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The compact tetraquark states with fully heavy quark contents QQQQ are studied as the bound states of
the diquark-antidiquark within the Bethe-Salpeter framework. The (anti)diquark masses and form factors
used are the same as we calculated the doubly heavy baryons in a previous work. Under the instantaneous
approximation, the three-dimensional (Bethe-)Salpeter equation of the tetraquarks is derived and solved
numerically to obtain the corresponding mass spectra and wave functions of the tetraquarks with
JPC€ = 0**, 177, and 2. Our results show that the three ground states of ccé¢ locate in the mass range of
6.4-6.5 GeV, and the bbbb states in mass range of 19.2-19.3 GeV. The obtained relativistic wave functions
naturally include the mixing effects from the possible D (or G) partial waves, and then can be further used
to do precise calculations of the tetraquark decays. Based on the obtained results, the LHCb’s observation
X(6900) is less likely to be the ground states of compact cccc tetraquarks but might be the first or second
excited states. In addition, a widely used propagatorlike form factor is also investigated and discussed.
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I. INTRODUCTION

The quantum chromodynamics and the quark model
allows not only the well-known traditional hadrons, such as
the gg-type mesons and ggg-type baryons, but also the
exotic tetraquark states and the pentaquark baryons [1,2].
About 50 years after the predictions of these exotic states,
the LHCb Collaboration first detected the pentaquark
baryons [3,4], and then in 2020 reported a new narrow
structure labeled as X(6900), which covers the predicted
masses of states composed of four charm quarks [5].

Although not the first hint of the tetraquark states,
X(6900) causes great attention in hadron physics for its
fully heavy quark contents. Inspired by this observation, the
four-charm states around 6.9 GeV have been investigated in
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several models or approaches [6-20], such as solving the
two- or many-body time-independent Schrodinger equation
[6-10], the chromomagnetic interaction models [11,12],
the QCD sum rules combined with the Regge trajectories
[13], the extended Godfrey and Isgur (GI) quark model
[14], the relativistic quark model based on the quasipo-
tential approach or effective Hamiltonian [15,16], and also
the Bethe-Salpeter framework with different interaction
kernels and approximation methods [17,18]. Also notice
that, by using the heavy diquark limit M; — oo, Ref. [18] is
in fact dealing with a Schrodinger equation combined with
the Regge trajectories to obtain the mass spectra. Notice
most of these previous studies are based on the non-
relativistic Schrodinger equation or effective Hamiltonian
methods while the relativistic effects and the possible S-D
or D-G mixing effects are not included properly. In these
previous studies, the ground states of the cccc structures
are predicted to be 6.1-6.5 GeV, and the X(6900) are
usually tentatively identified as the radial or orbital excited
states of tetraquark cccc in these recent studies, or
interpreted as the coupled-channel or rescattering effects
of two (or more) charmonia [21-23]. Other interpretations,
such as the gluonic tetracharm [24] or light Higgs-like
boson [25] are also proposed. So far, there is still no strong
evidences whether these observed exotic hadrons are the
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genuine multiquark bound states or just the loosely bound
molecules of the traditional mesons and baryons.

The fully heavy tetraquark states have several advantages
in both experimental and theoretical researches. On the one
hand, the mass of fully heavy tetraquarks locates far away
from those of the traditional mesons and doubly heavy
tetraquark QQqg and they can be clearly identified from
the known hadron spectra. On the other hand, the molecular
states of two charmonia cannot be bounded by the light
boson exchange, which makes the molecule configuration
much more difficult to produce such states. Hence, the
exotic states consisting of four heavy quarks are more likely
to be the real compact tetraquarks.

In this work, we will try to deal with the mass spectra and
wave functions of the fully heavy tetraquark states T 500,

namely, cccc or bbbb, within the framework of the Bethe-
Salpeter equation. The fully heavy tetraquarks are assumed
to be formed by the diquark QQ and the antidiquark QQ.
The diquark QQ is further assumed to be in the color 3
configuration in order to produce the attractive force, and
then similarly, the antidiquark QQ is in the color 3 state.
This compact color-3 diquark picture has already been used
in a previous work to study the doubly heavy baryons [26],
where the obtained mass of Z/." is just 20 MeV lower than
the experimental measurements, and other predictions are
also consistent with the recent theoretical researches
especially the lattice QCD results [27]. We will use the
previously calculated mass spectra and form factors of the
JP =17 cc and bb diquarks in this work. In addition, a
propagatorlike form factor is investigated and the corre-
sponding cutoff dependence is also studied. The color 3
QQ diquark and the color 3 QQ antidiquark can finally
form a compact tetraquark in color singlet by the one-
gluon-exchange interaction. Based on the above analysis,
the four-body tetraquark problem can be first reduced into
two two-body bound problems of fermion (antifermon)
system, which can be solved by calculating the original
Bethe-Salpeter equation (BSE) [28,29]. Then we need to
deal with a two-body problem of boson system which will
be the main focus of this work.

The Bethe-Salpeter framework has great advantages in
dealing with the two-body bound states for the relativistic
interaction kernel and corresponding wave functions. The
constructed relativistic wave functions are based on the
good quantum number J”(©) rather than the nonrelativistic
characteristics spin and orbital angular momentum 251 .
The BSE framework has been successfully used in the mass
spectra of mesons [30-32], traditional baryons and penta-
quarks [26,33], hadronic transitions, electroweak decays,
and etc. [34—40]. In this work we would try to push the BSE
framework further to study the fully heavy QQQQ system
and develop a precise and systematic approach to describe
the compact tetraquark states.

This manuscript is organized as follows: in Sec. Il
the (Bethe-)Salpeter equation is derived in the per-
spective of the tetraquarks taken as the axial-vector
diquark-antidiquark bound states; in Sec. III the Salpeter
wave functions of the tetraquarks with J°¢ = 0*+, 1+-,
and 2+ are constructed; then in Sec. IV the obtained mass
spectra and wave functions are given and discussed; finally
a brief summary is presented.

II. TETRAQUARKS AS THE BOUND STATES
OF DIQUARK AND ANTIDIQUARK

Considering the exclusive principle, the diquark (anti-
diquark), consisting of two charm quarks (antiquarks) in
the color 3(3) configuration, could only be in the J© = 1F
spin configuration in orbital ground states, since the flavor
wave function is naturally symmetric and spatial wave
function is also symmetric in ground states. In current
work, we do not consider the excitation of the diquarks or
antidiquarks. Now we try to deal with the BSE of the
tetraquark states consisting of a 17 diquark and a 17
antidiquark, which could form three ground states with
spin-parity configuration JP¢ =0%* 1%, and 2°*,
respectively.

A. Bethe-Salpeter equation of two vector bosons

The Bethe-Salpeter equations of the bound states con-
sisting of two vector (or axialvactor) constituents are
schematically depicted in Fig. 1. The corresponding BSE
are expressed as the four-dimensional integral of the inner
relative momentum k,

4
S
X [Dgyy (ko )T* (P, k, ) Dy (ky )],

(=)K“PP(P. k. q)
(2.1)
where T%(P, q,&) denotes the vertex of the two axial-

vector constituents; symbol P is used to denote the
momentum of the tetraquark state, and we have P> = M?

FIG. 1. Bethe-Salpeter equation of the tetraquark states in
the diquark-antidiquark picture. The Greeks (red) are used for
the Lorentz indices. P, p,(k;), p»(k,) denote the momenta of the
tetraquark state, constituent diquark, and the constituent anti-
diquark, respectively; K,y .55 denotes the effective interaction
kernel between the diquark and the antidiquark based on the one-
gluon exchange.
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with M representing the tetraquark mass; symbol & indi-
cates the polarization state, with & = £2, 0 for the J* = 2+
tetraquark states, £ = %1, O for the 1" ones, and & = 0 for
the scalar ones; K®## (P, k, q) is the interaction kernel of
the diquark pair based on the one-gluon exchange. The
constituent mass of the diquark (antidiquark) is represented
by M (,). The constituent masses of the JP = 1% ccand bb
diquarks are obtained by solving the corresponding BSE
[26]. The inner relative momenta g and k are defined as
q = opp1 —a;p, and k = ayk; — o ky, respectively, with

a; = Mﬁ"Mz. The effective propagator of the 1t diquark
reads,
KK
DY (k) =D(k)d? (ky L), daﬂ(ku):—gaﬁ-i—T%,
(2.2)
— ki-P — 1 :
where k;; =k;—=7 and D(k) = T 1S the

usual scalar propagator. As usual, the Bethe-Salpeter
wave function describing the tetraquark states can be
defined as

Top(P.q.8) = Doy (p2)T" (P, q.5)Dp (p1).  (23)
The symbols P and ¢ in the BS wave function T4(P, g, &)
and vertex ['**(P, g, ) will be omitted unless it is necessary
to specify them. By using the definition of BS wave
function, the BSE in Eq. (2.1) can also be rewritten as
the integral of 7',

Doy (p)Twy (C])D/;flﬂ(lh)

d*k

— /W (_i)Kaa’;/)’//}(P, k, q)Ta//;/(k), (24)

where the inverse of the vector propagator reads

s

P P
19aﬂ<pl_):_gaﬂ_ 11_211_‘
Wy

D;/} (i) =95(p)) D" (p)).
(2.5)

It can be easily checked that 9%/ (p;) fulfills the condition
9% (p)dy, (p;) = 5%, where w; = (M? — p?,)? denotes the
kinetic energy of the ith constituent.

B. Diquark form factors and tetraquark
interaction kernel

For the tetraquark states consisting of the 1" diquark and
antidiquark constituents, each vector constituent has inter-
nal structure and usually cannot be regarded as the pointlike
particle. The diquark (antidiquark) is usually described by
the corresponding form factors. Generally speaking, the

form factors have great effects on the energy splittings of
the tetraquark bound states. Then the potential V(s)
between the two constituents will be smeared by the two
form factors. With these two form factors, the interaction
kernels of tetraquarks can be expressed as

KPP k,q) = fivfovg™ &P (ki + p1) (ko + o),V (s),
(2.6)

where f;y and f,y denote the vector form factor of the
diquark and antidiquark, and in the fully heavy cccc or
bbbb system, we have fiy = foy = fv; V(s) denotes
the one-gluon exchange potential with s = (k — ¢) being
the momentum of the exchanged gluon. Compared with the
case in baryon problem [26], there are two form factors to
describe the nonpointlike structures, which make it much
more complicated to deal with the tetraquark system.

Under the instantaneous approximation, the one-gluon-
exchange potential is assumed to be static, namely, V(s) ~
V(sy) with s; =s—22 which reads in the Coulomb
gauge as [41-44]

V(5) = Veou + Vcont
44ra(s) )
- _ s 2 353 - Vv
serat PG v)
3 8rA
@+ar)

(2.7)

where % is the color factor in the color singlet; a;(,) is
introduced to avoid the divergence in small momentum
transfer zone; the potential V,,¢(5) describing the confine-
ment effects is introduced phenomenologically, which is
characterized by the string constant A and the factor a,.
The potential used here is based on the famous Cornell
potential [45,46], which behaves as the one-gluon
exchange Coulomb-type potential at short distance and a
linear growth confinement one at long distance, and then
modified as the aforementioned one to incorporate the color
screening effects [47,48] in the linear confinement poten-
tial. V,, is a constant fixed by fitting to the meson data. The
strong coupling constant a, has the following form:

612 1
G T B3N ) In(a + /M)

where Agcp is the scale of the strong interaction; N is the
active flavor number, which is 3 for the cc interaction
and 4 for the bb interaction; a = e is a regulator constant.
For later convenience, we further split V(5) into two
parts as

V) = n)SG)V, + Va(5). (2.8)
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Namely, all the dependence on 5 is incorporated into V,(5),
while V| is just the constant item.

Also since the spatial parts are suppressed by a factor of
(%)2, we only consider the dominate time component (v = 0)
in the one-gluon-exchange Lorentz structure, namely,

(ki + p1)¥ (ks + p2), = 0102, (2.9)
where we used the abbreviations ¢; = 2(a;M + ¢p) with
definition ¢p = %, Using the notations and approxi-
mations introduced above, the tetraquark interaction kernel
behaves as

KPPk, g) = 010267 ' Px(s,),  (2.10)
where x = f3,V(5); the factor ¢, ¢, has been stripped off for
later convenience. Notice that the kernel x(s ) here has no
dependence on the time component of momentum transfer s.

The diquark form factors fy(s*) can be calculated by
using the BS wave functions of the diquark. The attractive
diquark is in the color antitriplet with the corresponding
color factor (—3), which makes the bound interaction be
half of the corresponding meson. Namely, in the rainbow-
ladder truncation the effective interaction for the diquarks is
reduced by a factor of 2 compared to that in the meson
channel. Then after a charge conjugate transformation, a
diquark fulfills the same Bethe-Salpeter equation with a
meson system with only the interaction kernel halved and
the parity flipped [49-51]. Then by solving the BSE of the
JP =17 Q0 meson system, we can obtain the correspond-
ing mass spectra and wave functions for the doubly heavy
diquarks cc and bb (see Ref. [26] for detailed calculations).
The corresponding form factors fy describing the inter-
action between the diquark and a gluon have also been
obtained in the previous work [26], which are showed
graphically in Fig. 2(a), labeled as method I. On the other
hand, a colored diquark is never observed in nature alone

and the confinement in diquark is an open problem in quark
model. Therefore, we also calculated the corresponding
form factors without considering the confinement item
Veont(s) in the Cornell potential of the diquark interaction
kernel, and the obtained results are showed in Fig. 2(b),
labeled as method II. Both form factors will be used in the
calculation of the tetraquarks. The form factors fall faster
with s? in method II than in method I. Also notice the
form factors used here are calculated from the relevant BS
wave functions combined with the Mandelstam forma-
lism, which makes this work a self-contained framework
and is different from the parametrized treatment in
Ref. [17].

Also notice the form factors in methods I and II are
calculated based on the on shell diquark bound state,
and then are simply generalized to the off shell diquark
propagator to describe the structure’s non-point-like effects.
In order to investigate the influences of different form
factors and make comparisons, we will also use another
phenomenological form factors in this work, namely,

A2

fV(s2) = —S2 +A2 , (211)

where A, is a introduced regulator parameter. We notice
that this propagatorlike form factor is widely used in
literature. Generally speaking, the parameter A, should
be determined by fitting to the data. However, we found
that this propagatorlike function can not describe the
obtained form factors well in a large range of the momen-
tum transfer. Hence, in this work, we only fit in the
small zone of s, namely, about 1(3)~0 GeV? for
cc(bb) diquark, and the determined A, is 1.7 and
2.8 GeV for the cc and bb diquarks, respectively. Also
we will let A, change from 0.1 to 20 GeV to investigate
the corresponding dependence.

1E = 1F
Jvlee) S Jvlee)
A(bb) f(bb)
£ 10 £ 10
S 0E S0k
~— = ~— C
Q F Q iy
< - < -
=~ L o L
E e |
- =
£ 102k £ 102k
1073 L - T R T T T R R T T T R R 1073 "‘\’ L L L L L L L L L
30 25 20 15 ~10 > 20 15 ~10 5 0
2 GeV? 52 GeV?

(a) Method I

(b) Method 11

FIG. 2. Form factors of the 1* diquarks cc and bb. Method I denotes the results obtained by containing V¢, in the diquark interaction

kernel while method II does not.
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C. BSE under the instantaneous approximation

Generally speaking, solving the four-dimensional BSE
(2.1) is not an easy computational problem. However,
under the instantaneous approximation introduced
above, following Salpeter’s procedures to cope with the
fermion-antifermion system [29], we can reduce the four-
dimensional BSE of the tetraquarks into the three-
dimensional integral equation. Inserting the instantaneous
kernel (2.10) into the BSE (2.1), the tetraquark vertex can
now be further expressed as I'(q) = 0,0,9%(q ), where
the three-dimensional vertex ®% is defined as

3
0(q,) = / (0‘27";%

where the Salpeter wave function is defined by absorbing
the integration over the time component as usual,

o) =i [ SETIR)

—q ) (k).  (2.12)

(2.13)

The Salpeter wave function ¢ (k) is only explicitly
dependent on the three-dimensional momentum £ .

Following the standard procedure, performing the con-
tour integral over ¢gp on both sides of Eq. (2.3), we obtain
the three-dimensional Salpeter equation (SE),

dau(plj_)(aw(QJ_)dyﬂ(pZJ_)

1 1
x - L (2.14)
M—Wl—W2 M+W1+W2

Also we can define the positive and negative energy wave
functions as

Pap(qL) =

1
= da(P11)0" (1) dup(P21) o=

(2.15)

(Pfﬁ(P» q.)

and we have @q4 = gogﬂ + @ In the weak binding con-
dition M ~ (wy + wy), (p;fﬂ > ¢4, and the positive energy
wave function (pjﬂ(q ) dominates. The SE can be further
rewritten as the following simple Shrodinger type

M2¢aﬁ = (w; + W2)2(paﬂ
+2(wy 4+ wa)dy,(p11)0" (g1 )dys(P2y)-
(2.16)

The obtained three-dimensional BSE, namely, Eq. (2.16),
indicates that the mass of the tetraquark state consists
of two parts, the kinetic energy and the potential energy.
Also we notice Eq. (2.16) is in fact the integral equation of
the Salpeter wave function ¢,4(q, ), and M? behaves as the
eigenvalue of the corresponding Salpeter wave function.
By solving this eigenvalue equation, we can obtain the

mass spectra and wave functions of the corresponding
tetraquarks.

The normalization condition of the Bethe-Salpeter wave
function for the tetraquark state is generally expressed as

l / d*q  d*k
(27)* (22)*
— (2M)5;,

where the conjugate wave function is defined as 7 ,,=

[I‘“ PP(P. k. q)IT

(zﬂ( 6/) adp (k7 6)

yOTlﬂyo; the integral kernel reads

(27)*8*(k = @) [Doe (P1)]) ' [Dpp(p2)] ™!
+ iK“PP(P, k. q).

Iaa’;/}’/}(P’ k, q) _

Both the inverses of the propagators and the interaction
kernel K are dependent on P° and ¢. Inserting the inverses
of the propagators, the integration involving the propaga-
tors behaves as,

8MW|W2

d’q,
Npropagator = _aﬂ@a . 2.17
propagat / (27)} P Cap 2 (w1 + wp)?2 (2.17)
While the partial differential of the kernel gives
aKaa/;ﬂ/ﬂ ] )/
= 2(102 + ®m02)xg™“ 7, (2.18)
0P

and then we obtain normalization related to the interaction
kernel as

AMw

Niemel = /%@dﬂ@aﬁ—q’ (219)
(27)° (w1 + wy)

where we have used the Salpter equation (2.14);
Wy = aywy +awy. On the other hand, the vertex O
can also be expressed by the wave function as

M? — (wy + wy)?
2(wy +wy)

®a/} = '90(;4 (plj_)(plwfgvﬂ(pﬂ_)' (220)

Putting the two part together and inserting the equation
above, we obtain the normalization of the Salpeter wave
function,

dqr g
= Noa(h 80u(P11)80p(P21) @z = Oz (2.21)
(27)? P )
Pe 1 2ww w,M? .
where the abbreviation N, = [(w] oy T (wli—wﬁz —w,| is

used. By the dimensional analysis, we can conclude that
the dimension of the Salpeter wave function ¢, is (—=2) in
units of mass.

It should be noted that, the obtained three-dimensional
(Bethe-)Salpeter equation (2.16) and the corresponding
normalization condition (2.21) are universal to any fully
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heavy tetraquark states consisting of two (axial)vector
constituents, and do not depend on the specific properties
of the total angular momentum J or parity. These
obtained equations are applicable to the Salpeter wave
functions with JP€ =0+, 1%, 2¥F, or any other
possible spin parity. This is different from the approaches
adopted in Ref. [17], where the Salpeter equations are
coupled with three certain wave functions. The obtained
equations and relevant results can also be further
extended to deal with the molecular states consisting
of two vector mesons.

III. BS WAVE FUNCTIONS OF THE
TETRAQUARK STATES

A 17 diquark and a 1" antidiquark can form a boson
with J¥ = 0%, 17, or 2% in the ground state, namely,
1x1=0+1+2. For the tetraquark state, the spatial
parity is expressed as P = (—1)/, with [ stands for the
quantum number of the angular momentum. A tetraquark
state containing two c¢ quarks and two ¢ quarks also
occupies the definite C parity. The charge conjugate parity
(C parity) is expressed as C = (—1)/* with s stands for the
spin of the particle. In order to simplify the expressions,
from now on, we will always use the abbreviation x, = ‘%T.
Since throughout this manuscript we work in the momen-
tum space, this abbreviation is supposed not to cause
confusion.

According to Lorentz condition, spin parity and also
considering the relativistic covariance, the Salpeter wave
function of tetraquark states with J¥ = 0* can be generally
expressed as

Pap(d1) = 01 (PaPp = gup) + Drxaxp, (3.1)
where P, = %; the radial wave function g;(|g|) (i =1, 2)
just depends on |g| explicitly. It is clear to see that g,
corresponds to the S-wave component, and g, contributes
to both the S and D partial waves (see Ref. [26] for a
detailed expression in terms of the spherical harmonics
Y7"). By inserting the two wave functions into Eq. (2.21),
the normalization condition of the 0" Salpeter wave
function is obtained,

g, 2 2
——5Nolno(gr + 92)” +2g7] = 1. (3.2)

(2z)?

M My\2
where ny = (TL72)".

Similarly, the JPC = 1+- Salpeter wave function can
be constructed by using the antisymmetric Levi-Civita

LeNsor €, as

(paﬂ(qJ_) = hleaﬁei) + h2€a[}xlse X, (33)

where €,4,p = ea/jﬂ,,e”f’”; e,(£) is the polarization vector
with £(& = 0, £1) denoting the possible polarization states,
and fulfills the following conditions

Pe* =0, (3.4)

PP
> _eal8)ep(&) = Gy = Mzﬁ =~ Jap-
4

(3.5)

It is clear to see that /#; and h, parts in Eq. (3.3) represent
the S- and D-wave components, respectively. The JF€ =
1"~ tetraquark wave function is antisymmetric under the
interchange of the two free Lorentz index, which is
different from the 0™" case. The 1%~ normalization is
finally expressed as

d3g, 2
/ 92Nl + (= h) ] =1, (3.6)

(27)33
where n; = M3/w} + M3/w3. Notice in a similar work
[17] only part of the S-wave components in the wave
functions of J¢ = 0** and 17~ are included, while our
results show that the D-wave components, namely, the g,
and h, items, and the possible S-D mixing effects also play
important roles especially in the excited states (see the
obtained wave functions in Fig. 5).

The JPC€ =2+ Salpeter wave function of the tetra-
quarks can be constructed as

q)a/)’(ql) = ile(lﬂ + iZ(paPﬂ - ga/})exx

+ iS(exax/)’ + ex/ixa) + i4(xa~xﬂ)exxv (37)
where e, = e,5x%x”; e,5(£) is the symmetric polarization
tensor with (= £2,+1,0) denoting the possible polari-
zation states. The symmetric e,;(¢) is traceless, and
also fulfills the Lorentz condition and the completeness
relationship

€a/3 = eﬂa, (38)
e,,ﬂg“ﬂ =0, (3.9)
Pae,; =0, (3.10)

I 1
> eap(&)eap, (§) =3 (G, Gpp, + Gp, Gpa) =3 Gap G-
:

(3.11)

It is clear to see that iy, iy3), and iy parts represent the S-,
D-, and G-wave components, respectively. In Ref. [17]
only the i; item representing the dominant S-wave com-
ponent is considered, while both the D and the possible
G-wave components are ignored, which would have effects
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on the mass splittings and damage the completeness of the
wave functions. The normalization for 2 Salpeter wave
function is expressed as

#g Ny o
— iy = 1, 3.12
/(2”)3 15 m:lzn:>m Cmnlml ( )
where the coefficients c¢;;s are defined as
C11:5n0—300+10, 012:4;10—4,
Ciz3 = —141’10 + 600 - 6, Cly = 41’!0,
Cyyp = 271.0 + 4, Cr3z = —871.0,
Co4 :4}'10, C33 = 11”0_3C0+35
C3y = —81’10, Cqq = 2710, (313)
2
: _ 2
with ¢g = ()%

Notice in the construction of the Salpeter wave func-
tions, we work based on the good quantum number J”¢
while not the nonrelativistic characteristics, such as spin §
or orbital angular momentum L. Then the contributions

in the 0™*, 17, and 2™ Salpeter wave functions, and are
determined by the dynamics of the Bethe-Salpeter equation
while not the man-made mixing effects. This is one of
the advantages of the relativistic Bethe-Salpeter methods.
The relativistic effects are naturally included in both the
adoption of the BSE and the construction of the wave
functions though the instantaneous approximation partly
destroyed the covariance. Inserting these constructed
Salpeter wave functions into the three-dimensional
Salpeter equation (2.16) and solving this eigenvalue prob-
lem numerically, we can obtain the corresponding mass
spectra and wave functions, which are presented in follow-
ing section.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Before giving the numerical results of the mass spectra
and wave functions, we specify the numerical values of the
parameters first. The model parameters used in this work
are kept the same with that we applied in previous meson
and baryon calculations [26,31,36—40],

2 .
. a=e=27183, A1=0.21GeV a;=a,=0.06GeV
from the D- or G-wave components are naturally included ’ ’ 1= % ’
Mass (GeV) Mass (GeV) Mass (GeV)
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(f) (bbbb) in method III

FIG. 3. Mass spectra of the tetraquark states (cccc) and (bbbb) with all the diquarks (antiquarks) in the ground states. In method I (IT)
the diquark masses and corresponding form factors are calculated with (without) considering the confinement item Vg, in the

A2

interaction kernel; in method III the diquark form factors are assumed to be —r< with A, = 1.7(2.8) GeV for cc(bb) diquark.

—s2+A2
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FIG. 4. Dependence on the regulator parameter A, of the tetraquark mass spectra in method III, where the diquark form factors are

AZ

assumed to be fy(s?) = e

the strong interaction scale Agcp = 0.20 GeV for bb
interaction meanwhile takes 0.27 GeV for other cases;
and the constituent quark masses used are m,. = 1.62 GeV,
m;, =4.96 GeV. The obtained constitute masses of the
diquarks are M,.. = 3.303 GeV and M, = 9.816 GeV
[26] within method I, and M. = 3.135 GeV and M, =
9.732 GeV within the method II.

The free parameter V, plays a role in shifting the mass
spectra and is determined by the spin-weighted average
methods. By using the Clebsch-Gordan coefficients, the
JP = 0" tetraquark formed by the two 1% diquark and
antidiquarks can be decomposed as

|(12)1(34)1>0_%(14)1(23)1>0+§|(14)0(23)0>0’ (4.1)

where label 1, 2 denote the quarks, and 3, 4 denote the
antiquarks; |(12),(34),) means quark-1 and quark-2 are in
the spin-1 state, while the antiquark-3 and antiquark-4

are also in the spin-1 state; then other notations are
also implied. Then the parameter V, for 0" ccéc will be
expressed as Vo ecze) = 5 Vou ) + 3 Vo(y,)- By similar ana-
lysis, the J¥ = 17T tetraquark is decomposed as

(12),(34)1)) = —=1(14)(23)), +\/L§\(14)1(23)o>1,

S -

(4.2)

and then the corresponding parameter is determined as
Voieeze) = 5 Vouw) + Vou,))- The Vo for 2+ cczé is totally
decided by the V() since any two quarks (anitquarks)
inside are in the spin-1 state. Finally, the obtained param-
eters Vi for 0", 17, and 2™ (cccc) are —0.304, —0.276, and
—0.221 GeV, respectively; for bbbb are —0.207, —0.192,
and —0.162 GeV, respectively.

The obtained mass spectra of the tetraquarks cccc and
bbbb are showed in Fig. 3, where method I denotes the

TABLE 1. Comparison of the predicted ccc masses in ground states with J°¢ = 0**, 17, and 2% in units
of GeV.

Jre This [11] [52] [53] [14] [54] [6] [7] [15] [12]
0t* 6.419 6.407, 6.491 6.470 6.371 6.435 6.44 6.346 6.351 6.190 6.045
1+ 6.456 6.463, 6.580 6.512 6.450 6.515 6.37 6.441 6.441 6.271 6.231
PARS 6.516 6.486, 6.607 6.534 6.534 6.543 6.51 6.475 6.471 6.367 6.287
TABLE II. Comparison of the bbbb masses in ground states with J°¢ = 0**, 17~ and 2% in units of GeV.
Jre This [14] [6] [15] [52] [12] [7] [53] [16]
0t* 19.205 19.201 19.154 19.314 19.322 18.836 19.199 19.243 18.748
1t 19.221 19.251 19.214 19.320 19.329 18.969 19.276 19.329 18.828
2 19.253 19.262 19.232 19.330 19.341 19.000 19.289 19.325 18.900
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results with considering the confinement item Vg, in
calculating the diquark masses and the corresponding form
factors, while method II not. The results labeled as method
IIT represents the ones where the diquark form factors

are assumed to be propagatorlike type in Eq. (2.11) with
A, = 1.7 GeV for cc diquark and 2.8 GeV for bb diquark,
respectively. In order to see the dependence on the regulator
A, in method III, we show the variation of the mass spectra
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FIG. 5. Salpeter wave functions of the ccc ¢ tetraquarks with J°¢ = 0¥+, 17~ and 2*.
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along with A, in Fig. 4 by changing the values of A, from
0.1 to 20 GeV. With the increases of A, fy becomes more
and more flat, which means the diquark is more and more
similar to a pointlike particle. Also it should be pointed
out that the regulator parameter A. can not be taken too
large which may cause the instability of the instantaneous
BSE in high momentum zone. The plots reveal that the
mass spectra in ground states are sensitive to the diquark
form factors.

The obtained mass spectra show that the ground cccc
tetraquarks locate in the range 6.4—6.5 GeV when consid-
ering V¢ in diquarks. The mass splittings for the 17~ and
27F to 0T states are about 35 and 100 MeV, respectively.
When the confinement item is not included in the diquarks,
the corresponding masses then locate about 40 MeV lower.
The first excited states are always about 400 MeV higher
than their corresponding ground states. A comparison of
our predictions with recent researches is listed in Table 1.
Our obtained results for the three ground cccc states are
roughly consistent with other studies. The mean values in
Table I are 6.36, 6.43, and 6.48 GeV for the 0™, 17—, and
27+ cccc in ground states, respectively; and the corre-
sponding standard derivations are 0.13, 0.10, and 0.09 GeV,
respectively. All the results listed in Table I are above the
threshold of the lowest quarkonium pair #.4,.. Hence these
three ground states are expected to be broad, since all of
them can decay to a pair of quarkonia 7.5, or J/wJ/y
through the (anti)quark rearrangements. These kind of
decays are favored both dynamically and kinematically.
From Table I we can conclude that the obtained masses
of the ground cccc states are usually much lower (about
400-500 MeV) than the X(6900) observed by the LHCb
collaboration. The observed X (6900) is less likely to be the
ground state of the compact tetraquark cccc states but
might be the first or second radial excited states. However,
more detailed information is needed to investigate the inner
structure of X(6900). We also notice that the masses of
the cccc in ground states is near to the X(6900) with
A, ~1 GeV in method III

The obtained bbbb masses in ground states are in the
range 19.2-19.3 GeV, which are higher than the YT
threshold 1.892 GeV and 7,7, threshold 1.880 GeV but
lower than the y;,oyx,0 threshold [55]. Also we notice that
My, in method II is about 80 MeV lower than that in
method I, while the obtained mass spectra of bbbb are
about 20 MeV lower in ground states. The comparison of
our predictions with other researches is collected in
Table II, from which we can see that the theoretical
masses of bbbb in ground states locate in a large range
of 18.75-19.35 GeV in researches. The mean values of the
ground bbbb tetraquarks in Table II are about 19.14, 19.20,
and 19.22 GeV for the 0", 117, and 2", respectively,
where the corresponding standard derivations are 0.20,
0.18, and 0.16 GeV, respectively. Except the three results

predicted in Ref. [16] and the O state in Ref. [12], all
other results listed in Table II are higher than the YY
threshold. Therefore, the three states can decay to a pair of
quarkonia 7,1, or Y'Y through the quark rearrangements,
and hence are expected to be broad.

Figure 5 shows the obtained Salpeter wave functions for
the first four (cccc) states obtained by the method I. Notice
that the D partial wave gives important contribution in the
third and the forth states, and the possible D- or G-wave
mixing are included naturally. The obtained wave functions
show the rich information of the inner structure, and can be
further used to do precise calculations on the decays,
magnetic moments, or other properties of the tetraquarks.

V. SUMMARY

In this work, we study the compact tetraquark states with
fully heavy quark contents QQQQ based on the Bethe-
Salpeter equation. The compact tetraquark is taken as the
bound state of the diquark-antidiquark where the (anti)
diquark form factors are calculated with and without
considering the confinement item respectively. In addition,
a propagatorlike form factor is also used to calculate the
tetraquark states and the corresponding parameter depend-
ence is also investigated. Under the instantaneous approxi-
mation, the three-dimensional (Bethe-)Salpeter equation
of the tetraquarks are derived, and the Salpeter wave
functions with J°¢ = 0t+, 17—, and 2+ are then con-
structed and solved numerically to obtain the correspond-
ing mass spectra of the tetraquarks. The compact
tetraquarks as the bound states of the diquarks and
antidiquarks follows a natural step of our previous work
to deal with doubly heavy baryons. Therefore some results
and approaches, such as the relevant interaction kernel,
diquark constituent masses and form factors, the reduction
of BSE, etc., can be directly adopted or extended to deal
with compact tetraquarks, which allows us to take a
systematic, relativistic, and unified framework to treat
the heavy hadron systems, including the mesons, diquarks,
baryons, and tetraquarks. Also notice all the parameters
used to deal with the tetraquarks have already been fixed by
the meson data and we do not introduce any free param-
eters. The well behaviors of the obtained wave functions
allow to do the further precise calculations on the decays or
other properties of the tetraquarks.

Our results show that the three ground states of ccce
locate in the mass range 6.4-6.5 GeV, and the bbbb
states in mass range 19.2-19.3 GeV. Based on the
obtained results, the LHCb’s observation X(6900) is
less likely to be the ground states of compact ccce
tetraquarks but might be the first or second radially
excited states. The obtained relativistic wave functions
are based on the good quantum numbers and can naturally
include the mixing effects from the possible D (or G)-
wave components.
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