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We investigate the production of the hidden-charm pentaquark P0
csð4459Þ with strangeness in the

K−p → J=ψΛ reaction, employing two different theoretical frameworks, i.e., the effective Lagrangian
method and the Regge approach. Having determined all relevant coupling constants, we are able to
compute the total and differential cross sections for the K−p → J=ψΛ reaction. We examine the
contributions of Pcs with different sets of spin-parity quantum number assigned. The present results
may give a guide for possible future experiments.
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I. INTRODUCTION

Very recently, the LHCb Collaboration has announced
the finding of a new hidden-charm pentaquark state with
strangeness in the analysis of Ξ−

b → J=ψΛK− decays [1].
This hidden-charm pentaquark baryon with strangeness is
christened as P0

csð4459Þ. The mass and width of Pcs is
determined to be respectively 4458.8� 2.9þ4.7

−1.1 MeV and
17.3þ8.0

−5.7 MeV. While the quark content of P0
csð4459Þ can

be given as udscc̄, its spin-parity quantum number is not
known yet because of lack of the data. This finding
broadens our understanding of how the quarks form
multiquark hadrons in addition to the heavy pentaquark
baryons Pc [2–4] and many charmoniumlike tetraquark
mesons [5,6] (see recent experimental and theoretical
reviews [7–11]). The structure of Pc and Pcs has been
theoretically studied in various works [12–35]. The internal
structure of the hidden-charm pentaquark states is still
under debate. Since the mass of P0

csð4459Þ is about 19 MeV
below the D̄�Ξ0

c threshold, it is arguably considered to be a
hadronic molecular state [18,21–26]. On the other hand,
the hidden-charm pentaquark states are interpreted as
compact pentaquarks consisting of two diquarks and an
antiquark bound states [12–14,17,36], hadrocharmonium
states [37–39], coupled-channel unitary approach with
the local hidden gauge formalism [27,28], five-quark

states [29–31], meson-baryon molecules with coupled
channels [32], meson-baryon molecules coupled to the
five-quark states [33,34], and as hadronic molecule
states in a quasipotential Bethe-Salpeter equation
approach [35]. Theoretically, the spin-parity quantum
number of the P0

csð4459Þ is proposed to be 1=2−ð3=2−Þ.
Reference [25] argues that JP ¼ 3=2− is preferable
over JP ¼ 1=2− based on the hadronic molecular picture
of P0

csð4459Þ, though it should be determined by
experiments.
In principle, the hidden-charm pentaquark states

can be produced by meson beams such as the pion and
kaon. Since several experimental programs to measure
charmed hadrons have been planned at the Japan Proton
Accelerator Research Complex (J-PARC) [40–44], it is also
of great importance to investigate the production mecha-
nism of the hidden-charm pentaquark states. In Ref. [45],
the production of the P0

cð4380Þ and P0
cð4450Þ was studied

in the π−p → J=ψn reaction, based on the effective
Lagrangian approach. This approach provides a simple
but clear understanding of how the Pc’s can be created at
the level of the Born approximation. The transition ampli-
tude includes the Pc’s as the resonance baryons in the s
channel explicitly together with π and ρ exchanges in the t
channel and the Pc’s exchange in the u channel. They
found that the contributions of the P0

cð4380Þ and P0
cð4450Þ

bring about the clear peak structures in order of 1 μb at the
energies corresponding to the masses of Pc ’s. On the other
hand, Ref. [46] examined the π−p → J=ψn reaction, using
the Regge approach. The t channel for the hidden charm
reaction is distinguished from that for the open charm
reaction, since the hidden charm processes are suppressed
by the Okubo-Zweig-Iizuka (OZI) rule. This indicates that
it is difficult to determine the coupling constant for Pc by

*sclymton@inha.edu
†heejin.kim@inha.edu
‡hchkim@inha.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 014023 (2021)

2470-0010=2021=104(1)=014023(15) 014023-1 Published by the American Physical Society

https://orcid.org/0000-0002-8718-8661
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.014023&domain=pdf&date_stamp=2021-07-30
https://doi.org/10.1103/PhysRevD.104.014023
https://doi.org/10.1103/PhysRevD.104.014023
https://doi.org/10.1103/PhysRevD.104.014023
https://doi.org/10.1103/PhysRevD.104.014023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


using some model calculations. Thus, one needs to make a
reasonable assumption for the branching ratios of Pc.
A similar situation is expected also for the K−p →
J=ψΛ reaction.
In the present work, we investigate the production of

P0
csð4459Þ in the K−p → J=ψΛ reaction, based on two

different theoretical models, i.e., the effective Lagrangian
method and Regge approach. In particular, since the
energy of the initial kaon should be enough to create the
charmonium J=ψ and Λ, it is worthwhile to consider also
the Regge approach. In Refs. [42,43], both the effective
Lagrangian method and Regge approach were used for the
study of the open-charm process π−p → D�−Λþ

c . It turns
out that the Regge approach describes the experimental
data very well over the whole energy region. However,
while the Regge approach describes the general behavior of
the cross sections at very high energies, it has certain
difficulties to describe experimental data quantitatively.
One effectiveway of improving this Regge approach is that
one can replace the Feynman propagators in the transition
amplitudes derived based on the effective Lagrangian by
the Reggeized propagator. This method is often called the
hybridized Regge approach. Actually, the Regge approach
was used for the description of the π−p → J=ψn reaction
[47] in which the total cross section for the reaction was
estimated to be around 1 pb at the momentum
p ¼ 50 GeV=c. Moreover, the hybridized Regge approach
was developed and successfully applied to photoproduc-
tion of mesons [48]. In the present work, we take the same
strategy such that we will employ both the effective
Lagrangian and Regge approaches and compare the results
each other, since these two approaches are complementary
each other. Since the spin-parity quantum number of
P0
csð4459Þ is experimentally unknown, we will consider

six different cases, i.e., JP ¼ 1=2�, JP ¼ 3=2�, and
JP ¼ 5=2�, emphasizing the cases of JP ¼ 1=2− and
3=2−. Then, we scrutinize the differences among the
contributions of Pcs to theK−p → J=ψΛwith the different
spin-parity quantum number assigned. The present work

will provide helpful guidance on possible future experi-
ments at the J-PARC and on determining the spin-parity
quantum number of Pcs.
We sketch the present work as follows: In Sec. II, we

explain the general formalism for the effective Lagrangian
and Regge approaches. Since the coupling constants at the
vertices including Pcs are not known, we first estimate them
by imposing reasonable assumptions on the branching
ratios of the Pcs decays. In Sec. III, we present the results
for the total and differential cross sections, emphasizing the
differences arising from different spin-parity quantum
numbers. In the final section, we summarize the present
work and will draw conclusions.

II. GENERAL FORMALISM

We first start with the effective Lagrangian approach and
then will continue to formulate the transition amplitude for
the K−p → J=ψΛ reaction in the Regge approach.

A. Effective Lagrangian method

In the effective Lagrangian approach for the K−p →
J=ψΛ reaction, we can consider three different Feynman
diagrams that are drawn in Fig. 1. In the s channel, we can
only include P0

csð4459Þ with the experimental data on its
mass and decay width taken into account [1]. Though we
can include other hyperons with strangeness S ¼ −1, we
will neglect them, because we do not have any information
on the coupling constant for the vertices such as YΛJ=ψ
and furthermore their contributions will be negligible, since
they are far from on-mass-shell. The t channel contains K
and K� exchange. In the u channel, we can introduce the
nucleon. Note that it is not possible to include Pcs in the u
channel, which is very different from the case of the π−p →
J=ψn reaction. Since the spin-parity quantum number of
P0
csð4459Þ is unknown, we assume six different cases:

JP ¼ 1=2�; 3=2�; 5=2�. Taking into account these differ-
ent quantum numbers, we can express the effective
Lagrangians for Pcs as follows [45,46,49–51]

(a) (b) (c)

FIG. 1. The tree-level Feynman diagrams for the K− þ p → J=ψ þ Λ reaction. In the left panel the s-channel is drawn, whereas in the
center and right panels, the t-channel and u-channel diagrams are depicted. pi stand for the four-momenta of hadrons involved in the
reaction.
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L1=2�
PΛJ=ψ ¼−gPΛJ=ψ P̄Γ

∓
μ ΛψμþfPΛJ=ψ

2mΛ
P̄σμνΓ�ΛψμνþH:c:;

L3=2�
PΛJ=ψ ¼−

gPΛJ=ψ
2mΛ

P̄μΓ�
ν Λψμν−

fPΛJ=ψ
4m2

Λ
P̄μΓ∓∂νΛψμν

−
hPΛJ=ψ
4m2

Λ
P̄μΓ∓Λ∂νψ

μνþH:c:;

L5=2�
PΛJ=ψ ¼−

gPΛJ=ψ
2m2

Λ
P̄μαΓ

∓
ν Λ∂αψμν−

fPΛJ=ψ
4m3

Λ
P̄μαΓ�∂νΛ∂αψμν

−
hPΛJ=ψ
4m3

Λ
P̄μαΓ�Λ∂α∂νψ

μνþH:c:; ð1Þ

where P, Λ, ψμ denote the fields corresponding respec-
tively to P0

csð4459Þ, Λ0, and J=ψ . ψμν is defined as
∂μψν − ∂νψμ. mΛ stands for the mass of the Λ hyperon.
Γμ and Γ are given respectively by

Γ�
μ ¼

�
γμγ5

γμ

�
and Γ� ¼

�
1

iγ5

�
; ð2Þ

with different parities considered. Since we consider the
production of Pcs in the vicinity of the J=ψΛ threshold, we
will take into account the first terms in each effective
Lagrangians. We will consider only the terms with gPΛJ=ψ
in the effective Lagrangian, assuming that those with
fPΛJ=ψ and hPΛJ=ψ are rather small near the threshold.
The effective Lagrangians for the NPcsK vertex are

written as

L1=2�
PNK ¼ −gPNKP̄Γ∓NK þ H:c:;

L3=2�
PNK ¼ −

gPNK

MPcs
mN

εμναβ∂μP̄νΓ�
αN∂βK þ H:c:;

L5=2�
PNK ¼ −

gPNK

MPcs
m2

N
εμναβ∂μP̄νρΓ

∓
α N∂ρ∂βK þ H:c:; ð3Þ

where MPcs
and mN represent the masses of Pcs and the

nucleon respectively.
Since there is no information on the coupling constants

for the PcsJ=ψΛ and PcsKN vertices experimentally, it is
very difficult to determine them. As will be discussed soon,
one possible way is to resort to some guess work based on
theoretical works [46,52,53] and recent experimental data
on πN and K̄N scattering [54–56]. Note that we have used
the πN and K̄N scattering data to extrapolate the PcsJ=ψΛ
and PcsKN coupling constants. This is an assumption
justified by the fact that the energy of the Pcs production is
rather high such that the effects of the explicit SU(3)
symmetry breaking are also suppressed, considering the
fact that the ratio between the strange current quark mass
ms and the kinetic energy of the Λ baryon, is rather small.
The coupling constants for Pcs are extracted by using the
partial-wave decay width given by

ΓðPcs →MBÞ¼ jkj
8πM2

Pcs

1

2Jþ1

XJ
λ1¼−J

X
λ2;λ3

jAðPcs →MBÞj2;

ð4Þ

where M and B denote the produced meson and baryon in
the final state, respectively. jkj is the momentum of the
meson in the final state and J represents the total angular
momentum of the final state. The λi are the spin projections
of the particles involved. The decay amplitudes AðPcs →
MBÞ for Pcs → J=ψΛ are obtained from the effective
Lagrangian with spin-parity quantum numbers for Pcs
given

A1=2�
PΛJ=ψ ¼ −gPΛJ=ψ ūPΓ

∓
μ ϵμuΛ;

A3=2�
PΛJ=ψ ¼ i

gPΛJ=ψ
2mΛ

ūPμΓ�
ν ðqμψϵν − qνψϵμÞuΛ;

A5=2�
PΛJ=ψ ¼ gPΛJ=ψ

2m2
Λ

ūPμαΓ
∓
ν ðqμψϵν − qνψϵμÞqαψuΛ; ð5Þ

whereas those for Pcs → KN are expressed as

A1=2�
PNK ¼ −gPNKūPΓ∓uN;

A3=2�
PNK ¼ −

gPNK

MPcs
mN

εμναβūνPq
μ
PΓα

�q
β
KuN;

A5=2�
PNK ¼ i

gPNK

MPcs
m2

N
εμναβū

νρ
P qμPΓα∓qβKqKρuN: ð6Þ

ϵμ in Eq. (5) stands for the polarization vector of J=ψ . qμi
(i ¼ P, K, ψ) denote respectively the momenta of Pcs, K
and J=ψ in the center of mass (CM) frame. Note that Pcs is
at rest before it decays. The Rarita-Schwinger spinor for
Pcs with higher spins (s ≥ 3=2) is given by the following
recursive equation [57]

unþ1=2
μ1���μn−1μðp; sÞ≡

X
r;m

ðnþ 1=2; sj1; r; n − 1=2; mÞ

× un−1=2μ1���μn−1ðp;mÞεrμðpÞ; ð7Þ

where s, m and r designate the projections of spin-
ðnþ 1=2Þ, spin-ðn − 1=2Þ, and the polarization of a mas-
sive spin-1 particle respectively.
To determine the coupling constants for the PcsJ=ψΛ

and PcsKN vertices, one should know the experimental
data on their branching ratios. Unfortunately, however, they
are not known at all. Even in the case of the Pc its
branching ratios are unknown experimentally. This means
that we have to make reasonable assumptions of the
branching ratios of Pcs → J=ψΛ and Pcs → KN. A pre-
vious investigation on photoproduction of the hidden-
charm pentaquark Pcð4450Þ [52] proposed that if the
branching ratio of Pcð4450Þ → J=ψp is 1% or less, then
one can explain the threshold enhancement of the J=ψ
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production due toPc and themodification of the J=ψ mass in
nuclear medium. However, this is still a very crude estimate
for the branching ratio of Pc → J=ψp. Note that even the
π−p → J=ψn reactionwas notmuch studied experimentally
and only the upper limit of its total cross section is known
[54,55]. Nevertheless, in Refs. [46,53], the upper limit of the
total cross section for the π−p → J=ψn reaction was
cautiously investigated with Pc resonances taken into
account, in which the constraint on the branching ratio of
Pcwas discussed, especially in the region near the threshold.
The branching ratio of Pc → J=ψn decay was estimated to
be about a few percent whereas Pc → π−p decay was given
to be of order 10−4, since it is the OZI-suppressed process.
These estimates are in agreement with recent findings from
the GlueX Collaboration [58].
When it comes to that for Pcs decays, the situation is

even worse than the Pc case. Since there is no experimental
information on the decay of Pcs at all, it is very difficult to
determine the coupling constant for the PcsJ=ψΛ and
PcsKN vertex. Nevertheless, it is worthwhile to estimate
the branching ratio of the Pcs → J=ψΛ. Since the threshold
energy of thePcs production is rather high, the effects of the
explicit SU(3) symmetry breaking are also suppressed,
considering the fact that the ratio between the strange
current quark mass ms and the kinetic energy of Λ, TKðΛÞ,
is rather small (ms=TKðΛÞ ≪ 1). Actually, this assumption
is a reasonable one, since the magnitude of the total cross
section of K−p scattering is similar to π−p scattering [56].
Based on this assumption, we are able to estimate the upper
limit of the total cross section for the K−p → J=ψΛ
reaction near threshold to be around 1 nb. This implies
that the branching ratios of the Pcs → J=ψΛ and K−p
decays are about 1% and 0.01% respectively. If the
branching ratio of Pcs → J=ψΛ were larger than 10%,
then one would have found the evidence for the existence of
Pcs already from the old data for K−p scattering, which we
will discuss later. Moreover, note that this 1% branching
ratio of the Pcs → J=ψΛ decay is in line with recent
investigations on the structure of Pcs with the molecular
picture taken into account [26,59].
Using this estimate of the branching ratio, we can obtain

the coupling constant for the PcsKN vertex. The results for
the coupling constants for Pcs are listed in Table I. Note that
we take the positive values for the coupling constants.
Once the values of the coupling constants are given, it is

straightforward to express the transition amplitudes in the s
channel

M1=2� ¼ igPΛJ=ψgPNKūðp4; λ4ÞΓμ∓ϵ�μðp3; λ3Þ
=qþMPcs

s −M2
Pcs

× Γ∓uðp2; λ2Þ; ð8Þ

M3=2� ¼−
gPΛJ=ψgPNK

2MPcs
mNmΛ

ūðp4;λ4ÞΓ�
ν ðpμ

3ϵ
�νðp3;λ3Þ

− ϵ�μðp3;λ3Þpν
3Þ

Δμσ

s−M2
Pcs

ερσαβqρΓ�
α p1βuðp2;λ2Þ;

ð9Þ

M5=2� ¼−
gPΛJ=ψgPNK

2MPcs
mNm2

Λ
ūðp4;λ4ÞΓ∓

ν pλ
3ðpμ

3ϵ
�νðp3;λ3Þ

−ϵ�μðp3;λ3Þpν
3Þ

Δμλσδ

s−M2
Pcs

ερσαβqρΓ
∓
α p1βpδ

1uðp2;λ2Þ;

ð10Þ

where ϵ�μ denotes the polarization vector for J=ψ and q
stands for the momentum of Pcs given by q ¼ p1 þ p2 ¼
p3 þ p4. Taking into account the decay width of Pcs,
we change the Pcs mass MPcs

in the propagator to be
ðMPcs

− iΓPcs
=2Þ. The spin projection operators for Pcs

with spin 3=2 and 5=2 are defined respectively as [60]

Δμσ¼ð=qþMPcs
Þ
�
−gμσþ

1

3
γμγσþ

1

3MPcs

ðγμqσ−γσqμÞ

þ 2

3M2
Pcs

qμqσ

�
;

Δμλσδ¼ð=qþMPcs
Þ
�
1

2
ðḡμσ ḡλδþ ḡμδḡλσÞ−

1

5
ḡμλḡσδ

−
1

10
ðγ̄μγ̄σ ḡλδþ γ̄μγ̄δḡλσþ γ̄λγ̄σ ḡμδþ γ̄λγ̄δḡμσÞ

�
; ð11Þ

where

ḡμν ¼ gμν −
qμqν
M2

Pcs

; γ̄μ ¼ γμ −
qμ
M2

Pcs

=q: ð12Þ

In the t-channel, we consider the exchange of the K and
K� mesons. The effective Lagrangians for the J=ψKK and
J=ψKK� vertices are given as

TABLE I. Numerical results for the coupling constants gPcsJ=ψΛ and gPcsKN . The branching ratios of Pcs → J=ψΛ and Pcs → pK
decays are assumed to be 1% and 0.01%, respectively. Note that we choose the positive values for the coupling constants.

gPcsMBðJPÞ 1=2þ 1=2− 3=2þ 3=2− 5=2þ 5=2−

PcsJ=ψΛ 1.26 × 10−1 4.41 × 10−2 1.48 × 10−1 5.46 × 10−2 1.33 × 10−1 3.83 × 10−1

PcsKp 5.82 × 10−3 3.77 × 10−3 2.06 × 10−3 3.18 × 10−3 1.84 × 10−3 1.19 × 10−3
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LJ=ψKK ¼ −igJ=ψKKψμðKþ∂μK− − K−∂μKþÞ;
LJ=ψKK� ¼ −

gJ=ψKK�

mψ
εμναβ∂μψνK∂αK�

β; ð13Þ

where mψ denotes the mass of J=ψ . The coupling constant
will be determined by using a similar method as in the s-
channel case. The decay amplitudes for the corresponding
decays in Eq. (13) are obtained to be

AJ=ψKK ¼ −gJ=ψKKðqK − q0KÞμϵμ;
AJ=ψKK� ¼ −

gJ=ψKK�

mψ
εμναβqψμqK�αϵνϵ

�
K�β; ð14Þ

where q0K stands for the momentum of the kaon that goes to
the opposite direction with qK . The polarization vector of
K� is expressed by ϵμK�. Since the decay widths of J=ψ to
the K and K� mesons are experimentally known as [56]

ΓJ=ψ→KK ¼ 2.66 × 10−2 keV;

ΓJ=ψ→KK� ¼ 5.57 × 10−1 keV; ð15Þ

we can directly obtain the coupling constants gJ=ψKK and
gJ=ψKK� , respectively, as follows

gJ=ψKK ¼ 7.12 × 10−4; gJ=ψKK� ¼ 8.82 × 10−3: ð16Þ

Those for the ΛNK and ΛNK� vertices are rather well
known. The semiphenomenological nucleon-hyperon inter-
action such as the Nijmegen extended-soft-core model
(ESC08a) [61] provides us with their values. Then, the
effective Lagrangians for the ΛNK and ΛNK� vertices are
expressed as

LΛNK ¼ −
fΛNK

mπ
Λ̄γμγ5N∂μK þ H:c:; ð17Þ

LΛNK� ¼ −gΛNK�Λ̄γμNK�
μ −

fΛNK�

4mN
Λ̄σμνNð∂μK�

ν − ∂νK�
μÞ

þ H:c:; ð18Þ

with the coupling constants given by

fΛNK ¼ −0.2643; gΛNK� ¼ −1.1983;

fΛNK� ¼ −4.2386: ð19Þ

Thus, the resulting transition amplitudes for K and K�
exchanges are respectively given as

MK ¼ gJ=ψKKfΛNK

mπ
ūðp4; λ4Þγ5

×
ð2p1 − p3Þ · ϵ�ðp3; λ3Þ

t −m2
K

=qtuðp2; λ2Þ; ð20Þ

MK� ¼ i
gJ=ψKK�gΛNK�

mψ
ūðp4; λ4Þ

×
εμναβp

μ
3ϵ

�νðp3; λ3Þqαt
t −m2

K�

�
−gβσ þ qβt qσt

m2
K�

�

×

�
γσ þ i

κK�

2mN
σγσq

γ
t

�
uðp2; λ2Þ; ð21Þ

where qt ¼ p3 − p1 and κK� ¼ fΛNK�=gΛNK� .
As for the u-channel contribution, we consider only the

N exchange. The effective Lagrangian for the NNJ=ψ
vertex is similar to the Pcs with spin-1=2þ as in Eq. (1)

LJ=ψNN ¼ −gJ=ψNNN̄γμψ
μN −

fJ=ψNN

2MN
N̄σμνψ

μνN þ H:c:

ð22Þ

Since the J=ψ vector meson has a nature similar to the ϕ
vector meson, we ignore the second term with the
tensor coupling constant, since its value is related to the
charmed magnetic moment of the nucleon, which
can be neglected. It is also difficult to determine the vector
coupling constant gJ=ψNN . We take its value from Ref. [62]:
gJ=ψNN ¼ gJ=ψNN̄ ¼ 1.62 × 10−3. This small value indi-
cates already that the u-channel contribution will be very
tiny. The corresponding u-channel amplitude is obtained as

MN ¼ −
gJ=ψNNfΛNK

mπ
ūðp4; λ4Þγ5=p1

×
=qu þmN

u −m2
N
=ϵ�ðp3; λ3Þuðp2; λ2Þ; ð23Þ

where qu ¼ p4 − p1.
Since hadrons have finite sizes and structures, it is

essential to consider a form factor at each vertex.
Actually, there is no firm theoretical ground as to how
one can determine the values of the cutoff masses. In
practice, the values of the cutoff masses are usually fitted to
the experimental data. Unfortunately, we do not have
experimental data enough to determine them in the present
case. Nevertheless, there is one theoretical guideline. As
discussed in Ref. [63], heavier baryons are considered to be
more compact than lighter ones, which was found by
examining the electromagnetic form factors of singly heavy
baryons. By “more compact” we mean that the intrinsic
size of the heavier baryons (or hadrons) should be smaller
than the light ones, which leads to larger values of
the cutoff masses in general. Being guided by this, we
have chosen the cutoff masses Λ in such a way that
Λ −m ≃ 600–700 MeV. In the present work, we will take
the form factors, which are most used in reaction calcu-
lations. So, we introduce the form factors in the s-, t- and
u-channels, respectively, as follows:
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Fsðq2Þ ¼
Λ4

Λ4 þ ðs −m2Þ2 ;

Ftðq2t Þ ¼
Λ2 −m2

Λ2 − t
;

Fuðq2uÞ ¼
Λ2 −m2

Λ2 − u
; ð24Þ

with the values of the cutoff masses taken to be

ΛPcs
¼ 5.0GeV; ΛK ¼ 1.0GeV;

ΛK� ¼ 1.4GeV; ΛN ¼ 1.5GeV: ð25Þ

Note that these values of the cutoff masses have been used
in various different reactions.

B. Regge approach

The effective Lagrangian method is known to describe
well the hadronic productions at low-energy regions, in
particular, in the vicinity of the threshold energy. However,
since this method is based on the Born approximation,
i.e., a tree-level calculation, it is not suitable to explain
the exclusive or diffractive hadronic processes at higher
energies. On the other hand, the Regge approach explains
the general high-energy behaviors of the hadronic reactions
but only qualitatively. To overcome this disadvantage,
a hybridized Regge approach was phenomenologically
proposed [48] in an attempt to improve the Regge
approach quantitatively. This approach is characterized
by replacing the Feynman propagator derived from the
effective Lagrangian method by the Regge one

1

t −m2
X
→ P�

Regge ¼ −Γð−αXðtÞÞξ�Xα0X
�
s
s0

�
αXðtÞ

: ð26Þ

This method was successfully applied to hadronic reactions
throughout broad energy regions including even the reso-
nance regions,

ffiffiffi
s

p
∼ 3 GeV [42,43].

1. K and K� Reggeon exchange

In Fig. 2, we depict schematically the t-channel
diagram in terms of the quark lines [46]. As shown in
Fig. 2, hadronic J=ψ productions by the photon, π or K
beams are all OZI suppressed, being similar to the ϕ-meson
production. So, we consider the light-Reggeon exchanges
in the t-channel, i.e., the K and K� Reggeons. We employ
here a hybridized Regge method, in which the Feynman
propagators in the transition amplitudes obtained in
the previous subsection are replaced by the Regge propa-
gator [44,48,64,65]. Thus, we can express the transition
amplitudes with the K- and K�-Reggeon exchanges,
respectively, as

MR
Kðs; tÞ¼−MKðs; tÞ

�
1

e−iπαKðtÞ

�

×Γð−αKðtÞÞα0Kðm2
KÞ
�
s
s0

�
αKðtÞðt−m2

KÞ; ð27Þ

MR
K� ðs;tÞ¼−MK� ðs;tÞ

�
1

e−iπαK� ðtÞ

�

×Γð1−αK� ðtÞÞα0K� ðm2
K�Þ

�
s
s0

�
αK� ðtÞ−1ðt−m2

K�Þ;

ð28Þ

where αK and αK� denote the Regge trajectories for the K
and K� mesons, respectively. α0ðtÞ represents the derivative
of α with respect to t: α0ðtÞ ¼ ∂α=∂t. The scale parameter
s0 is a free parameter. Though this can be fitted to the data,
if they exist, its value is widely taken to be s0 ¼ 1 GeV2,
which corresponds to a typical hadronic scale. This can be
also estimated theoretically. If the t-channel diagram as
shown in Fig. 2 were a planar diagram, the energy-scale
parameter s0 could have been calculated by using the planar
diagram decomposition [66,67]. However, the t-channel
diagram for the K−p → J=ψΛ reaction is not a planar one.
So, there is no clear way to determine the value of s0. In the
present work, we will utilize the result of Model I as a
guideline to determine s0. Since the Regge amplitude have
to be consistent with that of Model I at the Regge pole
position, we extract the value of s0 by comparing the
results for the dσ=dt from Model I with those for Model II
near the pole. The reasonable values of s0 turn out to be
s0 ¼ 5 GeV2 for K�- and s0 ¼ 2 GeV2 for K-Reggeon
exchange.
Though the linear Regge trajectories are given, we will

adopt the nonlinear Regge trajectories [68], since it
describes the trajectories more realistically as shown in
Fig. 3. Thus, αK and αK� are parametrized as

αKðK�ÞðtÞ¼ αKðK�Þð0Þþ γ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

TKðK�Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TKðK�Þ− t

q 

; ð29Þ

FIG. 2. The t-channel schematic diagram for the hidden-charm
Kp → J=ψΛ reaction.
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where γ governs the slope of the trajectories and TKðK�Þ
denote their terminal points. The parameters for the K and
K� trajectories are fixed to be

γ¼3.65GeV−1; αKð0Þ¼−0.151; αK�ð0Þ¼0.414;ffiffiffiffiffiffi
TK

p
¼2.96GeV;

ffiffiffiffiffiffiffiffi
TK�

p
¼2.58GeV: ð30Þ

Note that in the limit t → 0, this square-root trajectory
reduces to the linear function

αðtÞ ≈ αð0Þ þ γ

2
ffiffiffiffi
T

p t ¼ αð0Þ þ α0ð0Þt: ð31Þ

Before we carry out the numerical calculation, it is of great
interest to examine the asymptotic behavior of the differ-
ential cross section dσ=dt. It is known that in the large s
limit the asymptotic behavior of dσ=dt is given as

dσ
dt

ðs → ∞; t → 0Þ ∝ s2αð0Þ−2: ð32Þ

We found that the transition amplitudes are proportional to t
and s as follows

lim
s→∞

X
λi;λf

jMK� ðt −m2
K� Þj2 ∝ s2t ð33Þ

and the differential cross section

dσ
dt

¼ 1

64πs
1

jpcmj2
X
λi;λf

jMR
K� j2

∝
X
λi;λf

jMK� ðt −m2
K�Þj2s2αðtÞ−4 ∝

s→∞
s2αðtÞ−2; ð34Þ

which reproduces correctly the asymptotic behavior given
in Eq. (32). Here, pcm stands for the initial momentum in

the CM frame, which is proportional to
ffiffiffi
s

p
in the large s

limit. The numerical results for dσ=dt with K and K�
considered only are depicted in Fig. 4. As one can see
already in Eq. (33), the contribution of K� exchange to
dσ=dt decreases rapidly at very forward scattering t → 0 in
the same context of γN → KΛ [48] and πN → K�Λ [43]
reactions. As t increases, dσ=dt falls off linearly for K
exchange, whereas that for K� exchange grows very fast in
the forward direction, and then decreases almost linearly.
As shown in the left panel of Fig. 3, the even and odd

signatured K (K�) poles are lying on the same trajectory,
which means that the K ðK�Þ Regge trajectory is degen-
erate. When the total transition amplitudes are derived, the
even and odd Regge propagators can be added or subtracted
[48,69]. Thus, the Regge propagator for K (K�) thus
contains either 1 (constant phase) or e−iπαðtÞ (rotating
phase). However, we find that the results for the total
and differential cross sections are not much changed by the
signature factor, so we choose the constant signature factor.
On the other hand, note that the asymmetry will be quite
sensitive to this factor, which will not be computed in the
present work.

2. N Reggeon exchange

We will follow the same method for the nucleon
Reggeon in the u-channel. Replacing the Feynman propa-
gator by the Regge propagator, we obtain the transition
amplitudes for the u-channel as follows

MRðs; uÞ ¼ −MNðs; uÞξþNΓð0.5 − αNðuÞÞ

× α0N

�
s
s0

�
αNðuÞ−0.5ðu −m2

NÞ: ð35Þ

We take the linear trajectory as in Ref. [70]. Based on the
nucleon trajectory drawn in the right panel of Fig. 3, we

FIG. 3. Regge trajectories for K, K� and nucleon.
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find the Regge trajectory for the even signatured nucleon
[56] as

αNðuÞ¼αNð0Þþα0Nu; αNð0Þ¼−0.384; α0N¼0.996:

ð36Þ

Since one can distinguish the even and odd N trajectory for
the nucleon, so the signature factor for the nucleon Regge
trajectory can be taken to be

ξþN ¼ 1þ e−iπαNðuÞ

2
: ð37Þ

The energy-scale parameter s0 cannot be obtained by using
the similar way as in the t-channel because of the following
reason. It is related to the asymptotic behavior of the u-
channel Regge propagator. At very high energy and in the
very forward direction, which correspond to s → ∞ and
t → 0, respectively, we get u ≈ −s that leads to
αðuÞ ≈ −α0s. Moreover, using the asymptotic behavior of
the Γ function when z → ∞, we find an approximated
relation

ΓðzÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðz − 1Þ

p �
z − 1

e

�
z−1

: ð38Þ

Thus, Eq. (35) is reduced to

MRðs → ∞; u ≈ −sÞ ≈MFðs; uÞCsβðα0Ns0=eÞα0Ns: ð39Þ

The last factor in Eq. (39) gives a hint on s0. If α0s0 > e,
then the above given amplitude will diverge as s grows.
Since α0N is less than 1, we are able to fix the energy-scale
parameter to be s0 ¼ 2 GeV2 such that the amplitude is
kept to be convergent.

III. RESULTS AND DISCUSSION

We first examine each contribution to the total cross
section. In Fig. 5, we show the results for each contribution
to the total cross section for the K−p → J=ψΛ reaction. We
consider here the hidden-charm pentaquark Pcs with JP ¼
1=2− and JP ¼ 3=2− in the s channel. The resonance peak
reaches the magnitude of nb order, i.e., σ ∼ 1 nb at
W ≈ 4.46 GeV. The contribution from K� exchange in
the t channel is the most dominant one apart from the
resonance region. Those from K and N exchanges are
negligibly small, since they are approximately 100 times

FIG. 5. Numerical results for the total cross section as a
function of the total CM energy (W) from Model I. We consider
two different cases of spin-parity quantum number for Pcs, i.e.,
JP ¼ 1=2− and JP ¼ 3=2−. The s-channel contribution is drawn
in the solid and dashed curves in the case of JP ¼ 1=2− and
JP ¼ 3=2−, respectively. The dot-dashed curve depicts the
contribution from K� exchange in the t channel, whereas the
dotted one illustrates that from K exchange. The two-dot-dashed
one draws the contribution from N exchange in the u channel.

FIG. 4. dσ=dt as a function of −t for the K and K� contributions from W ¼ 10 GeV to 25 GeV.
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smaller than the contribution from K� exchange. The
reason can be found from the difference in the values of
the coupling constants, given in Eq. (16). The coupling
constant for the J=ψKK� vertex is at least ten times larger
than that for the J=ψKK vertex. Thus, the contribution
from K� exchange to the total cross section is much larger
than those from both K and N exchanges.
In Fig. 6, we draw the results for each contribution,

which are obtained from Model II, i.e., from the Regge
approach. Since the s-channel diagram is simply the same
as that fromModel I, we discuss the contributions from K�,
K, and N exchanges. As mentioned previously, the value of
the energy-scale parameter s0 is important for the size of the
transition amplitudes. Since we use the results from Model
I as a guiding principle for determining s0, we expect that
the magnitudes of the K�- and K-Reggeon contributions
should be comparable to those from Model I. However, s0
in the Regge transition amplitude for N-Reggeon exchange

in theu channel is constrained by the convergence condition.
This means that the effect ofN exchange is extremely small,
so that we can even ignore it. Comparing the results from
Model II, we find that the K� contributions from Model I
exhibit different dependence on W. It is known from the
asymptotic behavior of the differential cross sections shown
in Eq. (34) that the contributions of K- and K�-Reggeon
exchanges should fall off slowly asW increases. As depicted
in Fig. 6, K�-Reggeon contribution indeed decreases as W
increases. On the other hand, the results for K� exchange in
Model I slowly increase asW increases. This implies that the
effective Lagrangian method is limited in describing had-
ronic processes at higher energies, though it is a very
effective method in the vicinity of the threshold. The
contribution of K-Reggeon exchange seems to arise as W
increases. However, if one further increases W, the con-
tribution of K-Reggeon exchange starts to fall off.
In Fig. 7, we will examine the dependence of the results

for the total cross section on the values of the branching
ratio of the Pcs → J=ψΛ decay. As expected, if the value of
the branching ratio increases, the peak corresponding to Pcs
is enhanced clearly. Interestingly, the size of the peak
reaches approximately 10 nb when BrðPcs → J=ψΛÞ ¼
10% is used. When BrðPcs → J=ψΛÞ ¼ 50% is employed,
σ is obtained to be almost 100 nb in the vicinity of the
resonance. This implies that if BrðPcs → J=ψΛÞ is larger
than 10%, then Pcs would have been already found in the
data for K−p scattering. Thus, the 1% branching ratio is a
quite reasonable one, which is in agreement with that from
Refs. [26,59].
The spin-parity quantum number for P0

csð4459Þ is
experimentally unknown yet. While it may have favorably
either JP ¼ 1=2− or JP ¼ 3=2−, it is of great interest
whether one can see how the total cross sections and other
observables for the K−p → J=ψΛ reaction can provide a
hint on the spin-parity quantum number for Pcs. If the final
states consisting of J=ψ andΛ in the Swave, the spin-parity
quantum numbers JP ¼ 1=2− and JP ¼ 3=2− of Pcs will be

FIG. 6. Numerical results for the total cross section as a
function of the total CM energy (W) from Model II. Notations
are the same as in Fig. 5.

FIG. 7. Numerical results for the total cross section as a function of the total CM energy (W) from Model I (left panel) and Model II
(right panel) with the branching ratio BðPcs → J=ψΛÞ varied in the range of ð1 − 50Þ%.
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FIG. 8. Numerical results for the total cross section as a
function of the total CM energy (W) from Model I with possible
JP quantum numbers employed. Six different combinations of
the spin and parity for the hidden-charm strange pentaquark Pcs
are taken into account.

FIG. 9. Numerical results for the total cross section as a
function of the total CM energy (W) from Model II with possible
JP quantum numbers employed. Six different combinations of
the spin and parity for the hidden-charm strange pentaquark Pcs
are taken into account.

FIG. 10. Results for the differential cross sections (dσ=d cos θ) as functions of cos θ for a given total energy (W) from Model I. The
notation of the curves is the same as in Fig. 8.
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favored. However, there is no reason to reject other states
with higher values of the orbital angular momentum. Thus,
we consider six different combinations for the spin and
parity for Pcs, i.e., Jp ¼ 1=2−, 1=2þ, 3=2−, 3=2þ, 5=2−,
and 5=2þ. In Figs. 8 and 9, we draw the results for the total
cross sections by considering the six different combinations
of the spin-parity quantum numbers for Pcs, using Model I
and Model II, respectively. We find that except for the case
of JP ¼ 5=2−, all the results seem very similar each other.
While the result for JP ¼ 5=2− from Model I shows a
similar behavior in the resonance region, it increases
monotonically faster than all the other cases asW increases.
On the other hand, the results from Model II decrease
monotonically as W increases again except for the JP ¼
5=2− case. Even the total cross section for PcsðJP ¼ 5=2−Þ
will decrease, if W further increases, though we did not
show it in Fig. 9.
Figures 10 and 11 depict the numerical results for

the differential cross sections dσ=d cos θ as functions of
cos θ with four different values of W given. The results

near the threshold (W ¼ 4.259 GeV) clearly show that
the magnitudes of the differential cross sections in
the forward direction are the largest ones and then
decrease monotonically as cos θ goes from þ1 to −1.
So, the results for the differential cross sections are mostly
diminished in the backward direction. While the results
from Model II at W ¼ 4.259 GeV exhibit similar behav-
iors to those from Model I, detailed dependences on cos θ
look different.
When it comes to the resonance region at

W ¼ 4.459 GeV, the results are noticeably distinguished
for different assignments of JP to Pcs. Scrutinizing first the
results for the cases of JP ¼ 1=2− and JP ¼ 3=2−, we find
that the cos θ dependence of them is rather different. The
result for P0

csðJP ¼ 1=2−Þ is suppressed in the forward
direction, whereas that for P0

csðJP ¼ 3=2−Þ gets enhanced
as cos θ increases. This implies that the resonance
and the K� exchange contributions interfere differently
each other. When JP ¼ 1=2− is assumed, the two terms
interfere destructively, while they do constructively with

FIG. 11. Results for the differential cross sections (dσ=d cos θ) as functions of cos θ for a given total energy (W) from Model II. The
notation of the curves is the same as in Fig. 8.
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JP ¼ 3=2− assumed. When one takes JP ¼ 3=2þ for Pcs,
the corresponding differential cross section becomes maxi-
mum at cos θ ¼ 0, i.e., θ ¼ 90°. On the other hand, if JP ¼
5=2þ is assumed, the values of the differential cross section
will be the minimum at θ ¼ 90°. When JP ¼ 5=2− is
imposed, the result for dσ=d cos θ becomes more compli-
cated. Thus, the measurement of the differential cross
sections near the resonance region may provide one way
of determining the spin-parity quantum numbers for Pcs in
the K−p → J=ψΛ0 reaction.
In Figs. 12 and 13, we depict the results for the

differential cross sections dσ=dt as functions ofW, which
are obtained from Model I and II, respectively, varying
the scattering angle cos θ from cos θ ¼ 0.9 to
cos θ ¼ −0.9. In the forward direction, the results for
dσ=dt look similar to those for the total cross sections.
However, the results at cos θ ¼ 0.1 and cos θ ¼ −0.1
enable us to distinguish among those with different JP.
While the shapes of the resonances corresponding to Pcs
look all similar, one can distinguish them each other as s

increases. Getting out of the resonance regions, the
results decrease as s increases except for the case of
JP ¼ 5=2−, in particular, when one uses Model I. In fact,
we already found this behavior in the results for the total
differential cross sections. However, we can see this
particular behavior more prominently in those for
dσ=dt as s increases. The reason is clear. As shown in
Eqs. (8), (9), and (10), the transition amplitudes contain
strong momentum dependence with higher spin of Pcs

assumed. As s further increases, the results for JP ¼ 5=2þ
also start to increase slowly. This comes from the fact that
the difference in the parity also affects the interference
effects. Moreover, this peculiar dependence of dσ=dt for
JP ¼ 5=2− on s implies that the effective Lagrangian
method may not be valid anymore at very high energies.
On the other hand, the Regge approach nicely produces
the asymptotic behavior of dσ=dt as s increases. Even the
result for dσ=dt with JP ¼ 5=2− assigned starts to fall off
when s further increases, though we do not show in
Fig. 13 explicitly.

FIG. 12. Results for the differential cross sections (dσ=d cos θ) as functions of s for a given angle (cos θ) fromModel I. The notation of
the curves is the same as in Fig. 8.
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IV. SUMMARY AND CONCLUSION

In the present work, we aimed at investigating the
production of P0

csð4459Þ in the K−p → J=ψΛ0 reaction,
employing two different theoretical frameworks, i.e., the
effective Lagrangian method and the Regge approach. We
call these two different approaches as Model I and
Model II, respectively. We first determined the coupling
constants for all the relevant hadronic vertices. Since there
is lack of experimental data on them, we made various
reasonable assumptions. To determine the coupling con-
stant for the PcsJ=ψΛ vertex, we assumed that the
branching ratio of Pcs → J=ψΛ decay is about 1%. That
of Pc → J=ψN was also proposed to be about 0.01%. Thus,
the coupling constant gPcsJ=ψΛ is of order 0.1. When one
considers the hidden-charm pentaquark with higher spins
(JP ≥ 3=2�), the tensor couplings are naturally introduced.
However, since J=ψ is an isosinglet, the tensor coupling
constants can be neglected as in the case of the ω meson.
Moreover, since we are mainly interested in the resonance

Pcs region, which is not far from the threshold of J=ψ and
Λ, the contributions from the tensor couplings can be taken
to be very small. Since the Okubo-Zweig-Iizuka rule
indicates that the coupling between a nucleon and a ϕ
meson (ss̄) should be very small, the same is applied to the
coupling between a hyperon and a charmonium (cc̄). Thus,
we also took the value of the coupling constant for the
KPcsN vertex to be very small. By estimating the branch-
ing ratio of Pcs → K−p, we found that the value of the
KPcsN coupling constant is of order 10−3.
Since the decay widths of J=ψ to the K and K� mesons

are known, we were able to determine directly the corre-
sponding coupling constants from experimental data. Our
results are obtained by setting the cut-off mass for the off-
shell Pcs to 5 GeV, which is a rather plausible choice, even
if we observe that our predictions are extremely sensitive to
the value of the cutoff, which means that if one can change
the value a little bit, then the results would be very much
changed. On the other hand, since there are no experimental

FIG. 13. Results for the differential cross sections (dσ=d cos θ) as functions of s for a given angle (cos θ) from Model II. The notation
of the curves is the same as in Fig. 8.
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data to determine the values of the cutoff masses certain
uncertainties caused by them are inevitable. As for the form
factors for K and K�, we fixed the values of the cutoff
masses to be ΛK ¼ 1 GeV and ΛK� ¼ 1.4 GeV. In the case
of the Regge approach, we considered a nonlinear form of
the K and K� Regge trajectories, which fit the experimental
data much better than the linear ones.
We first scrutinized the results for the total cross sections

as functions of the CM total energy W, with different spin-
parity quantum numbers JP taken into account. While the
shape of the resonance does not much depend on the given
value of JP, the dependence onW is different. In particular,
the result with JP ¼ 5=2− increases faster than the other
ones as W increases. We found a similar feature in the case
of the Regge approach. However, W increases further, all
the results for the total cross sections are lessened as W
increases. Thus, the Regge approach produces the results
more consistently than those from the effective Lagrangian
method. Secondly, we examined the results for the differ-
ential cross sections as functions of the scattering angle
with several different values of the CM total energy. The

results in the resonance region clearly are distinguished, as
different sets of the spin-parity quantum numbers are used.
This implies that the measurement of differential cross
sections for the K−p → J=ψΛ reaction may give a clue on
the spin-parity quantum number of Pcs. We also studied the
differential cross sections dσ=dt as functions of the CM
total energy squared, i.e., s. When the scattering angle near
θ ¼ 90°, s dependences of the differential cross sections
prominently reveal the differences among the results with
different sets of JP.
The present results may be used as a theoretical guide for

possible future experiments for findings of the hidden-
charm pentaquarks with strangeness. Similar studies for
other Pcs are also under way.
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