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The compact tetraquark states with fully heavy quark contentsQQQ̄Q̄ are studied as the bound states of
the diquark-antidiquark within the Bethe-Salpeter framework. The (anti)diquark masses and form factors
used are the same as we calculated the doubly heavy baryons in a previous work. Under the instantaneous
approximation, the three-dimensional (Bethe-)Salpeter equation of the tetraquarks is derived and solved
numerically to obtain the corresponding mass spectra and wave functions of the tetraquarks with
JPC ¼ 0þþ, 1þ−, and 2þþ. Our results show that the three ground states of ccc̄c̄ locate in the mass range of
6.4–6.5 GeV, and the bbb̄b̄ states in mass range of 19.2–19.3 GeV. The obtained relativistic wave functions
naturally include the mixing effects from the possible D (or G) partial waves, and then can be further used
to do precise calculations of the tetraquark decays. Based on the obtained results, the LHCb’s observation
Xð6900Þ is less likely to be the ground states of compact ccc̄c̄ tetraquarks but might be the first or second
excited states. In addition, a widely used propagatorlike form factor is also investigated and discussed.
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I. INTRODUCTION

The quantum chromodynamics and the quark model
allows not only the well-known traditional hadrons, such as
the qq̄-type mesons and qqq-type baryons, but also the
exotic tetraquark states and the pentaquark baryons [1,2].
About 50 years after the predictions of these exotic states,
the LHCb Collaboration first detected the pentaquark
baryons [3,4], and then in 2020 reported a new narrow
structure labeled as Xð6900Þ, which covers the predicted
masses of states composed of four charm quarks [5].
Although not the first hint of the tetraquark states,

Xð6900Þ causes great attention in hadron physics for its
fully heavy quark contents. Inspired by this observation, the
four-charm states around 6.9 GeV have been investigated in

several models or approaches [6–20], such as solving the
two- or many-body time-independent Schrödinger equation
[6–10], the chromomagnetic interaction models [11,12],
the QCD sum rules combined with the Regge trajectories
[13], the extended Godfrey and Isgur (GI) quark model
[14], the relativistic quark model based on the quasipo-
tential approach or effective Hamiltonian [15,16], and also
the Bethe-Salpeter framework with different interaction
kernels and approximation methods [17,18]. Also notice
that, by using the heavy diquark limitMi → ∞, Ref. [18] is
in fact dealing with a Schrödinger equation combined with
the Regge trajectories to obtain the mass spectra. Notice
most of these previous studies are based on the non-
relativistic Schrödinger equation or effective Hamiltonian
methods while the relativistic effects and the possible S-D
or D-G mixing effects are not included properly. In these
previous studies, the ground states of the ccc̄c̄ structures
are predicted to be 6.1–6.5 GeV, and the Xð6900Þ are
usually tentatively identified as the radial or orbital excited
states of tetraquark ccc̄c̄ in these recent studies, or
interpreted as the coupled-channel or rescattering effects
of two (or more) charmonia [21–23]. Other interpretations,
such as the gluonic tetracharm [24] or light Higgs-like
boson [25] are also proposed. So far, there is still no strong
evidences whether these observed exotic hadrons are the
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genuine multiquark bound states or just the loosely bound
molecules of the traditional mesons and baryons.
The fully heavy tetraquark states have several advantages

in both experimental and theoretical researches. On the one
hand, the mass of fully heavy tetraquarks locates far away
from those of the traditional mesons and doubly heavy
tetraquark QQ̄qq̄ and they can be clearly identified from
the known hadron spectra. On the other hand, the molecular
states of two charmonia cannot be bounded by the light
boson exchange, which makes the molecule configuration
much more difficult to produce such states. Hence, the
exotic states consisting of four heavy quarks are more likely
to be the real compact tetraquarks.
In this work, we will try to deal with the mass spectra and

wave functions of the fully heavy tetraquark states TQQQ̄Q̄,
namely, ccc̄c̄ or bbb̄b̄, within the framework of the Bethe-
Salpeter equation. The fully heavy tetraquarks are assumed
to be formed by the diquark QQ and the antidiquark Q̄Q̄.
The diquark QQ is further assumed to be in the color 3̄
configuration in order to produce the attractive force, and
then similarly, the antidiquark Q̄Q̄ is in the color 3 state.
This compact color-3̄ diquark picture has already been used
in a previous work to study the doubly heavy baryons [26],
where the obtained mass of Ξþþ

cc is just 20 MeV lower than
the experimental measurements, and other predictions are
also consistent with the recent theoretical researches
especially the lattice QCD results [27]. We will use the
previously calculated mass spectra and form factors of the
JP ¼ 1þ cc and bb diquarks in this work. In addition, a
propagatorlike form factor is investigated and the corre-
sponding cutoff dependence is also studied. The color 3̄
QQ diquark and the color 3 Q̄Q̄ antidiquark can finally
form a compact tetraquark in color singlet by the one-
gluon-exchange interaction. Based on the above analysis,
the four-body tetraquark problem can be first reduced into
two two-body bound problems of fermion (antifermon)
system, which can be solved by calculating the original
Bethe-Salpeter equation (BSE) [28,29]. Then we need to
deal with a two-body problem of boson system which will
be the main focus of this work.
The Bethe-Salpeter framework has great advantages in

dealing with the two-body bound states for the relativistic
interaction kernel and corresponding wave functions. The
constructed relativistic wave functions are based on the
good quantum number JPðCÞ rather than the nonrelativistic
characteristics spin and orbital angular momentum 2Sþ1LJ.
The BSE framework has been successfully used in the mass
spectra of mesons [30–32], traditional baryons and penta-
quarks [26,33], hadronic transitions, electroweak decays,
and etc. [34–40]. In this work wewould try to push the BSE
framework further to study the fully heavy QQQ̄Q̄ system
and develop a precise and systematic approach to describe
the compact tetraquark states.

This manuscript is organized as follows: in Sec. II
the (Bethe-)Salpeter equation is derived in the per-
spective of the tetraquarks taken as the axial-vector
diquark-antidiquark bound states; in Sec. III the Salpeter
wave functions of the tetraquarks with JPC ¼ 0þþ, 1þ−,
and 2þþ are constructed; then in Sec. IV the obtained mass
spectra and wave functions are given and discussed; finally
a brief summary is presented.

II. TETRAQUARKS AS THE BOUND STATES
OF DIQUARK AND ANTIDIQUARK

Considering the exclusive principle, the diquark (anti-
diquark), consisting of two charm quarks (antiquarks) in
the color 3̄ð3Þ configuration, could only be in the JP ¼ 1þ
spin configuration in orbital ground states, since the flavor
wave function is naturally symmetric and spatial wave
function is also symmetric in ground states. In current
work, we do not consider the excitation of the diquarks or
antidiquarks. Now we try to deal with the BSE of the
tetraquark states consisting of a 1þ diquark and a 1þ
antidiquark, which could form three ground states with
spin-parity configuration JPC ¼ 0þþ, 1þ−, and 2þþ,
respectively.

A. Bethe-Salpeter equation of two vector bosons

The Bethe-Salpeter equations of the bound states con-
sisting of two vector (or axialvactor) constituents are
schematically depicted in Fig. 1. The corresponding BSE
are expressed as the four-dimensional integral of the inner
relative momentum k,

ΓαβðP; q; ξÞ ¼
Z

d4k
ð2πÞ4 ð−iÞK

αα0;β0βðP; k; qÞ

× ½Dα0μðk2ÞΓμνðP; k; ξÞDνβ0 ðk1Þ�; ð2:1Þ

where ΓαβðP; q; ξÞ denotes the vertex of the two axial-
vector constituents; symbol P is used to denote the
momentum of the tetraquark state, and we have P2¼M2

FIG. 1. Bethe-Salpeter equation of the tetraquark states in
the diquark-antidiquark picture. The Greeks (red) are used for
the Lorentz indices. P; p1ðk1Þ; p2ðk2Þ denote the momenta of the
tetraquark state, constituent diquark, and the constituent anti-
diquark, respectively; Kαα0;β0β denotes the effective interaction
kernel between the diquark and the antidiquark based on the one-
gluon exchange.
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with M representing the tetraquark mass; symbol ξ indi-
cates the polarization state, with ξ ¼ �2, 0 for the JP ¼ 2þ

tetraquark states, ξ ¼ �1, 0 for the 1þ ones, and ξ ¼ 0 for
the scalar ones; Kαα0;β0βðP; k; qÞ is the interaction kernel of
the diquark pair based on the one-gluon exchange. The
constituent mass of the diquark (antidiquark) is represented
byM1ð2Þ. The constituent masses of the JP ¼ 1þ cc and bb
diquarks are obtained by solving the corresponding BSE
[26]. The inner relative momenta q and k are defined as
q ¼ α2p1 − α1p2 and k ¼ α2k1 − α1k2, respectively, with
αi ≡ Mi

M1þM2
. The effective propagator of the 1þ diquark

reads,

Dαβðk1Þ¼Dðk1Þdαβðk1⊥Þ; dαβðk1⊥Þ¼−gαβþkα1⊥k
β
1⊥

M2
1

;

ð2:2Þ

where ki⊥ ≡ ki −
ki·P
M , and Dðk1Þ ¼ i 1

k2
1
−M2

1
þiϵ is the

usual scalar propagator. As usual, the Bethe-Salpeter
wave function describing the tetraquark states can be
defined as

TαβðP; q; ξÞ ¼ Dαμðp2ÞΓμνðP; q; ξÞDβνðp1Þ: ð2:3Þ

The symbols P and ξ in the BS wave function TαβðP; q; ξÞ
and vertex ΓμνðP; q; ξÞwill be omitted unless it is necessary
to specify them. By using the definition of BS wave
function, the BSE in Eq. (2.1) can also be rewritten as
the integral of Tαβ,

D−1
αα0 ðp1ÞTα0β0 ðqÞD−1

β0βðp2Þ

¼
Z

d4k
ð2πÞ4 ð−iÞK

αα0;β0βðP; k; qÞTα0β0 ðkÞ; ð2:4Þ

where the inverse of the vector propagator reads

D−1
αβ ðpiÞ¼ϑαβðpiÞD−1ðpiÞ; ϑαβðpiÞ¼−gαβ−

pα
i⊥p

β
i⊥

w2
i

:

ð2:5Þ

It can be easily checked that ϑαβðpiÞ fulfills the condition
ϑαβðpiÞdβγðpiÞ ¼ δαγ , where wi ≡ ðM2

i − p2
i⊥Þ

1
2 denotes the

kinetic energy of the ith constituent.

B. Diquark form factors and tetraquark
interaction kernel

For the tetraquark states consisting of the 1þ diquark and
antidiquark constituents, each vector constituent has inter-
nal structure and usually cannot be regarded as the pointlike
particle. The diquark (antidiquark) is usually described by
the corresponding form factors. Generally speaking, the

form factors have great effects on the energy splittings of
the tetraquark bound states. Then the potential VðsÞ
between the two constituents will be smeared by the two
form factors. With these two form factors, the interaction
kernels of tetraquarks can be expressed as

Kαα0;β0βðP;k;qÞ¼ f1Vf2Vgαα
0
gβ

0βðk1þp1Þνðk2þp2ÞνVðsÞ;
ð2:6Þ

where f1V and f2V denote the vector form factor of the
diquark and antidiquark, and in the fully heavy ccc̄c̄ or
bbb̄b̄ system, we have f1V ¼ f2V ¼ fV; VðsÞ denotes
the one-gluon exchange potential with s≡ ðk − qÞ being
the momentum of the exchanged gluon. Compared with the
case in baryon problem [26], there are two form factors to
describe the nonpointlike structures, which make it much
more complicated to deal with the tetraquark system.
Under the instantaneous approximation, the one-gluon-

exchange potential is assumed to be static, namely, VðsÞ ∼
Vðs⊥Þ with s⊥ ¼ s − P·s

M , which reads in the Coulomb
gauge as [41–44]

Vðs⃗Þ ¼ VCoul þ VConf

¼ −
4

3

4παsðs⃗Þ
s⃗2 þ a21

þ
�
ð2πÞ3δ3ðs⃗Þ

�
λ

a2
þ V0

�

−
8πλ

ðs⃗2 þ a22Þ2
�
; ð2:7Þ

where 4
3
is the color factor in the color singlet; a1ð2Þ is

introduced to avoid the divergence in small momentum
transfer zone; the potential VConfðs⃗Þ describing the confine-
ment effects is introduced phenomenologically, which is
characterized by the string constant λ and the factor a2.
The potential used here is based on the famous Cornell
potential [45,46], which behaves as the one-gluon
exchange Coulomb-type potential at short distance and a
linear growth confinement one at long distance, and then
modified as the aforementioned one to incorporate the color
screening effects [47,48] in the linear confinement poten-
tial. V0 is a constant fixed by fitting to the meson data. The
strong coupling constant αs has the following form:

αsðs⃗Þ ¼
12π

ð33 − 2NfÞ
1

ln ðaþ s⃗2=Λ2
QCDÞ

;

where ΛQCD is the scale of the strong interaction; Nf is the
active flavor number, which is 3 for the cc interaction
and 4 for the bb interaction; a ¼ e is a regulator constant.
For later convenience, we further split Vðs⃗Þ into two
parts as

Vðs⃗Þ ¼ ð2πÞ3δ3ðs⃗ÞV1 þ V2ðs⃗Þ: ð2:8Þ
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Namely, all the dependence on s⃗ is incorporated into V2ðs⃗Þ,
while V1 is just the constant item.
Also since the spatial parts are suppressed by a factor of

ðvcÞ2, we only consider the dominate time component (ν ¼ 0)
in the one-gluon-exchange Lorentz structure, namely,

ðk1 þ p1Þνðk2 þ p2Þν ≃ ϱ1ϱ2; ð2:9Þ

where we used the abbreviations ϱi ≡ 2ðαiM þ qPÞ with
definition qP ≡ P·q

M . Using the notations and approxi-
mations introduced above, the tetraquark interaction kernel
behaves as

Kαα0;β0βðP; k; qÞ ≃ ϱ1ϱ2gαα
0
gβ

0βϰðs⊥Þ; ð2:10Þ

where ϰ ≡ f2VVðs⃗Þ; the factor ϱ1ϱ2 has been stripped off for
later convenience. Notice that the kernel ϰðs⊥Þ here has no
dependence on the time component of momentum transfer s.
The diquark form factors fVðs2Þ can be calculated by

using the BS wave functions of the diquark. The attractive
diquark is in the color antitriplet with the corresponding
color factor ð− 2

3
Þ, which makes the bound interaction be

half of the corresponding meson. Namely, in the rainbow-
ladder truncation the effective interaction for the diquarks is
reduced by a factor of 2 compared to that in the meson
channel. Then after a charge conjugate transformation, a
diquark fulfills the same Bethe-Salpeter equation with a
meson system with only the interaction kernel halved and
the parity flipped [49–51]. Then by solving the BSE of the
JP ¼ 1− QQ̄ meson system, we can obtain the correspond-
ing mass spectra and wave functions for the doubly heavy
diquarks cc and bb (see Ref. [26] for detailed calculations).
The corresponding form factors fV describing the inter-
action between the diquark and a gluon have also been
obtained in the previous work [26], which are showed
graphically in Fig. 2(a), labeled as method I. On the other
hand, a colored diquark is never observed in nature alone

and the confinement in diquark is an open problem in quark
model. Therefore, we also calculated the corresponding
form factors without considering the confinement item
VConfðsÞ in the Cornell potential of the diquark interaction
kernel, and the obtained results are showed in Fig. 2(b),
labeled as method II. Both form factors will be used in the
calculation of the tetraquarks. The form factors fall faster
with s2 in method II than in method I. Also notice the
form factors used here are calculated from the relevant BS
wave functions combined with the Mandelstam forma-
lism, which makes this work a self-contained framework
and is different from the parametrized treatment in
Ref. [17].
Also notice the form factors in methods I and II are

calculated based on the on shell diquark bound state,
and then are simply generalized to the off shell diquark
propagator to describe the structure’s non-point-like effects.
In order to investigate the influences of different form
factors and make comparisons, we will also use another
phenomenological form factors in this work, namely,

fVðs2Þ ¼
Λ2
c

−s2 þ Λ2
c
; ð2:11Þ

where Λc is a introduced regulator parameter. We notice
that this propagatorlike form factor is widely used in
literature. Generally speaking, the parameter Λc should
be determined by fitting to the data. However, we found
that this propagatorlike function can not describe the
obtained form factors well in a large range of the momen-
tum transfer. Hence, in this work, we only fit in the
small zone of s2, namely, about 1ð3Þ ∼ 0 GeV2 for
ccðbbÞ diquark, and the determined Λc is 1.7 and
2.8 GeV for the cc and bb diquarks, respectively. Also
we will let Λc change from 0.1 to 20 GeV to investigate
the corresponding dependence.

2  GeV2s
30− 25− 20− 15− 10− 5− 0
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rm
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ac

to
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3−10

2−10

1−10

1
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FIG. 2. Form factors of the 1þ diquarks cc and bb. Method I denotes the results obtained by containing VConf in the diquark interaction
kernel while method II does not.
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C. BSE under the instantaneous approximation

Generally speaking, solving the four-dimensional BSE
(2.1) is not an easy computational problem. However,
under the instantaneous approximation introduced
above, following Salpeter’s procedures to cope with the
fermion-antifermion system [29], we can reduce the four-
dimensional BSE of the tetraquarks into the three-
dimensional integral equation. Inserting the instantaneous
kernel (2.10) into the BSE (2.1), the tetraquark vertex can
now be further expressed as ΓαβðqÞ ¼ ϱ1ϱ2Θαβðq⊥Þ, where
the three-dimensional vertex Θαβ is defined as

Θαβðq⊥Þ ¼
Z

d3k⊥
ð2πÞ3 ϰðk⊥ − q⊥Þφαβðk⊥Þ; ð2:12Þ

where the Salpeter wave function is defined by absorbing
the integration over the time component as usual,

φαβðk⊥Þ≡ −i
Z

dkP
2π

TαβðkÞ: ð2:13Þ

The Salpeter wave function φαβðk⊥Þ is only explicitly
dependent on the three-dimensional momentum k⊥.
Following the standard procedure, performing the con-

tour integral over qP on both sides of Eq. (2.3), we obtain
the three-dimensional Salpeter equation (SE),

φαβðq⊥Þ ¼ dαμðp1⊥ÞΘμνðq⊥Þdνβðp2⊥Þ

×

�
1

M − w1 − w2

−
1

M þ w1 þ w2

�
: ð2:14Þ

Also we can define the positive and negative energy wave
functions as

φ�
αβðP;q⊥Þ≡ dαμðp1⊥ÞΘμνðq⊥Þdνβðp2⊥Þ

1

�M − ðw1 þw2Þ
;

ð2:15Þ

and we have φαβ ¼ φþ
αβ þ φ−

αβ. In the weak binding con-
dition M ∼ ðw1 þ w2Þ, φþ

αβ ≫ φ−
αβ, and the positive energy

wave function φþ
αβðq⊥Þ dominates. The SE can be further

rewritten as the following simple Shrödinger type

M2φαβ ¼ ðw1 þ w2Þ2φαβ

þ 2ðw1 þ w2Þdαμðp1⊥ÞΘμνðq⊥Þdνβðp2⊥Þ:
ð2:16Þ

The obtained three-dimensional BSE, namely, Eq. (2.16),
indicates that the mass of the tetraquark state consists
of two parts, the kinetic energy and the potential energy.
Also we notice Eq. (2.16) is in fact the integral equation of
the Salpeter wave function φαβðq⊥Þ, andM2 behaves as the
eigenvalue of the corresponding Salpeter wave function.
By solving this eigenvalue equation, we can obtain the

mass spectra and wave functions of the corresponding
tetraquarks.
The normalization condition of the Bethe-Salpeter wave

function for the tetraquark state is generally expressed as

i
Z

d4q
ð2πÞ4

d4k
ð2πÞ4 T̄αβðq; ξ0Þ

∂
∂P0

½Iαα0;β0βðP; k; qÞ�Tα0β0 ðk; ξÞ

¼ ð2MÞδξξ0 ;
where the conjugate wave function is defined as T̄αβ≡
γ0T†

αβγ0; the integral kernel reads

Iαα
0;β0βðP; k; qÞ ¼ ð2πÞ4δ4ðk − qÞ½Dαα0 ðp1Þ�−1½Dβ0βðp2Þ�−1

þ iKαα0;β0βðP; k; qÞ:
Both the inverses of the propagators and the interaction
kernelK are dependent on P0 and qP. Inserting the inverses
of the propagators, the integration involving the propaga-
tors behaves as,

Npropagator ¼
Z

d3q⊥
ð2πÞ3 φ̄

αβΘαβ
8Mw1w2

M2 − ðw1 þ w2Þ2
: ð2:17Þ

While the partial differential of the kernel gives

∂Kαα0;β0β

∂P0

¼ 2ðα1ϱ2 þ α2ϱ2Þϰgαα0gβ0β; ð2:18Þ

and then we obtain normalization related to the interaction
kernel as

Nkernel ¼
Z

d3q⊥
ð2πÞ3 φ̄

αβΘαβ

4Mwq

ðw1 þ w2Þ
; ð2:19Þ

where we have used the Salpter equation (2.14);
wq ≡ α2w1 þ α1w2. On the other hand, the vertex Θαβ

can also be expressed by the wave function as

Θαβ ¼
M2 − ðw1 þ w2Þ2

2ðw1 þ w2Þ
ϑαμðp1⊥Þφμνϑνβðp2⊥Þ: ð2:20Þ

Putting the two part together and inserting the equation
above, we obtain the normalization of the Salpeter wave
function,

Z
d3q⊥
ð2πÞ3N0φ̄

αβ
ðξ0Þϑαμðp1⊥Þϑνβðp2⊥Þφμν

ðξÞ ¼ δξξ0 ; ð2:21Þ

where the abbreviation N0 ≡ ½ 2w1w2

ðw1þw2Þ þ
wqM2

ðw1þw2Þ2 − wq� is

used. By the dimensional analysis, we can conclude that
the dimension of the Salpeter wave function φαβ is (−2) in
units of mass.
It should be noted that, the obtained three-dimensional

(Bethe-)Salpeter equation (2.16) and the corresponding
normalization condition (2.21) are universal to any fully
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heavy tetraquark states consisting of two (axial)vector
constituents, and do not depend on the specific properties
of the total angular momentum J or parity. These
obtained equations are applicable to the Salpeter wave
functions with JPC ¼ 0þþ, 1þ−, 2þþ, or any other
possible spin parity. This is different from the approaches
adopted in Ref. [17], where the Salpeter equations are
coupled with three certain wave functions. The obtained
equations and relevant results can also be further
extended to deal with the molecular states consisting
of two vector mesons.

III. BS WAVE FUNCTIONS OF THE
TETRAQUARK STATES

A 1þ diquark and a 1þ antidiquark can form a boson
with JP ¼ 0þ, 1þ, or 2þ in the ground state, namely,
1 × 1 ¼ 0þ 1þ 2. For the tetraquark state, the spatial
parity is expressed as P ¼ ð−1Þl, with l stands for the
quantum number of the angular momentum. A tetraquark
state containing two c quarks and two c̄ quarks also
occupies the definite C parity. The charge conjugate parity
(C parity) is expressed as C ¼ ð−1Þlþs with s stands for the
spin of the particle. In order to simplify the expressions,
from now on, we will always use the abbreviation xα ≡ q⊥α

jq⃗j .
Since throughout this manuscript we work in the momen-
tum space, this abbreviation is supposed not to cause
confusion.
According to Lorentz condition, spin parity and also

considering the relativistic covariance, the Salpeter wave
function of tetraquark states with JP ¼ 0þ can be generally
expressed as

φαβðq⊥Þ ¼ g1ðP̂αP̂β − gαβÞ þ g2xαxβ; ð3:1Þ

where P̂α ¼ Pα
M ; the radial wave function giðjq⃗jÞ (i ¼ 1, 2)

just depends on jq⃗j explicitly. It is clear to see that g1
corresponds to the S-wave component, and g2 contributes
to both the S and D partial waves (see Ref. [26] for a
detailed expression in terms of the spherical harmonics
Ym
l ). By inserting the two wave functions into Eq. (2.21),

the normalization condition of the 0þþ Salpeter wave
function is obtained,

Z
d3q⊥
ð2πÞ3N0½n0ðg1 þ g2Þ2 þ 2g21� ¼ 1; ð3:2Þ

where n0 ¼ ðM1M2

w1w2
Þ2.

Similarly, the JPC ¼ 1þ− Salpeter wave function can
be constructed by using the antisymmetric Levi-Civita
tensor ϵαβμν as

φαβðq⊥Þ ¼ h1ϵαβeP̂ þ h2ϵαβxP̂e · x; ð3:3Þ

where ϵαβeP̂ ¼ ϵαβμνeμP̂
ν; eαðξÞ is the polarization vector

with ξðξ ¼ 0;�1Þ denoting the possible polarization states,
and fulfills the following conditions

Pαeα ¼ 0; ð3:4Þ
X
ξ

eαðξÞeβðξÞ ¼ Gαβ ≡ PαPβ

M2
− gαβ: ð3:5Þ

It is clear to see that h1 and h2 parts in Eq. (3.3) represent
the S- and D-wave components, respectively. The JPC ¼
1þ− tetraquark wave function is antisymmetric under the
interchange of the two free Lorentz index, which is
different from the 0þþ case. The 1þ− normalization is
finally expressed as

Z
d3q⊥
ð2πÞ3

2

3
N0½n1h21 þ ðh2 − h1Þ2� ¼ 1; ð3:6Þ

where n1 ¼ M2
1=w

2
1 þM2

2=w
2
2. Notice in a similar work

[17] only part of the S-wave components in the wave
functions of JPC ¼ 0þþ and 1þ− are included, while our
results show that the D-wave components, namely, the g2
and h2 items, and the possible S-D mixing effects also play
important roles especially in the excited states (see the
obtained wave functions in Fig. 5).
The JPC ¼ 2þþ Salpeter wave function of the tetra-

quarks can be constructed as

φαβðq⊥Þ ¼ i1eαβ þ i2ðP̂αP̂β − gαβÞexx
þ i3ðexαxβ þ exβxαÞ þ i4ðxαxβÞexx; ð3:7Þ

where exx ≡ eαβxαxβ; eαβðξÞ is the symmetric polarization
tensor with ξð¼ �2;�1; 0Þ denoting the possible polari-
zation states. The symmetric eαβðξÞ is traceless, and
also fulfills the Lorentz condition and the completeness
relationship

eαβ ¼ eβα; ð3:8Þ

eαβgαβ ¼ 0; ð3:9Þ

Pαeαβ ¼ 0; ð3:10Þ
X
ξ

eαβðξÞeα1β1ðξÞ¼
1

2
ðGαα1Gββ1 þGαβ1Gβα1Þ−

1

3
GαβGα1β1 :

ð3:11Þ

It is clear to see that i1, i2ð3Þ, and i4 parts represent the S-,
D-, and G-wave components, respectively. In Ref. [17]
only the i1 item representing the dominant S-wave com-
ponent is considered, while both the D and the possible
G-wave components are ignored, which would have effects
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on the mass splittings and damage the completeness of the
wave functions. The normalization for 2þþ Salpeter wave
function is expressed as

Z
d3q⊥
ð2πÞ3

N0

15

X4
m¼1;n≥m

cmnimin ¼ 1; ð3:12Þ

where the coefficients cijs are defined as

c11 ¼ 5n0 − 3c0 þ 10; c12 ¼ 4n0 − 4;

c13 ¼ −14n0 þ 6c0 − 6; c14 ¼ 4n0;

c22 ¼ 2n0 þ 4; c23 ¼ −8n0;

c24 ¼ 4n0; c33 ¼ 11n0 − 3c0 þ 3;

c34 ¼ −8n0; c44 ¼ 2n0; ð3:13Þ

with c0 ¼ ð q2

w1w2
Þ2.

Notice in the construction of the Salpeter wave func-
tions, we work based on the good quantum number JPC

while not the nonrelativistic characteristics, such as spin S
or orbital angular momentum L. Then the contributions
from the D- or G-wave components are naturally included

in the 0þþ, 1þ−, and 2þþ Salpeter wave functions, and are
determined by the dynamics of the Bethe-Salpeter equation
while not the man-made mixing effects. This is one of
the advantages of the relativistic Bethe-Salpeter methods.
The relativistic effects are naturally included in both the
adoption of the BSE and the construction of the wave
functions though the instantaneous approximation partly
destroyed the covariance. Inserting these constructed
Salpeter wave functions into the three-dimensional
Salpeter equation (2.16) and solving this eigenvalue prob-
lem numerically, we can obtain the corresponding mass
spectra and wave functions, which are presented in follow-
ing section.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Before giving the numerical results of the mass spectra
and wave functions, we specify the numerical values of the
parameters first. The model parameters used in this work
are kept the same with that we applied in previous meson
and baryon calculations [26,31,36–40],

a¼e¼2.7183; λ¼0.21GeV2; a1¼a2¼0.06GeV;

FIG. 3. Mass spectra of the tetraquark states ðccc̄c̄Þ and ðbbb̄b̄Þ with all the diquarks (antiquarks) in the ground states. In method I (II)
the diquark masses and corresponding form factors are calculated with (without) considering the confinement item VConf in the

interaction kernel; in method III the diquark form factors are assumed to be Λ2
c

−s2þΛ2
c
with Λc ¼ 1.7ð2.8Þ GeV for ccðbbÞ diquark.
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the strong interaction scale ΛQCD ¼ 0.20 GeV for bb
interaction meanwhile takes 0.27 GeV for other cases;
and the constituent quark masses used aremc ¼ 1.62 GeV,
mb ¼ 4.96 GeV. The obtained constitute masses of the
diquarks are Mcc ¼ 3.303 GeV and Mbb ¼ 9.816 GeV
[26] within method I, and Mcc ¼ 3.135 GeV and Mbb ¼
9.732 GeV within the method II.
The free parameter V0 plays a role in shifting the mass

spectra and is determined by the spin-weighted average
methods. By using the Clebsch-Gordan coefficients, the
JP ¼ 0þ tetraquark formed by the two 1þ diquark and
antidiquarks can be decomposed as

jð12Þ1ð34Þ1i0¼
1

2
jð14Þ1ð23Þ1i0þ

ffiffiffi
3

p

2
jð14Þ0ð23Þ0i0; ð4:1Þ

where label 1, 2 denote the quarks, and 3, 4 denote the
antiquarks; jð12Þ1ð34Þ1i means quark-1 and quark-2 are in
the spin-1 state, while the antiquark-3 and antiquark-4

are also in the spin-1 state; then other notations are
also implied. Then the parameter V0 for 0þ ccc̄c̄ will be
expressed as V0ðccc̄c̄Þ ¼ 1

4
V0ðJ=ψÞ þ 3

4
V0ðηcÞ. By similar ana-

lysis, the JP ¼ 1þ tetraquark is decomposed as

jð12Þ1ð34Þ1i1 ¼
1ffiffiffi
2

p jð14Þ0ð23Þ1i1 þ
1ffiffiffi
2

p jð14Þ1ð23Þ0i1;

ð4:2Þ

and then the corresponding parameter is determined as
V0ðccc̄c̄Þ ¼ 1

2
½V0ðJ=ψÞ þ V0ðηcÞ�. The V0 for 2þ ccc̄c̄ is totally

decided by the V0ðJ=ψÞ since any two quarks (anitquarks)
inside are in the spin-1 state. Finally, the obtained param-
eters V0 for 0þ, 1þ, and 2þ ðccc̄c̄Þ are −0.304, −0.276, and
−0.221 GeV, respectively; for bbb̄b̄ are −0.207, −0.192,
and −0.162 GeV, respectively.
The obtained mass spectra of the tetraquarks ccc̄c̄ and

bbb̄b̄ are showed in Fig. 3, where method I denotes the
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FIG. 4. Dependence on the regulator parameter Λc of the tetraquark mass spectra in method III, where the diquark form factors are

assumed to be fVðs2Þ ¼ Λ2
c

−s2þΛ2
c
.

TABLE I. Comparison of the predicted ccc̄c̄ masses in ground states with JPC ¼ 0þþ, 1þ−, and 2þþ in units
of GeV.

JPC This [11] [52] [53] [14] [54] [6] [7] [15] [12]

0þþ 6.419 6.407, 6.491 6.470 6.371 6.435 6.44 6.346 6.351 6.190 6.045
1þ− 6.456 6.463, 6.580 6.512 6.450 6.515 6.37 6.441 6.441 6.271 6.231
2þþ 6.516 6.486, 6.607 6.534 6.534 6.543 6.51 6.475 6.471 6.367 6.287

TABLE II. Comparison of the bbb̄b̄ masses in ground states with JPC ¼ 0þþ, 1þ−, and 2þþ in units of GeV.

JPC This [14] [6] [15] [52] [12] [7] [53] [16]

0þþ 19.205 19.201 19.154 19.314 19.322 18.836 19.199 19.243 18.748
1þ− 19.221 19.251 19.214 19.320 19.329 18.969 19.276 19.329 18.828
2þþ 19.253 19.262 19.232 19.330 19.341 19.000 19.289 19.325 18.900

LI, CHANG, WANG, and WANG PHYS. REV. D 104, 014018 (2021)

014018-8



results with considering the confinement item VConf in
calculating the diquark masses and the corresponding form
factors, while method II not. The results labeled as method
III represents the ones where the diquark form factors

are assumed to be propagatorlike type in Eq. (2.11) with
Λc ¼ 1.7 GeV for cc diquark and 2.8 GeV for bb diquark,
respectively. In order to see the dependence on the regulator
Λc in method III, we show the variation of the mass spectra
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FIG. 5. Salpeter wave functions of the ccc̄ c̄ tetraquarks with JPC ¼ 0þþ, 1þ−, and 2þþ.
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along with Λc in Fig. 4 by changing the values of Λc from
0.1 to 20 GeV. With the increases of Λc, fV becomes more
and more flat, which means the diquark is more and more
similar to a pointlike particle. Also it should be pointed
out that the regulator parameter Λc can not be taken too
large which may cause the instability of the instantaneous
BSE in high momentum zone. The plots reveal that the
mass spectra in ground states are sensitive to the diquark
form factors.
The obtained mass spectra show that the ground ccc̄c̄

tetraquarks locate in the range 6.4–6.5 GeV when consid-
ering VConf in diquarks. The mass splittings for the 1þ− and
2þþ to 0þþ states are about 35 and 100 MeV, respectively.
When the confinement item is not included in the diquarks,
the corresponding masses then locate about 40 MeV lower.
The first excited states are always about 400 MeV higher
than their corresponding ground states. A comparison of
our predictions with recent researches is listed in Table I.
Our obtained results for the three ground ccc̄c̄ states are
roughly consistent with other studies. The mean values in
Table I are 6.36, 6.43, and 6.48 GeV for the 0þþ, 1þ−, and
2þþ ccc̄c̄ in ground states, respectively; and the corre-
sponding standard derivations are 0.13, 0.10, and 0.09 GeV,
respectively. All the results listed in Table I are above the
threshold of the lowest quarkonium pair ηcηc. Hence these
three ground states are expected to be broad, since all of
them can decay to a pair of quarkonia ηcηc or J=ψJ=ψ
through the (anti)quark rearrangements. These kind of
decays are favored both dynamically and kinematically.
From Table I we can conclude that the obtained masses
of the ground ccc̄c̄ states are usually much lower (about
400–500 MeV) than the Xð6900Þ observed by the LHCb
collaboration. The observed Xð6900Þ is less likely to be the
ground state of the compact tetraquark ccc̄c̄ states but
might be the first or second radial excited states. However,
more detailed information is needed to investigate the inner
structure of Xð6900Þ. We also notice that the masses of
the ccc̄c̄ in ground states is near to the Xð6900Þ with
Λc ∼ 1 GeV in method III.
The obtained bbb̄b̄ masses in ground states are in the

range 19.2–19.3 GeV, which are higher than the ϒϒ
threshold 1.892 GeV and ηbηb threshold 1.880 GeV but
lower than the χb0χb0 threshold [55]. Also we notice that
Mbb in method II is about 80 MeV lower than that in
method I, while the obtained mass spectra of bbb̄b̄ are
about 20 MeV lower in ground states. The comparison of
our predictions with other researches is collected in
Table II, from which we can see that the theoretical
masses of bbb̄b̄ in ground states locate in a large range
of 18.75–19.35 GeV in researches. The mean values of the
ground bbb̄b̄ tetraquarks in Table II are about 19.14, 19.20,
and 19.22 GeV for the 0þþ, 1þ−, and 2þþ, respectively,
where the corresponding standard derivations are 0.20,
0.18, and 0.16 GeV, respectively. Except the three results

predicted in Ref. [16] and the 0þþ state in Ref. [12], all
other results listed in Table II are higher than the ϒϒ
threshold. Therefore, the three states can decay to a pair of
quarkonia ηbηb or ϒϒ through the quark rearrangements,
and hence are expected to be broad.
Figure 5 shows the obtained Salpeter wave functions for

the first four ðccc̄c̄Þ states obtained by the method I. Notice
that the D partial wave gives important contribution in the
third and the forth states, and the possible D- or G-wave
mixing are included naturally. The obtained wave functions
show the rich information of the inner structure, and can be
further used to do precise calculations on the decays,
magnetic moments, or other properties of the tetraquarks.

V. SUMMARY

In this work, we study the compact tetraquark states with
fully heavy quark contents QQQ̄Q̄ based on the Bethe-
Salpeter equation. The compact tetraquark is taken as the
bound state of the diquark-antidiquark where the (anti)
diquark form factors are calculated with and without
considering the confinement item respectively. In addition,
a propagatorlike form factor is also used to calculate the
tetraquark states and the corresponding parameter depend-
ence is also investigated. Under the instantaneous approxi-
mation, the three-dimensional (Bethe-)Salpeter equation
of the tetraquarks are derived, and the Salpeter wave
functions with JPC ¼ 0þþ, 1þ−, and 2þþ are then con-
structed and solved numerically to obtain the correspond-
ing mass spectra of the tetraquarks. The compact
tetraquarks as the bound states of the diquarks and
antidiquarks follows a natural step of our previous work
to deal with doubly heavy baryons. Therefore some results
and approaches, such as the relevant interaction kernel,
diquark constituent masses and form factors, the reduction
of BSE, etc., can be directly adopted or extended to deal
with compact tetraquarks, which allows us to take a
systematic, relativistic, and unified framework to treat
the heavy hadron systems, including the mesons, diquarks,
baryons, and tetraquarks. Also notice all the parameters
used to deal with the tetraquarks have already been fixed by
the meson data and we do not introduce any free param-
eters. The well behaviors of the obtained wave functions
allow to do the further precise calculations on the decays or
other properties of the tetraquarks.
Our results show that the three ground states of ccc̄c̄

locate in the mass range 6.4–6.5 GeV, and the bbb̄b̄
states in mass range 19.2–19.3 GeV. Based on the
obtained results, the LHCb’s observation Xð6900Þ is
less likely to be the ground states of compact ccc̄c̄
tetraquarks but might be the first or second radially
excited states. The obtained relativistic wave functions
are based on the good quantum numbers and can naturally
include the mixing effects from the possible D (or G)-
wave components.
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