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U(1), axial anomaly, 7/, and topological susceptibility
in the holographic soft-wall model
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The singlet pseudoscalar sector of light mesons is investigated in the soft-wall model, a bottom-up
approach to the AdS/QCD correspondence. The ' mass results from the mixing among the fields dual to

the axial current, pseudoscalar current and the GG operator. The topological susceptibility is computed for
any quark mass, and the Witten-Veneziano relation is obtained in the large N, limit.
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I. INTRODUCTION

In QCD the absence of a singlet pseudo-Goldostone
boson is the well-known U(1), problem. If the U(1),
symmetry were spontaneously broken, a very light iso-
singlet pseudoscalar Goldstone boson would be generated,
with a mass ~v/3m,, according to chiral perturbation theory
[1]. However, although there is no conserved U(1),
quantum number, an extra Goldstone boson is missing:
the mass of the ' meson, the candidate for such a state, is
958 MeV [2], significantly higher than the predicted value.
U(1), is anomalous, and the nonconservation of the singlet
axial current in the chiral limit is expressed by the anomaly
equation:

a =
Oy = = 2> GG, (1)

where G, is the gluon field strength and G = etvab Gop/2.
In the past there have been some discussions on the way the
Goldstone boson receives a mass as a result of the anomaly.
’t Hooft proposed that the violation of U(1),, is realized by
instanton configurations that explicitly break the symmetry
and contribute to the #’ mass [3,4]. Different hypotheses
were also put forward. In some quark models the high mass
of the singlet state is caused by the possibility of annihilat-
ing into gluons [5,6]. Witten [7] and Veneziano [8] pointed
out that the problem should be studied by the 1/N.
expansion, and in this limit they found a relation between
the 7’ mass and the pure-gauge topological susceptibility:
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where f; is the pion decay constant (normalized such that
fz~92 MeV) and ny is the number of flavors. Including a

- . . 2
finite quark mass, the relation becomes y = 2f—r;’[(m,2,/ +

my —2m7) [8]. Witten’s argument is that the singlet and
octet states are degenerate in the large N, limit, while a
mass difference is produced by quark-antiquark annihila-
tion diagrams at O(1/N,.).

The #' mass has been computed with chiral effective
Lagrangians by including an effective term that contains the
topological charge density [9—11]. In [12] a purely gluonic
current has been studied with QCD sum rules and the mass
and the residue of the lowest-lying resonance have been
computed, claiming that in the 7/ wave function both quark
and gluon components are present. Other QCD sum rules
studies include [13,14]. The # mass and decay constant
have been computed in lattice QCD, see, e.g., [15] and
references therein.

In the last years there were studies dealing with the #’
problem using the gauge/gravity duality. In the AdS/CFT
correspondence a four-dimensional gauge theory can be
mapped to a gravity theory in the AdS5 x S5 space, such that
gauge-invariant operators are described by proper higher-
dimensional fields. Conformal symmetry requires that the
mass of a field is fixed by the conformal dimension of the
dual operator, and so it forces a vector field dual to a
dimension-3 current to be a massless field. Hence, a global
symmetry in the four-dimensional theory becomes a gauge
symmetry on the gravity side. However, since the QCD axial
singlet current is not conserved, we expect that its dual field,
i.e., the singlet axial-vector field, gets a mass. In [16] the
anomalous U(1) symmetry becomes a spontaneously bro-
ken symmetry in supergravity, and the gauge field acquires a
mass through the Higgs mechanism. In particular, a mass
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term for the gauge field dual to the U(1), current is
generated by a 2-form in the gravity theory which is not
invariant under U(1)g. On these bases, studies of the U(1),
problem in top-down [17-22] and bottom-up models [23—
26] have been proposed. In [27] an axion field has been
introduced in order to renormalize the anomalous conduc-
tivities, playing the role of the 2-form. In [28] anomaly
related transport phenomena in the presence of a magnetic
field are studied with a massive vector field dual to a
nonconserved current. The mass term for the dimension-3
vector field has been included by a gauge-invariant
Stiickelberg action. In [26] a bottom-up model is used to
compute the topological susceptibility and the mass of the
singlet pseudoscalar meson in the Veneziano large-N . limit.
In this model the QCD @ parameter is the source of a
Ramond-Ramond (RR) bulk field, and the ’ mass emerges
by the Stiickelberg mechanism [29]. The model has been
used in [30] for studying glueball spectra.

This issue has not been approached in the soft-wall
model [31]. Following [26,27], we investigate the pseudo-
scalar singlet sector in the soft-wall model, and compute the
topological susceptibility in pure gauge and for finite quark
masses and the 7' mass. A field dual to the GG operator is
introduced, and its mixing with the fields dual to the gy,ysq
and gysq currents is obtained by requiring U(1), invari-
ance of the Lagrangian for specific transformation rules. In
this scheme, the 7' results from coupled equations of
motion containing the three 0~ isosinglet fields, such
that its mass is increased with respect to the # mass by a
gluonic contribution. We also show that the anomaly
equation naturally arises. No mixing between 7 and #
has been considered. The dependence of the topological
susceptibility on the quark mass is compared to lattice
data and with the phenomenological prediction proposed
in [32,33], and the known asymptotic behaviors are
reproduced.

The paper is organized as follows. In Sec. II the soft-wall
model for chiral-symmetry breaking is reviewed, and a
scalar field Y (x, z) containing the field dual to the QCD GG
operator is introduced, contributing to the description of the
singlet pseudoscalar sector. In Sec. III the model is studied
in the pure-gauge limit, in which only pseudoscalar glue-
balls are present, and the parameters introduced through the
Y (x, z) field are fixed by the coefficient of the glueball two-
point function at high momentum and by the topological
susceptibility. In Sec. IV nonsinglet pseudoscalar mesons
are studied, and all the remaining parameters are fixed by
the meson mass and decay constant. In particular, the mass
of the up quark and the chiral condensate are fixed from the
pion decay constant, and by matching the mass of the
pseudoscalar ground state to the pion mass. Separately,
the strange quark mass is fixed by matching the mass of the
pseudoscalar ground state to the # mass, while using the
same value of (gg) as before. In Sec. V the holographic
version of the anomaly equation is found, reproducing the

relation among the involved one-point functions in QCD;
the #' mass is also obtained, in agreement with the experi-
mental one. In the last section the topological susceptibility
is computed for different values of the quark mass, and the
Witten-Veneziano relation is found at order 1/N,. in the
large N, limit. Numerical results for the topological susce-
ptibility are compared to lattice data.

II. MODEL

We consider the Lagrangian introduced in [31] to study
chiral symmetry breaking in a bottom-up AdS/QCD model.
The 5d anti—de Sitter (AdS) space is characterized by the
metric:

RZ

ds> = = (dt* — dx* — dz?), (3)
with R the AdS curvature radius and z > O the additional
bulk coordinate; z = 0 corresponds to the AdS boundary.
We use Greek letters for Minkowski (4d) indices, and
capital letters for AdS (5d) indices. According to the
AdS/CFT correspondence, the global U(ns), x U(ny)g
symmetry of QCD is promoted to a gauge invariance of
the Lagrangian of the 5d gravity theory under
U(ng), x U(ny)g. The 5d fields dual to the left and right
currents Z]L/Ry”TAqL/R are the p-forms A;(x,z) and
Ag(x,z) having p =1 and a zero 5d mass, as it results
using the relation m2R? = (A — p)(A + p — 4), where A is
the conformal dimension of the 4d operator. Such massless
fields, dual to conserved currents, are the gauge fields of the
model. T4, with A =0, ..., njz, — 1, are the generators of

U(ng), with T0=5L1, and Tr(T°T?) =8%/2 for

T 2np 0y
a,b=1, n]% — 1. The left and right gauge fields are
expressed as AM(x,z) = AY*(x,z)TA. Vector and axial-
vector fields are defined by V = (A; + Ag)/2 and
A = (A — Ag)/2, respectively. The Grq; operator is dual
to the 5d tachyon field X (x, z) = e/ (=I7" X ()" (7",
" describing the nine pseudoscalar mesons. We work with
ny =3 quarks with equal masses m,, so the expectation
value of X(x,z) is proportional to the identity matrix:
Xo(z) = \/qu(z)ln ;- The covariant derivative acts on
X(x,z) as

DyX = 0y X + i[X. V] — i{X. Ay} (4)

We choose the gauge A5 = 0 and split the four components
A, of the axial field in a transverse (A ;) and a longitudinal
part (p): Ay = A%, + 09"

To study U(1) 4, we also include a field a(x, z) dual to the
QCD operator Q = g—” GWG’”’. Q appears in the QCD

2

Lagrangian through the term H#Tr(GﬂyG"”), with 6 a
parameter. Therefore, we introduce the complex scalar field
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Y(x,2) = Yy(z)e¥@x3), dual to the square of the gluon
field strength, where the phase a(x,z) is dual to the
operator Q, sourced by 6, and Y(z) represents the vacuum
expectation value of Y (x, z), similarly to X, for the X field.
In top-down approaches the gluon contribution to the
U(1)g anomaly has been discussed in [16], showing that
the anomaly arises because the RR 2-form C, is not
invariant under the U(1) symmetry. Such idea has been
reproduced in a bottom-up approach [29], where the
coupling of RR form fields with the tachyon X and the
axial gauge field A;, has been obtained from the Wess-
Zumino action. The result involving the axion a, i.e., the
field sourced by @ that couples to G A G on the boundary,
is gauge invariant if the following transformations of the 5d
fields under U(1), are assumed:

= —a, (5)
@ = ¢’ —a, (6)
a—a-V,a, (7)

where « is the gauge parameter, and V,(z) is a potential
term depending on the tachyon vacuum expectation value
v,(z), such that V, -1 as z—0 and V,— 0 for
v4(z) = co. This guarantees that the transformation of
the a(x, z) field becomes a shift of the € parameter on the
boundary, which is the same result of an axial rotation in
QCD. We also assume that the field a(x, z) appearing in the
scalar field Y (x, z) transforms as in (7) under U(1),. This
can be understood in a phenomenological construction
noticing that a(x, z) is a field comprising a term invariant
under U(1), (ap(x,t)) plus a contribution proportional
to the potential V,(z) that vanishes in pure gauge:
a(x,z) = ap(x,z) + V,(2)as(x,z), with a; transforming
under U(1), as a; — a; — a. In the model without V, the
topological susceptibility is not affected by the quark mass,
although it is still possible to get the mass of the ' by a
proper set of parameters.

Assuming the transformation rule (7), a Kkinetic
term |O(Y,e?“)|*> would spoil gauge invariance of the
Lagrangian. We then write the kinetic term in a gauge-
invariant way as in the Wess-Zumino action [29]:

Ko = 10mY0(2) 4+ 2iYo(Oya(x, z) — n°(x,2) 0y V4(2)
— A (x,2)V,(2)) . (8)

The full Lagrangian then reads:
! - o 2 2 2y 2
L :%\/ge ¢ | Tr —492(FL + F%) + |DX|* — m%|X]|
5

+%K4. 9)

¢ = c*z* is the background dilaton field, with ¢ a mass
parameter, introduced in the soft-wall model to break
conformal invariance. The quadratic dependence of the
dilaton has been chosen in order to get linear Regge
trajectories in meson spectra [31]. From the relation
between the 5d field mass and the conformal dimension
A of the operator, the mass of the field X(x,z) is
m% = —3R?. The model with Lagrangian given by
Egs. (8) and (9) describes two simultaneous mechanisms
giving mass to the axial singlet field: a Higgs mechanism in
the flavor sector and a Stiickelberg mechanism in the gluon
sector.

With these definitions, the Lagrangian (9) for pseudo-
scalar fields, up to quadratic order in fields ¢, , a, becomes

R 1
L="e?
k 4npgiz
2R?*2
- 3q (8z770)2 +
ngz

4R*v2 4R2 ;
e G

1
0,0 0.0 %)?
———(0,0,¢")? zggz(z(p)

2R2 2

(aun - au(ﬂo)z

(81/] - ay(pS)Z

2R? 2R?
——Y2(5‘ a-n0.v,)? +Z—3Y%(8Da—Va8y(p0)2

(10)

R/k = N./16x° and g2 = 3/4 are fixed from scalar meson
and vector meson two-point functions [34]. ¢® and ¢° are
the longitudinal component of the A® and A° axial-vector
fields, respectively; #® describes the 73 mesons, belonging
to the octet representation of SU(3), n° describes the singlet
states. We are not considering the mixing between #g and
9, S0 we identify ng with the 5 and 7, with the 7. We use

vq(z):%er—z (11)

as in the hard-wall model [35]. This solution for v,(z)
cannot be obtained from the equation of motion coming
from the Lagrangian (9), and a potential term must be
added to get such a result. We assume (11) without seeking
which potential can give such a dependence in the soft-wall
model. As an example, a different version of the soft-wall
model, introducing a potential for v,,(z), has been proposed
in [36]. As we shall see, v,(z) in (11) is able to describe an
explicit breaking of SU(3), symmetry by the quark mass
m,, which produces a finite mass for pseudo-Goldstone
bosons and a spontaneous symmetry breaking through the
quantity o, proportional to the quark condensate. Such a
relation can be obtained by deriving the on-shell action
with respect to m,, getting (gq) = c. As in [26]
we use

22
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Vo(z) = e, (12)

having the requested behavior in the z — 0 limit. We also
use

2 .
Yo(e) = R+ 2o (T (-1 4 )+ 1), (13)

with asymptotic behavior

1
Y - LR 14
O(Z)[zjo]R (vo + izt +---) (14)

This is the solution to the equation of motion coming

from the Lagrangian term £, = —RBZe;; - Y{(z)?, which is
included in (9).

III. PURE GAUGE

The starting point to understand pseudoscalar glueball
and meson mixing in the soft wall is the theory with no
quarks. In this case the Lagrangian reads

R 2R? 2R?
SPG = %/ d5X€_¢ |:—Z—3 Y%(azap)z + Z—3Y(2)(aﬂaf’)2 .
(15)

Pseudoscalar glueballs have been also studied in AdS/QCD
frameworks by a different choice of the 5d field [37,38].
The bulk-to-boundary propagator, solution to the equation
of motion obtained from Eq. (15) with boundary condition
ap(0) = 1 and giving a finite action (i, —> 0), is

2 2
Yo q q 2.2

= I'i2-—-—|U|—-——,-1, s 16
Yo(z) ( 462> < 4c? cz) (16)

where U is the Tricomi confluent hypergeometric function,
and I is the Riemann Gamma function. The eigenvalues are
m? = 4c*(n +2), therefore in this model pseudoscalar
glueballs are degenerate with scalar glueballs [39]. Using
c = 388 MeV, as obtained by fitting the p meson mass
[31], the lightest state has mass mgz o = 1.1 GeV.

The two-point correlation function is obtained in the
holographic framework by deriving twice the on-shell
action with respect to the sources of the operator under
consideration. For pseudoscalar glueballs it is given by

ap(z)

RAYy(2)%e % _
(4% = ;0—3%&)%(1) . (17)
Z 7—0

The poles of the two-point function are located at g*> = m2,

and the residues are R, = £32¢%y%(n + 1)(n + 2). From

the relation R, = m?f2 [40], we get the decay constants

1
= facti o)

The high-Q? expansion (Q? = —g?) of the two-point
function of the pseudoscalar glueball operator in QCD
is [40]

Moen(0) = - (52 ) @ (Zle @+ 0109). 19

Likewise, the two-point function in Eq. (17) in the limit
Q2 = —q2 — 00 1S

N,
M,(0%) = 0* (- asiloe @+ 01 ). (19

Matching the two expressions at leading order we find

1 a

Yo = fNC;-

The last relation shows that the Y field appears in the full
Lagrangian at a lower order (O(1/N.)) in the large N,
expansion with respect to the other fields, as expected [41].
It is then convenient to emphasize the 1/N, factor
redefining

Yo(z) = /N.Yo(2)

Jo 2y 272
:E—Fm(e Z(—1+02Z2)+1), (21)

(20)

where ¥ :”;“. Using 3 :%, we find for the ground
state fgz0 = 9.8 MeV.

Considering the candidates for these states, the pseudo-
scalar 77(1405) has some features that can indicate a
glueball component [42]; i.e., it has not been produced
in yy, it has large branching ratios in J/y decays, and it has
not been seen to decay to yy. Some models support the
hypothesis of 7(1405) being a glueball, while lattice QCD
and QCD sum rules predict masses larger than 2 GeV
[14,40,43-45]. In [46] an argument supporting a degen-
eracy between scalar and pseudoscalar glueballs has been
put forward. In the present model, if the mass scale ¢
appearing in the dilaton is fixed from the p mass, low
masses for pseudoscalar glueballs are found, and the
nearest state to 7(1405) is the first radial excitation,
with mgz | = 1.34 GeV.

The topological susceptibility is the second derivative
of the vacuum energy with respect to 6 at € = 0. It is
different from zero both in pure gauge and in the theory
with physical quarks, while it vanishes if there is at least a
massless quark, so in this case the theory has no 6
dependence. In the AdS/QCD model its definition
becomes [23]

014021-4
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X =—limI,,(¢*). (22)

4*=0

Using Egs. (16) and (17) for g> = 0, in pure gauge we find

1
=—9 =——Y. 23
XPG ﬂz)’o}’l B ﬂ_yl ( )

From the Witten-Veneziano relation in (2), we obtain
xrG ~ (191 MeV)*, a value confirmed by independent
analyses [47-50]. In this model it corresponds to y, =
1/7 and y, = 0.041 GeV*. For the slope of the topological
susceptibility at zero momentum, connected to the spin
content of the proton [51], we find
/ I 20 272

Xpe =53¢ So(1 — 7 +logr?/c%), (24)
where v is the renormalization scale; for v =1 GeV,
corresponding to subtracting only the log > term, we have

Y p = 0.021 GeV.

IV. NONSINGLET PSEUDOSCALAR MESONS

Let us now consider the pseudoscalar meson octet. The
equations of motion for ¢® and #® can be obtained from the
Lagrangian (10):

v2e~? v2e
o.M 0 ) + TS P -t =0, 29)

e~? 8ue?
oS0t ) + M0 -t =0, 26)
g3z 4

Combining the two equations and integrating, the following
relation can be obtained:

2 8 2
q Uy
%aztpg - Z3 62718 =0, (27)

where the integration constant is zero since 9,¢% and 9.1
vanish as z — oo due to boundary conditions. Following
the matrix formalism of [52], we aggregate the two fields in

the vector
3
@
o= (%) 28
n

so the Lagrangian (10) containing nonsinglet fields reads:
R
L= Ze“ﬁ(d)’TBd)’ + ®'CD), (29)

with

2

<— ’ ) (30)

4v2R?
0 -

4¢°v2R*> /1 -1
C=—"-— ) 31
2 (—1 1 ) G

Operator mixing on the boundary implies that the fields in
the bulk are given by a linear combination of the sources in
Fourier space [52]:

D = Fd,, (32)
where ®)(¢?) = (¢3(q?), —n5(q?))"" is the vector contain-
ing the sources of the two operators, so F(z, ¢*) tends to the
identity matrix on the boundary z — & Moreover, we
require 0, F — 0 for z — oo in order to guarantee finiteness
of the action. Standing the arbitrariness of the sources @y,
the equations of motion for F are

9.(e7?BF') — e ?CF =0, (33)

or, in components,
9.(e7BooFyg) — €™ (CooFoo + CorFr0) =0, (34)
9.(e7?BoFpy) — e (CooFor + Co1 F1y) =0, (35)
9.(e7?By 1 Fy) — e ?(C1oF g0 + C11F19) =0, (36)
9 (e "By Fy) — e (CioF o + Ci 1 Fiy) = 0. (37)

The on-shell action reads

R 4
Sos = -lim- [ dke " OF'BF'®).  (38)

€

and the one-point functions are defined by

IR CONC

where (/%) and (J8) are the one-point functions of the

08,

Jd =
oD,

longitudinal axial current (8Ml/7y5y”T8y/) and the pseudo-
scalar current (2m yrys T8y), respectively, in the nonsinglet

sector. In the soft-wall model, after imposing boundary
conditions, we find

Req y| (40)

I8y = —
< (p> k 29%1 7€

'"The minus sign in the #® source comes from the condition
- —178 on the boundary [35].

014021-5
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R e %402R?
<J2> = 3q
k Z

U (41)
so, using Eq. (27), we find

o) = (), (42)

which establishes the partial conservation of axial current.
The two-point functions are defined by

88 88
HSS _ 62805 _ <H(ﬂ‘ﬂ H‘/”'I) (43)
0D 0Dy |,_,, s s
and are given by
20-0
88 _ i€
Mgy = —1;33;@ FooFoo: (44)
R q* 492 R?
88 _ 188 - q
H H —ll_l;l'él‘ke ¢<2g§ZF61F00——3F/10F11 s
(45)
R _ 8v2R?
H88—121_r>r€1ke ?—5—F) Fu. (46)

where we have already required that off-diagonal matrix
elements of F vanish on the boundary. We find TI5% =
88 _ 188 88
gy = Iy, = Iy,
In QCD, the first term in the large Q> = —¢g? expansion
of the two-point function of the longitudinal component of

the axial-vector current is [53]2

3 11 a;
ws(0?) — Q2—>oo T2 4m? < ?;) 0% log Q?
+0(07). (47)

In the soft-wall model the leading order result agrees with
the QCD one:

I3(0%) — 3 am0%10g 0% + O(QY). (48)

o 1677

In all the numerical computations, z > £ = 0.001 GeV~!
has been used. Since X, is proportional to the identity
matrix, the equations of motion of the fields belonging to
the octet are all equal, and the corresponding mesons are
degenerate. Fixing |{gg)| = (0.281 GeV)?, by requiring
that the first eigenvalue of Eqs. (25)—(26) is m,, = m, =
139 MeV, we get m, = m, = 3.7 MeV. Requiring m, =

m, = 548 MeV instead, we get m, = m; =59.5 MeV.

*An additional 1/2 factor has been included to take into
account the definition of the axial field used here, with
Tr(TT?) = 6 /2.

The same meson masses are also found from the first
pole of the two-point functions. Using the spectral repre-
sentation

)
() = S ) @)

where m,, and f, are the masses and decay constants of the
nonsinglet pseudoscalar mesons, P,(x) is a polynomial of
degree two, we find f,, ,=92.3MeV and f;, ; = 103 MeV,
with fo/fo. = 1.12. For m, = 0, the pion-decay con-
stant is

= (91.6 MeV)2.  (50)

Our numerical data agree with the Gell-Mann-Oakes-
Renner mass formula, which reads m2 = 2m,|(gq)|/
2+ O(m2), where f, is the pion decay constant in the
chiral limit. The Gell-Mann-Oakes-Renner relation has
been recovered in the hard-wall model in [35], and a
similar derivation also holds in the soft-wall model. The
same result for the decay constant in the chiral limit is
found from the following relation:

Re™?

i _ 2
kggzaZ”’ (91.6 MeV)2,  (51)

I—E

fi=-

which has been introduced in [54] in the hard-wall model,
where y = ¢® — % is the solution to Eq. (26) at ¢> =0
with #8(z) = —1 and with boundary conditions y(z) = 1 at
z==¢and y'(z) =0 for z > .

V. SINGLET PSEUDOSCALAR MESONS

If a(x, z) = 0, then °(x, z) and 5%(x, z) satisfy the same
equation of motion with the same boundary conditions, and
singlet and nonsinglet states have the same mass. If
a(x,z) # 0, then 7°(x,z) and a(x,z) are coupled, while
the equations for 7%(x, z) do not change.

The equations of motion for a, ¢°, " are

2~ 2~
v,e v
3z<"—3azn)+q2 Cad (" = ")
ngl fZ
Yoe_
N 3

— 4 2R2

e v

az (2 5 8z¢0> + (’70 —Q )
nggs2 l’le

4Y2R?e
ch3

+——=(0,V,)(0.a-1n"0.V,) =0, (52)

Va(a - goOVa) =0, (53)
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Ve
81 <0Z—3 (6za - noazva)>

Vie~?
2

+q* (a—¢V,)=0. (54)

A combination of the three equations gives (after integrat-
ing)

4U§R2 0 q2

_ 9.0°
nfz3 M 2nfg§Z 2
4YZR?
+ NLZZ' Va(aza - ”Oazva) = 0’ (55)

where the integration constant is zero since 8Z(p°, 8zn0, a,

and f/ﬁva vanish as 7 — oo due to boundary conditions.
The last equation can be also obtained by requiring the
gauge-fixing condition As(q,z) = 0.

In the matrix formalism [52] adopted in the previous
section, the three fields are contained in the vector

Y= (56)

and the Lagrangian (10) containing singlet fields reads

R .
L= Ee"/’ (W'MY +VN Y +Y N +V PY), (57)

with
P
4n_fg§z 0 0
—ZEfRZ
M=\ 0 Py 0o . (58)
o922
0 0 FE
2V3R?V! 000
Ny=="2—2%10 0 0], (59)
N.z
01 0
2V3R?V! 000
Ny=="2-2210 0 1], (60)
N.z
0 0 O
2q2b‘5 21?%q2V§ —2(]21737 —2?%q2Va
n;z? N .2 ngz’ N2
P:R2 _2’12”2 2’127‘%_2?3<V;)2 0 (61)
n;z? ngz N7 ’
—z?ngvu 0 Zf/ng
N2 N.23

The equations of motion are
0.(e (MY + N\¥) — e ?(N,¥' + P¥) =0. (62)

Also here, because of operator mixing, the fields in the bulk
are given by a linear combination of the sources in Fourier
space:

¥ = HY,, (63)

where Wo(q*) = (¢{(q°), (%), ao(¢*))" is the vector
containing the sources of the three operators, and H(z, qz)
tends to the identity matrix on the boundary z — e
Moreover, finiteness of the action implies that, as
7 — o0, 0.H — 0 for the first two rows, and H — 0 for
the third row. For the arbitrariness of the sources ¥, the
equations of motion for H are

9.(e"*(MH' + N\H)) — e~*(N,H' + PH) = 0. (64)

The on-shell action reads

S, = —ygf ke~ (WL HT MH'Yy + WLHIN, HY,),
(65)
and the two-point functions are
o — S n%% E%% EW (66)
W%, |, ng - Lm na |-
ap oy aq

From the on-shell action we compute the one-point
functions:

55 (79)
p=%el . (67)
) €
(Ja)

where (J9) and (J9) are the one-point functions of the
longitudinal axial current (8”1/77/57/”T0y/) and the pseudo-
scalar current (2mq1/7y5T01//), respectively, in the singlet
sector, while (J9) is the one-point function of the topo-
logical charge density ({52 G,,G**)). In the soft-wall model,

87
after imposing boundary conditions, we find

R e ?q?
0y = —— / 68
< l/l> k 4nfg§Z (p() Z_)S’ ( )
R e ?202R?
JO) = — ol 69
U= | (69)
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Re P2V}R?

Ny =——"T""d| . 70
< a> k NCZ3 a e ( )
These are related by a Ward identity obtained taking the
z — ¢ limit of Eq. (55):

=)+ (J5) + (Ja) =0, (71)

which is the holographic representation of the QCD
anomaly equation:

O, = 2mpysTw — 4—G G, (72)
Notice that in this model the singlet axial and pseudoscalar
currents have been defined using the U(1), generator
T = an I,

In Fig. 1, we show the effect of the meson-glueball
mixing on the element H,,, which is the only nonvanishing
element of the matrix H in pure gauge. It is also compared
with the bulk-to-boundary propagator of pseudoscalar
glueballs in Eq. (16).

With the parameters used in Secs. Il and IV, we find that
the mass of the first pole of the two-point correlation
functions is m, =958 MeV for m, = m; = 59.5 MeV,
while in the chiral limit it is m, = 903 MeV. In the 1-
2.3 GeV mass range there are many resonances, generated
by the meson-glueball mixing, with the following masses:
1.14, 1.37, 1.57, 1.75, 1.91, 2.05, 2.15, and 2.24 GeV.
According to the way the singlet state is constructed in this
model, the mass of the first pole approaches the mass of the
lightest glueball for high quark masses, as shown in Fig. 2.

Seven 0~ states with isospin O are listed in the Particle
Data Group compilation, i.e., n, 7', n(1295), n(1405),

n(1475), n(1760) (not established), 7(2225) (not estab-
lished), and one state with unknown isospin, i.e., X(1835)
2 \
PG
2 GeV eeeees
15 F 0.15 GeV
59.5 MeV

—0.5 I I I I L L

FIG. 1. Bulk-to-boundary propagator of the field ap(z) in pure
gauge (PG) at ¢*> = 1 GeV? in Eq. (16) (solid gray line); Hy(z)
at > = 1 GeV? and for the indicated values of the quark mass. At
large quark masses H,,(z) approaches the pure-gauge solution.

5 \
45 no,n =1 +
T n,n=2 1
4+ ng,n=1 E
3.5 F E
3 E ]
ag oo f 3
g 25
2k E
HKXHXHX XXX XXX XXX
- X XXXXE EXXXHXHXXXHXHXX XX
1.5 7><><><><><\><></></><x E
1 +}++++7}*+++*\*+A+' t+++++++++++++++ \7
T
0.5 F E
0 I I I I
0 0.2 0.4 0.6 0.8 1

mg

FIG. 2. Squared mass (GeV?) of the octet ground state, of the
ground state and first radial excitation of the singlet field versus
the quark mass (GeV).

(not established). According to this model, all higher-mass
states can be radial excitations of 7/, comprising quark and
gluon components. However, a thorough analysis of
pseudoscalar-meson spectroscopy should require the inclu-
sion of a mass difference between strange and up/down
quarks, and the 7y — #g mixing.

VI. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility y, in the full theory with
quarks is

i N HpHnl, . (73
c

-0

with T, (¢?) defined in Eq. (66), and H,, solution of
Eq. (64). In particular, H,, is only coupled to the matrix
elements Hy, and H;, by the following equations:

e=? 41}2R2
0, (2 H62) 5 (Hoy — H1p)
ganyz ne’
4Y2R%V,
+ €_¢]37Z3(H22 - HypV,) =0, (74)

4,2 2,2
e et

az( qH/n)—e'/g(Hoz—Hu)
}’le an

+
Nc

S (Hy —HpV,) =0, (75)

¢y2
A )

2172

Y5
+e _(/)qz (Hy —HpV,) =0. (76)
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In the chiral limit, the Witten-Veneziano relation can be
obtained both in the N. — co and in the ny/N, — 0 limits
[55]. The parameters involved in this model scale as
R/k~O(N,), nyy ~ O(1/y/N,) or nyy ~ O(\/”f/—Nc)’
while the others are O(1). By expanding Egs. (52)—(55)
in 1/N, for ¢*> = mﬁ, one finds at lowest order:

e’ 0 4vgR?e? 0y ) —
0. (g0 ) = (0= =0, (7

U2€_¢
o.(%5 000 ) =0, 7%
o
0" 0w - W) ) 0. (9)
m2, 2 p2
0.6 = S Va0l — 0P) VL), (80

2n;g3z N2
where the subscript 0 in (¢°)y, (1°),, and (@), means that
they are the zeroth-order (O(1)) solutions to the equations
of motion. The second equation tells us that (1°), is
constant, in particular in the chiral limit (%), = -1
[54]. The first and third equations are decoupled. In
particular, Eq. (77) coincides with the equation of motion
of the nonsinglet field y introduced at the end of Sec. IV in
the chiral limit at g> = 0, which is related to the pion decay
constant by Eq. (51). Equation (79), after defining
ap(z,q*) = a(z,q*) + V,(z), coincides with the equation
of motion of the pseudoscalar glueball in pure gauge at
g*> = 0. Then, after multiplying both sides of Eq. (80) by
(R/k)e~® and taking the limit z — 0, from Egs. (51) and
(73), it results in

m? f2
i /2

= , 81
2n; xprG (81)

which is the Witten-Veneziano relation.

Let us compute the topological susceptibility as a
function of the quark mass, and express it in a more useful
form. Egs. (75) and (76) at g*> =0 can be integrated
obtaining

4Y2R?
el (Hn = ViHi) = Ay, (82)
402 R?
e _H\,+V,A =0, (83)
3 12
I’le

where the integration constant is nonzero in the former case
and zero in the latter, according to the behavior of the
functions at z — o0. One can then write

0

= [T et () ) o0

From y, = —® A, one obtains
1 1 1
L (85)
Xt XpG Xy

with

1k o ehD)3 2
:nf/ P rp— (Va(z)> ) (86)
xr R 0 4 v,(2)R

The values of the topological susceptibility versus the
quark mass are shown in Fig. 3. At small quark mass
we find

(29)
— oy~ 7
Y Tl (87)

as predicted in chiral perturbation theory [47]. The behavior
in Eq. (87) is represented by the dashed line in Fig 3. At

3 4
large quark mass we find y i 7y Ma> SO the pure

gauge value (horizontal line in Fig. 3) is recovered in the
limit m, — oo:

Xt — XPG> (88)

m,—oo

a result that has been numerically checked for very large
m,. The result in Fig. 3 is similar to the plot on the left of

0.0016
0.0014 ;
0.0012 F ;
0.001 | ]
0.0008 F ]
0.0006 F ;
0.0004 F XPG ]
0.0002 '

0

Xt

LT

0 0.5 1 1.5 2
Mg

FIG. 3. Topological susceptibility (GeV*) at different values of
the quark mass (GeV) computed in this holographic model from
Eq. (73) or (85)—(86) (black curve); topological susceptibility in
pure gauge given by Eq. (23) (horizontal gray line); expected
topological susceptibility at low quark mass in Eq. (87) (dashed
cyan line); predicted topological susceptibility from Eq. (89)
(dotted orange line).
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0.0012

0.001 f ]

0.0008

0.0006

Xt

%

0.0004

Ref. [56] = ]
0-0002 Ref. [57
. | _ Ref. [58

0 0.05 0.1 0.15 0.2

my

FIG. 4. Lattice data from Refs. [56-58], and the topological
susceptibility computed from Eq. (73) (solid black line) and
from Eq. (89) (dashed green line), both curves at ny =2 and
[{gq)| = (0.281 GeV)3. Units are GeV on the horizontal axis,
and GeV* on the vertical one.

Fig. 7 of [26]. This is an indication that the profile of the
topological susceptibility is mostly related to the Wess-
Zumino holographic description of the U(1), problem
represented by Eq. (8), while it is less affected by the other
features of the underlying model, as, in particular, how
conformal and chiral symmetries are broken, or the use of a
dynamical background.
The formula

—=—t
Xt XPG mq|<¢1‘]>|

(89)
interpolating between the two known asymptotic behaviors
was obtained in [32,33]. The result in Eq. (85) shows that
the topological susceptibility computed in this model gets
the same expression as in Eq. (89), and they numerically
agree for low values of the quark mass, as shown in Fig. 3,
since a more complicated form of the second term in the
right-hand side is needed to fit y; at higher m,. In Fig. 4
some lattice data with ny = 2 [56-58] are compared to y,
computed from Eq. (73) and from Eq. (89) with n; = 2 and
|(gq)] = (0.281 GeV)>. Lattice data confirm the suppres-
sion of the topological susceptibility at decreasing quark
mass. It is difficult to carry out a quantitative comparison of
lattice data with Eq. (89) or with the values found in this
holographic model, since uncertainties involved in lattice
simulations [47] and the different values of the chiral
condensate should be taken into account.

VII. CONCLUSIONS

We have computed the masses of singlet and nonsinglet
pseudoscalar mesons in the soft-wall holographic model of
QCD. We have found that the mixing of singlet states with
pseudoscalar glueballs can explain the large mass of the 7.

We have not considered the mixing between singlet and
nonsinglet states with isospin zero. The holographic
version of the anomaly equation has been found in
Eq. (71). In this respect, it is worth emphasizing that in
this model partial conservation of axial current, the
anomaly equation and the Witten-Veneziano relation are
derived from the constraint equations (27) and (55),
obtained by a combination of the equations of motion of
the involved fields.

A key result of this paper is the computation of the
topological susceptibility y, in the soft-wall model for any
value of quark mass in Egs. (85)—(86), and its comparison
to lattice simulations at n; = 2. Moreover, our result agrees
with the formula (89) proposed in Refs. [32,33], since we
also find that the contributions from quarks and gluons are
combined as a sum of their reciprocals. We have found that
in the full topological susceptibility the correction y to the
pure-gauge value depends linearly on the quark mass for
low values of m,, as in chiral perturbation theory, while
other corrections arise for higher m,, in particular y,
diverges as mj at infinite m,,.

These results have also interesting prospectives concern-
ing the computation of the spectral functions of the 7’ at
finite temperature, which have recently been object of
lattice studies [59]. In this respect, in [60-62] it has been
shown that the study of spectral functions in the soft-wall
model is numerically feasible and produces consistent
results.

The main ingredient of this model is the potential V ,(z),
characterizing the transformation rule of the glueball field
in the bulk under U(1),. We have fixed it from the Wess-
Zumino action, but different choices could be explored.
The computation of the topological susceptibility shows
that V,(z) has to vanish at infinity at least as e~ (where ¢
is the dilaton).

A related issue, not discussed here, is the strong CP
problem [63]. The topological term in the QCD
Lagrangian, proportional to the @ parameter, generating
the gluonic contribution to the 7’ mass is not invariant under
CP. This term produces a nonzero neutron electric dipole
moment, which is expected to be tiny. The experimental
limit is @ < 107!, Then, a fine-tuning problem arises,
trying to understand why 6 is so small, while naturally one
would expect such a parameter of O(1). A solution to the
strong CP problem is the Peccei-Quinn mechanism. In
[17,64] it has been proposed how the Peccei-Quinn
mechanism can be implemented in a top-down and
bottom-up holographic model, respectively.

q°
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