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The singlet pseudoscalar sector of light mesons is investigated in the soft-wall model, a bottom-up
approach to the AdS/QCD correspondence. The η0 mass results from the mixing among the fields dual to
the axial current, pseudoscalar current and the GG̃ operator. The topological susceptibility is computed for
any quark mass, and the Witten-Veneziano relation is obtained in the large Nc limit.
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I. INTRODUCTION

In QCD the absence of a singlet pseudo-Goldostone
boson is the well-known Uð1ÞA problem. If the Uð1ÞA
symmetry were spontaneously broken, a very light iso-
singlet pseudoscalar Goldstone boson would be generated,
with a mass ∼

ffiffiffi
3

p
mπ according to chiral perturbation theory

[1]. However, although there is no conserved Uð1ÞA
quantum number, an extra Goldstone boson is missing:
the mass of the η0 meson, the candidate for such a state, is
958 MeV [2], significantly higher than the predicted value.
Uð1ÞA is anomalous, and the nonconservation of the singlet
axial current in the chiral limit is expressed by the anomaly
equation:

∂μJ
μ
A ¼ −

αs
8π

GμνG̃
μν; ð1Þ

whereGμν is the gluon field strength and G̃
μν¼ϵμναβGαβ=2.

In the past there have been some discussions on the way the
Goldstone boson receives a mass as a result of the anomaly.
’t Hooft proposed that the violation of Uð1ÞA is realized by
instanton configurations that explicitly break the symmetry
and contribute to the η0 mass [3,4]. Different hypotheses
were also put forward. In some quark models the high mass
of the singlet state is caused by the possibility of annihilat-
ing into gluons [5,6]. Witten [7] and Veneziano [8] pointed
out that the problem should be studied by the 1=Nc
expansion, and in this limit they found a relation between
the η0 mass and the pure-gauge topological susceptibility:

χPG ¼ f2πm2
η0

2nf
; ð2Þ

where fπ is the pion decay constant (normalized such that
fπ ∼ 92 MeV) and nf is the number of flavors. Including a

finite quark mass, the relation becomes χ ¼ f2π
2nf

ðm2
η0 þ

m2
η − 2m2

KÞ [8]. Witten’s argument is that the singlet and
octet states are degenerate in the large Nc limit, while a
mass difference is produced by quark-antiquark annihila-
tion diagrams at Oð1=NcÞ.
The η0 mass has been computed with chiral effective

Lagrangians by including an effective term that contains the
topological charge density [9–11]. In [12] a purely gluonic
current has been studied with QCD sum rules and the mass
and the residue of the lowest-lying resonance have been
computed, claiming that in the η0 wave function both quark
and gluon components are present. Other QCD sum rules
studies include [13,14]. The η0 mass and decay constant
have been computed in lattice QCD, see, e.g., [15] and
references therein.
In the last years there were studies dealing with the η0

problem using the gauge/gravity duality. In the AdS=CFT
correspondence a four-dimensional gauge theory can be
mapped to a gravity theory in the AdS5 × S5 space, such that
gauge-invariant operators are described by proper higher-
dimensional fields. Conformal symmetry requires that the
mass of a field is fixed by the conformal dimension of the
dual operator, and so it forces a vector field dual to a
dimension-3 current to be a massless field. Hence, a global
symmetry in the four-dimensional theory becomes a gauge
symmetry on the gravity side. However, since theQCDaxial
singlet current is not conserved, we expect that its dual field,
i.e., the singlet axial-vector field, gets a mass. In [16] the
anomalous Uð1Þ symmetry becomes a spontaneously bro-
ken symmetry in supergravity, and the gauge field acquires a
mass through the Higgs mechanism. In particular, a mass
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term for the gauge field dual to the Uð1ÞR current is
generated by a 2-form in the gravity theory which is not
invariant underUð1ÞR. On these bases, studies of theUð1ÞA
problem in top-down [17–22] and bottom-up models [23–
26] have been proposed. In [27] an axion field has been
introduced in order to renormalize the anomalous conduc-
tivities, playing the role of the 2-form. In [28] anomaly
related transport phenomena in the presence of a magnetic
field are studied with a massive vector field dual to a
nonconserved current. The mass term for the dimension-3
vector field has been included by a gauge-invariant
Stückelberg action. In [26] a bottom-up model is used to
compute the topological susceptibility and the mass of the
singlet pseudoscalar meson in the Veneziano large-Nc limit.
In this model the QCD θ parameter is the source of a
Ramond-Ramond (RR) bulk field, and the η0 mass emerges
by the Stückelberg mechanism [29]. The model has been
used in [30] for studying glueball spectra.
This issue has not been approached in the soft-wall

model [31]. Following [26,27], we investigate the pseudo-
scalar singlet sector in the soft-wall model, and compute the
topological susceptibility in pure gauge and for finite quark
masses and the η0 mass. A field dual to the GG̃ operator is
introduced, and its mixing with the fields dual to the q̄γμγ5q
and q̄γ5q currents is obtained by requiring Uð1ÞA invari-
ance of the Lagrangian for specific transformation rules. In
this scheme, the η0 results from coupled equations of
motion containing the three 0−þ isosinglet fields, such
that its mass is increased with respect to the η mass by a
gluonic contribution. We also show that the anomaly
equation naturally arises. No mixing between η and η0
has been considered. The dependence of the topological
susceptibility on the quark mass is compared to lattice
data and with the phenomenological prediction proposed
in [32,33], and the known asymptotic behaviors are
reproduced.
The paper is organized as follows. In Sec. II the soft-wall

model for chiral-symmetry breaking is reviewed, and a
scalar field Yðx; zÞ containing the field dual to the QCDGG̃
operator is introduced, contributing to the description of the
singlet pseudoscalar sector. In Sec. III the model is studied
in the pure-gauge limit, in which only pseudoscalar glue-
balls are present, and the parameters introduced through the
Yðx; zÞ field are fixed by the coefficient of the glueball two-
point function at high momentum and by the topological
susceptibility. In Sec. IV nonsinglet pseudoscalar mesons
are studied, and all the remaining parameters are fixed by
the meson mass and decay constant. In particular, the mass
of the up quark and the chiral condensate are fixed from the
pion decay constant, and by matching the mass of the
pseudoscalar ground state to the pion mass. Separately,
the strange quark mass is fixed by matching the mass of the
pseudoscalar ground state to the η mass, while using the
same value of hq̄qi as before. In Sec. V the holographic
version of the anomaly equation is found, reproducing the

relation among the involved one-point functions in QCD;
the η0 mass is also obtained, in agreement with the experi-
mental one. In the last section the topological susceptibility
is computed for different values of the quark mass, and the
Witten-Veneziano relation is found at order 1=Nc in the
large Nc limit. Numerical results for the topological susce-
ptibility are compared to lattice data.

II. MODEL

We consider the Lagrangian introduced in [31] to study
chiral symmetry breaking in a bottom-up AdS/QCDmodel.
The 5d anti–de Sitter (AdS) space is characterized by the
metric:

ds2 ¼ R2

z2
ðdt2 − dx̄2 − dz2Þ; ð3Þ

with R the AdS curvature radius and z ≥ 0 the additional
bulk coordinate; z ¼ 0 corresponds to the AdS boundary.
We use Greek letters for Minkowski (4d) indices, and
capital letters for AdS (5d) indices. According to the
AdS=CFT correspondence, the global UðnfÞL ×UðnfÞR
symmetry of QCD is promoted to a gauge invariance of
the Lagrangian of the 5d gravity theory under
UðnfÞL × UðnfÞR. The 5d fields dual to the left and right
currents q̄L=RγμTAqL=R are the p-forms ALðx; zÞ and
ARðx; zÞ having p ¼ 1 and a zero 5d mass, as it results
using the relationm2

5R
2 ¼ ðΔ − pÞðΔþ p − 4Þ, whereΔ is

the conformal dimension of the 4d operator. Such massless
fields, dual to conserved currents, are the gauge fields of the
model. TA, with A ¼ 0;…; n2f − 1, are the generators of
UðnfÞ, with T0 ¼ 1

2nf
Inf and TrðTaTbÞ ¼ δab=2 for

a; b ¼ 1;…; n2f − 1. The left and right gauge fields are

expressed as AM
L ðx; zÞ ¼ AM;A

L ðx; zÞTA. Vector and axial-
vector fields are defined by V ¼ ðAL þ ARÞ=2 and
A ¼ ðAL − ARÞ=2, respectively. The q̄RqL operator is dual
to the 5d tachyon field Xðx; zÞ ¼ eiη

Aðx;zÞTA
X0ðzÞeiηAðx;zÞTA

,
ηA describing the nine pseudoscalar mesons. We work with
nf ¼ 3 quarks with equal masses mq, so the expectation
value of Xðx; zÞ is proportional to the identity matrix:
X0ðzÞ ¼

ffiffiffi
2

p
vqðzÞInf . The covariant derivative acts on

Xðx; zÞ as

DMX ¼ ∂MX þ i½X; VM� − ifX; AMg: ð4Þ

We choose the gauge A5 ¼ 0 and split the four components
Aμ of the axial field in a transverse (A⊥) and a longitudinal
part (φ): AA

μ ¼ AA⊥μ þ ∂μφ
A.

To studyUð1ÞA, we also include a field aðx; zÞ dual to the
QCD operator Q ¼ αs

8πGμνG̃
μν. Q appears in the QCD

Lagrangian through the term θ g2

16π2
TrðGμνG̃

μνÞ, with θ a
parameter. Therefore, we introduce the complex scalar field
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Yðx; zÞ ¼ Y0ðzÞe2iaðx;zÞ, dual to the square of the gluon
field strength, where the phase aðx; zÞ is dual to the
operator Q, sourced by θ, and Y0ðzÞ represents the vacuum
expectation value of Yðx; zÞ, similarly to X0 for the X field.
In top-down approaches the gluon contribution to the
Uð1ÞR anomaly has been discussed in [16], showing that
the anomaly arises because the RR 2-form C2 is not
invariant under the Uð1Þ symmetry. Such idea has been
reproduced in a bottom-up approach [29], where the
coupling of RR form fields with the tachyon X and the
axial gauge field AM has been obtained from the Wess-
Zumino action. The result involving the axion a, i.e., the
field sourced by θ that couples to G ∧ G on the boundary,
is gauge invariant if the following transformations of the 5d
fields under Uð1ÞA are assumed:

η0 → η0 − α; ð5Þ

φ0 → φ0 − α; ð6Þ

a → a − Vaα; ð7Þ

where α is the gauge parameter, and VaðzÞ is a potential
term depending on the tachyon vacuum expectation value
vqðzÞ, such that Va → 1 as z → 0 and Va → 0 for
vqðzÞ → ∞. This guarantees that the transformation of
the aðx; zÞ field becomes a shift of the θ parameter on the
boundary, which is the same result of an axial rotation in
QCD. We also assume that the field aðx; zÞ appearing in the
scalar field Yðx; zÞ transforms as in (7) under Uð1ÞA. This
can be understood in a phenomenological construction
noticing that aðx; zÞ is a field comprising a term invariant
under Uð1ÞA (aPðx; tÞ) plus a contribution proportional
to the potential VaðzÞ that vanishes in pure gauge:
aðx; zÞ ¼ aPðx; zÞ þ VaðzÞafðx; zÞ, with af transforming
under Uð1ÞA as af → af − α. In the model without Va the
topological susceptibility is not affected by the quark mass,
although it is still possible to get the mass of the η0 by a
proper set of parameters.
Assuming the transformation rule (7), a kinetic

term j∂ðY0e2iaÞj2 would spoil gauge invariance of the
Lagrangian. We then write the kinetic term in a gauge-
invariant way as in the Wess-Zumino action [29]:

Ka ¼ j∂MY0ðzÞ þ 2iY0ð∂Maðx; zÞ − η0ðx; zÞ∂MVaðzÞ
− A0

Mðx; zÞVaðzÞÞj2: ð8Þ

The full Lagrangian then reads:

L ¼ 1

k
ffiffiffi
g

p
e−ϕ

�
Tr

�
−

1

4g25
ðF2

L þ F2
RÞ þ jDXj2 −m2

XjXj2
�

þ 1

2
Ka

�
: ð9Þ

ϕ ¼ c2z2 is the background dilaton field, with c a mass
parameter, introduced in the soft-wall model to break
conformal invariance. The quadratic dependence of the
dilaton has been chosen in order to get linear Regge
trajectories in meson spectra [31]. From the relation
between the 5d field mass and the conformal dimension
Δ of the operator, the mass of the field Xðx; zÞ is
m2

X ¼ −3R2. The model with Lagrangian given by
Eqs. (8) and (9) describes two simultaneous mechanisms
giving mass to the axial singlet field: a Higgs mechanism in
the flavor sector and a Stückelberg mechanism in the gluon
sector.
With these definitions, the Lagrangian (9) for pseudo-

scalar fields, up to quadratic order in fields φ, η, a, becomes

L¼R
k
e−ϕ

�
1

4nfg25z
ð∂z∂νφ

0Þ2þ 1

2g25z
ð∂z∂νφ8Þ2

−
2R2v2q
nfz3

ð∂zη
0Þ2þ2R2v2q

nfz3
ð∂νη

0−∂νφ
0Þ2

−
4R2v2q
z3

ð∂zη
8Þ2þ4R2v2q

z3
ð∂νη

8−∂νφ
8Þ2

−
2R2

z3
Y2
0ð∂za−η0∂zVaÞ2þ

2R2

z3
Y2
0ð∂νa−Va∂νφ

0Þ2
�
:

ð10Þ

R=k ¼ Nc=16π2 and g25 ¼ 3=4 are fixed from scalar meson
and vector meson two-point functions [34]. φ8 and φ0 are
the longitudinal component of the A8 and A0 axial-vector
fields, respectively; η8 describes the η8 mesons, belonging
to the octet representation of SUð3Þ, η0 describes the singlet
states. We are not considering the mixing between η8 and
η0, so we identify η8 with the η and η0 with the η0. We use

vqðzÞ ¼
mq

R
zþ σ

R
z3 ð11Þ

as in the hard-wall model [35]. This solution for vqðzÞ
cannot be obtained from the equation of motion coming
from the Lagrangian (9), and a potential term must be
added to get such a result. We assume (11) without seeking
which potential can give such a dependence in the soft-wall
model. As an example, a different version of the soft-wall
model, introducing a potential for vqðzÞ, has been proposed
in [36]. As we shall see, vqðzÞ in (11) is able to describe an
explicit breaking of SUð3ÞA symmetry by the quark mass
mq, which produces a finite mass for pseudo-Goldstone
bosons, and a spontaneous symmetry breaking through the
quantity σ, proportional to the quark condensate. Such a
relation can be obtained by deriving the on-shell action
with respect to mq, getting hq̄qi ¼ − Nc

2π2
σ. As in [26]

we use
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VaðzÞ ¼ e−vqðzÞ2 ; ð12Þ

having the requested behavior in the z → 0 limit. We also
use

Y0ðzÞ ¼
y0
R
þ 2y1
Rc4

ðec2z2ð−1þ c2z2Þ þ 1Þ; ð13Þ

with asymptotic behavior

Y0ðzÞ →
½z→0�

1

R
ðy0 þ y1z4 þ � � �Þ: ð14Þ

This is the solution to the equation of motion coming

from the Lagrangian term Ly ¼ − R3e−c
2z2

2kz3 Y 0
0ðzÞ2, which is

included in (9).

III. PURE GAUGE

The starting point to understand pseudoscalar glueball
and meson mixing in the soft wall is the theory with no
quarks. In this case the Lagrangian reads

SPG ¼ R
k

Z
d5xe−ϕ

�
−
2R2

z3
Y2
0ð∂zaPÞ2 þ

2R2

z3
Y2
0ð∂μaPÞ2

�
:

ð15Þ

Pseudoscalar glueballs have been also studied in AdS/QCD
frameworks by a different choice of the 5d field [37,38].
The bulk-to-boundary propagator, solution to the equation
of motion obtained from Eq. (15) with boundary condition
ãPð0Þ ¼ 1 and giving a finite action (ãP ⟶z→∞ 0), is

ãPðzÞ ¼
y0

Y0ðzÞ
Γ
�
2 −

q2

4c2

�
U

�
−

q2

4c2
;−1; c2z2

�
; ð16Þ

where U is the Tricomi confluent hypergeometric function,
and Γ is the Riemann Gamma function. The eigenvalues are
m2

n ¼ 4c2ðnþ 2Þ, therefore in this model pseudoscalar
glueballs are degenerate with scalar glueballs [39]. Using
c ¼ 388 MeV, as obtained by fitting the ρ meson mass
[31], the lightest state has mass mGG̃;0 ¼ 1.1 GeV.
The two-point correlation function is obtained in the

holographic framework by deriving twice the on-shell
action with respect to the sources of the operator under
consideration. For pseudoscalar glueballs it is given by

Πaaðq2Þ ¼
R
k
4Y0ðzÞ2e−c2z2

z3
ã0PðzÞãPðzÞ

				
z→0

: ð17Þ

The poles of the two-point function are located at q2 ¼ m2
n,

and the residues are Rn ¼ R
k 32c

6y20ðnþ 1Þðnþ 2Þ. From

the relation Rn ¼ m4
nf2n [40], we get the decay constants

f2n ¼ R
k 2c

2y20
ðnþ1Þ
ðnþ2Þ.

The high-Q2 expansion (Q2 ¼ −q2) of the two-point
function of the pseudoscalar glueball operator in QCD
is [40]

ΠQCDðQ2Þ ¼ −
�
αs
8π

�
2

Q4

�
2

π2
logQ2 þOðQ−4Þ

�
: ð18Þ

Likewise, the two-point function in Eq. (17) in the limit
Q2 ¼ −q2 → ∞ is

ΠaaðQ2Þ ¼ Q4

�
−

Nc

32π2
y20 logQ

2 þOð1Þ
�
: ð19Þ

Matching the two expressions at leading order we find

y0 ¼
1ffiffiffiffiffiffi
Nc

p αs
π
: ð20Þ

The last relation shows that the Y field appears in the full
Lagrangian at a lower order (Oð1=NcÞ) in the large Nc
expansion with respect to the other fields, as expected [41].
It is then convenient to emphasize the 1=Nc factor
redefining

Ŷ0ðzÞ ¼
ffiffiffiffiffiffi
Nc

p
Y0ðzÞ

¼ ŷ0
R
þ 2y1
Rc4

ðec2z2ð−1þ c2z2Þ þ 1Þ; ð21Þ

where ŷ0 ¼ αs
π . Using ŷ0 ¼ 1

π, we find for the ground
state fGG̃;0 ¼ 9.8 MeV.
Considering the candidates for these states, the pseudo-

scalar ηð1405Þ has some features that can indicate a
glueball component [42]; i.e., it has not been produced
in γγ, it has large branching ratios in J=ψ decays, and it has
not been seen to decay to γγ. Some models support the
hypothesis of ηð1405Þ being a glueball, while lattice QCD
and QCD sum rules predict masses larger than 2 GeV
[14,40,43–45]. In [46] an argument supporting a degen-
eracy between scalar and pseudoscalar glueballs has been
put forward. In the present model, if the mass scale c
appearing in the dilaton is fixed from the ρ mass, low
masses for pseudoscalar glueballs are found, and the
nearest state to ηð1405Þ is the first radial excitation,
with mGG̃;1 ¼ 1.34 GeV.
The topological susceptibility is the second derivative

of the vacuum energy with respect to θ at θ ¼ 0. It is
different from zero both in pure gauge and in the theory
with physical quarks, while it vanishes if there is at least a
massless quark, so in this case the theory has no θ
dependence. In the AdS/QCD model its definition
becomes [23]
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χt ¼ − lim
q2→0

Πaaðq2Þ: ð22Þ

Using Eqs. (16) and (17) for q2 ¼ 0, in pure gauge we find

χPG ¼ 1

π2
ŷ0y1 ¼

1

π2
αs
π
y1: ð23Þ

From the Witten-Veneziano relation in (2), we obtain
χPG ∼ ð191 MeVÞ4, a value confirmed by independent
analyses [47–50]. In this model it corresponds to ŷ0 ¼
1=π and y1 ¼ 0.041 GeV4. For the slope of the topological
susceptibility at zero momentum, connected to the spin
content of the proton [51], we find

χ0PG ¼ 1

8π2
c2ŷ20ð1 − γE þ log ν2=c2Þ; ð24Þ

where ν is the renormalization scale; for ν ¼ 1 GeV,
corresponding to subtracting only the log ν2 term, we haveffiffiffiffiffiffiffiffi
χ0PG

p ¼ 0.021 GeV.

IV. NONSINGLET PSEUDOSCALAR MESONS

Let us now consider the pseudoscalar meson octet. The
equations of motion for φ8 and η8 can be obtained from the
Lagrangian (10):

∂z

�
v2qe−ϕ

z3
∂zη

8

�
þ q2

v2qe−ϕ

z3
ðη8 − φ8Þ ¼ 0; ð25Þ

∂z

�
e−ϕ

g25z
∂zφ

8

�
þ 8v2qe−ϕ

z3
ðη8 − φ8Þ ¼ 0: ð26Þ

Combining the two equations and integrating, the following
relation can be obtained:

q2

g25z
∂zφ

8 −
8v2q
z3

∂zη
8 ¼ 0; ð27Þ

where the integration constant is zero since ∂zφ
8 and ∂zη

8

vanish as z → ∞ due to boundary conditions. Following
the matrix formalism of [52], we aggregate the two fields in
the vector

Φ ¼
�
φ8

η8

�
; ð28Þ

so the Lagrangian (10) containing nonsinglet fields reads:

L ¼ R
k
e−ϕðΦ0†BΦ0 þΦ†CΦÞ; ð29Þ

with

B ¼
� q2

2g2
5
z 0

0 − 4v2qR2

z3

�
; ð30Þ

C ¼ 4q2v2qR2

z3

�
1 −1
−1 1

�
: ð31Þ

Operator mixing on the boundary implies that the fields in
the bulk are given by a linear combination of the sources in
Fourier space [52]:

Φ ¼ FΦ0; ð32Þ

where Φ0ðq2Þ ¼ ðφ8
0ðq2Þ;−η80ðq2ÞÞT1 is the vector contain-

ing the sources of the two operators, so Fðz; q2Þ tends to the
identity matrix on the boundary z → ε. Moreover, we
require ∂zF → 0 for z → ∞ in order to guarantee finiteness
of the action. Standing the arbitrariness of the sources Φ0,
the equations of motion for F are

∂zðe−ϕBF0Þ − e−ϕCF ¼ 0; ð33Þ

or, in components,

∂zðe−ϕB00F0
00Þ − e−ϕðC00F00 þ C01F10Þ ¼ 0; ð34Þ

∂zðe−ϕB00F0
01Þ − e−ϕðC00F01 þ C01F11Þ ¼ 0; ð35Þ

∂zðe−ϕB11F0
10Þ − e−ϕðC10F00 þ C11F10Þ ¼ 0; ð36Þ

∂zðe−ϕB11F0
11Þ − e−ϕðC10F01 þ C11F11Þ ¼ 0: ð37Þ

The on-shell action reads

Sos ¼ −lim
z→ε

R
k

Z
d4ke−c

2z2Φ†
0F

†BF0Φ0; ð38Þ

and the one-point functions are defined by

J8 ¼ ∂Sos

∂Φ0

				
z→ε

¼
� hJ8φi
hJ8ηi

�
; ð39Þ

where hJ8φi and hJ8ηi are the one-point functions of the
longitudinal axial current (∂μψ̄γ5γ

μT8ψ) and the pseudo-
scalar current (2mqψ̄γ5T8ψ), respectively, in the nonsinglet
sector. In the soft-wall model, after imposing boundary
conditions, we find

hJ8φi ¼ −
R
k
e−ϕq2

2g25z
ðφ8Þ0

				
z→ε

; ð40Þ

1The minus sign in the η8 source comes from the condition
η8 → −η80 on the boundary [35].
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hJ8ηi ¼ −
R
k

e−ϕ4v2qR2

z3
ðη8Þ0

				
z→ε

; ð41Þ

so, using Eq. (27), we find

hJ8φi ¼ hJ8ηi; ð42Þ
which establishes the partial conservation of axial current.
The two-point functions are defined by

Π88 ¼ ∂2Sos

∂Φ0∂Φ0

				
z→ε

¼
�Π88

φφ Π88
φη

Π88
ηφ Π88

ηη

�
; ð43Þ

and are given by

Π88
φφ ¼ −lim

z→ε

R
k
q2e−ϕ

g25z
F0
00F00; ð44Þ

Π88
φη ¼ Π88

ηφ ¼ lim
z→ε

R
k
e−ϕ

�
q2

2g25z
F0
01F00 −

4v2qR2

z3
F0
10F11

�
;

ð45Þ

Π88
ηη ¼ lim

z→ε

R
k
e−ϕ

8v2qR2

z3
F0
11F11; ð46Þ

where we have already required that off-diagonal matrix
elements of F vanish on the boundary. We find Π88

φφ ¼
Π88

φη ¼ Π88
ηφ ¼ Π88

ηη .
In QCD, the first term in the large Q2 ¼ −q2 expansion

of the two-point function of the longitudinal component of
the axial-vector current is [53]2

ψ5ðQ2Þ ⟶
Q2→∞

3

16π2
4m2

q

�
1þ 11

3

αs
π

�
Q2 logQ2

þOðQ−2Þ: ð47Þ

In the soft-wall model the leading order result agrees with
the QCD one:

Π88
φφðQ2Þ ⟶

Q2→∞

3

16π2
4m2

qQ2 logQ2 þOðQ2Þ: ð48Þ

In all the numerical computations, z ≥ ε ¼ 0.001 GeV−1

has been used. Since X0 is proportional to the identity
matrix, the equations of motion of the fields belonging to
the octet are all equal, and the corresponding mesons are
degenerate. Fixing jhqq̄ij ¼ ð0.281 GeVÞ3, by requiring
that the first eigenvalue of Eqs. (25)–(26) is mη8 ¼ mπ ¼
139 MeV, we get mq ¼ mu ¼ 3.7 MeV. Requiring mη8 ¼
mη ¼ 548 MeV instead, we get mq ¼ ms ¼ 59.5 MeV.

The same meson masses are also found from the first
pole of the two-point functions. Using the spectral repre-
sentation

Π88
φφðq2Þ ¼

X
n

m4
nf2n

m2
n − q2

þ P2ðq2Þ; ð49Þ

where mn and fn are the masses and decay constants of the
nonsinglet pseudoscalar mesons, P2ðxÞ is a polynomial of
degree two, we find f0;u¼92.3MeV and f0;s ¼ 103 MeV,
with f0;s=f0;u ¼ 1.12. For mq ¼ 0, the pion-decay con-
stant is

f2π ¼ −
R
k
e−ϕ

g25z
∂zF00

				
q2¼0
z→ε

¼ ð91.6 MeVÞ2: ð50Þ

Our numerical data agree with the Gell-Mann-Oakes-
Renner mass formula, which reads m2

π ¼ 2mujhq̄qij=
f2π þOðm2

uÞ, where fπ is the pion decay constant in the
chiral limit. The Gell-Mann-Oakes-Renner relation has
been recovered in the hard-wall model in [35], and a
similar derivation also holds in the soft-wall model. The
same result for the decay constant in the chiral limit is
found from the following relation:

f2π ¼ −
R
k
e−ϕ

g25z
∂zψ

				
z→ε

¼ ð91.6 MeVÞ2; ð51Þ

which has been introduced in [54] in the hard-wall model,
where ψ ¼ φ8 − η8 is the solution to Eq. (26) at q2 ¼ 0

with η8ðzÞ ¼ −1 and with boundary conditions ψðzÞ ¼ 1 at
z ¼ ε and ψ 0ðzÞ ¼ 0 for z → ∞.

V. SINGLET PSEUDOSCALAR MESONS

If aðx; zÞ ¼ 0, then η0ðx; zÞ and η8ðx; zÞ satisfy the same
equation of motion with the same boundary conditions, and
singlet and nonsinglet states have the same mass. If
aðx; zÞ ≠ 0, then η0ðx; zÞ and aðx; zÞ are coupled, while
the equations for η8ðx; zÞ do not change.
The equations of motion for a;φ0; η0 are

∂z

�
v2qe−ϕ

nfz3
∂zη

0

�
þ q2

v2qe−ϕ

nfz3
ðη0 − φ0Þ

þ Ŷ2
0e

−ϕ

Ncz3
ð∂zVaÞð∂za − η0∂zVaÞ ¼ 0; ð52Þ

∂z

�
e−ϕ

2nfg25z
∂zφ

0

�
þ 4v2qR2e−ϕ

nfz3
ðη0 − φ0Þ

þ 4Ŷ2
0R

2e−ϕ

Ncz3
Vaða − φ0VaÞ ¼ 0; ð53Þ

2An additional 1=2 factor has been included to take into
account the definition of the axial field used here, with
TrðTaTbÞ ¼ δab=2.
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∂z

�
Ŷ2
0e

−ϕ

z3
ð∂za − η0∂zVaÞ

�

þ q2
Ŷ2
0e

−ϕ

z3
ða − φ0VaÞ ¼ 0: ð54Þ

A combination of the three equations gives (after integrat-
ing)

4v2qR2

nfz3
∂zη

0 −
q2

2nfg25z
∂zφ

0

þ 4Ŷ2
0R

2

Ncz3
Vað∂za − η0∂zVaÞ ¼ 0; ð55Þ

where the integration constant is zero since ∂zφ
0, ∂zη

0, a,
and Ŷ2

0Va vanish as z → ∞ due to boundary conditions.
The last equation can be also obtained by requiring the
gauge-fixing condition A5ðq; zÞ ¼ 0.
In the matrix formalism [52] adopted in the previous

section, the three fields are contained in the vector

Ψ ¼

0
B@

φ0

η0

a

1
CA; ð56Þ

and the Lagrangian (10) containing singlet fields reads

L¼R
k
e−ϕðΨ0†MΨ0 þΨ0†N1ΨþΨ†N2Ψ0 þΨ†PΨÞ; ð57Þ

with

M ¼

0
BBB@

q2

4nfg25z
0 0

0
−2v2qR2

nfz3
0

0 0
−2Ŷ2

0R
2

Ncz3

1
CCCA; ð58Þ

N1 ¼
2Ŷ2

0R
2V 0

a

Ncz3

0
B@

0 0 0

0 0 0

0 1 0

1
CA; ð59Þ

N2 ¼
2Ŷ2

0R
2V 0

a

Ncz3

0
B@

0 0 0

0 0 1

0 0 0

1
CA; ð60Þ

P¼R2

0
BBBBB@

2q2v2q
nfz3

þ 2Ŷ2
0q

2V2
a

Ncz3
−2q2v2q
nfz3

−2Ŷ2
0q

2Va

Ncz3

−2q2v2q
nfz3

2q2v2q
nfz3

− 2Ŷ2
0ðV 0

aÞ2
Ncz3

0

−2Ŷ2
0q

2Va

Ncz3
0

2Ŷ2
0q

2

Ncz3

1
CCCCCA
: ð61Þ

The equations of motion are

∂zðe−ϕðMΨ0 þ N1ΨÞ − e−ϕðN2Ψ0 þ PΨÞ ¼ 0: ð62Þ

Also here, because of operator mixing, the fields in the bulk
are given by a linear combination of the sources in Fourier
space:

Ψ ¼ HΨ0; ð63Þ

where Ψ0ðq2Þ ¼ ðφ0
0ðq2Þ;−η00ðq2Þ; a0ðq2ÞÞT is the vector

containing the sources of the three operators, and Hðz; q2Þ
tends to the identity matrix on the boundary z → ε.
Moreover, finiteness of the action implies that, as
z → ∞, ∂zH → 0 for the first two rows, and H → 0 for
the third row. For the arbitrariness of the sources Ψ0, the
equations of motion for H are

∂zðe−ϕðMH0 þ N1HÞÞ − e−ϕðN2H0 þ PHÞ ¼ 0: ð64Þ

The on-shell action reads

Sos ¼ −lim
z→ε

R
k

Z
d4ke−ϕðΨ†

0H
†MH0Ψ0 þΨ†

0H
†N1HΨ0Þ;

ð65Þ

and the two-point functions are

Π00 ¼ ∂2Sos

∂Ψ0∂Ψ0

				
z→ε

¼

0
BB@

Π00
φφ Π00

φη Πφa

Π00
ηφ Π00

ηη Πηa

Πaφ Πaη Πaa

1
CCA: ð66Þ

From the on-shell action we compute the one-point
functions:

J0 ¼ ∂Sos

∂Ψ0

				
z→ε

¼

0
BB@

hJ0φi
hJ0ηi
hJ0ai

1
CCA; ð67Þ

where hJ0φi and hJ0ηi are the one-point functions of the
longitudinal axial current (∂μψ̄γ5γ

μT0ψ) and the pseudo-
scalar current (2mqψ̄γ5T0ψ), respectively, in the singlet
sector, while hJ0ai is the one-point function of the topo-
logical charge density (hαs

8πGμνG̃
μνi). In the soft-wall model,

after imposing boundary conditions, we find

hJ0φi ¼ −
R
k
e−ϕq2

4nfg25z
φ0
0

				
z→ε

; ð68Þ

hJ0ηi ¼ −
R
k

e−ϕ2v2qR2

nfz3
η00

				
z→ε

; ð69Þ
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hJ0ai ¼
R
k
e−ϕ2Ŷ2

0R
2

Ncz3
a0
				
z→ε

: ð70Þ

These are related by a Ward identity obtained taking the
z → ε limit of Eq. (55):

−hJ0ηi þ hJ0φi þ hJ0ai ¼ 0; ð71Þ

which is the holographic representation of the QCD
anomaly equation:

∂μJ
μ
A ¼ 2mqψ̄γ5T0ψ −

αs
4π

GμνG̃
μνtrT0: ð72Þ

Notice that in this model the singlet axial and pseudoscalar
currents have been defined using the Uð1ÞA generator
T0 ¼ 1

2nf
Inf .

In Fig. 1, we show the effect of the meson-glueball
mixing on the elementH22, which is the only nonvanishing
element of the matrix H in pure gauge. It is also compared
with the bulk-to-boundary propagator of pseudoscalar
glueballs in Eq. (16).
With the parameters used in Secs. III and IV, we find that

the mass of the first pole of the two-point correlation
functions is mη0 ¼ 958 MeV for mq ¼ ms ¼ 59.5 MeV,
while in the chiral limit it is mη0 ¼ 903 MeV. In the 1–
2.3 GeV mass range there are many resonances, generated
by the meson-glueball mixing, with the following masses:
1.14, 1.37, 1.57, 1.75, 1.91, 2.05, 2.15, and 2.24 GeV.
According to the way the singlet state is constructed in this
model, the mass of the first pole approaches the mass of the
lightest glueball for high quark masses, as shown in Fig. 2.
Seven 0−þ states with isospin 0 are listed in the Particle

Data Group compilation, i.e., η, η0, ηð1295Þ, ηð1405Þ,
ηð1475Þ, ηð1760Þ (not established), ηð2225Þ (not estab-
lished), and one state with unknown isospin, i.e., Xð1835Þ

(not established). According to this model, all higher-mass
states can be radial excitations of η0, comprising quark and
gluon components. However, a thorough analysis of
pseudoscalar-meson spectroscopy should require the inclu-
sion of a mass difference between strange and up/down
quarks, and the η0 − η8 mixing.

VI. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility χt in the full theory with
quarks is

χt ¼ −Πaaðq2 ¼ 0Þ ¼ −
R
k
4Ŷ2

0R
2e−ϕ

Ncz3
H0

22H22

				
q2→0
z→0

; ð73Þ

with Πaaðq2Þ defined in Eq. (66), and H22 solution of
Eq. (64). In particular, H22 is only coupled to the matrix
elements H02 and H12 by the following equations:

∂z

�
e−ϕ

2g25nfz
H0

02

�
− e−ϕ

4v2qR2

nfz3
ðH02 −H12Þ

þ e−ϕ
4Ŷ2

0R
2Va

Ncz3
ðH22 −H02VaÞ ¼ 0; ð74Þ

∂z

�
e−ϕv2q
nfz3

H0
12

�
− e−ϕ

q2v2q
nfz3

ðH02 −H12Þ

þ e−ϕ
Ŷ2
0V

0
a

Ncz3
ðH0

22 −H12V 0
aÞ ¼ 0; ð75Þ

∂z

�
e−ϕŶ2

0

z3
ðH0

22 −H12V 0
aÞ
�

þ e−ϕ
q2Ŷ2

0

z3
ðH22 −H02VaÞ ¼ 0: ð76Þ

FIG. 2. Squared mass (GeV2) of the octet ground state, of the
ground state and first radial excitation of the singlet field versus
the quark mass (GeV).

FIG. 1. Bulk-to-boundary propagator of the field aPðzÞ in pure
gauge (PG) at q2 ¼ 1 GeV2 in Eq. (16) (solid gray line); H22ðzÞ
at q2 ¼ 1 GeV2 and for the indicated values of the quark mass. At
large quark masses H22ðzÞ approaches the pure-gauge solution.
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In the chiral limit, the Witten-Veneziano relation can be
obtained both in the Nc → ∞ and in the nf=Nc → 0 limits
[55]. The parameters involved in this model scale as
R=k ∼OðNcÞ, mη0 ∼Oð1= ffiffiffiffiffiffi

Nc
p Þ or mη0 ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

nf=Nc
p Þ,

while the others are Oð1Þ. By expanding Eqs. (52)–(55)
in 1=Nc for q2 ¼ m2

η0 one finds at lowest order:

∂z

�
e−ϕ

2nfg25z
∂zðφ0Þ0

�
−
4v2qR2e−ϕ

nfz3
ððφ0Þ0−ðη0Þ0Þ¼0; ð77Þ

∂z

�
v2qe−ϕ

nfz3
∂zðη0Þ0

�
¼ 0; ð78Þ

∂z

�
Ŷ2
0e

−ϕ

z3
ð∂zðaÞ0 − ðη0Þ0V 0

aÞ
�

¼ 0; ð79Þ

m2
η0

2nfg25z
∂zðφ0Þ0 ¼

4Ŷ2
0R

2

Ncz3
Vað∂zðaÞ0 − ðη0Þ0V 0

aÞ; ð80Þ

where the subscript 0 in ðφ0Þ0, ðη0Þ0, and ðaÞ0 means that
they are the zeroth-order (Oð1Þ) solutions to the equations
of motion. The second equation tells us that ðη0Þ0 is
constant, in particular in the chiral limit ðη0Þ0 ¼ −1
[54]. The first and third equations are decoupled. In
particular, Eq. (77) coincides with the equation of motion
of the nonsinglet field ψ introduced at the end of Sec. IV in
the chiral limit at q2 ¼ 0, which is related to the pion decay
constant by Eq. (51). Equation (79), after defining
ãPðz; q2Þ ¼ aðz; q2Þ þ VaðzÞ, coincides with the equation
of motion of the pseudoscalar glueball in pure gauge at
q2 ¼ 0. Then, after multiplying both sides of Eq. (80) by
ðR=kÞe−ϕ and taking the limit z → 0, from Eqs. (51) and
(73), it results in

m2
η0f

2
π

2nf
¼ χPG; ð81Þ

which is the Witten-Veneziano relation.
Let us compute the topological susceptibility as a

function of the quark mass, and express it in a more useful
form. Eqs. (75) and (76) at q2 ¼ 0 can be integrated
obtaining

e−ϕ
4Ŷ2

0R
2

Ncz3
ðH0

22 − V 0
aH12Þ ¼ A1; ð82Þ

e−ϕ
4v2qR2

nfz3
H0

12 þ VaA1 ¼ 0; ð83Þ

where the integration constant is nonzero in the former case
and zero in the latter, according to the behavior of the
functions at z → ∞. One can then write

−1¼
Z

∞

0

dzH0
22ðzÞ

¼A1

Z
∞

0

dz
eϕðzÞz3

4

�
Nc

Ŷ0ðzÞ2R2
þnf

�
VaðzÞ
vqðzÞR

�
2
�
: ð84Þ

From χt ¼ − R
k A1, one obtains

1

χt
¼ 1

χPG
þ 1

χf
; ð85Þ

with

1

χf
¼ k

R
nf

Z
∞

0

dz
eϕðzÞz3

4

�
VaðzÞ
vqðzÞR

�
2

: ð86Þ

The values of the topological susceptibility versus the
quark mass are shown in Fig. 3. At small quark mass
we find

χt ⟶
mq→0

χf ∼
hq̄qi
nf

mq; ð87Þ

as predicted in chiral perturbation theory [47]. The behavior
in Eq. (87) is represented by the dashed line in Fig 3. At
large quark mass we find χf ⟶

mq→∞
3

π2nf
m4

q, so the pure-

gauge value (horizontal line in Fig. 3) is recovered in the
limit mq → ∞:

χt ⟶
mq→∞

χPG; ð88Þ

a result that has been numerically checked for very large
mq. The result in Fig. 3 is similar to the plot on the left of

FIG. 3. Topological susceptibility (GeV4) at different values of
the quark mass (GeV) computed in this holographic model from
Eq. (73) or (85)–(86) (black curve); topological susceptibility in
pure gauge given by Eq. (23) (horizontal gray line); expected
topological susceptibility at low quark mass in Eq. (87) (dashed
cyan line); predicted topological susceptibility from Eq. (89)
(dotted orange line).
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Fig. 7 of [26]. This is an indication that the profile of the
topological susceptibility is mostly related to the Wess-
Zumino holographic description of the Uð1ÞA problem
represented by Eq. (8), while it is less affected by the other
features of the underlying model, as, in particular, how
conformal and chiral symmetries are broken, or the use of a
dynamical background.
The formula

1

χt
¼ 1

χPG
þ nf
mqjhq̄qij

ð89Þ

interpolating between the two known asymptotic behaviors
was obtained in [32,33]. The result in Eq. (85) shows that
the topological susceptibility computed in this model gets
the same expression as in Eq. (89), and they numerically
agree for low values of the quark mass, as shown in Fig. 3,
since a more complicated form of the second term in the
right-hand side is needed to fit χf at higher mq. In Fig. 4
some lattice data with nf ¼ 2 [56–58] are compared to χt
computed from Eq. (73) and from Eq. (89) with nf ¼ 2 and
jhq̄qij ¼ ð0.281 GeVÞ3. Lattice data confirm the suppres-
sion of the topological susceptibility at decreasing quark
mass. It is difficult to carry out a quantitative comparison of
lattice data with Eq. (89) or with the values found in this
holographic model, since uncertainties involved in lattice
simulations [47] and the different values of the chiral
condensate should be taken into account.

VII. CONCLUSIONS

We have computed the masses of singlet and nonsinglet
pseudoscalar mesons in the soft-wall holographic model of
QCD. We have found that the mixing of singlet states with
pseudoscalar glueballs can explain the large mass of the η0.

We have not considered the mixing between singlet and
nonsinglet states with isospin zero. The holographic
version of the anomaly equation has been found in
Eq. (71). In this respect, it is worth emphasizing that in
this model partial conservation of axial current, the
anomaly equation and the Witten-Veneziano relation are
derived from the constraint equations (27) and (55),
obtained by a combination of the equations of motion of
the involved fields.
A key result of this paper is the computation of the

topological susceptibility χt in the soft-wall model for any
value of quark mass in Eqs. (85)–(86), and its comparison
to lattice simulations at nf ¼ 2. Moreover, our result agrees
with the formula (89) proposed in Refs. [32,33], since we
also find that the contributions from quarks and gluons are
combined as a sum of their reciprocals. We have found that
in the full topological susceptibility the correction χf to the
pure-gauge value depends linearly on the quark mass for
low values of mq, as in chiral perturbation theory, while
other corrections arise for higher mq, in particular χf
diverges as m4

q at infinite mq.
These results have also interesting prospectives concern-

ing the computation of the spectral functions of the η0 at
finite temperature, which have recently been object of
lattice studies [59]. In this respect, in [60–62] it has been
shown that the study of spectral functions in the soft-wall
model is numerically feasible and produces consistent
results.
The main ingredient of this model is the potential VaðzÞ,

characterizing the transformation rule of the glueball field
in the bulk under Uð1ÞA. We have fixed it from the Wess-
Zumino action, but different choices could be explored.
The computation of the topological susceptibility shows
that VaðzÞ has to vanish at infinity at least as e−ϕ (where ϕ
is the dilaton).
A related issue, not discussed here, is the strong CP

problem [63]. The topological term in the QCD
Lagrangian, proportional to the θ parameter, generating
the gluonic contribution to the η0 mass is not invariant under
CP. This term produces a nonzero neutron electric dipole
moment, which is expected to be tiny. The experimental
limit is θ < 10−10. Then, a fine-tuning problem arises,
trying to understand why θ is so small, while naturally one
would expect such a parameter of Oð1Þ. A solution to the
strong CP problem is the Peccei-Quinn mechanism. In
[17,64] it has been proposed how the Peccei-Quinn
mechanism can be implemented in a top-down and
bottom-up holographic model, respectively.
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FIG. 4. Lattice data from Refs. [56–58], and the topological
susceptibility computed from Eq. (73) (solid black line) and
from Eq. (89) (dashed green line), both curves at nf ¼ 2 and
jhq̄qij ¼ ð0.281 GeVÞ3. Units are GeV on the horizontal axis,
and GeV4 on the vertical one.
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