in
position space is evaluated at y ¼ ϱx and the evolution

kernels K
ðnfÞ
i and ω

ðnfÞ
i are defined in Appendix A. The

RG-evolved hard factor in Eq. (29) is given by

Hð5;6Þ
evol ðQ;mt; ϱ; μ; μH; μmÞ

≡Hð6Þ
Q ðQ; μHÞHð6Þ

m ðmt; ϱ; μmÞeK
ð6Þ
HQ

ðμm;μHÞþKγð5Þ
v ðμm;μÞ

×

�
μH
Q

�
ωð6Þ
HQ

ðμm;μHÞ
ϱ−ω

ð5Þ
v ðμm;μÞ: ð30Þ

Here μ is the common final renormalization scale of all
of the RG evolution factors. Taking the inverse Fourier
transform back to distribution space, we find

dσ̂Γt¼0

dτ2
ðŝτÞ ¼

dσ̂ð0Þðŝτ; ∂ΩÞ
dτ2

eγEΩ

Γð−ΩÞ
����
Ω¼ω̃ð5ÞðμS;μBÞ

; ð31Þ

where for later convenience we have defined the following
function of the derivative operator ∂Ω:

dσ̂ð0Þ

dτ2
ðŝτ;∂ΩÞ

≡ σ0
mtQ2

ŝτ
Hð5;6Þ

evol ðQ;mt;ϱ;μ;μH;μmÞ

× eK
ð5Þ
B ðμ;μBÞþKð5Þ

S ðμ;μBÞ
�
μB
ŝτ

�
ωð5Þ
B ðμ;μBÞ�ϱμS

ŝτ

�
ωð5Þ
S ðμ;μSÞ

× J̃ð5ÞB;τ2

�
∂Ω þ log

�
μB
ŝτ

��
S̃ð5Þτ2 ½∂Ω þ log

�
ϱμS
ŝτ

��
: ð32Þ

It acts on the function of Ω shown in Eq. (31), and the
outcome is evaluated at the following μ-independent
evolution kernel between the bHQET jet and soft scales:

ω̃ð5ÞðμS; μBÞ≡ ωð5Þ
S ðμ; μSÞ þ ωð5Þ

B ðμ; μBÞ: ð33Þ

We note that since the jet scale is always above the soft
scale, one has ω̃ð5Þ < 0. In Eq. (32) the arguments of the
position-space jet and soft functions are understood to
replace the corresponding logarithms shown in Eq. (28).
For the sake of brevity we have suppressed the arguments
μB and μS that appear in the running coupling, as shown in
Eq. (28). The meaning of the superscript “(0)” on σ̂ will be
clarified below in Eq. (39). We also note that the depend-
ence of the result in Eq. (32) on ŝτ is defined in terms of
rational power plus distributions which have support for
ŝτ ≥ 0 in the case of stable top quarks [26]. To account for
the fixed-order corrections contained in the product of the

functions Hð6Þ
Q , Hð6Þ

m , Jð5ÞB;τ2
, and S̃ð5Þτ2 at NkLO we expand

their product strictly to OðαksÞ. The relevant formulas for
the evolution kernels and their Fourier transforms are
presented in Appendix A. We collect the numerical results
for the anomalous dimensions in Appendix B and the fixed-

order expressions for all of the factorization functionsHð6Þ
Q ,

Hð6Þ
m , Jð5ÞB;τ2

, and S̃ð5Þτ2 up to NNLO in Appendix C.
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Finally, since we carry out resummation at the level of
the differential cross section, when implementing the cross
section at NkLLþOðαk−1s Þ accuracy for k ≥ 1 (referred to
as “unprimed” orders), we explicitly incorporate the OðαksÞ
plus-function boundary condition [105] in order to cor-
rectly sum up logarithms that are counted as NkLL in the
exponent of the cumulative distribution. This amounts to
including the single logarithmic terms appearing at OðαksÞ
in the jet and soft functions. For the “primed” orders NkLL0,
or equivalently, NkLLþOðαksÞ accuracy, this is not neces-
sary as the OðαksÞ fixed-order matching already includes
this single logarithmic term. The loop order of the theo-
retical ingredients for the primed and unprimed orders are
summarized in Table I. We refer to Ref. [91] for further
details on primed and unprimed orders.

B. Renormalon subtractions

We now describe how the renormalon subtractions with
respect to the top quark mass and soft function gap are to be
included starting from the unsubtracted stable top cross
section in Eq. (31). First we recall that the δm dependence

in the bHQET jet function Jð5ÞB;τ2
results from reexpressing

the pole mass mpole
t contained in ŝτ in terms of the MSR

mass. From Eq. (5) we have

ŝτ ¼
Q2τ2 − 2½mMSR

t ðRÞ þ δmðRÞ�2
mMSR

t ðRÞ þ δmðRÞ

¼ ŝMSR
τ ðRÞ − 4δmðRÞ þO

�
αsΓt

mt

�
; ð34Þ

where

ŝMSR
τ ðRÞ≡Q2τ2 − 2½mMSR

t ðRÞ�2
mMSR

t ðRÞ : ð35Þ

The two terms shown in the second line of Eq. (34) represent
those to be accounted for in Eq. (3) since power-suppressed
contributions in the peak region must be systematically
dropped for consistency. For the term δmðRÞ, which con-
tains the polemass renormalon ambiguity, this is particularly
important to achieve the order-by-order cancellation of the

pole mass renormalon. Thus, the stable-top bHQET jet
function usingEq. (13) in position space can be expressed up
to NNLO as

J̃ð5ÞB;τ2
ðx; δm; μBÞ

¼
Z

dŝ0e−ixŝ0Jð5ÞB;τ2
ðŝ0 − 4δm; μBÞ

¼
�
1 − ðixÞ4δmþ ðixÞ2 ð4δmÞ2

2!

�
Jð5ÞB;τ2

ðx; μBÞ; ð36Þ

where we have dropped the zero argument Γt ¼ 0 in the jet
function and the argument R in the mass subtraction δmðRÞ
for simplicity. We have kept only terms at most quadratic in
δmðRÞ so that the pole mass renormalon can be consistently
canceled toOðα2sÞ. Likewise, the soft gap subtraction can be
incorporated using Eq. (23) such that

S̃ð5Þτ2 ðϱx; δ̄; μSÞ ¼ e−2iϱδ̄xS̃ð5Þτ2 ðϱx; μSÞ

¼
�
1 − ðixÞ2ϱδ̄þ ðixÞ2 ð2ϱδ̄Þ

2

2!

�
S̃ð5Þτ2 ðϱx; μSÞ;

ð37Þ

where we dropped the argument Rs in the gap subtraction
δ̄ðRsÞ. Including the subtraction terms in Eqs. (36) and (37)
and strictly expanding to Oðα2sÞ, we arrive at the following
expression for the renormalon-subtracted cross section for
stable top quarks:

dσ̂Γt¼0

dτ2
ðŝτ; δmðRÞ; δ̄ðRsÞÞ

¼
X2
n¼0

dσ̂ðnÞ

dτ2
ðŝMSR

τ ðRÞ; Rs; ∂ΩÞ
eγEΩ

Γð−ΩÞ
����
Ω¼ω̃ð5ÞðμS;μBÞþn

:

ð38Þ

Here we have

dσ̂ðnÞ

dτ2
ðŝMSR

τ ðRÞ; Rs; ∂ΩÞ

¼ ð−1Þn
n!

�
δtotðR;RsÞ
eγE ŝMSR

τ ðRÞ
�
n dσ̂ð0ÞðŝMSR

τ ðRÞ; ∂ΩÞ
dτ2

; ð39Þ

where the total subtraction series δtot has the form

δtotðR;RsÞ≡ 4δmðRÞ þ 2ϱδ̄ðRsÞ; ð40Þ

and dσ̂ð0Þ=dτ2 is given in Eq. (32). It is essential to
consistently drop terms of Oðα3sÞ and higher (concerning
the fixed-order corrections in the hard, jet, and soft functions
as well as the renormalon subtractions) in the product in
Eq. (39). Note that the derivatives in the sum over n in
Eq. (38) are evaluated atΩ ¼ ω̃þ n. For simplicity we will

TABLE I. Loop corrections required for specified orders. In the
last two columns γR and δ refer to either soft or MSR-mass
subtractions.

Cusp Noncusp Matching β½αs� γR δ

LL 1 � � � Tree 1 � � � � � �
NLL 2 1 Tree 2 1 � � �
N2LL 3 2 1 3 2 1
N3LL 4 3 2 4 3 2

NLL0 2 1 1 2 1 1
N2LL0 3 2 2 3 2 2
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display the functions ŝMSR
τ ; δm; δ̄, and δtot without their

arguments R and Rs below.

C. Including the top width

From Eq. (11) we see that the cross section for unstable
top quarks involves an additional Breit-Wigner convolution
such that9

dσ̂
dτ2

ðŝMSR
τ ; δm; δ̄Þ ¼

Z
∞

0

dŝ0

π

2Γt

ð2ΓtÞ2 þ ðŝMSR
τ − ŝ0Þ2

×
dσ̂Γt¼0

dτ2
ðŝ0; δm; δ̄Þ; ð41Þ

where as a result of the stable top cross section, the
integration is bounded below by ŝ0 ¼ 0. However, ŝMSR

τ

(or ŝτ in the pole mass scheme) for the unstable top
2-jettiness cross section can be negative as well. To
incorporate this convolution in Eq. (38) we first note that
the cross section is proportional to 1=ðŝ0Þω̃ð5Þþ1, as can be
seen from Eq. (32) using Eq. (33). This factor can be
brought to the right of the ∂Ω derivatives using the identity

1

ðŝ0ÞΩþ1

�
∂Ω þ log

�
μB
ŝ0

��
n

¼ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2τ þ ð2ΓtÞ2

p
ÞΩþ1

×
�
∂Ω þ log

�
μBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2τ þ ð2ΓtÞ2
p

��
n
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2τ þ ð2ΓtÞ2
p

ŝ0

�
Ωþ1

;

ð42Þ

where we remind the reader that ŝ0 is the integration
variable in Eq. (41) whereas ŝτ (or ŝMSR

τ in the MSR mass
scheme) is related to the τ2 measurement as defined in
Eq. (5). The analogous relation also holds for the ∂Ω
derivatives associated with the soft function. Hence, we
need to evaluate the convolution

IðΩ; ŝτ; 2ΓtÞ≡ 1

Γð−ΩÞ
Z

∞

0

dŝ0

π

2Γt

ð2ΓtÞ2 þ ðŝτ − ŝ0Þ2

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2τ þ ð2ΓtÞ2

p
ŝ0

�
Ωþ1

¼
ϕð ŝτ

2Γt
ÞΓð2þΩÞ

Γð1þ ð1þ ΩÞϕÞΓð1 − ð1þ ΩÞϕÞ ; ð43Þ

which has a smooth Ω → 0 limit, and where we have
defined

ϕðxÞ≡ 1

2
þ 1

π
arctanðxÞ: ð44Þ

In the limit Γt → 0 one smoothly recovers the stable-top
results. For Γt ¼ 0 we find that I ¼ 0 when ŝτ < 0. Using
these expressions in Eqs. (38) and (41), we now arrive at the
final expression for the unstable-top cross section with
renormalon subtractions:

dσ̂
dτ2

ðŝMSR
τ ;δm;δ̄Þ¼

X2
n¼0

dσ̂ðnÞ

dτ2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŝMSR

τ Þ2þð2ΓtÞ2
q

;∂Ω

�

×eγEΩIðΩ;ŝτ;2ΓtÞjΩ¼ω̃ð5ÞðμS;μBÞþn: ð45Þ

Finally, the hadron-level cross section is obtained from the
partonic cross section via convolution with the nonpertur-
bative shape function:

dσ
dτ2

ðτ2Þ ¼
Z

dk
dσ̂
dτ2

ðŝMSR
τ ðRÞ − ϱkÞFðk − 2ΔðRsÞÞ: ð46Þ

VI. PROFILE FUNCTIONS

To properly sum large logarithms we use τ2-dependent
renormalization scales μiðτ2Þ, Rðτ2Þ, and Rsðτ2Þ, called
profile functions [87,91]. They have canonical scaling in
the resummation regions, and freeze at a perturbative scale
in the resonance region to avoid the breakdown of
perturbation theory for anomalous dimensions. In the far
tail region, they become equal to the hard scale to
reproduce the fixed-order perturbative expansion with a
common scale μ. They are expressed in terms of seven
parameters which can be varied to estimate perturbative
uncertainties. Following Refs. [27,106], we employ a
natural generalization of the profile functions devised for
massless event shapes in Ref. [19], to which they reduce in
the massless limit.
The strategy to estimate perturbative uncertainties

involves varying all of the profile functions up and down
by at most a factor of 2 and 1=2, respectively, including a
shape-dependent variation in the jet scale, as well as
varying the value at which the soft scale freezes in the
nonperturbative region. We show bands for the latter two
variations in Fig. 1, and indicate the factor of 2 variations
by arrows. We scan over these profile variations by
generating a sample of 500 profiles were all their param-
eters are varied simultaneously with random choices within
their allowed ranges (see Ref. [91] for details on this
general approach). The concrete form of the profile
functions and how their parameters are varied are given
below. The total uncertainty is determined by the envelope
of the resulting cross sections.
For the hard and mass matching scales we use

τ2-independent functions μH ¼ eHQ and μm ¼ ffiffiffiffiffiffi
eH

p
mt,

respectively, which depend on the center-of-mass energy
and top quark mass, as well as on a free parameter eH,

9The analytical results shown in this section were first derived
in Ref. [27].
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which has the default value 1 and in our random scan is
varied in the interval [0.5, 2]. The variations of the two
matching scales are correlated to keep the correct hierar-
chies. For the top quark mass parameter mt, which appears
in the matching scale μm as well as in other variables
entering the profile functions discussed below, we adopt the
numerical value mt ¼ mMSRðR ¼ 5 GeVÞ.
Our τ2-dependent profile functions are implemented

through the soft scale μSðτ2Þ, which in the peak region
is parametrized with the following piecewise function:

μS ¼

8>><
>>:

enpμ0; τmin
2 ≤ τ2 ≤ t0;

ζ½enpμ0; μSðτ2 > t1Þ; t0; t1; τ2�; t0 < τ2 < t1;

1þ nseslope

nsþm̂t−τmin
2

�
rsμHðτ2 − τmin

2 Þ; t1 ≤ τ2 < t2;

ð47Þ

where τmin
2 ¼ 2m̂2

t with m̂t ≡mt=Q. We refer to the
three corresponding intervals as the “nonperturbative,”
“bHQET,” and “SCET-resummation” regions. The function
ζ½faðτ2Þ; fbðτ2Þ; ta; tb; τ2� smoothly connects any two lin-
ear functions fa;bðτ2Þ that end/begin at the points ta;b. This
is achieved by means of two quadratic polynomials of τ2
smoothly joined at τ2 ¼ ðta þ tbÞ=2, where the explicit
formula can be found in Ref. [19]. The parameter ns has
the default value 0.5 and is varied in the range
jns − 0.5j ≤ 0.025. Its effect in the peak region is relatively
mild. The default slope in the SCET-resummation region is
set by rs ¼ 2 and using the default value 0 for the variable
eslope. Slope variations are implemented by varying eslope in
the interval ½1=1.13 − 1; 1.13 − 1�. Note that the rescaling
factor to the left of rs approaches 1 in the massless limit. In
a similar way, the parameter affecting the flat nonpertur-
bative region is enp. Its default value is 1 and it is varied in

the interval ½1= ffiffiffi
2

p
;

ffiffiffi
2

p � with μ0 ¼ 3 GeV. The values of

the transition points t0;1ðmt;QÞ depend on the mass and
center-of-mass energy and have the form

t0 ¼
2

ðQ=1 GeVÞ þ
d0

ðQ=1 GeVÞ0.5 þ τmin
2 ;

t1 ¼
2.25

ðQ=1 GeVÞ0.75 þ
d1

ðQ=1 GeVÞ0.5 þ τmin
2 ;

t2 ¼ n2 þ m̂t; ð48Þ

with jd0;1j ≤ 0.05 and jn2 − 0.25j ≤ 0.025. Their default
values are d0;1 ¼ 0.05 and n2 ¼ 0.25. For the energies and
masses considered in this article one has t0 < t1 < t2.
For the jet scale profile function μJðτ2Þ we first define
μ̃Jðτ2Þ ¼ ffiffiffiffiffiffi

eH
p

μSðτ2Þ=m̂t and ts ¼ ns þ m̂t, and then use
the piecewise function

μJ ¼

8>><
>>:
½1þ ẽJðt0− tsÞ2�μ̃Jðt0Þ; τmin

2 ≤ τ2 ≤ t0;

ζ½μJðt0Þ;μJðτ2 > t1Þ; t0; t1;τ2�; t0 < τ2 < t1;

½1þ ẽJðτ2− tsÞ2�μ̃Jðτ2Þ; t1 ≤ τ2 < t2:

ð49Þ

Here the jet-function parameter ẽJ is defined with a
rescaling factor

ẽJ ¼ eJ

�
ns − ðt0 − τmin

2 Þ
ts − t0

�
2

; ð50Þ

with variations jeJj ≤ 1.5 used for assessing uncertainties
and the default value eJ ¼ 0. For mt ¼ 0 we recover
eJ ¼ ẽJ. We set the mass and soft-function renormalon
subtraction scales to their respective canonical values:
Rsðτ2Þ ¼ μSðτ2Þ and Rðτ2Þ ¼ μJðτ2Þ.

VII. NUMERICAL ANALYSIS

In this section we present a numerical analysis of the
bHQET N3LLþOðα2sÞ 2-jettiness peak region cross sec-
tion based on the factorization formula of Eq. (3). We
remind the reader that this factorization theorem is based on
the bHQET limit and does not account for subleading terms
related to higher powers of ŝτ (kinematic power correc-
tions) and mt=Q (mass power corrections). As was shown
in Refs. [27,82,106], these corrections are formally power
suppressed in the peak region, but still important numeri-
cally for a realistic phenomenological analysis concerning
the top mass dependence of the 2-jettiness peak-region line
shape. In the following we therefore carry out a generic
numerical analysis pointing out important features of the
bHQET 2-jettiness peak region cross section at this order
related to the convergence of the perturbative series, as well
as the impact of the jet and soft function renormalons and
the improvement related to their subtractions. A phenom-
enological analysis aiming for a systematic study of

FIG. 1. Examples of variation of the jet and soft scales to
estimate perturbative uncertainty. The eJ0 parameter is related to a
“trumpet” variation in the jet scale that turns off in the fixed-order
region. For the soft scale we vary μ0, the perturbative value that
the soft scale freezes to in the nonperturbative region.
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other sources of theoretical uncertainties is postponed to
future work.
For our analysis we have two independent codes to

implement all cross sections: one in FORTRAN [107] and
one in c++ using SCETlib [108]. Numerical integrations
are carried out using either QUADPACK [109] or the GSL
library [110].
Before getting to results, some comments on our para-

metric input are in order. For the subsequent discussion we
use αð5Þs ðmZÞ ¼ 0.118 with mZ ¼ 91.1876 GeV as input
for the strong coupling. As input for the top quark mass we

take the standard MS mass mð6Þ
t ≡mð6Þ

t ðmð6Þ
t Þ ¼ 160 GeV.

The conversion (matching) to the MSR top mass at the

scale R ¼ mð6Þ
t is based on the formulas derived in Ref. [34]

employed at Oðα2sÞ and given in Eqs. (D4) and (D5). The
evolution of the MSR top mass to the renormalon sub-
traction profile scale R is obtained via Eq. (22) using the
Oðα3sÞ R-anomalous dimensions, such that

mMSR
t ðR ¼ 2 GeVÞ ¼ 169.537 GeV; ð51Þ

for the MSR top mass at 2 GeV, which one can interpret as
the (renormalon-free) kinematic mass that governs the top-
mass dependence of the peak position. The same top mass
value is used in the boost parameter ϱ defined in Eq. (4)
when the MSR mass scheme is used. For comparison we
will also discuss results for the cross section in the pole
mass scheme and without gap subtraction. At this point one
has to recall that the pole mass is, due to its renormalon
ambiguity, an order-dependent concept, where the size of
the fixed-order corrections in its relation to a short-distance
mass at a given order depends on the renormalization scale
of the short-distance mass. Thus, to achieve comparable
theoretical predictions employing the MSR and the pole
mass schemes (i.e., with peak positions that are compat-
ible), it is essential to apply fixed-order conversion from the
MSR to the pole mass at the renormalization scale of
the MSR mass that is employed in the peak region of the
distribution (which is the part of the distribution that carries
the highest top quark mass sensitivity). Furthermore, the
order of conversion has to match the fixed-order input used
for the theoretical calculation [13,35]. In the peak region of
the distribution the appropriate renormalization scale is just
the bHQET jet function scale μJ, around 10 GeV; see
Sec. VI. Thus, the proper way to determine the pole mass is
to use the fixed-order conversion from mMSR

t ð10 GeVÞ, as
was pointed out in Ref. [27]. Therefore, to determine the
pole mass for the following analysis we first determine
mMSR

t ð10 GeVÞ using Eq. (51) and R evolution, and then
apply fixed-order conversion to the pole scheme at the
scale R ¼ 10 GeV. As we are employing Oðα2sÞ fixed-
order corrections to the bHQET jet function at the highest
N3LL order of our analysis, this fixed-order conversion

must be carried out at two loops. Using this procedure,
we find

mpole
t ¼ 169.718 GeV: ð52Þ

This input value for the top quark pole mass ensures that at
N3LL the peak position in the pole mass scheme is
compatible with that obtained in the MSR mass scheme.
Last, in order to fix the form of the nonperturbative

model function FðkÞ [see Eq. (14) and Appendix G], we
have to specify values for the first moment Ω1. In analogy
to the top quark mass, there are also different schemes for
Ω1 related to the definition of the gap subtraction param-
eter. Thus, the corresponding values for Ω1 also have to be
fixed with some care. Here we aim to adopt values for Ω1

consistent with the eþe− thrust analysis of Ref. [91], using
the fact that the same universal soft function that is given in
Eq. (14) also appears in the thrust factorization theorem for
massless quark production. The value of Ω1 determined in

Ref. [91], ΩRef:½84�
1 ðRs ¼ 2 GeVÞ ¼ 0.323� 0.045 GeV,

was based on the gap subtraction scheme suggested in
Ref. [84] [explained in detail in and below Eq. (25)]. For
our analysis it needs to be converted to the gap scheme of
Eq. (24) adopted in this work, referred to asΩ1ðRsÞ, as well
as to the unsubtracted MS gap scheme Ω̄1 (which still
contains the soft function renormalon). For these conver-
sions we must use the 2-loop fixed-order formulas in
Eqs. (E5) and (G4), respectively, since at the highest
N3LL order of our analysis we employ the soft function
at Oðα2sÞ. This gives

Ω1ðRs ¼ 2 GeVÞ ¼ 0.739 GeV;

Ω1 ¼ 0.276 GeV; ð53Þ

where we convert at the scale Rs ¼ 2 GeV, the typical value
of the soft function profile in the peak region. Fixing
Δ ¼ 0.1 GeV for the unsubtracted gap [see Eq. (15)] and
usingEq. (16),we obtainΔðRs ¼ 2 GeVÞ ¼ 0.563 GeV for
thegap termenteringEq. (20).With this choice of parameters
we can use the same shape function parameters as employed
in Ref. [91], which corresponds to taking λ ¼ 0.349 GeV
and c2 ¼ 0.05 in Eq. (G1). We then use Eq. (26) withOðα2sÞ
running to determine ΔðRsÞ at the τ2-dependent Rs values
required by the gap subtraction profile function.
In Fig. 2 the 2-jettiness differential cross section in the

MSR mass scheme with gap subtraction is shown for
Q ¼ 700 GeV as a function of the inclusive jet mass
variable MJ [see Eq. (6)] at all primed and unprimed
orders up to N3LL for the default set of profile functions
(see Sec. VI). Here the primed orders include all contri-
butions of the unprimed with the addition of the fixed-order
matrix elements at one higher order in αs. Our results at
NNLL0 and N3LL are new and have not been analyzed
before in the literature.
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In Fig. 2 all curves are normalized to the Born-level
massless total cross section σ0. The behavior of the curves
at the different orders therefore reflects the effects of the
perturbative corrections to the shape as well as to the
normalization of the cross section. We see that, apart from
sizable normalization corrections which happen to be
positive for all subsequent orders, the convergence with
respect to the peak location and the shape is excellent. From
the difference in the curves obtained from primed and
unprimed orders we can also see that the effects on the
normalization from higher-order corrections in the renorm-
alization group equations (and thus the resummation of
large logarithmic terms) are smaller than those in the fixed-
order matrix elements.
In order to analyze the effects of the higher-order

corrections to the distribution shape and its order-depen-
dent perturbative uncertainty, it is useful to normalize the
curves from the different orders to a common MJ interval.
In Fig. 3 the 2-jettiness differential cross sections at
Q ¼ 700 GeV (upper panels) and Q ¼ 2000 GeV (lower
panels) are shown in the MSR mass scheme with gap
subtractions using default profile functions. The results are
normalized to the MJ interval displayed in the respective
panels at NLL (green dotted line), NNLL (blue dash-dotted
line), and N3LL (red solid line). Primed orders are not
displayed to avoid cluttering. We also display uncertainty
bands with the corresponding colors at each of these three
orders. These bands are derived by determining the upper
and lower values of the distributions (for each MJ value)
obtained by considering 500 profile functions generated
randomly within the profile function parameter ranges
given in Sec. VI. To generate the bands, each cross section
from a given profile is normalized to the displayed MJ
range. The central curves exhibit excellent perturbative
convergence for the shape. The width of each band
illustrates the size of the perturbative uncertainty, which

nicely decreases with increasing order. For better visibility
the error bands and lines are displayed once more in the
lower parts of each plot showing the fractional deviation
from the central N3LL curve. At Q ¼ 700 GeV for
MJ ≥ 171 GeV the relative uncertainty in the peak region
is �ð4–10Þ% at NNLL and �ð3–7Þ% at N3LL. In contrast,

FIG. 2. Perturbative convergence of the 2-jettiness cross sec-
tion, with all curves normalized with the Born cross section σ0.
The peak location shows excellent convergence, while the
normalization corrections are significant and exhibit slower
convergence.

FIG. 3. Perturbative convergence and uncertainty bands for
self-normalized cross sections at Q ¼ 700 GeV (upper panels)
and Q ¼ 2000 GeV (lower panels) in the MSR mass scheme and
with gap subtractions. All curves are normalized over the
displayed ranges. The two smaller panels show the same results
at the two highest orders, but as a fractional deviation from the
central N3LL result.

BOOSTED TOP QUARKS IN THE PEAK REGION WITH … PHYS. REV. D 104, 014026 (2021)

014026-17



at Q ¼ 2000 GeV for MJ ≥ 175 GeV the relative uncer-
tainty in the peak region is �ð3–8Þ% at NNLL and
�ð1–5Þ% at N3LL.
In Fig. 4 we show for comparison the analogous results

for cross sections in which the pole scheme for the top
quark mass is employed without gap subtractions. We will
return and discuss this figure in more detail below.

It is instructive to first examine the importance and
interplay of the OðΛQCDÞ renormalons contained in the
perturbative fixed-order series of the bHQET jet and
partonic soft functions. To illustrate the impact of the pole
mass renormalon in the bHQET jet function, we display in
the upper panel of Fig. 5 the 2-jettiness cross section in the

FIG. 4. Perturbative convergence and uncertainty bands for
self-normalized cross sections at Q ¼ 700 GeV (upper panels)
and Q ¼ 2000 GeV (lower panels) in the pole mass scheme and
without gap subtractions. The two smaller panels show the same
results at the two highest orders, but as a fractional deviation from
the central N3LL result.

FIG. 5. Analysis of the polemass and soft function renormalon’s
impact on the convergence of perturbation theory atOðα0sÞ,OðαsÞ,
and Oðα2sÞ. The top panel uses the jet function in the pole mass
scheme, but includes gap subtractions for the soft function. The
middle panel does not include gap subtractions, but utilizes the jet
function in the MSR mass scheme. The bottom panel employs the
MSR mass scheme and gap subtractions, and thus removes the
leading renormalons in both the jet and soft functions.
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pole mass scheme for Q ¼ 700 GeV using the default
profile functions, consistently expanding all fixed-order
matrix elements entering the factorization theorem (i.e., the
bHQET jet function, the soft function and the hard
function) to Oðα0sÞ (dotted green), OðαsÞ (dashed blue),
and Oðα2sÞ (solid red) and consistently using gap subtrac-
tions. Thus, renormalon subtractions associated with the
pole mass renormalon are not included, while the soft
function renormalon is still removed systematically. Since
the renormalization group evolution, which predominantly
affects the normalization, does not contain any renormalon
effects, we adopt the highest-order N3LL anomalous
dimensions for all renormalization-group resummation
factors, so that the behavior of the three curves is focused
on the pole mass renormalon in the unsubtracted jet
function. The curves clearly exhibit the well-known pole
mass renormalon problem which causes the peak position
to systematically shift towards smaller jet masses with
increasing order. At the level of the 2-loop bHQET jet
function itself, this behavior was discussed in Ref. [69]. In a
fit to data this behavior would correspond to a pole mass
value that systematically increases with the perturbative
order. This is the known behavior of the perturbative
series for the pole mass in terms of a short-distance mass
[13,35,50]. Furthermore, the curves show some instabilities
in its shape, in particular in the form of the distribution at
and above the peak.
In order to illustrate the impact of the soft function

renormalon we display in the middle panel of Fig. 5 the
2-jettiness cross section without gap subtractions, again for
Q ¼ 700 GeV using the default profile functions and
consistently expanding all fixed-order matrix elements
entering the factorization theorem, but this time using
the MSR top quark mass scheme (and the standard MS
mass in the hard function). Here subtractions associated
with the soft function renormalon are not included, while
the pole mass renormalon is removed systematically. As in
the upper panel, we adopt the highest-order N3LL anoma-
lous dimensions for all renormalization-group resummation
factors, so that the three curves focus on the behavior due to
the soft function renormalon. We see that the soft function
renormalon causes the peak position to systematically shift
towards larger jet masses with increasing order. In a fit to
data this behavior would correspond to an MSR mass value
that systematically decreases with the perturbative order.
Furthermore, the curves at OðαsÞ and Oðα2sÞ show con-
siderable shape instabilities in the region below the peak,
where the cross section can even become negative. We note
that the impact of the soft function renormalon increases
with the c.m. energy Q. This dependence on Q arises
from the boost factor ϱ ¼ Q=mt appearing in the con-
volution integral shown in Eq. (3), which is also manifest
in Eq. (40).
Finally, in the lower panel of Fig. 5 we display the

corresponding three curves once again, but systematically

accounting for the subtractions associated to both the pole
mass and soft function renormalons, by using the MSR top
quark mass scheme and gap subtractions, respectively. We
now observe very good convergence of the peak position
and, furthermore, no instabilities in the shape of the
distribution are visible.
The upper and middle panels of Fig. 5 also nicely

illustrate the presence of a partial cancellation of the jet and
soft function renormalon effects since they have opposite
signs. In the combined order-by-order cross sections both
corrections thus partially cancel when the pole mass
scheme is employed and no gap subtraction is applied
for the soft function. Even though this partial cancellation
arises between two independent physical effects and should
therefore be considered as accidental from a principle point
of view, it does undeniably take place in the physical
regions of c.m. energies where high-precision extractions
of the top mass can be carried out. One may therefore ask
the question whether this cancellation may in principle
allow for a pole mass determination where the impact of the
pole mass renormalon could be tamed or even avoided
altogether. At this point we would like to remind the reader
that for a top mass determination from data (or MC
pseudodata) simultaneous fits of the peak region 2-jettiness
distribution for several Q values are needed to disentangle
the dependence on the top quark mass and the shape
function parameters. So there is a strong degeneracy
concerning the dependence on the top quark mass and
the shape function parameters, and in particular its first
moment Ω1. Given that there are strong cancellations
between corrections affecting both of these dependences,
it can be expected that they degrade the overall precision of
such an analysis. Furthermore, since the amount of mutual
cancellation between the pole mass and soft function
renormalons is Q dependent, it is expected that such fits
for theoretical predictions without any renormalon sub-
tractions will exhibit larger theoretical uncertainties com-
pared to those where the pole mass and soft function
renormalons are separately and independently subtracted.
Such an extensive analysis is, however, beyond the scope of
this work.
Furthermore, it should also be pointed out that the shape

function appearing in Eq. (3) is universal and appears in the
same form also in the factorization theorem for the eþe−
thrust distribution below the top pair threshold, where
precise information on its parameters can be extracted from
available eþe− data [91] at significantly smaller values ofQ.
The thrust distribution for massless quark production is
sensitive to the same soft function renormalon, but does not
have any top mass dependence. Thus, if information on the
renormalon-free shape function parameters obtained from
eþe− thrust data is systematically accounted for, it is
unavoidable that renormalon effects must be properly
handled for top quark mass determinations from the
2-jettiness distribution.
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Finally, it is instructive to also have a closer look at
the 2-jettiness cross section without any renormalon sub-
traction. In Fig. 4 the 2-jettiness differential cross section at
Q ¼ 700 GeV (upper panels) and Q ¼ 2000 GeV (lower
panels) in the pole mass scheme and without gap sub-
tractions are shown for the default profile functions. The
results are normalized to the MJ interval displayed in the
respective panels at NLL (green dotted line), NNLL (blue
dash-dotted line), and N3LL (red solid line). We also
display uncertainty bands with the corresponding colors
at each of the three orders. These bands are again derived
by determining the upper and lower values of the distri-
butions (for each MJ value) obtained by considering 500
profile functions generated randomly within the profile
function parameter ranges. Apart from the fact that neither
the pole mass nor the soft function renormalons are
subtracted, the setup used for all curves and uncertainty
bands in Fig. 4 is precisely the same as the one used for
Fig. 3. We see that the perturbative behavior concerning the
convergence and the perturbative uncertainties is also good
even without any renormalon subtraction. This underlines
the partial cancellation of the jet and soft function renor-
malons. However, a closer inspection shows that the
perturbative uncertainty bands are narrower when the
subtraction of all renormalons is taken care of systemati-
cally. This is visible in the fractional deviation plots, where
the N3LL renormalon-subtracted predictions in Fig. 3
exhibit an average uncertainty of �3.8% at Q¼700GeV
forMJ ≥ 171 GeV compared to �5.5% for the predictions
without any renormalon subtraction in Fig. 4. In contrast,
for Q ¼ 2000 GeV Fig. 3 has an average uncertainty
of �2.4% for MJ ≥ 175 GeV compared to �2.9% for
the predictions without any renormalon subtraction in
Fig. 4.
An interesting aspect of our definition for the jet mass

variableMJ [defined using 2-jettiness in Eq. (6)] is that it is
normalized in a way such that it can be seen as a direct
measure for the top quark mass. Therefore, the behavior of
the peak position for the MJ distribution allows us to draw
conclusions on the size of the perturbative uncertainties of a
top mass determination from the peak position. To avoid
outliers we discard the two highest and two lowest points in
the scan so as to better represent the bulk of the points.
In Fig. 6 we show the peak positions of the curves at
Q ¼ 700 GeV and Q ¼ 2000 GeV for the default profile
functions and their perturbative uncertainties, estimated
from the 500 random profile functions. Results are shown
in the MSR mass scheme with gap subtraction (MSR, red)
and in the pole mass scheme without gap subtractions
(pole, blue) at NLL, NNLL, and N3LL. The central values,
shown by dots, correspond to the default profile scales, so
the perturbative uncertainties are asymmetric. The corre-
sponding numbers are also given in Table II. The results
show that the perturbative uncertainty is systematically
smaller when the top quark mass and soft function

renormalons are subtracted. For Q ¼ 700 GeV, where
we have the highest top quark mass sensitivity, using
renormalon subtractions leads to an uncertainty in the peak
location of around �85 MeV at N3LL order. Without
renormalon subtractions the uncertainty at this order
increases to around �150 MeV, which is almost a factor
of 2 larger. For Q ¼ 2000 GeV the uncertainties are larger
for the analysis without renormalon subtraction as well
(around�450 MeVwith renormalon subtraction compared
to around �650 MeV without renormalon subtractions,
both at N3LL order). Here the difference is less pronounced
because the overall top mass quark sensitivity decreases for
larger Q values and the overall uncertainties increase.
Analogous behavior is also visible at lower orders. Our
results indicate that the MSR mass may be extracted with

FIG. 6. Peak positions at Q ¼ 700 GeV (upper panel) and
Q ¼ 2000 GeV (lower panel) for cross sections in the MSR
(red) and pole schemes (blue) at NLL, NNLL, and N3LL accuracy.
The error bars are obtained from a flat random scan over 500
parameters and the central value corresponds to the default profile.

TABLE II. Peak positions at different perturbative orders using
the MSR and pole mass schemes, as shown in Fig. 6.

Mass
scheme Q [GeV]

Peak Positions [GeV]

NLL NNLL N3LL

MSR 700 171.104þ0.386
−0.253 171.294þ0.214

−0.111 171.414þ0.113
−0.070

2000 175.008þ1.858
−0.910 176.403þ1.287

−0.690 176.541þ0.574
−0.367

Pole 700 171.073þ0.416
−0.255 171.354þ0.305

−0.181 171.427þ0.195
−0.121

2000 174.377þ2.087
−0.938 176.126þ1.461

−0.915 176.448þ0.750
−0.587
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an uncertainty of well below 100 MeV, while the pole mass
uncertainty is at the level of 150 MeV. Interestingly, this is
about the size of the top quark pole mass renormalon
ambiguity of 166 MeV that was estimated recently in
Ref. [35] for the case of massless charm and bottom quarks
(which is the approximation we use in our analysis). Note
that in an earlier analysis in Ref. [50] the top quark pole
mass renormalon ambiguity was estimated as the smaller
value of 67 MeV (also for massless charm and bottom
quarks).
The results we have obtained in this simple analysis of

the peak positions—taken by themselves—do not contra-
dict the view that the top quark pole mass can be extracted
from the 2-jettiness cross section with perturbative uncer-
tainties below the pole mass renormalon ambiguity, but
they also show that at least at N3LL order the precision is
not (yet) sufficient to achieve that goal and that higher-
order corrections beyond this order would be mandatory to
get there. On the other hand, the results also support the
view that, even though the 2-jettiness cross section exhibits
a cancellation between the pole mass and soft function
renormalons, the pole mass can still not be extracted with a
precision below its renormalon ambiguity. In any case,
using renormalon subtractions, and in particular the MSR
mass scheme, will yield substantially higher precision and
smaller perturbative uncertainties.
At this point we would like to again mention that in mass

determinations from data (or MC pseudodata) simultaneous
fits of the peak region 2-jettiness distribution for several Q
values are needed to disentangle the dependence on the top
quark mass and the shape function parameters, and that the
whole distribution in the peak region (rather than just the
peak position) would enter such fits. As mentioned before,
however, this kind of study requires that also off-shell and
mt=Q power-suppressed contributions are included, as their
effects can be non-negligible depending on how the cross
section is normalized.
The dominant such QCD corrections to the factorization

theorem in the bHQET region come from two sources:
mass power corrections appearing as higher-order terms in
Eq. (2), and corrections to the perturbative singular
structures. (Additional nonsingular kinematic power cor-
rections are very small at one loop and hence irrelevant.)
The former are universal at any order in αs and shift the
distribution to the right by Oðm4

t =Q4Þ but are trivial to
incorporate. The latter are known analytically to OðαsÞ in
QCD [28]: at tree level one gets a modification of the
coefficient of the delta function, while at OðαsÞ the plus
distribution coefficient is also affected. One can include
these mass corrections by a suitable modification of the
hard and jet functions (see, e.g., Ref. [29] for more details).
These mass power corrections decrease the cross sections
in Fig. 2 by 5% (beyond NLL) everywhere except for the
region to the left of the peak where the effects are smaller.
However, if the cross section is normalized the effect of

these power corrections drops below a percent, becoming
negligible in all relevant regions. It is reasonable to believe
that these power corrections will be of similar form and size
once Oðα2sÞ are added. A complete analysis that accounts
for these effects will require the inclusion of the Oðα2sÞ
correction to the primary massive quark SCET jet function
that was computed recently in Ref. [74] and shall be carried
out in future work.

VIII. CONCLUSIONS

In this article we have presented results for the 2-jettiness
differential distribution for boosted tops produced in eþe−
collisions in the peak region, accounting for the resumma-
tion of large QCD logarithms at N3LL order and fixed-order
corrections to the hard, soft, and jet function matrix
elements at next-to-next-to-leading order [Oðα2sÞ], calcu-
lated in the framework of soft-collinear effective theory and
boosted heavy quark effective theory. We have systemati-
cally removed the OðΛQCDÞ renormalons contained in the
soft and jet functions by using a gap subtraction as well as
the MSR mass, and have provided a numerical analysis
indicating that the perturbative uncertainties of a determi-
nation of the top quark MSR mass from the N3LLþOðα2sÞ
prediction at a c.m. energy ofQ ¼ 700 GeV are well below
the level of 100 MeV. For future reference all theoretical
formulas are given explicitly in several appendices.
An interesting aspect of the 2-jettiness distribution is that

the soft- and jet-function renormalons partially cancel each
other for center-of-mass energies above 700 GeV where the
boosted top quark approximation is valid and precise top
mass determinations can be carried out. This cancellation
arises because the soft-function and pole-mass renormalons
enter with different signs. While these two renormalons
represent two physically independent infrared sensitivities,
the cancellation allows for rather stable and convergent
predictions in the pole mass scheme, if at the same time the
soft function renormalon is also left unsubtracted.
However, the resulting perturbative uncertainties are still
systematically larger compared to the predictions where
both renormalons are independently removed.
The analysis done here based on boosted heavy quark

effective theory neglects subleading collinear off-shell
corrections, which have been determined recently at
Oðα2sÞ in Ref. [74] and shall be accounted for in future
work.
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APPENDIX A: FORMULAS

The factorization theorem presented in Eq. (3) is
expressed in momentum space where the jet and soft
functions, along with the evolution factors, are distributions
involving series in plus and delta functions. We find it
convenient to combine the ingredients in position space
where the convolutions become simple products. Below
our notation and definitions with variable mass dimension
follow Ref. [26]. For earlier work on the associated
resummation formulas, see Refs. [112–114]. For a function
F ðq; μÞ that depends on a momentum-space variable qwith
mass dimensions jF and the renormalization scale μ, the
Fourier transform in position space is defined as

F̃ ðx; μÞ ¼
Z

∞

−∞
dqe−iqxF ðq; μÞ; ðA1Þ

where x has mass dimensions −jF . The position-space
anomalous dimension permits writing the corresponding
RG relation as a local equality,

μ
d
dμ

F̃ ðx; μÞ ¼ γ̃F ðx; μÞF̃ ðx; μÞ; ðA2Þ

such that RG-evolved position-space soft and jet functions
can be expressed as a regular product:

F ðq; μÞ ¼
Z

dq0UF ðq − q0; μ; μ0ÞF ðq0; μ0Þ

¼
Z

dx
2π

eiqxŨF ðx; μ; μ0ÞF̃ ðx; μ0Þ: ðA3Þ

The factorization function HQ is not a distribution,
but a simple function of the center-of-mass energy Q, with
mass dimension jH ¼ 1 in our convention. One can treat
factorization, and position-space jet and soft functions on
the same footing simply by using Q ¼ fQ; 1=ðieγExÞg,
F ¼ fHQ; F̃g, and γF ¼ fγH; γ̃Fg [we describe the evo-
lution of the bHQET current in Eq. (B3)]. In this way, we
express the RG evolution and evolution from μ0 to μ as

μ
d
dμ

FðQ; μÞ ¼
�
ΓF½αs� log

�
μ

Q

�
þ γF½αs�

�
Fðμ; μ0Þ;

FðQ; μÞ ¼ UFðμ; μ0;QÞFðμ0;QÞ

≡ eKFðμ;μ0Þ
�
μjF0
Q

�
ωFðμ;QÞ

FðQ; μ0Þ; ðA4Þ

where ΓF½αs� resums double logarithms and is proportional
to the universal cusp anomalous dimension Γcusp½αs�,
and γF½αs� is the noncusp anomalous dimension. The
evolution kernels KF and ωF are defined as [α0 ≡ αsðμ0Þ,
αμ ≡ αsðμÞ]

KFðμ; μ0Þ ¼ KΓ
Fðμ; μ0Þ þ Kγ

Fðμ; μ0Þ;

KΓ
Fðμ; μ0Þ ¼ jF

Z
αμ

α0

dα
βðαÞΓF½α�

Z
α

α0

dα0

βðα0Þ ;

Kγ
Fðμ; μ0Þ ¼

Z
αμ

α0

dα
βðαÞ γF½α�;

ωFðμ; μ0Þ ¼
Z

αμ

α0

dα
βðαÞΓF½α�: ðA5Þ

The results of the evolution kernels at N3LL are given by

KΓ
Fðμ; μ0Þ ¼ jFKðΓF; μ; μ0Þ;

Kγ
Fðμ; μ0Þ ¼ ηðγF; μ; μ0Þ;

ωFðμ; μ0Þ ¼ ηðΓF; μ; μ0Þ; ðA6Þ

where

ηðΓ; μ; μ0Þ ¼ −
Γ0

2β0

�
log rþ α0

4π

�
Γ1

Γ0

−
β1
β0

�
ðr − 1Þ þ 1

2

�
α0
4π

�
2
�
β21
β20

−
β2
β0

þ Γ2

Γ0

−
Γ1β1
Γ0β0

�
ðr2 − 1Þ

þ 1

3

�
α0
4π

�
3
�
Γ3

Γ0

−
β3
β0

þ Γ1

Γ0

�
β21
β20

−
β2
β0

�
−
β1
β0

�
β21
β20

− 2
β2
β0

þ Γ2

Γ0

��
ðr3 − 1Þ

�
; ðA7Þ

and
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KðΓ; μ; μ0Þ ¼
Γ0

4β20

�
4π

rα0
ðr log rþ 1 − rÞ þ

�
Γ1

Γ0

−
β1
β0

�
ðr − 1 − log rÞ − β1

2β0
log2 r

þ α0
4π

��
Γ1β1
Γ0β0

−
β21
β20

�
ðr − 1 − r log rÞ − B2 log rþ

�
Γ2

Γ0

−
Γ1β1
Γ0β0

þ B2

�
r2 − 1

2
þ
�
Γ1β1
Γ0β0

−
Γ2

Γ0

�
ðr − 1Þ

�

þ
�
α0
4π

�
2
��

B2

�
Γ1

Γ0

−
β1
β0

�
þ B3

2

�
r2 − 1

2
þ
�
Γ3

Γ0

−
Γ2β1
Γ0β0

þ B2Γ1

Γ0

þ B3

��
r3 − 1

3
−
r2 − 1

2

�

−
β1
2β0

�
Γ2

Γ0

−
Γ1β1
Γ0β0

þ B2

��
r2 log r −

r2 − 1

2

�
−
B3

2
log r − B2

�
Γ1

Γ0

−
β1
β0

�
ðr − 1Þ

��
; ðA8Þ

where r ¼ αμ=α0 depends on the 4-loop running coupling,
and the Bi coefficients take the following values: B2 ¼
β21=β

2
0 − β2=β0 and B3 ¼ 2β1β2=β20 − β31=β

3
0 − β3=β0. The

series expansions of the QCD beta function and the cusp
and noncusp pieces of a generic SCET anomalous dimen-
sion are written as

β½αs� ¼ −2αs
X∞
n¼0

βn

�
αs
4π

�
nþ1

;

Γ½αs� ¼
X∞
n¼0

Γn

�
αs
4π

�
nþ1

; ðA9Þ

where here the Γ’s either stand for ΓF, Γcusp, or γF. The
numerical expressions for the universal cusp anomalous
dimension coefficients for 5 and 6 flavors are given
by [73,115,116]

fΓcusp
i gð5Þ0≤i≤3 ¼ f4; 27.633; 179.406; 141.254g;

fΓcusp
i gð6Þ0≤i≤3 ¼ f4; 23.188; 35.497;−2581.527g; ðA10Þ

where the 4-loop cusp anomalous dimension is obtained
from recent work in Refs. [73,117]. Note that in our
convention we do not include a factor of CF in the
definition of Γcusp½αs�, but we do include this factor for the
ΓF½αs�’s for various functions given below in Appendix B.
Finally, we quote the numerical results for the QCD beta
function up to four loops [95,96,118,119]:

fβð5Þi g0≤i≤3 ¼ f23=3; 116=3; 180.907; 4826.16g;
fβð6Þi g0≤i≤3 ¼ f7; 26;−32.5; 2472.28g: ðA11Þ

APPENDIX B: ANOMALOUS DIMENSIONS

The RG equations for the various functions appearing in
Eq. (3) are as follows:

μ
d
dμ

log½Hð6Þ
Q ðQ; μÞ� ¼ ΓHQ

½αs� log
�
μ

Q

�
þ γHQ

½αs�;

μ
d
dμ

log½J ð5Þ
v ðϱ; μÞ� ¼ Γv½αs� log

�
1

ϱ

�
þ γv½αs�

≡ γvðϱÞ;

μ
d
dμ

log½J̃ð5ÞB;τ2
ðx; μÞ� ¼ ΓJτB

½αs� logðieγExμÞ þ γJτB ½αs�

≡ γ̃JτBðx; μÞ;

μ
d
dμ

log½S̃ð5Þτ2 ðy; μÞ� ¼ ΓSτ ½αs� logðieγEyμÞ þ γSτ ½αs�

≡ γ̃Sτðx; μÞ; ðB1Þ

where J̃B;τ2 and S̃τ2 are the Fourier transforms of the thrust,
unsubtracted, stable bHQET jet and soft functions defined
in Eqs. (11) and (23). Note that we have γHQ

¼ 2γH,
γJτB ¼ 2γB, and γSτ ¼ 2γS, with γH;S given as in Ref. [91]
and γB defined in Ref. [26]. In Eq. (3), instead of running
Hm we RG evolve the squared matrix element of the
bHQET current, J v, defined as

J ð5Þ
v ¼ jhJ ð5Þ

bHQETij2: ðB2Þ

The RG evolution of J ð5Þ
v , using the results in Eq. (B1) for

the evolution factor Uv shown in Eq. (8), reads

Uvðϱ; μm; μÞ ¼ eK
γð5Þ
v ðμm;μÞϱ−ω

ð5Þ
v ðμm;μÞ; ðB3Þ

where, keeping in line with our notation, we emphasize that

μm is the final scale up to which J ð5Þ
v is RG evolved. The

bHQET current J ð5Þ
bHQET [26,72] is given by

J bHQET ¼ h̄vtWnY
†
nΓμ

i Yn̄W
†
n̄hvt̄ ; ðB4Þ

where hvt;t̄ are the heavy-quark fields describing top
and antitop quarks; Wn;n̄ are the Wilson lines formed
from ultra-collinear gluons, such that in position space
W†

nðxÞ ¼ P exp½ig R∞
0 dsn̄ · Anðn̄sþ xÞ�; Yn;n̄ are similarly

definedWilson lines with ultrasoft gluons, and Γμ
v ¼ γμ and
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Γμ
a ¼ γμγ5. The RG consistency in the bHQET sector

implies the following constraint:

γvðϱÞ ¼ γ̃JτBðx; μÞ þ γ̃Sτðϱx; μÞ; ðB5Þ

with γvðϱÞ, γ̃JτBðx; μÞ, and γ̃Sτðϱx; μÞ defined above in
Eq. (B1). This leads to a cancellation of the logðμÞ
dependence in the anomalous dimension of the
bHQET current and implies Γv½αs� ¼ ΓJ

τ2
B
½αs� ¼ −ΓSτ ½αs�,

γv½αs�¼γSτ ½αs�þγJτB ½αs�. Since the “cusp” piece in Eq. (B5)
is μ independent, we find that the kernel KΓ

v [see Eq. (A5)]
does not appear in the RG evolution of the bHQET matrix
element in Eq. (30), but Kγ

v and ωv do. With the convention
in Eq. (B1) the cusp and the noncusp pieces have the
following values [26,69,72,76,78,114,116,120–124]:

ΓJ
τ2
B
½αs� ¼ Γv½αs� ¼ −ΓSτ ½αs� ¼ 4CFΓcuspð5Þ½αs�;

ΓHQ
½αs� ¼ −4CFΓcuspð6Þ½αs�;

fγHQ
i g0≤i≤2 ¼ f−16; 32.669;−21.044g;
fγvi g0≤i≤2 ¼ f32=3; 86.619; 477.753g;

fγJ
τ2
B

i g0≤i≤2 ¼ f32=3;−65.803;−840.284g;
fγSτi g0≤i≤2 ¼ f0; 152.422; 1318.037g: ðB6Þ

Using the formulas for the evolution factors in Eq. (A4), the
RG evolution equations in Eq. (B1), and the anomalous
dimensions in Eq. (B6), one arrives at the resummed
expressions in Eqs. (29) and (30). From Eq. (B1) we see
that all dynamical momentum variables have dimensions of
energy so that jF ¼ 1 for all the evolution functions that we
consider here.

APPENDIX C: FIXED-ORDER RESULTS

We now state the results for the 2-loop matrix elements
and factorization functions that appear in our analysis. We
show the results for the logarithm of the functions since it
simplifies the structure of the results.

1. 2-loop results

The SCET hard matching function Hð6Þ
Q with 6-flavor

coupling is given by [75–79,125]

log½Hð6Þ
Q ðQ; μÞ� ¼ αð6Þs ðμÞ

4π
½9.372 − 16LQ − 10.667L2

Q�

þ
�
αð6Þs ðμÞ
4π

�
2

½305.454 − 163.879LQ

− 173.835L2
Q − 49.778L3

Q�;

LQ ¼ log

�
μ

Q

�
: ðC1Þ

For the hard matching function at the top mass scaleHð6Þ
m

we state the result with mt expressed in either the pole or
MS scheme [26,72]:

log½Hpoleð6Þ
m ðmpole

t ;ϱ;μÞ�

¼ αð6Þs ðμÞ
4π

½15.053− 2.667Lm þ 2.667L2
m�

þ
�
αð6Þs ðμÞ
4π

�
2

½152.578− 45.728Lm þ 26.5699L2
m

− 6.222L3
m þ logðϱÞð−5.531− 5.926Lm − 1.778L2

mÞ�;
ðC2Þ

log½HMSð6Þ
m ðmt;ϱ;μÞ� ¼ log½Hpoleð6Þ

m ðmt;ϱ;μÞ�

þ
�
αð6Þs ðμÞ
4π

�
2

ð56.889Lm − 28.444Þ;

ðC3Þ

where Lm ¼ log½ðmpole
t Þ2=μ2�, Lm ¼ logðm2

t =μ2Þ, and ϱ has
been defined in Eq. (4).
The 2-loop fixed-order result for the unsubtracted,

stable-top bHQET jet function in position space is given
by [26,69]

log½m2
t J̃

ð5Þ
B;τ2

ðx; μÞ�

¼ αð5Þs ðμÞ
4π

½15.053þ 10.667L̃B þ 10.667L̃2
B�

þ
�
αð5Þs ðμÞ
4π

�
2

½310.954þ 165.012L̃B þ 155.465L̃2
B

þ 54.518L̃3
B�; L̃B ¼ logðieγExμÞ: ðC4Þ

Likewise, the unsubtracted soft function in position
space reads [26,70,71]

log½S̃ð5Þτ2 ðy; μÞ� ¼
αð5Þs ðμÞ
4π

½−13.159 − 10.667L̃2
S�

þ
�
αð5Þs ðμÞ
4π

�
2

½−81.361 − 49.357L̃S

− 73.687L̃2
S − 54.518L̃3

S�;
L̃S ¼ logðieγEyμÞ: ðC5Þ

2. Generating fixed-order terms

We now describe a helpful algorithm that allows one to
generate the fixed-order expansion of the position-space
matrix elements and factorization functions discussed here
from the nonlogarithmic coefficients and their anomalous
dimensions in Eq. (B6). This applies to the matching
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coefficient Hð6Þ
Q , and the bHQET jet and the soft matrix

elements, and can be used to reproduce the results stated
above in Eqs. (C1), (C4), and (C5). Note that the algorithm
described below must be generalized in an obvious way for

Hð6Þ
m to obtain the results in Eqs. (C2) and (C3), since its

running results from the anomalous dimensions of the
bHQET current and the SCET matching coefficient (with
different number of dynamical flavors in the running
coupling) and includes an additional rapidity logarithm.
Consider a position-space matrix element or a factori-

zation function Fðμ;QÞ having the generic form

Fðμ;QÞ¼Aexp

�X
m¼1

aFmn

�
αsðμÞ
4π

�
mXmþ1

n¼0

logn
�
μjF

Q

��
; ðC6Þ

where we have A ¼ 1=m2
t for the thrust position-space

bHQET jet function and A ¼ 1 in the other cases; see
Eq. (28). The constant terms aFm0 serve as independent data,
whereas other coefficients can then be determined by
anomalous dimensions and the beta function. Thus, the
aFm0 serve as boundary condition data for the RG differ-
ential equations in Eq. (A4). The logarithmic terms aFmn for
n ≥ 1 then can be expressed as

aFmn ¼
1

jnF
ðaFmn½β� þ aFmn½β; γF� þ aFmn½β;ΓF�Þ; ðC7Þ

where the three terms result from the running of the
coupling, and the noncusp and cusp pieces of the anoma-
lous dimension of the given function. The coefficients in
Eq. (C7) can be obtained via the following recursion
relations:

aFmn½β� ¼
2

n

Xm−1

i¼n

iaFiðn−1Þ½β�β
ðnfÞ
m−i−1; 1≤ n≤m−1;

aFmn½β;γF� ¼
2

n

Xm−1

i¼n−1
iaFiðn−1Þ½β;γF�β

ðnfÞ
m−i−1; 2≤ n≤m;

aFmn½β;ΓF� ¼
2

n

Xm−1

i¼n−2
iaFiðn−1Þ½β;ΓF�βðnfÞm−i−1; 3≤ n≤mþ1;

ðC8Þ

with m > 1 in order to have a sensible upper limit.
The starting values of the three series (with m ≥ 1) are
given by

aFm0½β� ¼ aFm0; aFm1½β; γF� ¼ γFm−1;

aFm2½β;ΓF� ¼
jF
2
ΓF
m−1; ðC9Þ

with aFm0½β; γF� ¼ aFm0½β;ΓF� ¼ aFm1½β;ΓF� ¼ 0. Here,
the integer jF corresponds to the dimension of the

momentum-space variable q as it appears naturally in
logarithms,10 as shown in Eq. (A4). The dependence on
jF is factorized as in Eq. (C7) and only enters the aFmn½β;ΓF�
coefficients through the boundary condition in Eq. (C9).
For the factorization functions in Eq. (A4) this is simply set
to 1. The constant terms of the SCET matrix elements up to
NNLO are as follows:

faHQ

i;0 g1≤i≤2 ¼ f9.372; 305.454g;
faJB;τ2i;0 g1≤i≤2 ¼ f15.053; 310.954g;
faSτ2i;0 g1≤i≤2 ¼ f−13.159;−81.361g: ðC10Þ

APPENDIX D: MSR MASS

The defining series for the standard MS mass

mð6Þ
t ≡mð6Þ

t ðmð6Þ
t Þ reads

δm≡mpole
t −mð6Þ

t ¼mð6Þ
t

X
i¼1

�
αð6Þs ðmð6Þ

t Þ
4π

�
i
að6Þi ð5;1Þ; ðD1Þ

where the notation a
ðnfÞ
i ðnl; nhÞ refers to the coefficient for

nl massless and nh heavy flavors with the running coupling
expressed in the nf-flavor scheme (note that in general
nf ≠ nl þ nh). The defining relation for the MSR mass11 is
given by

δmðRÞ ¼ mpole
t −mMSR;ð5Þ

t ðRÞ

¼ R
X
i¼1

�
αð5Þs ðRÞ
4π

�
i
að5Þi ð5; 0Þ; ðD2Þ

where nh ¼ 0 signifies that the virtual self-energy correc-
tions coming from top quark virtual loops have been
integrated out. Using these results, we can write down
the matching relation between the MS and MSR masses at

the scale m̄ð6Þ
t :

mMSR;ð5Þ
t ðmð6Þ

t Þ−mð6Þ
t ¼mð6Þ

t

X
i¼1

�
αð5Þs ðmð6Þ

t Þ
4π

�
i
Δað5Þi ; ðD3Þ

with

Δað5Þi ¼ að5Þi ð5; 1Þ − að5Þi ð5; 0Þ: ðD4Þ

10Even though from Eq. (B1) one can see that jF ¼ 1 for all the
functions we consider in our analysis, for sake of generality we
have left it explicit in the formulas above.

11We remind the reader that we adopt the “natural” MSR
scheme as defined in Ref. [34] and refer to it as just the MSR
mass.
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The coefficients have the following numerical values
[126–131]:

fað5Þi ð5; 0Þg1≤i≤3 ¼ f5.333; 130.128; 4582.535g;
fað5Þi ð5; 1Þg1≤i≤3 ¼ f5.333; 131.785; 4699.703g: ðD5Þ

APPENDIX E: SOFT GAP
SUBTRACTION SCHEMES

We can generically start the construction of the gap
subtraction series δ̄ that shall cancel the soft function
renormalon in Eq. (23) by considering the following
general condition:

dn

dlognðiyÞ log½S̃
ð5Þ
τ2 ðy; μδÞe−2iyδ̄ðμδ;Rs;n;ξÞ�y¼ ξ

iRs
¼ 0; ðE1Þ

where n ≥ 0 and ξ ∼Oð1Þ is an auxiliary parameter. This
condition specifies a physical renormalon-free “momen-
tum-subtraction-like” scheme which defines the soft func-
tion by imposing a condition on it at a point in position

space. Here S̃ð5Þτ2 ðy; μδÞ is the MS soft function and μδ is a
reference renormalization scale that can be chosen inde-
pendently of Rs. Solving Eq. (E1) for δ̄ gives

δ̄ðμδ; Rs; n; ξÞ≡ Rs

2ξ

dn

d logðiyÞn log½S̃
ð5Þ
τ2 ðy; μδÞ�iy¼ ξ

Rs
: ðE2Þ

This defines a range of gap subtraction schemes for
different choices of n and ξ. The renormalon in the soft
function is not influenced by the terms depending on the
cusp or noncusp anomalous dimensions, and hence appears

only in the terms a
Sτ2
ij ½β� using the notation of Eq. (C7). For

a given n, these terms enter the series for δ̄ at Oðαnþ1
s Þ. The

choices n ¼ 0, 1 yield the two subtraction schemes given in
Eqs. (24) and (25). We do not consider schemes with n ≥ 2

where the aij½β� enter at Oðα3sÞ and beyond.
The scheme used in Refs. [84,91] corresponds to the

choice ξ ¼ eγE and μδ ¼ μS, yielding Eq. (25). Here we
instead employ the n ¼ 0 scheme in Eq. (24), setting ξ ¼ 1

and μδ ¼ Rs instead, which makes the gap parameter Δ̄
independent of the renormalization scale μS of the soft
function. This yields

δ̄ðRsÞ≡ δ̄ðRs; Rs; 0; 1Þ ¼ Rs

X
i¼1

�
αð5Þs ðRsÞ

4π

�
i
di0;

where di0 ¼
1

2

Xiþ1

j¼0

sijγ
j
E; ðE3Þ

where the sij’s are simply the constant terms and coef-

ficients of powers of logarithms L̃j
S ¼ logjðieγEyμÞ in the

fixed-order expansion of log½Sð5Þτ2 ðy; μÞ� at OðαisÞ in
Eq. (C5) [see Eq. (28)]. We remind the reader that when
δ̄ðRsÞ is used in the factorization theorem, it is crucial that δ̄

is treated as a series expansion in αð5Þs ðμSÞ, the same
coupling used in the series for the soft function.
Therefore, the final expression used for our analysis is

δ̄ðRsÞ ¼ Rs

X
i¼1

�
αð5Þs ðμSÞ

4π

�
i
dijlogj

�
μS
Rs

�
;

with dij ¼
2

j

Xi−1
k¼j

kdkðj−1Þβ
ð5Þ
i−k−1: ðE4Þ

Finally, we can relate the leading power correction Ω1ðRsÞ
between the two subtraction schemes:

Ω1ðRsÞ −ΩRefs:½84;91�
1 ðRs; RsÞ

¼ Rs½δ̄Refs:½84;91�ðRs; RsÞ − δ̄ðRsÞ�

¼ Rs

�
8.357

αð5Þs ðRsÞ
4π

þ 28.489

�
αð5Þs ðRsÞ

4π

�
2
�
: ðE5Þ

APPENDIX F: R EVOLUTION

We consider a generic perturbative series depending
linearly and logarithmically on the scale R that has
the following form12 :

fðRÞ ¼ R
X∞
i¼1

�
αsðRÞ
4π

�
i
fi: ðF1Þ

The evolution equation of fðRÞ with respect to R is then
given by

dfðRÞ
d lnR

¼ R
dfðRÞ
dR

¼ R
X∞
n¼0

γf;Rn

�
αsðRÞ
4π

�
nþ1

; ðF2Þ

with the R anomalous dimension coefficients being

γf;Rn ¼ fnþ1 − 2
Xn−1
j¼0

ðn − jÞβjfn−j; ðn ≥ 1Þ; ðF3Þ

where γf;R0 ¼ f1. The crucial aspect of using the RG
equation in Eqs. (F2) is that the R-evolution anomalous
dimension in Eq. (F3) is OðΛQCDÞ renormalon free if the
series in Eq. (F1) contains an OðΛQCDÞ renormalon
[33,34]. This is a fundamental ingredient in the construc-
tion of renormalon subtractions in distributions where the
subtraction scale depends on the value of kinematic

12In this Appendix it is assumed that αs runs with nf active
flavors.
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quantities [21,132]. The solution of the R-evolution equa-
tion is straightforward and given by

fðR1Þ − fðR0Þ ¼
X∞
n¼0

γf;Rn

Z
R1

R0

dR

�
αsðRÞ
4π

�
nþ1

: ðF4Þ

Using Eq. (F3), we can derive the anomalous dimensions
for the R-evolution of the MSR mass and the gap
subtractions by using the following values for fi:

δmðRÞ;Eq: ðD2Þ∶ fi ¼ að5Þi ð5; 0Þ;
δ̄ðRsÞ;Eq: ðE3Þ∶ fi ¼ di0: ðF5Þ

Note that the R-evolution equations for the MSR mass
mMSR

t and the gap parameter ΔðRsÞ in Eqs. (22) and (26)
are defined with an additional minus sign of the evolution
equations of the corresponding subtraction terms which are
referred to in Eq. (F4). For the R-anomalous dimensions
we get

fγMSR
i g0≤i≤3 ¼ f5.333; 48.350; 179.501g;
fγΔi g0≤i≤2 ¼ f−8.357; 55.693g: ðF6Þ

APPENDIX G: NONPERTURBATIVE
MODEL FUNCTION

We use the nonperturbative model function FðkÞ that has
the form

FðkÞ ¼ Smod
τ ðk; λ; fcigÞ≡ 1

λ

�XN
n¼0

cnfn

�
k
λ

��
2

; ðG1Þ

where the basis functions are [87]

fnðzÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z3ð2nþ 1Þ

3

r
e−2zPnðgðzÞÞ;

gðzÞ ¼ 2

3
½3 − e−4zð3þ 12zþ 24z2 þ 32z3Þ� − 1; ðG2Þ

and Pn are Legendre polynomials. For
P

i c
2
i ¼ 1 the norm

of Smod
τ ðkÞ is unity, i.e., Ω0 ¼ 1. The choice of basis in

Eqs. (G1) and (G2) depends on specifying one dimension-
ful parameter λ which is characteristic for the width of the
soft function. Following Ref. [91], in our analysis we set
N ¼ 2 and c1 ¼ 0, such that the first moment using
Eq. (15) is given by

Ω1 ¼ Δþ λ

2
½c20 þ 0.201c0c2 þ 1.100c22�; ðG3Þ

where the normalization condition c20 þ c22 ¼ 1 can be used
to express c0 > 0 in terms of c1. For our numerical analyses
we take c2 ¼ 0.05, Δ ¼ 0.1 GeV, and the value of Ω1

then fixes λ. The Ω1ðRsÞ including gap running can be
evaluated using Eqs. (18) and (E3). For a reference scale of
Rs ¼ 2 GeV, we find

Ω1ð2 GeVÞ ¼ Ω1 − ð2 GeVÞ
X2
i¼1

�
αð5Þs ð2 GeVÞ

4π

�
i
δi0

¼ Ω1 þ 0.463 GeV: ðG4Þ
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