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We explore the low-energy regime of quantum chromodynamics subjected to an external magnetic field
by deriving the two-loop representations for the entropy density and the finite-temperature magnetization
within chiral perturbation theory (CHPT). At fixed temperature, the entropy density drops when the
magnetic field becomes stronger. The magnetization induced at finite temperature is negative in the entire
parameter region accessible by CHPT.We also point out that the enhancement of the finite-temperature part
in the quark condensate is correlated with the decrease of the entropy density.
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I. INTRODUCTION

The thermodynamic properties of quantum chromody-
namics in a homogeneous external magnetic field have
been explored by many authors. In the present study we
focus on the entropy density and the finite-temperature
magnetization1—and furthermore shed light on the con-
nection between the quark condensate and entropy density.
Articles that also have discussed the dependence of entropy
density and magnetization on temperature, magnetic field
strength, and pion mass are: Refs. [1–5] based on lattice
QCD, Refs. [6–9] based on the Nambu-Jona-Lasinio model
and extensions thereof, as well as Refs. [10–23] that rely on
yet other methods.
Still, in the regime of low temperatures and weak

magnetic fields, a comprehensive investigation of entropy
density and finite-temperature magnetization appears to be
lacking. Here, within the framework of two-flavor chiral
perturbation theory, we provide such a fully systematic
analysis. Based on earlier work of the author, Refs. [24–
26], we derive the two-loop representations for the entropy
density and the finite-temperature magnetization.
We find that the entropy density, at fixed temperature,

decreases when the magnetic field becomes stronger and it
also decreases when the masses of the pions grow. The
impact of the magnetic field is most pronounced in the
chiral limit. In the real world with pion masses fixed at

Mπ ¼ 140 MeV, the entropy density also drops in the
presence of an external magnetic field whose impact is
most distinct around the temperature T ≈ 40 MeV. While
the results for the dependence of entropy density on
magnetic field strength, temperature, and arbitrary pion
mass are new to the best of our knowledge, the mag-
netic-field induced decrease of the entropy density at the
physical point Mπ ¼ 140 MeV has also been observed in
the hadron resonance gas model [13], and in the (2þ 1)
flavor Polyakov-loop quark-meson model [21]. However,
the comparison is only qualitative because the latter
reference is based on three flavors, and the hadron
resonance gas model includes even more particles. But
most importantly, our CHPT study is fully systematic and
model independent.
The magnetization induced at finite temperature is

negative in the entire parameter region accessible by
CHPT (T;Mπ;

ffiffiffiffiffiffiffiffiffiffijqHjp
⪅ 0.2 GeV), which includes the

physically most relevant case Mπ ¼ 140 MeV. The mag-
nitude of the finite-temperature magnetization grows as
both magnetic field strength and temperature increase,
implying that the QCD vacuum behaves as a diamagnetic
medium at low temperatures and weak magnetic fields.
This is fully consistent with conclusions drawn from lattice
QCD [3,27–29], the (2þ 1) flavor Polyakov-loop quark-
meson model [21], and the three-flavor quark-meson model
with UAð1Þ anomaly [30]. Still, the region accessible by
CHPT has not been fully addressed in these references.
Finally we point out that the characteristics of the

entropy density and the finite-temperature quark conden-
sate in a magnetic field are correlated. This becomes most
transparent when the H ¼ 0 portions in either quantity are
subtracted to unmask the effect of the magnetic field. We
observe that for arbitrary pion masses—including the
physical point Mπ ¼ 140 MeV—the enhancement of the
finite-temperature quark condensate in a magnetic field is
reflected in a decrease of the entropy density.
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1By “finite-temperature magnetization” or “magnetization
induced at finite temperature” we refer to the quantity MT that
corresponds to the total magnetization with the zero-temperature
portion M0 subtracted: MT ¼ Mtot −M0.
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The article is organized as follows. To set the stage for
our discussion, in Sec. II we provide the two-loop repre-
sentation for the free energy density and explain our
notation. In Sec. III we derive the entropy density and
explore its dependence on temperature, magnetic field
strength and arbitrary pion masses, including the physical
pointMπ ¼ 140 MeV. The two-loop representation for the
magnetization induced at finite temperature is derived in
Sec. IV and its properties in magnetic fields and for
arbitrary pion masses is elucidated in various figures.
Section V is devoted to the connection between order
parameter and entropy density. Finally, Sec. VI contains
our conclusions.

II. PRELIMINARIES

Two-flavor chiral perturbation theory2 subjected to a
magnetic background H and at finite temperature has been
used by various authors to explore the low-energy regime
of quantum chromodynamics [24–26,36–45]. The starting
point of the present study is the two-loop representation for
the free energy density derived in Ref. [25],3

z ¼ z0 þ zT: ð2:1Þ

Here z0 is the vacuum energy density (free energy density at
T ¼ 0) and zT represents the finite-temperature portion.
The latter amounts to

zT ¼ −g0ðM�
π ; T; 0Þ −

1

2
g0ðM0

π; T; 0Þ − g̃0ðM�
π ; T;HÞ

þ M2
π

2F2
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π; T; 0Þ −

M2
π

8F2
fg1ðM0

π; T; 0Þg2

þ M2
π

2F2
g1ðM0

π; T; 0Þg̃1ðM�
π ; T;HÞ þOðp8Þ; ð2:2Þ

and relies on the kinematical Bose functions
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; ð2:3Þ

with SðzÞ,

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ; ð2:4Þ

as the Jacobi theta function. These kinematical Bose
functions depend on the masses of the charged (M�

π )
and neutral (M0

π) pions in a magnetic field, namely,

ðM�
π Þ2 ¼ M2

π þ
l̄6 − l̄5
48π2

jqHj2
F2

;

ðM0
πÞ2 ¼ M2

π þ
M2

F2
K1; ð2:5Þ

where K1 corresponds to the integral

K1 ¼
jqHj
16π2

Z
∞
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dρ ρ−1 exp

�
−
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��

1

sinhðρÞ −
1
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�
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ð2:6Þ

q is the electric charge, and l̄5; l̄6 are renormalized next-
to-leading order (NLO) low-energy effective constants.

2Introductions to chiral perturbation theory are given in
Refs. [31–35].

3We confine ourselves to the isospin limit mu ¼ md.
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The mass M appearing in the kinematical Bose functions
g0 and g1 can either stand for M�

π or M0
π. Finally, the mass

Mπ is the renormalized pion mass in zero magnetic field,

M2
π ¼ M2 −

l̄3
32π2

M4

F2
þOðM6Þ; ð2:7Þ

where M (F) is the tree-level pion mass (pion decay
constant).

III. ENTROPY DENSITY

In the previous section we have defined the kinematical
functions gr and g̃r that are dimensionful. In what follows it
is more convenient to use the dimensionless functions hr
and h̃r,

h0 ¼
g0
T4

; h̃0 ¼
g̃0
T4

; h1 ¼
g1
T2

;

h̃1 ¼
g̃1
T2

; h2 ¼ g2; h̃2 ¼ g̃2: ð3:1Þ

In addition, instead of using absolute values of temperature,
pion mass, and magnetic field strength, we prefer to work
with the normalized and dimensionless quantities t, m, and
mH defined as

t ¼ T
4πF

; m ¼ Mπ

4πF
; mH ¼

ffiffiffiffiffiffiffiffiffiffijqHjp
4πF

: ð3:2Þ

The common denominator represents the chiral symmetry
breaking scale Λχ ≈ 4πF ≈ 1 GeV. In the low-energy
region where chiral perturbation theory operates, the
parameters t, m, and mH are small. In subsequent plots,
the value of the (tree-level) pion decay constant is F ¼
85.6 MeV (see Ref. [46]).
The entropy density s can be extracted from the pressure

via

s ¼ dP
dT

: ð3:3Þ

The pressure in a homogeneous medium, up to the sign, is
nothing but the finite-temperature piece in the free energy
density,

P ¼ −zT: ð3:4Þ

Derivatives of the Bose functions gr and g̃r with respect to
temperature are easily obtained with the relations

d
dT

grðM; T; 0Þ ¼ 2M2

T
grþ1ðM; T; 0Þ þ d − 2r
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d
dT

g̃rðM�
π ; T;HÞ ¼ 2M2

T
g̃rþ1ðM�

π ; T;HÞ þ d − 2r − 2
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π ; T;HÞ; ð3:5Þ

where
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�
− 1

�
: ð3:6Þ

On the basis of the representation for zT, Eq. (2.2), the two-loop entropy density—scaled by 1=T3—amounts to

s
T3

¼ 2s�h1ðM�
π ; T; 0Þ þ 4h0ðM�

π ; T; 0Þ þ s0h1ðM0
π; T; 0Þ þ 2h0ðM0

π; T; 0Þ

þ 2s�h̃1ðM�
π ; T;HÞ þ 2h̃0ðM�

π ; T;HÞ þ h̃½1�0 ðM�
π ; T;HÞ

− 8π2m2f2s�h2ðM�
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π; T; 0Þ þ 4h1ðM�
π ; T; 0Þh1ðM0

π; T; 0Þ
þ 2s0h1ðM�

π ; T; 0Þh2ðM0
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π; T; 0Þh1ðM0

π; T; 0Þg; ð3:7Þ
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with coefficients

s� ¼ m2

t2
þ ðl̄6 − l̄5Þm4

H

3t2
;

s0 ¼
m2

t2
þm2m2

H

t2

Z
∞

0

dρ ρ−1 exp

�
−
m2

m2
H
ρ

��
1

sinhðρÞ −
1

ρ

�
: ð3:8Þ

The dimensionless functions h̃½1�0 ðM�
π ; T;HÞ and h̃½1�1 ðM�

π ; T;HÞ are

h̃½1�0 ðM�
π ; T;HÞ ¼ g̃½1�0 ðM�

π ; T;HÞ
T3

; h̃½1�1 ðM�
π ; T;HÞ ¼ g̃½1�1 ðM�

π ; T;HÞ
T

: ð3:9Þ

In Fig. 1 we plot the scaled entropy density s=T3—sum
of one- and two-loop contributions given in Eq. (3.7)—in
terms of magnetic field strength (mH) and pion mass (m) at
the fixed temperatures T¼f54;108gMeV (t¼f0.05;0.1g).
The entropy density decreases when the magnetic field
becomes stronger and it also decreases when the masses of
the pions grow. The impact of the pion mass, however, is
more pronounced than the dependence on the magnetic
field. The limits M → 0 (chiral limit) and H → 0 do not
pose any problems. In particular, taking the double limit
fM;Hg → 0, the scaled entropy density tends to the value
describing the noninteracting Bose gas,

sðT; 0; 0Þ
T3

¼ 2π2

15
≈ 1.32: ð3:10Þ

At first sight it may be surprising that the CHPT repre-
sentation of the entropy density in this double limit reduces
to the noninteracting—and not the “weakly” interacting—
Bose gas. The crucial point is that in the chiral perturbation
theory expansion, the pion-pion interaction only starts

manifesting itself beyond two loop order in the double
limit fM;Hg → 0.4 In the pioneering three-loop CHPT
evaluation of the QCD partition function in zero magnetic
field, Ref. [47], it was demonstrated that the interaction in
the entropy density—much like in the pressure, internal
energy, and heat capacity—only starts showing up at the
three-loop level in the chiral limit. In this perspective, the
pion-pion interaction indeed is very weak. It should be
mentioned that a three-loop evaluation of the QCD partition
function in nonzero magnetic field—although feasible
within chiral perturbation theory—is technically extremely
demanding. Still, respective work is in progress [48].
To better assess the effect of the magnetic field on

entropy, we subtract the H ¼ 0 contribution, i.e., consider
the quantity

sH
T3

¼ sðT;Mπ; HÞ − sðT;Mπ; 0Þ
T3

ð3:11Þ
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FIG. 1. Scaled entropy density s=T3: Sum of one- and two-loop contributions for T ¼ 54 MeV (left) and T ¼ 108 MeV (right) in
terms of the dimensionless parameters m;mH .

4Recall that the present CHPT analysis in nonzero magnetic
field refers to two-loop order.
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that measures the influence of the magnetic field. In Fig. 2
we plot sH=T3 in terms of magnetic field strength (mH)
and pion mass (m) at the same fixed temperatures
T ¼ f54; 108g MeV. Overall, in presence of the magnetic
field, the entropy density drops. For a given fixed mH, the
effect becomes most pronounced when the chiral limit is
approached.
Let us now focus on the real world defined by the

physical point Mπ ¼ 140 MeV (m ¼ 0.130). In Fig. 3, on
the left-hand side (lhs), we plot the scaled two-loop entropy
density s=T3 according to Eq. (3.7) in function of magnetic
field strength (mH) and temperature (t). Clearly, the impact
of temperature is predominant and the slight decrease of the
entropy density caused by the magnetic field is hardly
visible. Therefore, we rather consider the quantity sH=T3

defined by Eq. (3.11) that isolates the effect of the magnetic
field. Indeed, as illustrated on the right-hand side (rhs) of

Fig. 3, the presence of the magnetic field lowers the entropy
density in an interesting and nontrivial way: the effect is
most pronounced around t ≈ 0.035, corresponding to T ≈
40 MeV. As we discuss below, the increase of order—as
witnessed by the drop in entropy density—is reflected in
the behavior of the finite-temperature quark condensate.
While our results regarding the dependence of entropy

density on magnetic field strength, temperature, and arbi-
trary pion mass are new to the best of our knowledge, the
behavior of the entropy density at the physical pion mass
has been explored in the hadron resonance gas model [13],
as well as in the (2þ 1) flavor Polyakov-loop quark-meson
model [21]. Indeed, both references also report a decrease
of entropy density caused by the magnetic field in the
relevant region T ⪅ 100 MeV that is accessible with chiral
perturbation theory. The comparison, however, is only
qualitative as the latter reference is based on three flavors

Scaled Subtracted Entropy Density sH T 3
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0.4 m
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Scaled Subtracted Entropy Density sH T 3
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0.4
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0.4

0.3

0.2

0.1

0.0

FIG. 2. Subtracted scaled entropy density sH=T3: Sum of one- and two-loop contributions for T ¼ 54 MeV (left) and T ¼ 108 MeV
(right) in terms of the dimensionless parameters m;mH .
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FIG. 3. Scaled QCD entropy density s=T3 (lhs) and scaled subtracted QCD entropy density sH=T3 (rhs). Both quantities in terms of
the dimensionless parameters mH (magnetic field strength) and t (temperature).
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and the hadron resonance gas model also includes more
particles than just the three pions.

IV. FINITE-TEMPERATURE
MAGNETIZATION

The total magnetization Mtot is defined as the (negative)
derivative of the free energy density, Eq. (2.1), with respect
to the magnetic field,

MtotðT;M;HÞ ¼ −
dz

djqHj : ð4:1Þ

Notice that the total magnetization Mtot can be decom-
posed into a temperature-dependent piece MT and temper-
ature-independent piece M0,

Mtot ¼ MT þM0: ð4:2Þ

In this study we focus on the former.5

The finite-temperature free energy density zT, Eq. (2.2),
involves various types of kinematical Bose functions.
Corresponding derivatives with respect to the magnetic
field are readily obtained via

d
djqHj grðM

�
π ; T; 0Þ ¼ −

l̄6 − l̄5
24π2

jqHj
F2

grþ1ðM�
π ; T; 0Þ;

d
djqHj grðM

0
π; T; 0Þ ¼ −

M2
π

F2

dK1

djqHj grþ1ðM0
π; T; 0Þ;

d
djqHj g̃rðM

�
π ; T;HÞ ¼ 1

jqHj g̃rðM
�
π ; T;HÞ − l̄6 − l̄5

24π2
jqHj
F2

g̃rþ1ðM�
π ; T;HÞ þ g̃½H�

r ðM�
π ; T;HÞ; ð4:3Þ

where

g̃½H�
r ðM�

π ; T;HÞ ¼ Td−2r−2

ð4πÞrþ1
jqHj

Z
∞

0

dρρr−
d
2

�
−

ρ cothðjqHjρ=4πT2Þ
4πT2 sinhðjqHjρ=4πT2Þ þ

4πT2

jqHj2ρ
�

× exp

�
−
ðM�

π Þ2
4πT2

ρ

��
S

�
1

ρ

�
− 1

�
: ð4:4Þ

The finite-temperature magnetization MTðT;M;HÞ—up to two loops and scaled by 1=T2—then takes the form

MT

T2
¼ m�h1ðM�

π ; T; 0Þ þ
m0

2
h1ðM0

π; T; 0Þ þ
t2

m2
H
h̃0ðM�

π ; T;HÞ

þm�h̃1ðM�
π ; T;HÞ þ h̃½H�

0 ðM�
π ; T;HÞ

− 4π2m2

�
2m�h2ðM�

π ; T; 0Þh1ðM0
π; T; 0Þ þ 2m0h1ðM�

π ; T; 0Þh2ðM0
π; T; 0Þ

þ 2m0h2ðM0
π; T; 0Þh̃1ðM�

π ; T;HÞ þ 2t2

m2
H
h1ðM0

π; T; 0Þh̃1ðM�
π ; T;HÞ

þ 2m�h1ðM0
π; T; 0Þh̃2ðM�

π ; T;HÞ þ 2h1ðM0
π; T; 0Þh̃½H�

1 ðM�
π ; T;HÞ

−m0h2ðM0
π; T; 0Þh1ðM0

π; T; 0Þ
�
; ð4:5Þ

with coefficients

m� ¼ −
2ðl̄6 − l̄5Þm2

H

3
;

m0 ¼ −m2

Z
∞

0

dρ ρ−1 exp

�
−
m2

m2
H
ρ

��
1

sinhðρÞ −
1

ρ

�
−

m4

m2
H

Z
∞

0

dρ exp

�
−
m2

m2
H
ρ

��
1

sinhðρÞ −
1

ρ

�
: ð4:6Þ

5The chiral perturbation theory representation for the zero-temperature magnetization M0 is derived in the companion paper [49].
That reference also contains a detailed discussion of the total magnetizationMtot and the total magnetic susceptibility χtot ¼ χT þ χ0, as
well as an analysis of the associated diamagnetic and paramagnetic phases.
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The dimensionless functions h̃½H�
0 ðM�

π ; T;HÞ and

h̃½H�
1 ðM�

π ; T;HÞ are

h̃½H�
0 ðM�

π ; T;HÞ ¼ g̃½H�
0 ðM�

π ; T;HÞ
T2

;

h̃½H�
1 ðM�

π ; T;HÞ ¼ g̃½H�
1 ðM�

π ; T;HÞ: ð4:7Þ
In Fig. 4 we plot MT=T2 in terms of magnetic field

strength (mH) and pion mass (m) at the fixed tempera-
tures T ¼ f54; 108g MeV (t ¼ f0.05; 0.1g). The finite-
temperature magnetization turns out to be negative in the
entire parameter region under consideration.6 Note that
its dependence on magnetic field strength is nontrivial:
remarkably, the magnitude of the finite-temperature
magnetization initially grows as the magnetic field

increases, but then declines in stronger magnetic fields.
For fixed magnetic field strength, the effect becomes more
pronounced as one approaches the chiral limit. On the other
hand, the limit H → 0 is trivial: the finite-temperature
magnetization simply vanishes as it should. Accordingly,
there is no need to subtract the H ¼ 0 contribution (as for
the entropy density): the quantity MTðT;M;HÞ already
measures the impact of the magnetic field.
In Fig. 5 we explore the dependence of MT=T2 on

magnetic field strength and temperature in the real world
with physical pion massMπ ¼ 140 MeV (m ¼ 0.130). The
induced finite-temperature magnetization is negative and its
magnitude grows as both magnetic field and temperature
increase. The dependence of MT=T2 on the magnetic
field—at fixed temperature—implies that the QCD vacuum
behaves as a diamagnetic medium at low temperatures and
in weak magnetic fields.
This conclusion fully agrees with studies based on lattice

QCD [3,27–29], on the (2þ 1) flavor Polyakov-loop
quark-meson model [21], and on the three-flavor quark-
meson model with UAð1Þ anomaly [30]. In these references
the finite-temperature magnetic susceptibility χBðTÞ,

χBðTÞ ¼ lim
H→0

−
d2

djqHj2 fz − z0g; ð4:8Þ

was considered. At lower temperatures where only pions
are the relevant degrees of freedom, the authors indeed find
that the magnetic susceptibility is negative. In particular, its
value at T ¼ 90 MeV, reported in Ref. [3],

χBðT ¼ 90 MeVÞ ¼ −0.002ð2Þ; ð4:9Þ
is perfectly consistent with our two-loop CHPT analysis
where we extract7

χBðT ¼ 90 MeVÞ ¼ −0.00245: ð4:10Þ
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FIG. 5. Scaled finite-temperature QCD magnetization MT=T2

in terms of the dimensionless parameters mH (magnetic field
strength) and t (temperature).
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FIG. 4. Scaled finite-temperature magnetization MT=T2: Sum of one- and two-loop contributions for T ¼ 54 MeV (left) and
T ¼ 108 MeV (right) in terms of the dimensionless parameters m;mH .

6Recall that the finite-temperature magnetization MT corre-
sponds to the total magnetization with the zero-temperature portion
M0 subtracted: MT ¼ Mtot −M0. The finite-temperature mag-
netization MT thus measures the change in the magnetization
when temperature is raised from T ¼ 0 to T ≠ 0.

7We have used F ¼ 85.6 MeV from Ref. [46] and—in
accordance with Ref. [13]—Mπ ¼ 135 MeV.
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V. FINITE-TEMPERATURE QUARK CONDENSATE

It is illuminating to include the quark condensate hq̄qi into our discussion and compare its properties at low temperatures
and weak magnetic fields with the behavior of the entropy density. The two-loop representation for the quark condensate,
decomposed into T ¼ 0 and finite-temperature contributions,

hq̄qi ¼ h0jq̄qj0i þ hq̄qiT; ð5:1Þ

has been derived in Ref. [26]. Here we just quote the result for the finite-temperature portion hq̄qiT that is relevant to make
our point,8

hq̄qiT
h0jq̄qj0i0

�
1 −

M2
π

32π2F2
ð2l̄3 − 1Þ

�−1
¼ −

�
q1
F2

T2 þ q2
F4

T4 þOðT6Þ
�
; ð5:2Þ

with coefficients

q1 ¼ h1ðM�
π ; T; 0Þ þ

1

2
a0h1ðM0

π; T; 0Þ þ h̃1ðM�
π ; T;HÞ;

q2 ¼ þ 1

2
h1ðM�

π ; T; 0Þh1ðM0
π; T; 0Þ þ

1

2
h1ðM0

π; T; 0Þh̃1ðM�
π ; T;HÞ

−
1

8
h1ðM0

π; T; 0Þh1ðM0
π; T; 0Þ −

1

2

m2

t2
h1ðM0

π; T; 0Þh2ðM�
π ; T; 0Þ

−
1

2
a0

m2

t2
h1ðM�

π ; T; 0Þh2ðM0
π; T; 0Þ −

1

2
a0

m2

t2
h̃1ðM�

π ; T;HÞh2ðM0
π; T; 0Þ

þ 1

4
a0

m2

t2
h1ðM0

π; T; 0Þh2ðM0
π; T; 0Þ −

1

2

m2

t2
h1ðM0

π; T; 0Þh̃2ðM�
π ; T;HÞ: ð5:3Þ

The NLO mass correction a0 reads

a0 ¼
dðM0

πÞ2
dM2

π
¼ 1þ K1

F2
þM2

π

F2

dK1

dM2
π
; ð5:4Þ

where the integral dK1=dM2
π is

dK1

dM2
π
¼ −

1

16π2

Z
∞

0

dρ exp

�
−

M2
π

jqHj ρ
��

1

sinhðρÞ −
1

ρ

�
:

ð5:5Þ

In Fig. 6 we plot the scaled finite-temperature quark
condensate, i.e., the dimensionless quantity

−
�
q1 þ q2

T2

F2

�
; ð5:6Þ

in terms of magnetic field strength (mH) and pion mass (m)
for the two temperatures T ¼ f54; 108g MeV. The con-
densate grows as magnetic field strength or pion masses
increase, but the dependence on pion mass is more
pronounced.

To better appreciate the impact of the magnetic field—as
for the entropy density—we subtract theH ¼ 0 portion and
define the dimensionless quantity

hq̄qiTH ¼ c0
T2

fhq̄qiT − hq̄qiT jH¼0g; ð5:7Þ

where

c0 ¼
F2

h0jq̄qj0i0

�
1 −

M2
π

32π2F2
ð2l̄3 − 1Þ

�−1
: ð5:8Þ

Notice that hq̄qiTH captures the effect of the magnetic field
in the finite-temperature quark condensate.
Inspecting the corresponding Fig. 7, it now becomes

obvious that hq̄qiTH—i.e., the subtracted finite-temperature
order parameter—is correlated with the subtracted entropy
density (cf. Fig. 2): the enhancement of the order parameter
caused by themagnetic field is reflected in the decrease of the
entropy density. Note that in either subtracted quantity the
influence of the magnetic field is largest in the chiral limit.
Let us finally discuss the connection between quark

condensate and entropy density at the physical point
Mπ ¼ 140 MeV. On the lhs of Fig. 8 we depict the scaled
finite-temperature QCD quark condensate,

−
�
q1 þ q2

T2

F2

�
; ð5:9Þ8The quantity h0jq̄qj0i0 is the quark condensate in the chiral

limit at zero temperature and zero magnetic field.
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in function of magnetic field strength and temperature. The
influence of the magnetic field is barely visible in com-
parison to the predominant dependence on temperature.
This motivates us to consider the subtracted QCD quark
condensate,

hq̄qiTH; ð5:10Þ

that we show on the rhs of Fig. 8. Now the correlation
between order parameter and entropy density (cf. rhs of
Fig. 3) becomes obvious: the magnetic field enhances the
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FIG. 8. Scaled finite-temperature QCD quark condensate in terms of the dimensionless parameters mH and t. Left: full contribution
−ðq1 þ q2T2=F2Þ. Right: subtracted contribution hq̄qiTH .
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FIG. 7. Scaled subtracted finite-temperature quark condensate hq̄qiTH: Sum of one- and two-loop contributions for T ¼ 54 MeV (left)
and T ¼ 108 MeV (right) in terms of the dimensionless parameters m (pion mass) and mH (magnetic field strength).
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finite-temperature quark condensate which is reflected in
the decrease of the entropy density. It should be noted that
the correlation is not one-to-one, but just is of qualitative
nature. For example, as Fig. 8 illustrates, the effect of the
magnetic field is most pronounced around t ≈ 0.085, or
T ≈ 90 MeV, while for the entropy density the most
distinct drop occurs around T ≈ 40 MeV.
The question is whether this correlation—that is obvious

in the plots—has any physical significance. To shed light
on this issue let us consider a condensed matter system that
behaves in an analogous way. More precisely, we refer to
antiferromagnets that are subjected to magnetic and stag-
gered fields. In antiferromagnets, instead of a spontane-
ously broken chiral symmetry, we have a spontaneously
broken rotational symmetry—Oð3Þ → Oð2Þ—giving rise
to two magnons (spin-wave branches) that are the respec-
tive Goldstone bosons. The order parameter is the staggered
magnetization (the analog of the quark condensate) and
the explicit symmetry breaking parameter is the staggered
field (the analog of up- and down-quark mass). Within
magnon effective field theory, i.e., the condensed matter
analog of pion effective field theory, the entropy density
shift as well as the finite-temperature staggered magneti-
zation shift for this condensed matter system have been
calculated very recently [50]. The crucial observation is
that in antiferromagnets subjected to mutually orthogonal
staggered and magnetic fields, which represents the most
studied configuration, entropy shift and finite-temperature
staggered magnetization shift are also correlated: as tem-
perature grows, the entropy shift is negative while the order
parameter shift is positive—much like in QCD. To reveal
the phenomenon it was crucial to consider the respective
shift in the observables caused by the magnetic field, i.e., to
first subtract the H ¼ 0 portions in the entropy density and
finite-temperature staggered magnetization—as we did so
in the QCD entropy density and finite-temperature quark
condensate, Eqs. (3.11) and Eqs. (5.7), respectively.
Now in the case of antiferromagnets, the meaning of the

order parameter is intuitively clear and straightforward: the
staggered magnetization measures the extent of spin anti-
alignment. Naively, in the ground state (Néel state) of a two-
sublattice antiferromagnet, on one sublattice all spins point
up and on the other sublattice all spins point down. This
clearly represents a highly ordered spin configuration. The
combined effect ofmagnetic field, temperature and staggered
field (that is held constant, much like the quark masses are
fixed at their physical values in the real world) perturb this
antiparallel spin arrangement. So here it is intuitively clear
that the correlation between entropy shift and staggered
magnetization shift is not coincidental, but is of physical
significance: both quantities—finite-temperature staggered
magnetization and entropy density—measure the extent of
order in the spin arrangement. Stronger antialignment of the
spins—as measured by the finite-temperature staggered
magnetization—corresponds to a spin configuration of

higher order which is unambiguously reflected in the
negative entropy density shift.
Based on this analogy with antiferromagnets, the claim is

that the correlation in QCD that we observe between finite-
temperature quark condensate and entropy density shift,
also is of physical significance. In analogy to the staggered
magnetization order parameter that measures the magnitude
of (anti)alignment in spin space, here the quark condensate
measures the “extent of order in flavor space.” At finite
temperature and in presence of a magnetic field, the quark
condensate is enhanced as we observed on the rhs of Fig. 8.
This enhancement of order is then indeed reflected in a
negative entropy density shift according to the rhs of Fig. 3.
Our speculation is that this correlation between entropy
shift and quark condensate shift is not coincidental, but
physically significant. The phenomenon may be studied
with other nonperturbative methods such as QCD sum rules
or lattice QCD.

VI. CONCLUSIONS

Within the framework of two-flavor chiral perturbation
theory in a magnetic background, we have derived the two-
loop representations for the entropy density and the
magnetization. In various figures we have explored how
these quantities depend on temperature, magnetic field
strength and pion mass.
We observe that the entropy density—at fixed

temperature—drops when the magnetic field becomes
stronger and that its decrease is most pronounced in the
chiral limit. At the physical point Mπ ¼ 140 MeV, the
decrease of the entropy density is most distinct around
T ≈ 40 MeV. The lowering of the entropy density in an
external magnetic field has also been reported in model-
based studies. Here, however, we have provided a fully
systematic investigation.
The magnetization at finite temperature is negative

in the entire parameter domain accessible by CHPT, i.e.,
T;Mπ;

ffiffiffiffiffiffiffiffiffiffijqHjp
⪅ 0.2 GeV. Its dependence onmagnetic field

strength is nontrivial: themagnitude of the finite-temperature
magnetization initially grows as themagnetic field increases,
but then declines in stronger magnetic fields. This behavior
is most distinct in the chiral limit. In the real world
(Mπ ¼ 140 MeV) the QCD vacuum behaves as a diamag-
netic medium at low temperatures and weak magnetic fields,
in accordance with lattice QCD and model-based studies.
Finally we have addressed the connection between the

behavior of the entropy density and the finite-temperature
quark condensate in a magnetic field. The connection
becomes most obvious when the H ¼ 0 pieces in either
quantity are subtracted, such that the effect of the magnetic
field is revealed: we then observe that the enhancement
of the finite-temperature quark condensate in a magnetic
field is reflected in a decrease of the entropy density. Based
on an analogy with antiferromagnets subjected to mu-
tually orthogonal magnetic and staggered fields, we have
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speculated that the correlation between quark condensate
shift and entropy density shift is not coincidental, but of
physical significance.
Although the thermomagnetic properties of quantum

chromodynamics in a homogeneous external magnetic field
have been explored before by various authors, a compre-
hensive investigation of the entropy density and the
magnetization in the regime of low temperatures and weak
magnetic fields seems to be lacking. Here we have provided
a fully systematic analysis relying on two-flavor chiral
perturbation theory.
While we have focused on effects emerging at finite

temperature, it would be interesting to also include
zero-temperature effects into the discussion. This, how-
ever, requires a detailed analysis of the zero-temperature

vacuum polarization. A detailed investigation including
the magnetic susceptibility and the associated diama-
gnetic and paramagnetic phases—as well as an extensive
comparison with the pertinent literature—is given in the
companion paper [49]. It would also be interesting to
extend the present case to three-flavor chiral perturbation
theory, i.e., to include kaons and the η-particle. An even
more ambitious task is to elevate the present two-loop
analysis to the three-loop level. Corresponding work is in
progress.
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