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We investigate the one pion decay of the Roper resonance N�ð1440Þ → Nπ in the Sakai-Sugimoto
model of the holographic QCD. The nucleon and Roper resonance emerge as ground and first excited states
of the collective radial motion of the instanton in the four dimensional space with one extra dimension. It is
found that the ratio of the πNN� and πNN couplings, and hence the ratio of gNN�

A and gNN
A , is well

reproduced in comparison with the experimental data. The mechanism of this result is due to the collective
nature of excitations, which is very different from that of the single particle nature of the constituent quark
model. Our results are obtained in the large-Nc and large λ (’t Hooft coupling) limit which are useful to test
how baryon resonances share what are expected in these limits.
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I. INTRODUCTION

The Roper resonance N�ð1440Þ is the first excited state
of the nucleon with the spin and parity JP ¼ 1=2þ [1]. Its
mass smaller than the negative parity nucleon Nð1535Þ has
attracted great amount of interests because the naive quark
model predicts the mass of the Roper resonance much
higher than that of the negative parity state. To resolve this
problem, and also to reproduce the electromagnetic tran-
sitions, the importance of the meson cloud has been
emphasized [2,3]. Turning to strong decays, an almost
vanishing partial decay width of one pion emission when
computed by the leading order terms of nonrelativistic
expansion of the pion-quark interaction disagree with the
large value of the experimental data. While it has been
pointed out recently that higher order corrections can
improve this significantly [4], this problem should be
further investigated.
The relatively low mass has lead to the idea of collective

vibrational mode along the radial direction [5]. Extensive
discussions were made in the Skyrme model in the 1980s,
where the soliton’s radial vibrations were investigated in
various context [6–9].
Later the solitonic picture of baryons has been further

strengthened by the holographic QCD. The Sakai-Sugimoto

model is one of successful descriptions of hadrons in the
holographic QCD based on the D4-D8 brane construction
[10,11]. They have derived an effective action of the flavor
gauge field in the five dimensional space (four space-time
and one extra dimension), implementing the spontaneous
breaking of chiral symmetry leading to the successful low-
energy effective action of hadrons. Moreover the extra
dimension of the model naturally accommodates various
excited states of hadrons.
In the holographic model, baryons emerge as instantons

of the five-dimensional space [12], which is very much the
same as the Skyrme mode, baryons as chiral solitons
[13,14]. Such a baryon structure looks very different from
the one of the quark model. Baryon dynamics is dominated
by the collective motions of instantons/solitons, while that
of the quark model by single-particle motions of quarks.
Interestingly, it was found that the resulting Roper and the
negative parity resonance [12] are degenerate and appear
very close to the observed masses. This is one of good
features of the holographic QCD for baryons.
The holographic baryons have been further studied by

Hata et al. [15] and by Hashimoto et al. [16] for various
static properties of the nucleon including electromagnetic
and weak coupling constants. Inspired by these works, we
would like to further study the properties of the Roper
resonance in the holographic model. In this paper, we
investigate the one pion emission decay. It is the axial
transition between the Roper resonance and the nucleon,
and is dictated by the transition matrix element of the axial
current. Following Ref. [16], we define chiral currents by
introducing the external gauge field that couples to the
currents. By calculating the matrix elements of the obtained
axial current, the axial coupling and hence decay width are
calculated. The results are compared with the experimental
data. The model and computation procedures are realized in
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the large-Nc and large ’t Hooft coupling λ limits. Hence our
study provides the measure to what extend hadron proper-
ties share the features of these limits.
This paper is organized as follows. In Sec. II, we

present the actions used in this paper and derive the
solutions of the equations of motion. Then we define the
chiral currents and obtain their concrete expressions by
the solutions. In Sec. III, we compute matrix elements
of the axial currents for the nucleon and that of the Roper to
the nucleon transitions. The resulting decay width is
compared with the experimental data. We discuss the ratio
of gNN�

A and gNN
A , and compare with the data carefully.

Finally, Sec. IV is for some discussions and summary of the
present work.

II. AXIAL CURRENT

A. Classical solutions and collective quantization

Let us start by briefly summarizing how the baryon states
are obtained in the Sakai-Sugimoto model by collectively
quantizing the instanton solution. The action of hadron
effective theory is composed of the Yang-Mills term SYM
and the Chern-Simons term SCS,

S ¼ SYM þ SCS ð1Þ

where

SYM ¼ −κ
Z

d4xdztr

�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
;

SCS ¼
Nc

24π2

Z
M4×R

ω5ðAÞ;

κ ¼ λNc

216π3
¼ aλNc: ð2Þ

In these equations Nc is the number of colors, λ the ’t Hooft
coupling, and the indices μ, ν ¼ 0, 1, 2, 3 are for the
4-dimensional space-time. The curvatures along the extra
dimension z are defined by

hðzÞ ¼ ð1þ z2Þ−1=3; kðzÞ ¼ 1þ z2: ð3Þ
The 1-form A ¼ Aαdxα expresses A ¼ Aαdxα þ Âαdxα

which consists of the flavor SU(2) part Aα and the U(1)
part Âα with α ¼ 0; 1; 2; 3; z, and the field strength of
the Aα is F αβ ¼ ∂αAβ − ∂βAα þ i½Aα;Aβ�. The Chern-
Simons 5-form is given by

ω5ðAÞ ¼ tr

�
AF 2 −

i
2
A3F −

1

10
A5

�
: ð4Þ

In general, it is difficult to analytically solve the
equations of motion in the presence of the curvatures
hðzÞ and kðzÞ. However, it is known that the instanton size
is proportional to λ−1=2 and is small for large λ. Then in the
vicinity of z ∼ 0, the metric can be approximated as

hðzÞ ¼ kðzÞ ∼ 1, where the Belavin, Polyakov, Schwartz,
and Tyupkin (BPST) [17] instanton solution is available.
Therefore, for M ¼ 1; 2; 3; z.

Acl
Mðx; zÞ ¼ −ifðξÞg∂Mg−1;

Acl
0 ¼ 0; ð5Þ

Âcl
M ¼ 0;

Âcl
0 ¼ 1

8π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
; ð6Þ

where

gðx; zÞ ¼ ðz − ZÞ − iðx −XÞ · τ
ξ

;

with ðX; ZÞ and ρ the location and size of the instanton,
respectively. The profile function fðξÞ is given by

fðξÞ ¼ ξ2=ðξ2 þ ρ2Þ;
ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx −XÞ2 þ ðz − ZÞ2

q
:

The classical instanton solution needs to be quantized
for the physical nucleon and Roper resonances. This can be
done by the collective coordinate method, where the
relevant time dependent dynamical variables are, X, Z, ρ
and the SU(2) orientation Vðt; xM; aðtÞÞwith Vðz→�∞Þ→
aðtÞ related to the rotational variable aðtÞ ¼ a4ðtÞ þ
iaaðtÞτa in the isospin and spin space. As shown in
Ref. [12] the time dependent gauge field is given by

AMðt; xNÞ ¼ VAcl
MðxN ;XNðtÞ; ρðtÞÞV−1 − iV∂MV−1; ð7Þ

where V is defined by

−iV−1 _V ¼ − _XMðtÞAcl
M þ χafðξÞg τ

a

2
g−1;

χa ¼ −itrðτaa−1 _aÞ:
By substituting this gauge field for the action (2), integrat-
ing over the space of ðxμ; zÞ, and quantizing the system of
the above collective coordinates, we find the collective
Hamiltonian as

H ¼ −
1

2M0

ð∂2

X⃗
þ ∂2

ZÞ −
1

4M0

∂2
yI þUðρ; ZÞ;

Uðρ; ZÞ ¼ M0 þ
M0

6
ρ2 þ N2

c

5M0

1

ρ2
þM0

3
Z2; ð8Þ

where M0 ¼ 8π2κ is the classical soliton mass [12], and yI
is related to the orientation coordinates by yI ¼ ρaI. By
solving the Schrödinger equations for the collective coor-
dinates derived from the Hamiltonian (8), we find baryon
wave functions. They are labeled by their momentum p⃗ and
quantum numbers ðl; I3; s3; nρ; nzÞ, where l=2 is the equal
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isospin and spin values; I3, s3 are the third components of
the isospin and spin; and nρ, nz are the quanta for
oscillations along the radial and z-directions. For the spin
up proton (I3 ¼ 1=2; s3 ¼ 1=2) with a finite momentum p⃗,
the wave functions of ground and Roper resonance are
given as [12,16]

ψN ∝ eip⃗·X⃗RNðρÞψZðZÞða1 þ ia2Þ;
ψN�ð1440Þ ∝ eip⃗·X⃗RN� ðρÞψZðZÞða1 þ ia2Þ; ð9Þ

where

RNðρÞ ¼ ρ−1þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

c=5
p

e−
M0ffiffi
6

p ρ2 ;

RN� ðρÞ ¼
�
2M0ffiffiffi

6
p ρ2 − 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

c

5

r �
RNðρÞ; ð10Þ

ψZðZÞ ¼ e−
M0ffiffi
6

p Z2

: ð11Þ
We note that the wave function for the z oscillation is the
lowest (nz ¼ 0) for both the nucleon and Roper resonance.
Thus the only difference between them is in the radial part,
RNðρÞ and RN� ðρÞ.

B. The asymptotic solution of the instanton

The BPST instanton that we have summarized in the
previous subsection is only an approximate solution in the
large λ limit where the instanton size is small. This can be
used for the computation of baryon masses. However,
for the computation of currents which are defined at
jzj → ∞ such a solution is not suited. As shown in
Ref. [16] we need to find the solution that is properly
extended to the large jzj region to obtain the well-defined
currents. In this paper, we simply summarize the final result
of such a solution;

Â0 ¼ −
1

2aλ
Gðx⃗; z; X⃗; ZÞ;

Âi ¼
1

2aλ

�
_Xi þ ρ2

2

�
χa

2

�
ϵiaj

∂
∂Xj − δia

∂
∂Z

�
þ _ρ

ρ

∂
∂Xi

��

×Gðx⃗; z; X⃗; ZÞ;

Âz ¼
1

2aλ

�
_Z þ ρ2

2

�
χa

2

∂
∂Xa þ

_ρ

ρ

∂
∂Z

��
Hðx⃗; z; X⃗; ZÞ; ð12Þ

A0 ¼ 4π2ρ2ia_a−1Gðx⃗; z; X⃗; ZÞ

þ 2π2ρ2aτaa−1
�
_Xi

�
ϵiaj

∂
∂Xj − δia

∂
∂Z

�
þ _Z

∂
∂Xa

�

×Gðx⃗; z; X⃗; ZÞ;

Ai ¼ −2π2ρ2aτaa−1
�
ϵiaj

∂
∂Xj − δia

∂
∂Z

�
Gðx⃗; z; X⃗; ZÞ;

Az ¼ −2π2ρ2aτaa−1
∂

∂Xa Hðx⃗; z; X⃗; ZÞ; ð13Þ

where the index i runs 1–3. In these equations,G andH are
given by

Gðx⃗; z; X⃗; ZÞ ¼ κ
X∞
n¼1

ψnðzÞψnðZÞYnðjx⃗ − X⃗jÞ;

Hðx⃗; z; X⃗; ZÞ ¼ κ
X∞
n¼1

ϕnðzÞϕnðZÞYnðjx⃗ − X⃗jÞ:

The function ψnðzÞ are the solutions of the eigenvalue
equation

−hðzÞ−1∂zðkðzÞ∂zψnÞ ¼ λnψnðzÞ; ð14Þ

with the eigenvalue λn [10], and

ϕ0ðzÞ ¼
1ffiffiffiffiffi
κπ

p 1

kðzÞ ;

ϕnðzÞ ¼
1ffiffiffiffiffi
λn

p ∂zψnðzÞ; ð15Þ

YnðrÞ ¼ −
1

4π

e−
ffiffiffiffi
λn

p
r

r
; r ¼ jx⃗j: ð16Þ

C. Currents

Now we are ready to calculate the axial current.
Following Ref. [16], the chiral current is derived from
the coupling with the external gauge field δAα which is
defined by

Aαðxμ; zÞ ¼ Acl
α ðxμ; zÞ þ δAαðxμ; zÞ: ð17Þ

They are related to the left and right gauge fields in the four
dimensional space at z → �∞,

δAμðxν; z → þ∞Þ ¼ ALμðxνÞ;
δAμðxν; z → −∞Þ ¼ ARμðxνÞ:

Substituting this field into the action, the coefficients of the
first order in ALμ;ARμ is identified with the left and right
currents J μ

L;J
μ
R with the sign properly taken into account,

κ

Z
d4x½2trðδAμkðzÞF cl

μzÞ�z¼þ∞
z¼−∞ ;

¼ −2
Z

d4xtrðALμJ
μ
L þARμJ

μ
RÞ; ð18Þ

where

J μ
L ¼ −κðkðzÞF cl

μzÞjz¼þ∞;

J μ
R ¼ þκðkðzÞF cl

μzÞjz¼−∞: ð19Þ

The vector and axial currents are then obtained by
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J μ
V ¼ J μ

L þ J μ
R;

J μ
A ¼ J μ

L − J μ
R ¼ −κ½ψ0ðzÞkðzÞF cl

μz�z¼þ∞
z¼−∞ ; ð20Þ

with ψ0ðzÞ ¼ ð2=πÞ arctan z.
When the instanton oscillates along the z direction in a

narrow range in the large λ limit, the metrices are
approximated as hðZÞ ≃ kðZÞ ≃ 1. Then, substituting
(13) for (20) gives the following form (r≡ jx⃗ − X⃗j)

JiAðr; X⃗;Z;ρ; a⃗Þ ¼−2π2κρ2aτaa−1

× ðð∂i∂a − δia∂2
jÞHA − ϵiaj∂jGAÞ ð21Þ

where

GAðr; X⃗; ZÞ ¼ ½ψ0ðzÞkðzÞ∂zG�z¼þ∞
z¼−∞

¼ −
X∞
n¼1

ganψ2nðZÞY2nðrÞ; ð22Þ

HAðr;X⃗;ZÞ¼½ψ0ðzÞkðzÞH�z¼þ∞
z¼−∞

¼−
1

2π2
1

kðZÞ
1

r
−
X∞
n¼1

gan

λ2n
∂Zψ2nðZÞY2nðrÞ; ð23Þ

gan ¼ λ2nκ

Z
dzhðzÞψ2nψ0: ð24Þ

To go further, it is convenient to present the Fourier
transform in the momentum space, (in what follows the
dependence on the collective coordinates X⃗; Z; ρ; a⃗ are
suppressed)

J̃μAðq⃗Þ ¼
Z

d3xe−iq⃗·x⃗JμAðrÞ: ð25Þ

We obtain the following form:

J̃cjA ðq⃗Þ ¼ e−iq⃗·X⃗2π2κρ2trðτcaτaa−1Þ

×

�
δaj −

qaqj
q⃗2

�X
n≥1

gan∂Zψ2nðZÞ
q⃗2 þ λ2n

: ð26Þ

This current is regarded as an operator in terms of the
dynamical variable X⃗, Z, ρ and a⃗, which is used when
taking the matrix elements by the corresponding wave
functions.

III. DECAY PROPERTIES
OF ROPER RESONANCE

Now, we investigate the decay properties of the Roper
resonance, in particular the one pion emission decay
N�ð1440Þ → πN. Because the Roper resonance has a very
large width causing uncertainties in the Breit-Wigner
fitting, we refer to the result of the pole analysis.

Following the PDG table [18], we quote the following
nominal values

MN� ¼ 1360–1380ð∼1370Þ MeV;

Γtotal ¼ 160–190ð∼175Þ MeV; ð27Þ

and the branching ratio of the one pion decay

N� → Nπ∶ 55–75%: ð28Þ

Using the lower and upper bounds for the total decay width
and branching ratio, we find the partial decay width of the
one pion decay

ΓN�→πN ∼ 90–140 MeV: ð29Þ

A. Axial coupling gA
The axial coupling gNN�

A for the transition N�ð1440Þ →
N þ π is defined as follows:

Z
d3xhN; s03I

0
3jJaiA jN�; s3; I3i × 2

¼ 2

3
gNN�
A ðσiÞs0

3
;s3ðτaÞI03;I3 : ð30Þ

The factor 2=3 on the right-hand side is needed in the chiral
limit [14]. Using (26) and (9), we obtain

gNN�
A ðq⃗Þ ¼ 8π2κ

3
hRN� jρ2jRNi

X
n¼1

ganh∂Zψ2nðZÞi
q⃗2 þ λ2n

ð31Þ

where h∂Zψ2nðZÞi stands for the expectation value using
the wave functions of Z. The matrix element of ρ2 can be
computed and the result is

hRN� jρ2jRNi ¼
�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

c

5

r �−1=2

hRN jρ2jRNi

¼
ffiffiffi
5

p

2Nc

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

c

5

r �1=2

ρ2cl ð32Þ

with ρcl being the classical instanton size given by

ρ2cl ¼
Nc

8π2κ

ffiffiffi
6

5

r
: ð33Þ

We note that the transition matrix element for N�ð1440Þ →
N þ π is related to the nucleonmatrix element, an interesting
feature of the present model associated with the collective
nature of baryons. The axial coupling constant is then
defined at q⃗ ¼ 0, gNN�

A ¼ gNN�
A ð0⃗Þ. Using the relation
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X
n¼1

gan∂Zψ2nðZÞ
λ2n

¼ 2

π

1

kðZÞ ; ð34Þ

gNN�
a can be expressed in a compact form:

gNN�
A ¼ 16πκ

3
hRN� jρ2jRNi

�
1

kðZÞ
�
: ð35Þ

In the above equations, h� � �i stands for the expectationvalue
using the wave functions of Z.
There are two parameters of this model, MKK and κ.

Following Adkins et al. [14] they are determined to
reproduce the mass splitting of the nucleon and delta,
and the pion decay constant fπ ¼ 64.5 MeV,

MKK ¼ 488 MeV; κ ¼ 0.0137: ð36Þ

Then, the prediction of the present model for gNN�
A is

gNN�
A ¼ 0.402: ð37Þ

B. Decay width

The decay width of N�ð1440Þ → N þ π can be com-
puted by the formula

ΓN�ð1440Þ→Nþπ ¼
1

2MN�

Z
d3pN

ð2πÞ32EN

d3pπ

ð2πÞ32Eπ

× ð2πÞ4δ4ðpN þ pπÞjtfij2; ð38Þ

where the amplitude tfi is given by the Lagrangian

L ¼ i
MN þMN�

2fπ
gNN�
A ψ̄N�γ5τ⃗ · π⃗ψN þ H:c:; ð39Þ

as follows

tfi ¼ hNð−q⃗Þπðq⃗ÞjLjN�ð0⃗Þi
¼

ffiffiffiffiffiffiffiffiffiffiffi
2MN�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN þ EN

p

×
MN þMN�

2fπ

gNN�
A

EN þMN
hs03jσ⃗ · q⃗js3i: ð40Þ

Here we have expressed the effective πNN� coupling gπNN�

in terms of the axial coupling by using the Goldberger-
Treiman relation,

gNN�
A ¼ fπgπNN�

ðMN þMN�Þ=2 : ð41Þ

Hence we obtain

ΓN�ð1440Þ→Nþπ

¼ q
4π

MN þ EN

MN�

�
MN þMN�

2fπ

gNN�
A q

EN þMN

�
2

: ð42Þ

where

q¼ðM2
N� − ðMN þmπÞ2Þ1=2ðM2

N� − ðMN −mπÞ2Þ1=2
2MN�

ð43Þ

Using MN¼940MeV, MN� ¼1370MeV, mπ ¼ 140 MeV
(pion mass), q ¼ 342 MeV, we find

ΓN�ð1440Þ→Nþπ ¼ 64 MeV: ð44Þ

In this computation the value of gNN�
A at q⃗ ¼ 0 is used.

By considering the form factor effect, the gNN�
A value at

q⃗ ¼ 342 MeV becomes about 13% smaller, and hence
ΓN�ð1440Þ→Nþπ ∼ 55 MeV. If we useMN� ¼ 1440 MeV and
q ¼ 398 MeV [18], we find 101 MeV for (44) and 84 MeV
for the finite q. These estimations show that there is
ambiguity in comparison with actual experimental data
due to uncertainties in the exact resonance point.
These values are smaller than the experimental value

(29). This is because the axial coupling gNN�
A is small,

which is a common feature of the solitonic picture of
baryons. In fact, the nucleon gNN

A is computed in a similar
manner as for gNN�

A by using the nucleon wave function
RNðρÞ. The result is

gNN
A ¼ 0.837: ð45Þ

This value is significantly smaller than the experimental
value gNN

A ¼ 1.25. The small gA is a common problem of the
solitonic description of baryons. One possible resolution to
recover the experimental value gNN

A ¼ 1.25 is to take into
account 1=Nc corrections (Ref. [19] and references there).
Here, however, we do not discuss this anymore. On the other
hand, it is interesting to observe the relation between the
axial couplings of the nucleon and that of the Roper-nucleon
transition. Inspection of Eq. (32), we find

gNN
A =gNN�

A ¼
�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

c

5

r �1=2

¼ 2.08: ð46Þ

We emphasize that this relation does not include any model
parameters (except forNc ¼ 3), and so amodel independent
relation. Experimentally, if we use the partial decay width
ΓN�→πN ∼ 110 MeV, we find the ratio

gNN
A =gNN�

A ¼ 1.25=0.77 ∼ 1.62; ð47Þ

which agrees well with the present model prediction
within ∼20% accuracy, whose agreement is better than
the absolute value.
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IV. DISCUSSIONS AND SUMMARY

In this paper, we have studied one pion emission
decay of the Roper resonance, N�ð1440Þ → N þ π in the
Sakai-Sugimoto model of the Holographic QCD. Baryons
are described as collective states of instantons of the five-
dimensional Yang-Mills theory. We have then employed
the currents as defined in Ref. [16], and computed the
matrix elements. As a result we have obtained a model
independent relation (46) with a finite value of the axial
coupling and hence a finite decay width for the Roper-
nucleon decay, although its absolute value is somewhat
small as compared to the experimental data.
The present picture of baryons as instantons with

collective dynamics is very much the same as the
Skyrmion picture, baryons as chiral solitons. In contrast,
it is very much different from the conventional quark model
one, where baryons are described by single particle states of
the constituent quarks. As anticipated, the quark model

gave only a tiny decay rate for the Roper resonance
when the leading term in 1=m expansion of the quark-
pion interaction is used, which has been the widely
adopted prescription. At this order the suppression occurs
due to the selection rule that forbids the transition in the
long wavelength limit. For this problem a resolution has
been recently proposed by including higher order terms
of 1=m2 [4]. In the quark model, however, the model
independent relation between gNN�

A and gNN
A is not derived.

In this respect, such model independent relations would
be helpful to further investigate the nature of nucleon
resonances.
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