
Genuine empirical pressure within the proton

Adam Freese * and Gerald A. Miller†

Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 22 April 2021; accepted 8 July 2021; published 30 July 2021)

A phenomenological extraction of forces within the proton has recently been performed using JLab
CLAS data V. D. Burkert et al., [arXiv:2104.02031]. The extraction used a three-dimensional Breit frame
description in which the initial and final proton states have different momenta. Instead, we obtain the two-
dimensional (2D) transverse light front pressure densities that incorporate relativistic effects arising from
the boosts that cause the initial and final states to differ. Taking the CLAS results seriously, we obtain a 2D
mechanical radius for the proton. Additionally, we find predominantly repulsive forces near the proton’s
center, and predominantly attractive forces further out.
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I. INTRODUCTION

The goal of determining the magnitude and spatial
distribution of forces within hadrons has garnered great
recent interest [1–8]. Information about internal forces
within hadrons is encoded in the energy-momentum tensor
(EMT) [1,9,10], which additionally contains information
about the decomposition and distribution of energy via a
form factor, AðtÞ [11–16] and angular momentum via a
form factor, JðtÞ [17–19]. The variable t represents the
square of the momentum transfer between initial and final
proton states. The focus here is the third form factor, DðtÞ
[1], which encodes information about internal forces. The
three form factors represent separately conserved contri-
butions to the EMT.
Recently, data from Jefferson Lab have been used to

infer DðtÞ and the pressure distribution within the proton
[3,20]. The obtained three-dimensional pressure distribu-
tion does not incorporate relativistic effects caused by
boosts that must be incorporated when tR2 ∼ 1, where R is
a measure of the size of the system. Obtaining spatial
distributions requires an integral over all values of t, so
determining the proton’s internal structure requires a fully
relativistic approach.
The relativistic effects due to boosts can be incorporated

into spatial densities by using light front coordinates and
defining the density at fixed light front time [10,21–24].
This can be done because the Poincaré group has a

Galilean subgroup that commutes with the light front
Hamiltonian [25–27]. The densities obtained in this way
involve integrating out a spatial coordinate in the light front
direction, giving a two-dimensional (2D) density on the
transverse plane. The formalism for using light front
coordinates to obtain a relativistically correct pressure
density was explicated in Ref. [10]. Thus we use the light
front formalism to obtain a relativistically correct pressure
density from the Jefferson Lab DðtÞ extraction.

II. LIGHT FRONT FORMALISM

In the light front formalism, spacetime is parametrized
in terms of coordinates ðxþ; x−;x⊥Þ, where x� ¼
1ffiffi
2

p ðx0 � x3Þ. xþ is considered the “time” variable. For

transverse densities in particular, all dependence on x− is
integrated out, giving a (2þ 1)-dimensional picture in
terms of the transverse spatial coordinates x⊥. Within this
(2þ 1)-dimensional picture, the EMT—when sandwiched
within physical state kets—can be written as

hΨjTμν
LFðxÞjΨi ¼ uμðxÞuνðxÞεðxÞ þ SμνðxÞ: ð1Þ

Here, x ¼ ðxþ;x⊥Þ, and μ and ν range only over þ; 1; 2.
The wave-packet state jΨi is a superposition of momentum
eigenstates such that the transverse position is well defined.
The variable εðxÞ is the Pþ (light front momentum) density,
and uμðxÞ encodes the flow of the hadron—which includes
not just motion of the quarks and gluons within it, but also
movement of the wave packet due to dispersion. The tensor
SμνðxÞ is the “pure stress tensor,” and corresponds to the
spatial components of the EMT as measured by a locally
comoving observer. [i.e., an observer who sees uμðxÞ ¼ 0
at their current location]. It is the pure stress tensor that
encodes the distribution of pressure and shear forces in the
hadron.
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For a transversely localized state with definite light front
helicity (i.e., polarized in the ẑ direction), the pure stress
tensor is related to DðtÞ by a two-dimensional Fourier
transform:

Sijðx⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − Δ2⊥δijÞ

Dð−Δ2⊥Þe−iΔ⊥·x⊥ : ð2Þ

It can be decomposed into an isotropic pressure function
pðx⊥Þ and a shear stress function sðx⊥Þ:

Sijðx⊥Þ ¼ δijpðx⊥Þ þ
�
xi⊥x

j
⊥

x2⊥
−
1

2
δij

�
sðx⊥Þ: ð3Þ

Since these are two-dimensional transverse quantities, the
pressure has units of force/length instead of force/area. The
pure stress tensor also gives the expected net force density
acting at any point x⊥ within the hadron via

Fj
⊥ðx⊥Þ ¼ −∇iSijðx⊥Þ: ð4Þ

For an equilibrium system such as an isolated hadron,

F⊥ðx⊥Þ ¼ 0 ð5Þ

identically. This force-balance condition can be seen to
follow from Eq. (2). Since these densities are defined
through expectation values, all pressures and forces should
likewise be interpreted as expectation values.

A. Radial and tangential pressures

Although the net force everywhere in the hadron is zero,
there is nonetheless a static anisotropic pressure that would
be felt by a hypothetical pressure gauge immersed within
the hadron. Sijðx⊥Þ in particular encodes such pressures as
measured by a gauge that is comoving along with the
hadron flow encoded in uμðx⊥Þ. The force that would be
measured by such a gauge is given by

Fj
gauge ¼

Z
L
dlûiSijðx⊥Þ; ð6Þ

where L is the one-dimensional surface of the gauge and ûi
is an inward-facing unit normal vector to that surface.
By appropriately considering gauges in different orien-

tations, one can obtain expressions for the radial and
tangential pressure within a hadron:

prðx⊥Þ ¼ r̂ir̂jSijðx⊥Þ ¼ pðx⊥Þ þ
1

2
sðx⊥Þ; ð7Þ

ptðx⊥Þ ¼ ϕ̂iϕ̂jSijðx⊥Þ ¼ pðx⊥Þ −
1

2
sðx⊥Þ: ð8Þ

We follow Ref. [28] in calling these “pressures.”
References [1,10] refer to prðx⊥Þ (or its Breit frame

analogue) as a “normal force,” but we avoid such nomen-
clature here in order to maintain clarity that the net force
everywhere in the hadron is zero. References [1,10,28,29]
postulate prðx⊥Þ ≥ 0 as a stability condition, but there are
no sign constraints on ptðx⊥Þ.
Since prðx⊥Þ is strictly non-negative, it can be used to

define a mechanical radius [1,10], which comes out as

hx2⊥ðmechÞi ¼
R
d2x⊥x2⊥prðx⊥ÞR
d2x⊥prðx⊥Þ

¼ 4Dð0ÞR
0
−∞ dtDðtÞ : ð9Þ

This means that determining the mechanical radius requires
knowing DðtÞ for both small and large values of −t.

III. EMPIRICAL TRANSVERSE PRESSURES

The form factor DðtÞ can in principle be extracted
directly from the Compton form factor Hðξ; tÞ using
dispersion relations [3,30–32]. This was done in Ref. [3]
through a dispersive analysis of deeply virtual Compton
scattering (DVCS) data from CLAS at Jefferson
Lab [3,33,34].
A major caveat attached to the extraction is that it

includes only quarks, since gluons do not contribute to
DVCS at leading order. Thus any pressure densities
presented in this work are just the quark contributions to
these pressures. Moreover, since gluons are not being
included, there is in principle an additional form factor
c̄qðtÞ that can contribute to the isotropic pressure density
[1]. However, phenomenological and model estimates
[14,28,35] have jc̄qð0Þj ≪ jDqð0Þj, so we neglect the
contributions of this largely unknown form factor.
An additional major caveat is that DðtÞ is only the first

term in a series expansion of the subtraction term in the
DVCS dispersion relations, and keeping only this first term
may result in large systematic uncertainties; see Ref. [36]
for a discussion of this issue.
With these caveats in mind, the authors of Ref. [20] have

fit DðtÞ to the following functional form:

DðtÞ ¼ Dð0Þ
ð1 − t=Λ2Þα ; ð10Þ

where Dð0Þ, Λ2, and α are the fit parameters. The values
obtained by the authors of Ref. [20] are given in Table I.
Using the empirical fit parameters forDðtÞ, as well as the

formalism explicated above, we obtain empirical estimates
for the isotropic, radial, and tangential pressure of the

TABLE I. Parameters for Eq. (10) from Ref. [20], including fit
and systematic errors. It should be noted that the systematic errors
include systematics of assuming a simple multipole form for
DðtÞ; see the discussion in Ref. [20].

Dð0Þ Λ2 (GeV2) α

−1.47� 0.06� 0.14 1.02� 0.13� 0.21 2.76� 0.23� 0.48
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proton in a definite light front helicity state. For such a
state, these pressures are functions of only the magnitude
x⊥ of x⊥. These quantities, weighted by 2πx⊥, are given in
Fig. 1. A factor of 1=Pþ was removed from the plotted
quantities, making the plotted quantities state- and frame-
independent.
The quantity Pþpðx⊥Þ can also be cast into units of

pascals. However, the numbers obtained should not be
interpreted as literal forces per unit area, since—by
integrating out x−—the light front formalism is inherently
(2þ 1)-dimensional. Nonetheless, Pþpðx⊥Þ is a state- and
frame-independent quantity that can be cast into units of
pascals, and accordingly encodes some intrinsic property
of the proton, and may also give some intuitive insight
into the rough magnitude of pressures present inside the
proton. We find with the parameters from Ref. [20] that
Pþpð0Þ ≈ 2.36 × 1035 Pa—the same order of magnitude
suggested by the Breit frame analysis of Ref. [3].
Using the form in Eq. (10), there is a simple expression

for the mechanical radius, or pressure radius:

hx2⊥ðmechÞi ¼ 4ðα − 1Þ
Λ2

: ð11Þ

Our result for the pressure radius is given in Table II, which
also includes several other light front proton radii. Note that
light front radii differ from the usual three-dimensional
radii defined in the literature, and are usually just a factorffiffiffiffiffiffiffiffi
2=3

p
smaller. The charge radius, obtained from the Dirac

form factor F1ðtÞ, also differs from the usual Sachs radius
due to relativistic spin effects [22]:

hx2⊥ðchargeÞi ¼
2

3
r2Sachs −

κ

M
; ð12Þ

where κ is the proton’s anomalous magnetic moment.

Looking at Table II, the systematic error bars on the
pressure radius make any definitive comparison between it
and the other radii difficult. However, taking the central
values seriously yields an approximate ordering of the root-
mean-square radii:

x⊥ðmassÞ≲ x⊥ðpressureÞ≲ x⊥ðaxialÞ≲ x⊥ðchargeÞ: ð13Þ

Crucially, the apparent spatial extent of the proton differs
depending on how its spatial extent is defined—and the
proton can look bigger or smaller depending on what probe
or process is used. Taking these as strict inequalities cannot
be justified with the uncertainties quoted in Table II. If this
ordering roughly holds, it is worth speculating on what
factors might be at play.
To start, the charge radius notoriously obtains a con-

tribution from the pion cloud [40–42] that is absent from
the axial radius [43], the latter of which is expected to be
smaller for this reason. By contrast, the pion cloud does
carry energy and can reasonably be expected to exert
pressure, and thus we may expect it to contribute to the
mass and pressure radii.
Other factors are likely at play, however. The “mass

radius” is actually the radius of the Pþ density [5,10], and
accordingly weighs configurations more strongly when a
single quark carries a large portion of the proton’s forward
momentum. These configurations notoriously have small
spatial extent [44,45], thus biasing the mass radius towards
being small. The pressure radius may also tend towards
being small because pressure compounds upon itself at
greater “depth,” i.e., closer to the proton center. It would be
interesting to know with greater certainty whether the
pressure radius really exceeds the mass radius, and also
how it compares to the axial radius. It would thus be
prudent to pursue higher-precision measurements of DVCS
from the proton—as well as to pursue methods to control
and reduce systematic uncertainty in the extraction of
DðtÞ—in order to obtain stronger constraints on the proton
pressure densities and its mechanical radius.

FIG. 1. The isotropic, radial, and tangential pressures within the
proton on the light front, as suggested by the parameters in
Table I. A state- and frame-dependent factor 1=Pþ has been
removed from the plotted quantities. The error band includes only
fit uncertainty.

TABLE II. Approximate root-mean-square radii of the proton
on the light front. The quoted sources provide a three-dimen-
sional radius that we have converted into a 2D light front radius
using the definitions given in the table.

Radius (fm) Uncertainty (fm) Definition Source

Pressure 0.518 0.062fit þ 0.126sys Eq. (9) This work
Mass 0.45 0.02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4A0ð0Þp

Ref. [37]a

Axial 0.55 0.17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G0

Að0Þ
p

Ref. [38]
Charge 0.6266 0.0017

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F0

1ð0Þ
p

Ref. [39]

aThe mass radius extracted from Ref. [37] should be taken as
preliminary and subject to future corrections. The exact rela-
tionship between the scalar form factor GðtÞ and the mass form
factor remains to be elucidated, and likewise for the theoretical
foundations of meson dominance in graviton interactions.
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A. Effects of polarization

It is possible to obtain pressure densities for transversely
polarized protons within the light front formalism.
Transverse polarization states are given by superpositions
of light front helicity states,

jsT ¼ s⊥i ¼
jλ ¼ þ 1

2
i þ eiϕs jλ ¼ − 1

2
iffiffiffi

2
p ; ð14Þ

and accordingly, expectation values for transverse polari-
zation states involve helicity-flip matrix elements.
Because of these helicity-flip terms, proton densities—

including the pressure densities—obtain a dependence on
the angle ϕ ¼ ϕx − ϕs between x⊥ and s⊥. If we use pðx⊥Þ
to denote the pressure density of a light front helicity state,
the pressure density for a transversely polarized state is

pTðx⊥;ϕÞ ¼ pðx⊥Þ þ
sinϕ
2M

p0ðx⊥Þ: ð15Þ

This relation applies to all of the isotropic, radial, and
tangential pressures.
The 2D radial pressure densities for longitudinally and

transversely polarized protons are plotted in Fig. 2. The
longitudinally polarized proton has an azimuthally sym-
metric pressure. However, the transversely polarized proton
has a greater concentration of pressure to the right of (−90°
from) the spin direction. This finding is reminiscent of a
similar finding about electric charge density in Ref. [46].
Interestingly, the transverse pressure distribution sug-

gests that—when analyzed in a light front framework using
pressure densities—the proton is not shaped like a sphere.
This is not too surprising, since the spin axis identifies a
particular direction in space, with respect to which direc-
tions such as right and left can be defined [47].

IV. DISCUSSION AND INTERPRETATION

When interpreting the results for the pressures, it is
important to keep in mind their proper physical interpre-
tations. First of all, since densities are defined via expect-
ation values of operators for a physical proton state, the
forces and pressures obtained by this formalism are all
expectation values (in the usual quantum-mechanical
sense), rather than exact values as in a classical continuum
system. Another especially important fact to bear in mind is
that the (expected) net force everywhere in the hadron is
identically zero—a statement that the hadron is in internal
equilibrium, as is expected of a system in its ground state.
We clarify the situation further using Fig. 3, which

depicts the forces exerted on a small slab within the proton
by the remainder of the proton, specifically in a case where
pr > 0 and pt < 0. The net force on this piece of the proton
is zero, but there are nonzero forces acting on each side
of the slab. Since prðx⊥Þ ≥ 0, the radially facing sides of

FIG. 2. 2D plots of the radially directed pressure in the proton.
A factor 1=Pþ has been removed from the plotted quantities,
which are in units of GeV2=fm2. The top panel is for longitu-
dinally polarized protons, and the bottom panel for transversely
polarized protons with the spin in the þŷ direction.

FIG. 3. A cartoon depicting (expectation values of) forces
acting on a slab within the proton. The net force acting on this
slab is zero, but forces acting on any side of the slab from the
outside may be nonzero. These nonzero surface forces constitute
the pressure in the proton.
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the slab are both pushed on from the outside. When
ptðx⊥Þ > 0, the tangentially facing sides are also pushed
on, but when ptðx⊥Þ < 0, these sides are pulled on by the
remainder of the proton instead.
As seen in Fig. 1, the radial pressure in the proton is

strictly positive. Although attractive and repulsive forces
are both present in the proton, the repulsive forces over-
whelm the attractive forces in the radial direction at all
distances. The balance of forces keeping the proton in
equilibrium is thus primarily, in the radial direction,
between repulsive forces acting in both the inward and
outward radial directions.
On the other hand, somewhere between around 0.12–

0.34 fm from the proton’s center, the tangential pressure
changes sign from positive to negative. This means that at
distances less than this, the forces in all directions are
primarily repulsive, while at greater distances, the forces
in the �ϕ̂ directions are primarily attractive. This leads
to a scenario where elements of the proton that are far
from its center are being pushed from the radial directions
and pulled around the proton, suggesting a reverse
spaghettification.
The isotropic pressure pðx⊥Þ averages over the pressures

in all directions, telling us on average whether the majority
of forces at a distance x⊥ from the proton’s center are
repulsive or attractive. The isotropic pressure crosses zero
somewhere from around 0.31–0.55 fm, meaning the forces
at shorter distances are primarily repulsive and forces at
longer distances are primarily attractive. We stress, how-
ever, that the forces at these spatial locations are primarily
repulsive or attractive averaged over directions, and not
towards or away from the proton’s center.
The exact numbers are subject to correction as stronger

empirical constraints on the systematics of extracting DðtÞ
are achieved. However, the qualitative picture described
above is expected to hold.

Another especially important caveat to bear in mind
while applying concepts of force and pressure to the proton
is that utilizing these concepts does not imply the proton to
behave like a fluid, nor like any other particular macro-
scopic continuum system. The stress tensor and pressure
have applications to a variety of both liquid and solid
continuum systems [48–51]. As an object much smaller
than and drastically different from macroscopic systems in
solid or fluid states, the proton should not be expected to
behave either like a viscous fluid nor like an elastic solid;
for instance, one should not expect quarks in the proton to
obey a Navier-Stokes equation. The stress tensor, and the
resultant forces and pressures, can be formally defined for
any continuum system.

V. CONCLUSION

The empirical extraction ofDðtÞ in Ref. [20] was used to
obtain transverse densities of the isotropic, radial, and
tangential pressures in the proton within the light front
formalism. A physical interpretation of these pressures
was provided along with computations of the empirical
mechanical radius associated with them. Since—in contrast
to the picture provided by the Breit frame—transverse
densities on the light front are relativistically correct, the
densities obtained in this work should be interpreted as the
genuine empirical pressure densities of the proton implied
by the findings of Ref. [20].
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