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Based on the Dyson-Schwinger equation, we compute the resummed gluon propagator in a holonomous
plasma that is described by introducing a constant background field for the vector potential A0. Because of
the transversality of the holonomous hard thermal loop in gluon self-energy, the resummed propagator has
a similar Lorentz structure as that in the perturbative quark-gluon plasma where the holonomy vanishes. As
for the color structures, since diagonal gluons are mixed in the overcomplete double-line basis, only the
propagators for off-diagonal gluons can be obtained unambiguously. On the other hand, multiplied by a
projection operator, the propagators for diagonal gluons, which exhibit a highly nontrivial dependence on
the background field, are uniquely determined after summing over the color indices. As an application of
these results, we consider the Debye screening effect on the in-medium binding of quarkonium states by
analyzing the static limit of the resummed gluon propagator. In general, introducing nonzero holonomy
merely amounts to modifications on the perturbative screening mass mD and the resulting heavy-quark
potential, which remains the standard Debye screened form, is always deeper than the screened potential in
the perturbative quark-gluon plasma. Therefore, a weaker screening and, thus, a more tightly bounded
quarkonium state can be expected in a holonomous plasma. In addition, both the diagonal and off-diagonal
gluons become distinguishable by their modified screening masses MD, and the temperature dependence
of the ratio MD=T shows a very similar behavior as that found in lattice simulations.
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I. INTRODUCTION

At high temperatures, the properties of the quark-gluon
plasma (QGP) created during ultrarelativistic heavy-ion
collisions can be computed in the hard-thermal-loop (HTL)
resummed perturbation theory. On the other hand, at low
temperatures, the confined phase can be modeled by a
hadron resonance gas. The challenge appears in the
intermediate region, termed as “semi-QGP,” where neither
of the above-mentioned theoretical tools is reliable since
the effects of nonperturbative physics play an impor-
tant role.
As the order parameter for deconfinement in SUðNÞ

gauge theory, the values of the Polyakov loop are nonzero
but less than unity in semi-QGP. The partial deconfinement
is described by introducing nonzero holonomy for
Polyakov loops. To do so, one can consider a classical
background field Acl

0 as a diagonal and traceless color
matrix for the timelike component of the vector potential.

Thermodynamics of a holonomous plasma can be analyzed
by computing the effective potential in the (constant)
background field Acl

0 , which takes the eigenvalues of the
thermal Wilson line as variables [1–8]. Perturbatively, the
effective potential reaches a minimum when the back-
ground field vanishes. Therefore, a complete deconfine-
ment happens at all temperatures. In order to drive the
transition to confinement, nonperturbative terms, which
generate complete eigenvalue repulsion in the confining
phase, have to be included. Constructed in such a way,
matrix models have been widely studied in recent years, not
only for pure gauge theories, but also for quantum
chromodynamics (QCD) with dynamical quarks [9–13].
The physics in semi-QGP is of particular interest,

because the temperatures probed in most of the high-
energy experiments carried out at Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) are
not far above the critical temperature. Besides the thermo-
dynamical properties, physical quantities near thermal
equilibrium have also been investigated with nonzero
holonomy for Polyakov loops which exhibit different
behaviors as compared to those in the perturbative QGP.
For example, the shear viscosity computed in semi-QGP is
suppressed near the critical temperature [14]. As ideal
electromagnetic signals, the production of dileptons
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calculated in a matrix model has a mild enhancement;
conversely, the production of photons is strongly sup-
pressed in the presence of a background field [15,16]. In
addition, discussions on the transport coefficients as well as
the collisional energy loss of a heavy quark in semi-QGP
can be found in Refs. [17–19].
For processes involving soft momentum exchange, it is

necessary to use the resummed propagator, which includes
an arbitrary number of self-energy insertions into the bare
propagator. The expression of the resummed gluon propa-
gator is well known in the perturbative QGP where the
holonomy vanishes. As an important quantity in many
theoretical and phenomenological applications, viscous
corrections to the resummed gluon propagator in thermal
equilibrium have been studied in Refs. [20–24].
Furthermore, influence due to the presence of a magnetic
field has also been considered in recent works [25–27]. On
the other hand, in a holonomous plasma, the explicit form
of the resummed gluon propagator with Acl

0 ≠ 0 adopted in
the foresaid works relies on certain approximations; for
example, one needs to assume an infinitely large number of
the colors or neglect an anomalous term ∼T3 in the
perturbative gluon self-energy that appears only with
nonvanishing holonomy.
There is a long history of the computation of the gluon

self-energy in a holonomous plasma. In Ref. [28], it has
been computed at one-loop order in the HTL perturbation
theory, and there is a nontransverse piece showing up in the
obtained result. As argued in Ref. [29], gauge-invariant
sources, which are nonlinear in the gauge potential A0, give
rise to a novel constrained contribution at one-loop order
which restores the transversality of the holonomous gluon
self-energy. As already mentioned before, perturbatively,
the system would be always in a completely deconfined
vacuum, since the equations of motion lead to a vanishing
background field. In order to generate a nonzero holonomy
dynamically, an effective theory has been proposed in
Ref. [30], where additional contributions from two-
dimensional ghosts were introduced into the action and
the resulting gluon self-energy remains transverse. Given
the holonomous gluon self-energy, the main obstacle to
compute the resummed propagator lies in the complicated
color structure when one performs the inversion through the
Dyson-Schwinger equation. In this paper, we make a first
attempt to calculate the resummed gluon propagator in
semi-QGP for general SUðNÞ. In addition, as a direct
application of the obtained results, we also consider the
modifications on the screening masses due to a nonvanish-
ing holonomy which provides important information on the
in-medium binding of quarkonium states.
The rest of the paper is organized as the following. In

Sec. II, we briefly introduce the double-line basis which
will be adopted in our calculation. In Sec. III, the bare gluon
propagator in a holonomous plasma denoted as
ðD0Þab;cdμν ðPabÞ is discussed. It is an intuitive example to

understand the complicated color structure we will encoun-
ter in the computation of the resummed propagator. For
completeness, in Sec. IV, we give a short review on the
holonomous gluon self-energy obtained in previous stud-
ies. Based on the Dyson-Schwinger equation, the
resummed gluon propagator D̃ab;cd

μν ðPabÞ is computed in
Sec. V, where the calculations are carried out for the
diagonal and off-diagonal gluons separately. After analyti-
cally continued to real time, in Sec. VI, the static limit of
the propagator D̃ab;cd

μν ðω;pÞ is analyzed, which gives new
insights into the screening effect in a holonomous plasma.
A short summary can be found in Sec. VII. In addition,
some details about the calculations performed in this work
are provided in three appendixes.

II. THE INVERSE PROPAGATORS AT TREE
LEVEL IN THE DOUBLE-LINE BASIS

In the presence of a constant background field Acl
0 , the

double-line basis has been widely used in previous studies
to compute the effective potential [8] as well as the quark
and gluon self-energies for SUðNÞ gauge theories [28]. For
completeness, we will briefly review the double-line basis
and give the inverse propagators at tree level for later use.
More details can be found in Ref. [31].
The generators of the fundamental representation are

given by the projection operators

ðtabÞcd ¼
1ffiffiffi
2

p Pab
cd; ð1Þ

with

Pab
cd ¼ δacδ

b
d −

1

N
δabδcd: ð2Þ

For SUðNÞ, these color indices a, b, c, and d run from 1 to
N. The N2 − N off-diagonal generators with a ≠ b are
normalized as

trðtabtbaÞ ¼ 1

2
: ð3Þ

In addition, we have N diagonal generators taa which
satisfy

trðtaatbbÞ ¼ 1

2

�
δab −

1

N

�
: ð4Þ

In the above equations, a and b are fixed indices, and there
is no summation over them. In the double-line basis, the
number of generators for SUðNÞ is N2; therefore, this basis
is overcomplete.
Notice that the upper indices ab of the generators refer to

the indices in the adjoint representation which are denoted
by a pair of the fundamental indices. The lower indices
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cd refer to the matrix elements in the fundamental
representation.
The Lagrangian of SUðNÞ gauge theory is given by

L ¼ 1

2
trðG2

μνÞ and Gμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�: ð5Þ

The gauge fields can be expanded around some fixed
classical values as Aμ ¼ Acl

μ þ gBμ, and Bμ corresponds to
the quantum fluctuation. Including the gauge-fixing term
(the gauge-fixing parameter is denoted by ξ) and ghost
fields η in the Lagrangian

Lgauge ¼
1

ξ
TrðDcl

μBμÞ2 − 2Trðη̄Dcl
μDμηÞ; ð6Þ

we can write down the corresponding terms related to the
(inverse) gluon propagator at tree level in the action,
S ¼ R

d4xL, as the following:

S ¼
Z

d4xTr

�
Bμ

�
−ðDcl

ρ Þ2δμν

þ
�
1 −

1

ξ

�
Dcl

μDcl
ν þ 2ig½Gcl

μν;…�
�
Bν

�
þ � � � : ð7Þ

In the above equations, the classical covariant derivative is
defined as Dcl

μ ¼ ∂μ − ig½Acl
μ ;…�.

We consider the classical background field as a constant
diagonal matrix for the timelike component of the vector
potential, namely, ðAcl

0 Þab ¼ Qaδab with
P

N
a¼1 Q

a ¼ 0 for
SUðNÞ gauge group. Consequently, the classical covariant
derivative acting upon the fields in the adjoint representa-
tion has a simple form in momentum space, Dcl

μ tab →
−iPab

μ tab, and the corresponding momentum associated
with an adjoint color index ab reads

Pab
μ ¼ ðpab

0 ;pÞ ¼ ðωn þQa −Qb;pÞ; ð8Þ

where ωn is the Matsubara frequencies of bosons. Then it is
straightforward to write down the inverse bare gluon
propagator in momentum space:

ðD−1
0 Þab;cdμν ðPabÞ ¼ δS

δBba
μ ðPÞδBdc

ν ð−PÞ

¼
�
ðPabÞ2δμν −

�
1 −

1

ξ

�
Pab
μ Pab

ν

�
Pab;cd:

ð9Þ

As one can see, this is a trivial generalization of
ðD−1

0 Þab;cdμν ðPÞ in the case where Acl
0 ¼ 0, since there is

only a constant and color-dependent shift in the energies.
The inverse ghost propagator can be obtained in the same

way, and the result is given by

δS
δηbaðPÞδη̄dcð−PÞ ¼ ðPabÞ2Pab;cd: ð10Þ

Adding the quark contribution ψ̄ðDþmÞψ to the pure
gauge action, the inverse quark propagator has the follow-
ing explicit form1:

δS
δψaðPÞδψ̄bð−PÞ ¼ ð−iPa þmÞδab; ð11Þ

where Pa
μ associated with a fundamental color index a is

defined as Pa
μ ¼ ðpa

0;pÞ ¼ ðω̃n þQa;pÞ with ω̃n being the
Matsubara frequencies of fermions.
The inverse quark propagator has a trivial color structure

δab; therefore, the corresponding bare propagator is a
diagonal matrix in color space—explicitly, we have

hψaðPÞψ̄bð−PÞi ¼ δab

−iPa þm
: ð12Þ

On the other hand, the inverse gluon or ghost propagator
containing the projection operator Pab;cd and the color
structure of the bare propagator is not as simple as the quark
propagator. We will give a detailed discussion in the next
section.

III. THE BARE GLUON PROPAGATOR IN A
CONSTANT BACKGROUND FIELD

Before we start to discuss the resummed gluon propa-
gator, it is worthwhile to analyze the color structure of the
bare propagator in the double-line basis. As we will see,
there exists an issue that the exact forms of the gluon
propagators cannot be uniquely determined. For general
SUðNÞ gauge theories, the N2 − N off-diagonal generators
tab with a ≠ b are identical to those in the Carton space;
however, as compared to theN − 1 diagonal generators in the
Carton space, the N diagonal generators taa are overcom-
plete, which is believed to be the origin of such an ambiguity
we will encounter. One thing to note is that, although the
discussion on the bare gluon propagator turns to be simple, a
very similar strategy can be generalized to compute the
resummed propagator which will be considered in Sec. V.
We rewrite the inverse bare propagator as given in

Eq. (9) as

ðD−1
0 Þab;cdμν ðPabÞ ¼

�
ðPabÞ2

�
δμν −

Pab
μ Pab

ν

ðPabÞ2
�

þ 1

ξ
Pab
μ Pab

ν

�
Pab;cd; ð13Þ

1In the fundamental representation, the classical covariant
derivative Dcl

μ ¼ ∂μ − igAcl
μ acting upon the fermionic field ψa

is Dcl
μ ψ

aðxÞ → −iPa
μψ

aðPÞ.
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where the mutually orthogonal projections δμν − ðPab
μ Pab

ν Þ=ðPabÞ2 and Pab
μ Pab

ν are the natural extension of those used in
Acl
0 ¼ 0. The unity in the Lorentz space is defined as δμν, while in the color space it is given by Pab;cd. Therefore, the gluon

propagator Dab;cd
μν [either the bare propagator ðD0Þab;cdμν or the resummed one D̃ab;cd

μν ] satisfies the following identity:

X
σ;ef

ðD−1Þab;efμσ ðPabÞ ·Dfe;cd
σν ðPfeÞ ¼

X
σ;ef

Dab;ef
μσ ðPabÞ · ðD−1Þfe;cdσν ðPfeÞ ¼ δμνPab;cd: ð14Þ

The bare gluon propagator ðD0Þab;cdμν ðPabÞ used in Ref. [28] reads

�
δμν − ð1 − ξÞP

ab
μ Pab

ν

ðPabÞ2
�

1

ðPabÞ2 P
ab;cd; ð15Þ

and one can easily check that the above form of the propagator satisfies the desired identity [Eq. (14)]. However, as we will
show, Eq. (15) is not a unique solution, and the bare propagator is not necessary to be proportional to the projection operator
Pab;cd. More generally, we assume the following form for the bare propagator:

ðD0Þab;cdμν ðPabÞ ¼ Xab;cd
0

�
δμν −

Pab
μ Pab

ν

ðPabÞ2
�
þ Zab;cd

0 Pab
μ Pab

ν : ð16Þ

We first consider the bare propagator for off-diagonal gluons, which is denoted as ðD0Þab;cdμν with a ≠ b. By definition, we
can show that

X
ef;σ

ðD−1
0 Þab;efμσ ðPabÞ · ðD0Þfe;cdσν ðPfeÞ ¼a≠b

X
σ

ðD−1
0 Þab;baμσ ðPabÞðD0Þab;cdσν ðPabÞ

¼ ðPabÞ2Xab;cd
0

�
δμν −

Pab
μ Pab

ν

ðPabÞ2
�
þ 1

ξ
Zab;cd

0 Pab
μ Pab

ν ¼ Pab;cdδμν ¼a≠bδadδbcδμν: ð17Þ

This equation holds when the following conditions are satisfied:

ðPabÞ2Xab;cd
0 ¼ δadδbc;

−δadδbc
1

ðPabÞ2 þ
1

ξ
Zab;cd

0 ðPabÞ2 ¼ 0: ð18Þ

This leads to the results Xab;cd
0 ¼ δadδbc=ðPabÞ2 and Zab;cd

0 ¼ ξδadδbc=ðPabÞ4 for a ≠ b. Therefore, we find

ðD0Þab;cdμν ðPabÞ ¼a≠bδadδbc
�

1

ðPabÞ2
�
δμν −

Pab
μ Pab

ν

ðPabÞ2
�
þ ξ

ðPabÞ4 P
ab
μ Pab

ν

�
: ð19Þ

Alternatively, one can consider
P

σ;efðD0Þab;efμσ ðPabÞ · ðD−1
0 Þfe;cdσν ðPfeÞ ¼ δμνPab;cd with c ≠ d. Consequently,

ðD0Þab;cdμν ðPabÞ with c ≠ d can be determined which is identical to Eq. (19), as expected. In addition, the above result
also indicates vanishing gluon propagators ðD0Þaa;cdμν ðPÞ and ðD0Þcd;aaμν ðPÞ when c ≠ d.
As we can see, the bare propagators for off-diagonal gluons can be uniquely determined which have relatively simple

color structures proportional to the projection operator Pab;cd. The only nonvanishing component ðD0Þab;baμν ðPabÞ for a ≠ b
is the same as the one used in Ref. [28]; see Eq. (15).
Next, we consider the bare propagators for diagonal gluons, ðD0Þaa;ccμν ≡ ðD0Þa;cμν . From here on, the diagonal color index

aa will be denoted by a single letter a in order to keep the notation compact. Similarly, we have

X
ef;σ

ðD−1
0 Þa;efμσ ðPÞ · ðD0Þfe;cσν ðPfeÞ ¼

�
P2Xa;c

0 −
P2

N

X
e

Xe;c
0

��
δμν −

PμPν

P2

�

þ
�
P2

ξ
Za;c

0 −
P2

Nξ

X
e

Ze;c
0

�
PμPν ¼ Pa;cδμν: ð20Þ
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It leads to the following equations:

P2Xa;c
0 −

P2

N

X
e

Xe;c
0 ¼ Pa;c;

−
1

P2
Pa;c þ

�
P2

ξ
Za;c

0 −
P2

Nξ

X
e

Ze;c
0

�
¼ 0: ð21Þ

We start with the first equation for Xa;c
0 . For a given c, there

are N equations corresponding to a ¼ 1; 2;…; N.
However, they are not completely independent. BecauseP

a P
a;cd ¼ 0, any equation can be derived from the other

N − 1 equations. Therefore, we drop the equation with
a ¼ c, and the other N − 1 independent equations for Xa;c

0

can be written as

�
1 −

1

N

�
ðXa;c

0 − Xc;c
0 Þ − 1

N

X
e≠a;c

ðXe;c
0 − Xc;c

0 Þ ¼ −
1

NP2
;

a ¼ 1;…; c − 1; cþ 1;…; N: ð22Þ

Instead of Xa;c
0 , we consider Xa;c

0 − Xc;c
0 with a ≠ c. For a

fixed c, there are N − 1 unknowns in Eq. (22). The
coefficient matrix reads

0
BBBBBB@

1 − 1
N − 1

N � � � − 1
N

− 1
N 1 − 1

N � � � − 1
N

..

. ..
. . .

. ..
.

− 1
N − 1

N � � � 1 − 1
N

1
CCCCCCA
; ð23Þ

which is a ðN − 1Þ × ðN − 1Þ symmetric matrix with 1 − 1
N

being the diagonal elements and − 1
N for other elements.

The determinant of this matrix can be calculated for general
SUðNÞ, and the result simply equals 1

N. Using Cramer’s
rule, it is straightforward to obtain the solutions of Eq. (22),
and the N2 − N unknowns Xa;c

0 − Xc;c
0 are all equal to

−1=P2, where a; c ¼ 1; 2;…; N and c ≠ a.
Similarly, the N − 1 independent equations for Za;c

0 −
Zc;c

0 are given by

�
1 −

1

N

�
ðZa;c

0 − Zc;c
0 Þ − 1

N

X
e≠a;c

ðZe;c
0 − Zc;c

0 Þ ¼ −
ξ

NP4
;

a ¼ 1;…; c − 1; cþ 1;…; N; ð24Þ

which suggests a simple relation Za;c
0 − Zc;c

0 ¼
ξ
P2 ðXa;c

0 − Xc;c
0 Þ. As a result, we have

Xa;c
0 ¼Xc;c

0 −
1

P2
; Za;c

0 ¼Zc;c
0 −

ξ

P4
; a≠c: ð25Þ

On the other hand, we should also consider

X
ef;σ

ðD0Þa;efμσ ðPÞ · ðD−1
0 Þfe;cσν ðPfeÞ ¼ Pa;cδμν; ð26Þ

which determines the unknowns Xa;c
0 − Xa;a

0 and
Za;c

0 − Za;a
0 . Following exactly the same procedure as

the above, we can further show that

Xa;c
0 ¼Xa;a

0 −
1

P2
; Za;c

0 ¼Za;a
0 −

ξ

P4
; a≠c: ð27Þ

Summing up Eqs. (25) and (27), the relations among the
unknowns in the propagator are found as

Xc;a
0 ¼ Xa;c

0 ¼ Xa;a
0 −

1

P2
¼ Xc;c

0 −
1

P2
;

Zc;a
0 ¼ Za;c

0 ¼ Za;a
0 −

ξ

P4
¼ Zc;c

0 −
ξ

P4
; a ≠ c: ð28Þ

The above result shows that the bare propagators
ðD0Þa;cμν ðPÞ can be uniquely determined as long as any
one component [such as ðD0Þ1;1μν ðPÞ or ðD0Þ1;2μν ðPÞ] is
specified. In general, we can get only the following
expression:

ðD0Þa;aμν ðPÞ−ðD0Þc;aμν ðPÞ¼ðD0Þa;aμν ðPÞ−ðD0Þa;cμν ðPÞ

¼
�
δμν−ð1−ξÞPμPν

P2

�
1

P2
: ð29Þ

Equation (29) is familiar, which is the same as the bare
propagators for theN2 − 1 gluons when the standard choice
for the generators of a gauge group is adopted.2

Furthermore, it is interesting to point out that if one special
constraint

P
aðD0Þa;cμν ðPÞ ¼ 0 is imposed, the diagonal

gluon propagators can be uniquely determined which are
identical to those in Eq. (15).
Although the exact form of the gluon propagator for

diagonal gluons cannot be specified without extra constraint,
one can still draw a conclusion based on the above
obtained results. Like the inverse bare gluon propagator,
ðD0Þab;cdμν ðPabÞ is also symmetric when we flip the
Lorentz and/or color indices; namely, ðD0Þab;cdμν ðPabÞ ¼
ðD0Þdc;baνμ ðPdcÞ. As a consequence,

P
σ;efðD−1

0 Þab;efμσ ·

ðD0Þfe;cdσν ¼ δμνPab;cd will automatically lead toP
σ;efðD0Þab;efμσ · ðD−1

0 Þfe;cdσν ¼ δμνPab;cd and vice versa.
On the other hand, the ambiguity of the bare gluon

propagator ðD0Þa;cμν ðPÞ does not turn out to be a real
problem. Generally speaking, not the individual

2In this case, the propagator is proportional to δAB, where A
and B refer to adjoint indices running from 1 to N2 − 1 for
SUðNÞ.
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components of the propagator but some proper combinations of them are of practical interest. For example, the quantityP
abcd Pab;cdD

ab;cd
μν ðPabÞ is the one we are interested in, which will be studied in Sec. VI. With the above results, we can

show that

X
abcd

Pab;cdðD0Þab;cdμν ðPabÞ ¼
X
ab

ðD0Þab;baμν ðPabÞ − 1

N

X
ac

ðD0Þaa;ccμν ðPÞ

¼
X
ab

0ðD0Þab;baμν ðPabÞ − 1

N

X
ac

0ðD0Þaa;ccμν ðPÞ þ
�
1 −

1

N

�X
a

ðD0Þaa;aaμν ðPÞ

¼
X
ab

0ðD0Þab;baμν ðPabÞ þ ðN − 1Þ
�
δμν − ð1 − ξÞPμPν

P2

�
1

P2
: ð30Þ

In the above equation, we have used Eqs. (25) and (27). ðD0Þab;baμν ðPabÞ for a ≠ b can be found in Eq. (19), and
P0

indicates
terms with a ¼ b are excluded. The previous ambiguity does not show up after summing over the color indices. In Eq. (30),
contributions from the diagonal gluons do not affected by the background field, while for the off-diagonal gluons there is a
simple shift in the energies, i.e., p0 → pab

0 . For a vanishing background field, the above result reduces to the following
expected form:

X
abcd

Pab;cdðD0Þab;cdμν ðPÞ ¼ ðN2 − 1Þ
�
δμν − ð1 − ξÞPμPν

P2

�
1

P2
: ð31Þ

Finally, we mention that the bare ghost propagator shares similar properties as the gluon propagator. The corresponding
discussion can be carried out by using exactly the same method as above.

IV. THE GLUON SELF-ENERGY AT NONZERO
HOLONOMY

In this work, we are interested in the resummed gluon
propagators D̃ab;cd

μν ðPabÞ which are expected to provide
information on the screening effects induced by the
light partons in a holonomous plasma. Given the dis-
cussions on bare propagators in Sec. III, one may naturally
conjecture that the individual components of the
resummed gluon propagators for diagonal gluons
cannot be uniquely determined; however, the ambiguity
would be absent in some special combinations, such asP

abcd Pab;cdD̃
ab;cd
μν ðPabÞ. In addition, how the resummed

gluon propagator in the perturbative QGP would be
modified by the background field Acl

0 in a holonomous
plasma is obviously another interesting question that
needs to be addressed.

The above issues can be clarified by computing the
resummed gluon propagator D̃ab;cd

μν ðPabÞ based on the
Dyson-Schwinger equation where the holonomous gluon
self-energy Πab;cd

μν ðPabÞ needs to be inserted. Within the
perturbation theory, the leading-order Πab;cd

μν ðPabÞ has been
calculated in Ref. [28] within HTL approximation, where
Eq. (15) was used for the bare propagators. In principle, one
can chooseother possible forms for the diagonal propagators;
however, the obtained gluon self-energy does not depend on
any specific choice. This is easy to see by considering the
bare propagator and its associated structure constant
fab;cd;ef ¼ iðδadδcfδeb − δafδcbδedÞ= ffiffiffi

2
p

. For the contribu-
tion from the gluon-loop diagram, we have the color
summation

P
ab f

ef;gh;abDab;cd
μν ðPabÞ for each bare gluon

propagator. Here, only diagonal components matter; there-
fore, we need to show

X
a

fef;gh;aaðD0Þa;cμν ðPÞ ¼ fef;gh;ccðD0Þc;cμν ðPÞ þ
X
a≠c

fef;gh;aaðD0Þa;cμν ðPÞ

¼
�
δμν − ð1 − ξÞPμPν

P2

�
1

P2
fef;gh;cc þ

X
a

fef;gh;aaðD0Þd;cμν ðPÞ

¼
�
δμν − ð1 − ξÞPμPν

P2

�
1

P2
fef;gh;cc: ð32Þ
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In the above equation, all the color indices excepta are fixed and c ≠ d applies. In the second line of this equation,wehave used
the relation given in Eq. (29). Clearly, there is no ambiguity appearing after summing over the color indices. The same analysis
also applies to the ghost-loop diagram. In addition, such an issue does not show up in the bare quark propagator; therefore, the
perturbative gluon self-energy has been uniquely determined, although a specified form of the gluon and ghost bare propagator
was used in Ref. [28].
For completeness, we also list the explicit result of the HTL gluon self-energy in a constant background field which

reads3

Πab;cd
pert;μνðPabÞ ¼ ðKab;cdðqÞ þ ðm2

glÞab;cdðqÞÞðΠTðPabÞAμνðPabÞ þ ΠLðPabÞBμνðPabÞÞ −Kab;cdðqÞMμMν; ð33Þ

where

Kab;cdðqÞ ¼ −
4π

3

g2T3

pab
0

δadδbc
XN
e¼1

ðB3ðqaeÞ þ B3ðqebÞÞ ð34Þ

and

ðm2
glÞab;cdðqÞ ¼ g2T2

�
δadδbc

XN
e¼1

ðB2ðqaeÞ þ B2ðqebÞÞ − 2δabδcdB2ðqacÞ
�
: ð35Þ

In the above equations, qab ≡ qa − qb and qa ¼ Qa=ð2πTÞ. In addition, we also use q to denote any arbitrary qa for
a ¼ 1; 2;…; N. The Bernoulli polynomials BnðxÞ are periodic functions of x, with period 1. For 0 ≤ x ≤ 1, the first four
Bernoulli polynomials as relevant in the present work take the following forms:

B1ðxÞ ¼ x −
1

2
; B2ðxÞ ¼ x2 − xþ 1

6
; B3ðxÞ ¼ x3 −

3

2
x2 þ 1

2
x; B4ðxÞ ¼ x4 − 2x3 þ x2 −

1

30
: ð36Þ

For arbitrary values of x, the argument of the Bernoulli polynomials should be understood as x − ½x� with [x] the largest
integer less than x, which is nothing but the modulo function.
For convenience, the gluon self-energy in Eq. (33) has been expressed in terms of the mutually orthogonal projection

operators, which are defined as

AμνðPabÞ ¼ δμν −
Pab
μ Pab

ν

ðPabÞ2 −
M̃ab

μ M̃ab
ν

ðM̃abÞ2 ;

BμνðPabÞ ¼ ðPabÞ2
ðM · PabÞ2

M̃ab
μ M̃ab

ν

ðM̃abÞ2 : ð37Þ

Here, Mμ is the heat-bath vector, which in the local rest frame is given by Mμ ¼ ð1; 0; 0; 0Þ, and

M̃ab
μ ¼ Mμ −

M · Pab

ðPabÞ2 Pab
μ ð38Þ

is the part that is orthogonal to Pab
μ . In addition, the two structure functionsΠTðPabÞ andΠLðPabÞ take similar forms as their

counterparts in Acl
0 ¼ 0:

3In Ref. [28], contributions from fermions are also obtained. We drop the fermionic terms for simplicity.
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ΠTðPabÞ ¼ ðipab
0 Þ2

2p2

�
1 −

ðipab
0 Þ2 − p2

2ipab
0 p

ln
ipab

0 þ p
ipab

0 − p

�
;

ΠLðPabÞ ¼ ðipab
0 Þ2
p2

�
ipab

0

2p
ln
ipab

0 þ p
ipab

0 − p
− 1

�
; ð39Þ

where p ¼ jpj.
For vanishing background field, the new hard thermal loop Kab;cd does not contribute, while Eq. (35) becomes the

perturbative Debye mass square m2
D ¼ Ng2T2=3 times the projection operator Pab;cd. As a result, the gluon self-energy

reduces to the following well-known result4:

Πab;cd
pert;μνðP; q ¼ 0Þ ¼ m2

D½ΠTðPÞAμνðPÞ þ ΠLðPÞBμνðPÞ�Pab;cd: ð40Þ

Although having the expected form at vanishing holonomy, the holonomous gluon self-energy as given in Eq. (33) is not
transverse,Pab

μ Πab;cd
pert;μνðPabÞ ¼ −pab

0 Kab;cdðqÞMν. On the other hand, as discussed inRef. [29], gauge-invariant sources,which
are nonlinear in the gauge potentialA0, generate a novel constrained contribution∼Kab;cdðqÞMμMν to the gluon self-energy at
one-loop order in the perturbation theory. It exactly cancels the last term in Eq. (33), and the total gluon self-energy
Πab;cd

cons;μνðPabÞ remains transverse:

Πab;cd
cons;μνðPabÞ ¼ ðKab;cdðqÞ þ ðm2

glÞab;cdðqÞÞðΠTðPabÞAμνðPabÞ þ ΠLðPabÞBμνðPabÞÞ: ð41Þ

However, for any gauge-invariant source, there is an unex-
pected discontinuity in the free energy appearing at the
order of ∼g3 as the holonomy vanishes. For details, see
Refs. [29,32].
It turns out that both the nontransversality and disconti-

nuity as mentioned above are related to the anomalous term
∼Kab;cdðqÞ involving the third Bernoulli polynomial B3ðqÞ
in the holonomous gluon self-energy. Adding the constraint
contribution leads to only a partial cancellation of
Kab;cdðqÞ. Another issue arising here is the nonvanishing
expectation value of the holonomous color current, which
indicates that an extra term should be included in the action
to ensure a vanishing result. As discussed in Ref. [30],
embedding two-dimensional ghosts isotropically into four

dimensions, a new contribution proportional to the second
Bernoulli polynomial B2ðqÞ appears in the effective poten-
tial which modifies the equations of motion and leads to a
nonzero holonomy q ∼ C=T2 at high temperature. Here, the
cutoff scale C has dimensions of mass square and corre-
sponds to the upper limit of the transverse momentum k2⊥ of
the embedded fields. In such an effective theory, the
holonomous color current vanishes as expected, because
the contribution from two-dimensional ghosts exactly
cancels that from perturbative theory. Furthermore, the
free energy to ∼g3 becomes continuous due to the absence
of the anomalous term Kab;cdðqÞ in the holonomous gluons
self-energy, which finally takes the following simple
form:

Πab;cd
eff;μνðPabÞ ¼

�
ðm2

glÞab;cdðqÞ þ g2C
N
4π2

Pab;cd

�
ðΠTðPabÞAμνðPabÞ þ ΠLðPabÞBμνðPabÞÞ: ð42Þ

Since the two projection operators AμνðPabÞ and BμνðPabÞ
are both orthogonal to Pab

μ , the gluon self-energy from the
effective theory is also transverse.
Finally, it is worth to note that the above gluon self-

energies are all symmetric under the exchange of the
Lorentz indices μ ↔ ν as well as the color indices a ↔
d and b ↔ c.

V. THE RESUMMED GLUON PROPAGATOR IN A
CONSTANT BACKGROUND FIELD

Given the above result for the gluon self-energies, the
resummed gluon propagator D̃ab;cd

μν ðPabÞ can be determined
with theDyson-Schwinger equation. In the following,weuse
thegluon self-energy in the effective theoryΠab;cd

eff;μνðPabÞ as an
example to illustrate the calculation. Technically, there is not
anything new in our computation when replacing
Πab;cd

eff;μνðPabÞ with Πab;cd
cons;μνðPabÞ or Πab;cd

pert;μνðPabÞ.
In covariant gauge, the inverse propagator can be

formally written as

4Like the bare gluon propagator, if the standard choice for the
generators is used, we will have δAB instead of Pab;cd in Eq. (40).
In this case, the gluon self-energy is a diagonal matrix in color
space with equal nonzero elements.
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ðD̃−1Þab;cdμν ðPabÞ ¼
�
ðPabÞ2δμν − Pab

μ Pab
ν

�
1 −

1

ξ

��
Pab;cd þ Πab;cd

μν ðPabÞ

≡Aab;cdAμνðPabÞ þ Bab;cdBμνðPabÞ þ Cab;cdPab
μ Pab

ν ; ð43Þ

where

Aab;cd ¼ δadδbc½ðPabÞ2 þ FTðqa; qb; PabÞ� þ δabδcd
�
−
1

N
P2 þ GTðqa; qc; PÞ

�
;

Bab;cd ¼ δadδbc½ðpab
0 Þ2 þ FLðqa; qb; PabÞ� þ δabδcd

�
−
1

N
p2
0 þ GLðqa; qc; PÞ

�
;

Cab;cd ¼ δadδbc
1

ξ
− δabδcd

1

Nξ
: ð44Þ

In the above equation, the modified structure functions are defined by

FT=Lðqa; qb; PabÞ ¼ g2ΠT=LðPabÞ
�
T2

X
e

ðB2ðqaeÞ þ B2ðqebÞÞ þ CN=ð4π2Þ
�
;

GT=Lðqa; qc; PÞ ¼ −g2ΠT=LðPÞ½2T2B2ðqacÞ þ C=ð4π2Þ�: ð45Þ

Because of the transversality of the gluon self-energy, the Lorentz structure of the resummed propagators is a trivial
generalization of that in Acl

0 ¼ 0, where three projection operators AμνðPabÞ, BμνðPabÞ, and Pab
μ Pab

ν are all orthogonal to
each other. In addition, due to the symmetries of Πab;cd

μν ðPabÞ, the inverse propagator ðD̃−1Þab;cdμν ðPabÞ is also invariant under
the following exchanges of indices: μ ↔ ν, a ↔ d, and b ↔ c. Using the fact that

P
c GT=Lðqa; qc; PÞ ¼

−FT=Lðqa; qa; PÞ, we find
P

c A
ab;cc ¼ P

cA
cc;ab ¼ 0, and the same relation holds for Bab;cd and Cab;cd. Therefore,

one can easily show the following identities:X
c

ðD̃−1Þab;ccμν ðPÞ ¼
X
c

ðD̃−1Þcc;abμν ðPÞ ¼ 0: ð46Þ

Equation (46) is essential, which ensures the resummed gluon propagators share the very similar properties as the bare ones.
As a result, the corresponding discussions in Sec. III can be generalized to the resummed solutions straightforwardly. In
general, the resummed gluon propagator can be written as

D̃ab;cd
μν ðPabÞ ¼ Xab;cdAμνðPabÞ þ Yab;cdBμνðPabÞ þ Zab;cdPab

μ Pab
ν : ð47Þ

In the rest of this section, the calculations of D̃ab;cd
μν ðPabÞ for diagonal and off-diagonal gluons will be carried out separately.

A. Resummed propagators for off-diagonal gluons

For off-diagonal gluons, the color structure in D̃ab;cd
μν ðPabÞ with a ≠ b turns out to be simple, which is similar to that in

Eq. (17). From the basic definition,

X
ef;σ

ðD̃−1Þab;efμσ ðPabÞD̃fe;cd
σν ðPfeÞ ¼a≠b

X
σ

ðD̃−1Þab;baμσ ðPabÞD̃ab;cd
σν ðPabÞ ¼ Pab;cdδμν ¼a≠bδadδbcδμν; ð48Þ

we can get

Xab;cd½ðPabÞ2 þ FTðqa; qb; PabÞ�AμνðPabÞ þ 1

ξ
Zab;cdPab

μ Pab
ν

þ ½ðpab
0 Þ2 þ FLðqa; qb; PabÞ� ðP

abÞ2
ðpab

0 Þ2 Y
ab;cdBμνðPabÞ ¼a≠bδadδbcδμν: ð49Þ
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It follows that the coefficient of δμν should equal δadδbc while the coefficients of the other tensor structures in Lorentz space,
for example, of MμMν, MμPab

ν , and Pab
μ Pab

ν , should vanish. Therefore, we arrive at the following result:

D̃ab;cd
μν ðPabÞ ¼a≠bδadδbc

�
1

ðPabÞ2 þ FTðqa; qb; PabÞAμνðPabÞ þ ðpab
0 Þ4=ðPabÞ4

ðpab
0 Þ2 þ FLðqa; qb; PabÞBμνðPabÞ þ ξ

ðPabÞ4 P
ab
μ Pab

ν

�
: ð50Þ

The above expression is symmetric under the exchanges of Lorentz and color indices, μ ↔ ν, a ↔ d, and b ↔ c;
therefore, the following two matrices are commutable as required, namely,X

ef;σ

ðD̃−1Þab;efμσ ðPabÞD̃fe;cd
σν ðPfeÞ ¼a≠b

X
ef;σ

D̃ab;ef
μσ ðPabÞðD̃−1Þfe;cdσν ðPfeÞ: ð51Þ

In the presence of a nonzero background field, Eq. (50) can be considered as a natural extension of the resummed propagator
in the perturbative QGP [33], because they are structurally similar. As for the corrections from the background field, beside the
shift in the energies, i.e., p0 → pab

0 , there are also modifications on the structure functions as given in Eq. (45).
Obviously, when the holonomous gluon self-energy Πab;cd

cons;μνðPabÞ is used, the resummed gluon propagator has the same
expression as Eq. (50), where the modified structure function FT=Lðqa; qb; PabÞ is now given by Eq. (A2). On the other

hand, due to the loss of the transversality, the corresponding calculation with Πab;cd
pert;μνðPabÞ turns to be relatively involved.

We present the corresponding results in Appendix A.

B. Resummed propagators for diagonal gluons

The resummed propagators for diagonal gluons behave quite differently from the off-diagonal ones due to the much more
complicated color structure. By definition, the diagonal components of the resummed propagator satisfyX

e;σ

ðD̃−1Þa;eμσ ðPÞD̃e;c
σν ðPÞ ¼ Pa;cδμν: ð52Þ

Taking into account the relation given in Eq. (46), the basic method for performing this computation is indeed very
similar to what we have done for the bare propagators. For a given c, we drop one equation with a ¼ c, and the other N − 1
independent equations correspond to a ¼ 1;…; c − 1; cþ 1;…; N can be written as

X
e

Aa;eXe;c ¼ Aa;aðXa;c − Xc;cÞ þ
X
e≠a;c

Aa;eðXe;c − Xc;cÞ ¼ −
1

N
; ð53Þ

where the term Aa;cXc;c has been rewritten as −
P

e≠c A
a;eX c;c. Unlike the coefficient matrix in Eq. (23), which is

independent on the background field, with the insertion of the gluon self-energy contribution, we cannot find a simple
expression for the corresponding determinant for general SUðNÞ. In general, the N2 − N unknowns Xa;c − Xc;c in Eq. (53)
are not equal although uniquely determinable by using the Cramer’s rule.5 Equations for Ya;c − Yc;c and Za;c − Zc;c (c is
fixed and a ≠ c) can be obtained in a similar way as

Ba;aðYa;c − Yc;cÞ þ
X
e≠a;c

Ba;eðYe;c − Yc;cÞ ¼ −
1

N
p4
0

P4
; ð54Þ

�
1 −

1

N

�
ðZa;c − Zc;cÞ −

X
e≠a;c

1

N
ðZe;c − Zc;cÞ ¼ −

ξ

N
1

P4
: ð55Þ

Notice that the equations for Za;c − Zc;c have no dependence on the background field which are identical to Eq. (24)
for Za;c

0 − Zc;c
0 .

To proceed further, we also consider X
e;σ

D̃a;e
μσ ðPÞðD̃−1Þe;cσν ðPÞ ¼ Pa;cδμν; ð56Þ

5Here, we need to make an assumption that the determinant of the coefficient matrix is nonzero.
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which leads to the following equation for Xa;c − Xa;a:

Ac;cðXa;c − Xa;aÞ þ
X
e≠a;c

Ae;cðXa;e − Xa;aÞ ¼ −
1

N
: ð57Þ

ComparingwithEq. (53) and using the fact thatAa;b ¼ Ab;a,
one can showXa;b ¼ Xb;a. Similarly,Ya;b is also unchanged
when we flip the color indices: Ya;b ¼ Yb;a.
According to Eq. (56), Za;c − Za;a also satisfies the

same equations as the bare ones. Together with Eq. (55), we
arrive at

Zc;a ¼ Za;c ¼ Za;a −
ξ

P4
¼ Zc;c −

ξ

P4
ða ≠ cÞ: ð58Þ

On the other hand, for general N, explicit solutions for
Eqs. (53) and (54) cannot be obtained, although they are
formally solvable. The reason is that calculating determi-
nants of the ðN − 1Þ × ðN − 1Þ matrices turns to be very

hard due to the nontrivial dependence on the background
field. One thing to note is that Eq. (58) indicates Za;a ¼
Zc;c for a ≠ c. However, Xa;a − Xc;c and Ya;a − Yc;c, in
general, depend on the background field and vanish only
when q → 0.
In order to demonstrate the above method in a more

explicit way, we take SUð3Þ as an example to calculate the
resummed propagators for diagonal gluons in Appendix B.
Besides D̃a;c

μν − D̃c;c
μν , the results for individual components

D̃a;c
μν , which could be useful in other related studies, are also

obtained under an extra constraint
P

e D̃
e;c
μν ðPÞ ¼ 0. The

generalization to arbitrary N is, in principle, straightfor-
ward; however, as just mentioned, computation of the
determinants of large matrices will be the major obstacle.
Multiplied by the projection operator, the color summa-

tion
P

abcd P
ab;cdD̃ab;cd

μν ðPabÞ is a quantity of particular
interest which can also be uniquely determined by follow-
ing a similar discussion as the bare ones:

X
abcd

Pab;cdD̃ab;cd
μν ðPabÞ ¼

X
ab

0D̃ab;ba
μν ðPabÞ − 1

N

�X
ac

0D̃a;c
μν ðPÞ − ðN − 1Þ

X
a

D̃a;a
μν ðPÞ

�

¼
X
ab

0D̃ab;ba
μν ðPabÞ − 1

N

�
2
X
a>c

D̃a;c
μν ðPÞ − ðN − 1Þ

X
a

D̃a;a
μν ðPÞ

�

¼
X
ab

0D̃ab;ba
μν ðPabÞ − 1

N

X
a>c

½D̃a;c
μν ðPÞ þ D̃c;a

μν ðPÞ − D̃a;a
μν ðPÞ − D̃c;c

μν ðPÞ�: ð59Þ

In the above equation, terms containing off-diagonal components can be determined by Eq. (50). In addition, contributions
from other terms with diagonal components can be expressed as

X
a;b

Pa;bD̃a;b
μν ðPÞ ¼ −

1

N

X
a>b

½D̃a;b
μν ðPÞ þ D̃b;a

μν ðPÞ − D̃a;a
μν ðPÞ − D̃b;b

μν ðPÞ�

¼ ðN − 1Þ ξ

P4
PμPν þ

1

P̃2

P
N−2
k¼0 ð6NÞkð 1

1þβÞkð1 − P2

P̃2ÞkðN − k − 1ÞS̃kP
N−1
k¼0 ð6NÞkð 1

1þβÞkð1 − P2

P̃2ÞkS̃k
AμνðPÞ

þ ðp0Þ4=P4

p̃2
0

P
N−2
k¼0 ð6NÞkð 1

1þβÞkð1 −
p2
0

p̃2
0

ÞkðN − k − 1ÞS̃kP
N−1
k¼0 ð6NÞkð 1

1þβÞkð1 −
p2
0

p̃2
0

ÞkS̃k
BμνðPÞ; ð60Þ

where

P̃2 ¼ P2 þ N
3
g2T̃2ΠTðPÞ and p̃0

2 ¼ p2
0 þ

N
3
g2T̃2ΠLðPÞ; ð61Þ

with T̃2 ¼ T2ð1þ βÞ and β≡ 3C=ð4π2T2Þ. In the above equation, the summation of a series of determinants is defined as

S̃k ¼
X
afkg

											

Ãa1;a1 Ãa1;a2 � � � Ãa1;ak

Ãa2;a1 Ãa2;a2 � � � Ãa2;ak

..

. ..
. . .

. ..
.

Ãak;a1 Ãak;a2 � � � Ãak;ak

											
; ð62Þ
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with

Ãa;b ¼
X
e

B̂2ðqaeÞδab − B̂2ðqabÞð1 − δabÞ;

B̂2ðqabÞ ¼ B2ðqabÞ −
1

6
: ð63Þ

In addition, the shorthand notation afkg denotes a set of
indices a1; a2;…; ak which run from 1 to N and satisfy
a1 < a2 < � � � < ak. Details about the derivation of
Eq. (60) can be found in Appendix C.
We emphasize that Eq. (60) presents only a formal

solution for the diagonal contributions which have rather
complicated dependences on the background field.
However, the virtue of Eq. (60) lies in the fact that all
the q dependences have been cast into the determinants
which vanish in the limit q → 0. For a given k, there are Ck

N

(the binomial coefficient) terms in the summation S̃k and
complications will dramatically increase when N is getting
larger and larger.

An alternative way to present the background field effect
is to introduce a new set of variables λi with
i ¼ 1; 2;…; N − 1. These variables have a nontrivial
dependence on the determinant summations S̃k which is
given by the following equations:

X
afkg

λa1λa2…λak ¼ S̃k; k ¼ 1; 2;…; N − 1; ð64Þ

where afkg follows the same definition as before except that
the indices a1; a2;…; ak run from 1 to N − 1 in Eq. (64).
Recall that the elements of the real symmetric matrices
involved in S̃k satisfy

P
e Ã

e;c ¼ 0; it can be proved that S̃k
is positive when k is even, and it becomes negative for odd
k. Consequently, one can straightforwardly show that these
new variables λi < 0 for i ¼ 1; 2;…; N − 1.
In terms of λi, a more compact form of

P
a;b P

a;bD̃a;b
μν ðPÞ

can be found as

X
a;b

Pa;bD̃a;b
μν ðPÞ ¼

XN−1

i¼1

�
1

P2 þ N
3
g2T̃2ΠTðPÞð1þ 6

Nð1þβÞ λiÞ
AμνðPÞ þ

ðp0Þ4=P4

p2
0 þ N

3
g2T̃2ΠLðPÞð1þ 6

Nð1þβÞ λiÞ
BμνðPÞ þ

ξ

P4
PμPν

�
:

ð65Þ

Such an expression is certainly more significant, because it can be considered as an analog to the resummed propagator in
the perturbative QGP with vanishing holonomy where λi ¼ 0. Equation (65) also indicates that nonzero background field
modifies the transverse gluon self-energy ΠTðPÞ as well as the longitudinal part ΠLðPÞ in the same manner.
In principle,

P
a;b P

a;bD̃a;b
μν ðPÞ depends on all the diagonal propagators D̃a;b

μν ðPÞ. However, it is interesting to point out
that this color summation can be simply expressed in terms of D̃a;a

μν ðPÞ if the special constraint
P

e D̃
e;a
μν ðPÞ ¼ 0 with

a ¼ 1; 2;…; N is adopted. For general SUðNÞ, it can be shown that

X
a;b

Pa;bD̃a;b
μν ðPÞ ¼

�
−
1

N

�X
a;b

0D̃a;b
μν ðPÞ þ

�
1 −

1

N

�X
a

D̃a;a
μν ðPÞ ¼

X
a

D̃a;a
μν ðPÞ: ð66Þ

For the diagonal components, the nontransverse term
∼MμMν in Πab;cd

pert;μνðPabÞ vanishes, because B3ðxÞ is odd.

Therefore, the resummed gluon propagator D̃a;b
μν ðPÞ

obtained from Πab;cd
pert;μνðPabÞ is the same as that from

Πab;cd
cons;μνðPabÞ. The corresponding calculation can be carried

out in exactly the same way as above, and the explicit result
is identical to Eq. (60) or (65), where one needs only to set
the cutoff scale C to be zero, namely, β ¼ 0 and T̃2 ¼ T2.

VI. THE SCREENING EFFECT IN A
HOLONOMOUS PLASMA

As a direct application of the obtained results, the
resummed gluon propagator obtained in imaginary time
can be analytically continued to Minkowski time with

ipab
0 → ω. We are interested in the static limit ω → 0,

which provides information about the screening effect in a
holonomous plasma. A similar problem for the SUð2Þ
gauge theory has been discussed in Ref. [34], where special
attention was paid on the nonperturbative infrared dynam-
ics which is parameterized by a gluon mass originated from
the Gribov ambiguity [35]. In this work, emphasis is placed
on the modifications resulting from a nonzero holonomy on
the in-medium screening effect. Therefore, the following
discussions are based on the effective theory with two-
dimensional ghosts where a nonzero holonomy can be
generated dynamically through the equation of motion.
The definition of the real-time heavy-quark (HQ) poten-

tial through the Fourier transform of D̃ab;cd
00 ðω → 0Þ can be

formulated as the following [36]:
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VQQðrÞ ¼
ðigγ0Þ2

N

X
colors

Z
d3p
ð2πÞ3 e

ip·rðtabÞefD̃ab;cd
00 ðω → 0ÞðtcdÞfe

¼ −
g2

2N

X
colors

Z
d3p
ð2πÞ3 e

ip·rPab;cdD̃ab;cd
00 ðω → 0Þ; ð67Þ

where the quark-gluon vertex reads igγμðtcdÞab in the double-line basis and TrðtabtcdÞ ¼ 1
2
Pab;cd. In addition, all the color

indices should be summed, and an extra N in the denominator denotes the color average of the heavy quarks. Equation (67)
also indicates that

P
abcd P

ab;cdD̃ab;cd
00 ðPÞ is actually the quantity in question which, as already shown, can be uniquely

determined without any extra constraint.
As a simple example, we first look at the static limit of the bare gluon propagator which is given by

ðD0Þab;cd00 ðω → 0Þ ¼ Pab;cd=p2. Notice that ðD0Þab;cd00 ðω;pÞ has no q dependence after analytically continued to real
time. Using the identity

P
abcd P

ab;cdPab;cd ¼ N2 − 1, Eq. (67) leads to a Coulomb potential −αsCF=r with αs ¼ g2=ð4πÞ
and CF ¼ ðN2 − 1Þ=ð2NÞ.
Another example is to consider the static limit of the resummed gluon propagator D̃ab;cd

00 ðω → 0Þ at extremely high
temperature where the background field q → 0. Using Eq. (50), it can be shown that the N2 − N off-diagonal gluons
contribute equally, and we get the following familiar form:

X
ab

0D̃ab;ba
μν ðP; q → 0Þ ¼ ðN2 − NÞ

�
1

P2 þ N
3
g2T2ΠTðPÞ

AμνðPÞ þ
ðp0Þ4=P4

p2
0 þ N

3
g2T2ΠLðPÞ

BμνðPÞ þ
ξ

P4
PμPν

�
: ð68Þ

For the diagonal gluons, since both λi vanish as q → 0, Eq. (65) reduces to a very simple form as

X
a;b

Pa;bD̃a;b
μν ðP; q → 0Þ ¼ ðN − 1Þ

�
1

P2 þ N
3
g2T2ΠTðPÞ

AμνðPÞ þ
ðp0Þ4=P4

p2
0 þ N

3
g2T2ΠLðPÞ

BμνðPÞ þ
ξ

P4
PμPν

�
: ð69Þ

In principle, the contribution from two-dimensional ghosts in the effective theory can be neglected in the high-temperature
limit T ≫

ffiffiffiffi
C

p
, where the variable β ¼ 3C=ð4π2T2Þ is negligible. Therefore, T̃2 in Eqs. (68) and (69) has been replaced by

T2 for consistency.
As expected, the result of

P
abcd P

ab;cdD̃ab;cd
μν ðP; q → 0Þ computed in the double-line basis is identical to that obtained by

using the standard generators of SUðNÞ where the N2 − 1 gluons give equal contributions. Analytically continuing to
Minkowski time with ip0 → ω and taking the limit ω → 0, we find that

X
abcd

Pab;cdD̃ab;cd
00 ðω → 0; q → 0Þ ¼ ðN2 − 1Þ 1

p2 þm2
D
: ð70Þ

Therefore, the Fourier transform in Eq. (67) gives the well-known Debye screened potential −αsCFe−rmD=r in the
perturbative QGP.
It turns out that the interaction between the heavy quark and antiquark is not affected by the presence of the holonomy at

tree level. On the other hand, the resummed gluon propagator has a nontrivial dependence on the background field;
accordingly, one can expect that the Debye screening in the perturbative QGP would be modified when the nonzero
holonomy is taken into account.

A. Screening effect from diagonal gluons

According to Eq. (65), the static limit of
P

a;b P
a;bD̃a;b

00 can be expressed as

X
a;b

Pa;bD̃a;b
00 ðω → 0Þ ¼

XN−1

i¼1

1

p2 þ ðMðiÞ
D Þ2

≡XN−1

i¼1

1

p2 þ m̃2
Dð1þ 6

Nð1þβÞ λiÞ
; ð71Þ

with m̃2
D ≡ Ng2T̃2=3. As we can see, contributions from each diagonal gluon are inversely proportional to p2 plus a

q-modified mass square; therefore, the N − 1 diagonal gluons become distinguishable by the associated screening masses

MðiÞ
D with i ¼ 1; 2;…; N − 1. We start by considering SUð2Þ gauge theory and parameterizing the diagonal color matrix
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Acl
0 as q1 ¼ −q2 ¼ s=4. Because of the periodicity of

Bernoulli polynomials, S̃k actually depends on a set of
variables Δqij defined as Δqij ≡ jqij − nijj, where nij is an
integer that is closest to the value of qij. Without losing any
generality, one can assume 0 ≤ s ≤ 1, and it is easy to
compute S̃1, which can be expressed as S̃1 ¼ s2=2 − s. As a
result, the explicit form of Eq. (71) for SUð2Þ reads

X
a;b

Pa;bD̃a;b
00 ðω → 0Þ ¼ 1

p2 þ ðMð1Þ
D Þ2

; ð72Þ

where the modified screening mass Mð1Þ
D is given by

Mð1Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 3s2=2 − 3s

q
: ð73Þ

Nonzero holonomy results in corrections on the Debye
screening effect in the thermal medium which can be
described by the ratio between the modified screening mass
MD in a holonomous plasma and the Debye screening
mass mD in the perturbative QGP. It is clear from the above
equation that this ratio depends on both the background
field s and the parameter β ¼ 3C=ð4π2T2Þ. However, these
two variables s and β are not independent; their relation can
be obtained from the equations of motion in the effective
theory. For general SUðNÞ, the total effective potential in
the holonomous plasma is given by [30]

VðqÞ ¼
XN
a;b¼1

Pab
ab

�
2π2T4

3
B4ðjqabjÞ þ

CT2

2
B2ðjqabjÞ

�
;

ð74Þ

which leads to the following equations of motion:

XN
b¼1

sgnðqabÞ
�
8π2T2

3
B3ðjqabjÞ þ CB1ðjqabjÞ

�
¼ 0: ð75Þ

Notice that we will simply adopt a constant parameter C in
the following discussions. For quantitatively more reliable
results, a refined confining potential should be employed
where the parameter C could become T dependent. The
same purpose can be achieved by including the effects of
wave function renormalizations in the gluons and ghost
propagators [37–39].
For SUð2Þ, the background field s in the deconfined

phase is given by s ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p Þ, while at low temper-
atures s ¼ 1 corresponds to the confining vacuum. By
requiring that the phase transition occurs at Td when
Vðs¼ 1Þ¼Vðs¼ð1− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2βðT ¼TdÞ
p ÞÞ, we can deter-

mine the cutoff C ¼ 2π2T2
d=3, which indicates β ≤ 1=2 for

T ≥ Td. Therefore, the ratio MD=mD takes the following
simple form:

Mð1Þ
D =mD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

d=T
2

q
: ð76Þ

Performing the Fourier transform, Eq. (72) also leads to a
Debye screened potential in the deconfined phase.
According to Eq. (76), the screening effect is reduced in
a holonomous plasma. In the high-temperature limit, the
nonperturbative contribution ∼C in the effective theory can

be neglected, and Mð1Þ
D becomes identical to the perturba-

tive mD. In addition, when the temperature approaches to
Td from above, i.e., T → Tþ

d , the modified screening mass

Mð1Þ
D drops to zero smoothly and a vacuum Coulomb

potential arises at the deconfinement temperature. Because
the background field s ¼ 1 in the confining vacuum, when
T approaches to Td from below, i.e., T → T−

d , we also find
a vanishing screening mass for the diagonal gluon accord-

ing to Eq. (73), where β ¼ 1=2. Therefore, Mð1Þ
D is

continuous at the critical point, in accord with the fact
that the phase transition is second order for SUð2Þ.
Next, we consider the screening effect for SUð3Þ where

we have more than one diagonal gluon. In general, we
parameterize the diagonal color matrix Acl

0 as q1 ¼ −q3 ¼
s=3 and q2 ¼ 0, which actually corresponds to a real-
valued Polyakov loop. Similarly as before, one assumes
0 ≤ s ≤ 1, and the explicit results of S̃1 and S̃2 are given,
respectively, by

S̃1 ¼
4

3
sðs − 2Þ; S̃2 ¼

1

9
s2ð3s2 − 14sþ 15Þ: ð77Þ

Solving Eq. (64) for λ1 and λ2, we find λ1 ¼ s2=3 − s and
λ2 ¼ s2 − 5s=3. Therefore, Eq. (71) can be written as

X
a;b

Pa;bD̃a;b
00 ðω → 0Þ ¼ 1

p2 þ ðMð1Þ
D Þ2

þ 1

p2 þ ðMð2Þ
D Þ2

;

ð78Þ

with

Mð1Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 2s2=3 − 2s

q
and

Mð2Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 2s2 − 10s=3

q
: ð79Þ

As we can see, the two diagonal gluons can be distin-
guished by their screening masses in a holonomous plasma.
According to the equations of motion, the background field
in the deconfined phase is given by s ¼ ð3 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 24β
p Þ=4.

Furthermore, that the first-order phase transition happens at
the deconfinement temperature determines the value of the
cutoff C ¼ 40π2T2

d=81, which indicates β equals 10=27
when T ¼ Td. Then, it is straightforward to show the
following ratio between the modified screening mass and
the perturbative mD:
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Mð1Þ
D =mD ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 80T2

d=ð9T2Þ
qr

and

Mð2Þ
D =mD ¼

ffiffiffi
3

p

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 80T2

d=ð9T2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 80T2

d=ð9T2Þ
qr

:

ð80Þ

In the deconfined phase, Mð1Þ
D is always larger than

Mð2Þ
D , and they become identical to mD only in the limit

T → ∞. Equation (80) also shows that both of the modified
screening masses are smaller than the perturbative Debye
mass mD; thus, a reduced screening effect can be expected
in a holonomous plasma. However, at the deconfinement
temperature, neither of modified screening masses van-
ishes, which is different from the behavior found in SUð2Þ.
In fact, we findMð1Þ

D =mD ¼ ffiffiffi
3

p
=3 andMð2Þ

D =mD ¼ ffiffiffi
3

p
=9

when T → Tþ
d . Therefore, a Debye screened potential

persists in the deconfined phase, and no vacuum
Coulomb potential shows up at the deconfinement temper-
ature. On the other hand, in the confined phase where
s ¼ 1, the two modified screening masses as given in

Eq. (79) are the same, andMð1Þ
D =mD ¼ Mð2Þ

D =mD ¼ ffiffiffi
3

p
=9

when T → T−
d .

6 The jump in the screening mass Mð1Þ
D at

the critical point reflects the nature of the first-order phase
transition in SUð3Þ gauge theory. This is significantly
different from the second-order phase transition in
SUð2Þ, where the modified screening mass becomes
continuous. The same behavior is also found in the lattice
simulations [40].
To generalize the above results to SUðNÞ, we need to

calculate the determinants in S̃k and solve the equations for
λi as given in Eq. (64) for arbitrary N. However, this would
be rather tedious when N is large. In addition, the back-
ground field, in general, cannot be parameterized with a
signal variable for N > 3, which further complicates the
situation. To proceed further, we will focus on the high-
temperature region where Δqij ≪ 1; then the dominant
contribution from S̃k is proportional to the kth power of
Δqij and gets suppressed when k is large. Within the
leading-order approximation, only S̃1 contributes, while S̃k
with k > 1 becomes negligible. Thus, Eq. (64) is simplified
into λ1 þ λ2 þ � � � þ λN−1 ¼ S̃1 ≈ −2

P
i<jΔqij. Since

there is no unique solution for λi in this case, it is natural
to assume that all the N − 1 λi’s are equal. Under this
assumption, however, the N − 1 diagonal gluons are no
longer distinguishable by their modified screening masses.
Consequently, Eq. (71) takes the following form:

X
a;b

Pa;bD̃a;b
00 ðω → 0Þ ≈ ðN − 1Þ 1

p2 þM2
D
; ð81Þ

where the modified screening mass M2
D is given by

M2
D ¼ m2

D

�
1þ β −

12

NðN − 1Þ
X
i<j

Δqij
�
: ð82Þ

As mentioned before, the parameter β is related to the
background field q via the equations of motion. For general
SUðNÞ, we adopt the straight-line ansatz for the back-
ground field [11]:

qi ¼ N − 2iþ 1

2N
s; ð83Þ

which satisfies the constraint
P

N
i¼1 q

i ¼ 0 and also leads to
a real-valued Polyakov loop. In the above equation, 0 ≤
s ≤ 1 and the perturbative vacuum corresponds to s ¼ 0,
while the confining vacuum is at s ¼ 1. Notice that Eq. (83)
corresponds to the exact solutions for two and three colors.
For N > 3, the deviation from the straight line turns out to
be very small [11]. Since our discussion here applies at high
temperature, therefore, we consider s ≪ 1 in order to be
consistent with the previous assumption Δqij ≪ 1. Solving
Eq. (75) with the above ansatz, the following identity can
be derived:

s ¼ 1 −
1

8ð1 − 3=ð2N2ÞÞ
�
3

�
1 −

4

N2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 80

�
1 −

3

2N2

�
β

s �
: ð84Þ

Equivalently, we find β ≈ s up to linear order in s.
According to the above discussions, the modified screening
mass as given in Eq. (82) can be expressed as

M2
D ¼ m2

D

�
1 −

N þ 2

N
s

�
; for s ≪ 1; ð85Þ

where we have used
P

i<j Δqij ¼ ðN2 − 1Þs=6. As we can
see, the modified screening mass is reduced for nonzero s,
and the deviation from mD becomes smaller when N
increases. Comparing Eq. (85) with Eq. (73) in the limit
s ≪ 1, it is direct to see the equivalence for SUð2Þ. For
SUð3Þ, Eq. (79) leads to two different screening masses
M1D=mD ¼ ffiffiffiffiffiffiffiffiffiffi

1 − s
p

and M2D=mD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 7s=3

p
for

s ≪ 1. On the other hand, Eq. (85) shows a modified
screening mass MD=mD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 5s=3
p

. In fact, the equiv-
alence can be shown by looking at the corrections to the
Debye screening potential in the perturbative QGP, as in
both cases the corrections up to linear order in s are the
same and equal to −5sαsmDe−rmD=18.

6However, this is not true for general SUðNÞ. For example,
under the straight-line ansatz Eq. (83), we find that only two of
three screening masses (for diagonal gluons) in SUð4Þ become
identical when T → T−

d .

RESUMMED GLUON PROPAGATOR AND DEBYE SCREENING … PHYS. REV. D 104, 014015 (2021)

014015-15



Based on the above analysis, the following conclusion
can be drawn for general SUðNÞ, that is, introducing a
small but nonzero background field merely amounts to
modifications on the perturbative Debye mass mD and the
corresponding HQ potential is always deeper than the
perturbative screened potential characterized by mD, which
suggests a weaker screening and, thus, a more tightly
bounded quarkonium state in a holonomous plasma. In
addition, performing the Fourier transform, the resulting
HQ potential remains the standard Debye screened form
which can be expressed as7

VQQðr; s ≪ 1Þ ¼ −
N − 1

2N
αs
r
e−rmD

ffiffiffiffiffiffiffiffiffiffiffi
1−Nþ2

N s
p

: ð86Þ

The above discussions for the diagonal gluons are based
on the effective theory for a holonomous plasma with
contributions from two-dimensional ghosts. When the
resummed gluon propagators D̃a;b

μν ðPÞ obtained from
Πab;cd

pert;μνðPabÞ or Πab;cd
cons;μνðPabÞ are considered, the corre-

sponding analysis turns to be very similar, and one needs
only to set β ¼ 0 in Eq. (71). However, we point out that the
above results depend on the use of the equations of motion
which generate nonzero holonomy at any finite temperature
in the effective theory. On the other hand, dropping the
contributions from two-dimensional ghosts, the system
would be always in the perturbative vacuum which actually
corresponds to vanishing holonomy. In this case, nonzero
holonomy has to be introduced by hand which does not
obey the corresponding equations of motion in the pertur-
bation theory. In particular, the modified screening mass
square could be negative with certain values of the back-
ground field, and this does not appear in our above
discussions. The necessity of looking only at solutions
that satisfy the equations of motion was also found in
related studies [29,30,32].

B. Screening effect from off-diagonal gluons

The resummed propagator for off-diagonal gluons has a
relatively simple form as given in Eq. (50) which does not
contain complicated determinants. After analytically con-
tinuing to Minkowski time, we get the following result for
the temporal component of the resummed propagator:

D̃ab;ba
00 ðω→0Þ

¼ 1

p2þg2½T2
P

eðB2ðqaeÞþB2ðqebÞÞþCN=ð4π2Þ�: ð87Þ

Formally, we can also define the modified screening mass
for each off-diagonal gluons:

ðMðabÞ
D Þ2 ¼ m2

D

�
1þ 3

N

X
e

ðB̂2ðqaeÞ þ B̂2ðqebÞÞ þ β

�

for a ≠ b; ð88Þ

which reduces to the perturbative m2
D in the high-temper-

ature limit where T ≫
ffiffiffiffi
C

p
and the background field q → 0.

For SUð2Þ, the two off-diagonal gluons have the same
modified screening mass. Taking q1 ¼ −q2 ¼ 4=s, it is
easy to show

Mð12Þ
D ¼ Mð21Þ

D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 3s2=4 − 3s=2

q
: ð89Þ

Following what we have done for the diagonal gluons, one
should further take into account the equations of motion
s ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2β
p Þ and choose C ¼ 2π2T2

d=3; thus, the

temperature dependence of Mð12Þ
D is found to be

Mð12Þ
D ¼ Mð21Þ

D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

d=ð4T2Þ
q

: ð90Þ

Comparing with Eq. (76), we find that, at a given temper-
ature, the screening mass for off-diagonal gluons is larger
than the diagonal one; therefore, the former has a smaller

reduction in the screening effect. Notice that Mð12Þ
D has a

nonvanishing value
ffiffiffi
3

p
mD=2 as T → Td either from above

or from below. Therefore, only diagonal gluon is
unscreened at the deconfinement temperature for SUð2Þ.
There are six off-diagonal gluons in SUð3Þ but only two

different screening masses which are denoted asMð23Þ
D and

Mð13Þ
D . With the same parameterization of the background

field as for the diagonal gluons, we can show that

Mð23Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 7s2=9 − 5s=3

q
and

Mð13Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ 10s2=9 − 2s

q
: ð91Þ

Imposing the following conditions s ¼ ð3 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24β

p Þ=4
and C ¼ 40π2T2

d=81, we arrive at

Mð23Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
405 − 40ðTd=TÞ2 þ 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 − 80ðTd=TÞ2

pq
18

ffiffiffi
2

p ;

Mð13Þ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243 − 80ðTd=TÞ2 þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 − 80ðTd=TÞ2

pq
18

:

ð92Þ

At a given temperature in the deconfined phase, Mð23Þ
D is

always larger than Mð13Þ
D , and these two modified screen-

ing masses are both smaller than the perturbative mD.
Similar as SUð2Þ, off-diagonal gluons show a stronger
screening effect as compared to the diagonal ones, since

7In this subsection, VQQðrÞ actually refers to the HQ potential
associated with diagonal gluons; namely, terms with a ≠ b are
excluded in the color summation in Eq. (67).
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their screening masses are larger than those given in

Eq. (80). In addition, we find Mð23Þ
D =mD ¼ 7=9 and

Mð13Þ
D =mD ¼ ffiffiffiffiffi

43
p

=9 as T → Tþ
d . In the confined phase

with s ¼ 1, the two screening masses in Eq. (91) have the

same value and Mð23Þ
D =mD ¼ Mð13Þ

D =mD ¼ ffiffiffiffiffi
39

p
=9 as

T → T−
d . It is clear that there is also a jump in the screening

masses for off-diagonal gluons at the critical point.

For general SUðNÞ, given the straight-line ansatz
Eq. (83), one can also derive an analytical expression

for the screening mass MðabÞ
D in the deconfined phase

which, due to the rather complicated from, is not listed
here. However, in the high-temperature limit where s is
small enough, we can show that

MðabÞ
D =mD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s

N2
½3ðN þ 1Þðaþ bÞ − 3ða2 þ b2Þ − ð2N2 þ 3NÞ�

r
for s ≪ 1: ð93Þ

In the above equation, the small but nonzero background
field s leads to a reduced screening mass MðabÞ

D ; therefore,
the screening effect related to the off-diagonal gluons is
also weakened in a holonomous plasma.
Furthermore, we can study the behavior of MðabÞ

D at the
deconfinement temperature. In the confined phase, the

modified screening mass is simplified to MðabÞ
D =mD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ βN2
p

=N. Therefore, there is only one screening mass
for all the off-diagonal gluons as T → T−

d . Explicitly, we
have

MðabÞ
D ¼ mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3N4 þ 11N2 − 17Þ=ð10N2 − 15Þ

q
=N

for T → T−
d : ð94Þ

Instead of showing the corresponding result at T → Tþ
d , we

can look at the jump in the screening masses at the critical
point which exists for N > 2 and is given by the following
expression:

Δ
�
MðabÞ

D

mD

�
2 ≡

�
MðabÞ

D

mD

�
2
				
T→Tþ

d

−
�
MðabÞ

D

mD

�
2
				
T→T−

d

¼ ðN2 − 4Þ
N2ð3 − 2N2Þ2 ½3ðN

3 þ N2 þ N þ 1Þðaþ bÞ − 3ðN2 þ 1Þða2 þ b2Þ − ð3N3 þ 8N2 þ 3N − 2Þ�: ð95Þ

In Fig. 1, we show the ratio MD=mD as a function of
T=Td for SUð2Þ (left) and SUð3Þ (right). The correspond-
ing results at T → T−

d are denoted by a circle for diagonal
gluons and by a triangle for off-diagonal gluons.
Quantitatively, the deviation from unity becomes negligible
when T is higher than ∼4Td, where the background field is
too small to induce visible modifications on the perturba-
tive Debye mass mD. On the contrary, in the semi-QGP
region, namely, from Td to about 4Td, a reduced screening
is clear to see from these plots. However, it is not possible
to make a direct comparison with the lattice simulations
where the new feature that the N2 − 1 gluons are distin-
guishable by their associated screening masses has not been
taken into account. On the other hand, as shown in Fig. 2,
the qualitative behaviors of the ratioMD=T as a function of
T=Td indeed are very similar to those found in the lattice
simulations, not only for pure gauge theories [41] but also
for two-flavor QCD [42,43]. In general, the ratio MD=T is
not a monotonic function of T. In the high-temperature
region where the holonomy is small, it grows with
decreasing T, which can be understood as a consequence

of the increase in the running coupling. There exists a
turning point at a temperature close to but above Td where
the ratio MD=T starts to fall.8 In fact, for temperatures
close to Td, the influence of the nonzero holonomy, which
leads to the decrease ofMD=T, becomes dominant over the
running effect of the strong coupling which, in turn,
increases the ratio.
It is worth noting that presumably the above discussions

on the screening effect in a holonomous plasma are
applicable only in the deconfined phase where gluons
are the physical degrees of freedom. When applying
Eq. (74) to the confined regime, some of the thermody-
namic quantities go negative [9,11]; therefore, a refined
effective potential that incorporates contributions from
glueballs turns out to be important for a consistent analysis
at temperatures below Td. Despite the above-mentioned
issues, a naive generalization of the obtained results to the

8For SUð2Þ, Mð12Þ
D =T also decreases with decreasing T when

T is very close to Td. This may be not very clear to see from the
plot.
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confined phase can be carried out by taking the background
field s ¼ 1. Consequently, we find that the ratio MD=mD
grows with decreasing T, which is in contrast to the
observation as shown in Fig. 1. Furthermore, by assuming
the leading-order perturbative form mD ∼ gT persists even

in the confined regime, the diagonal screening massesMðiÞ
D

increase with decreasing T provided that the coupling g is
fixed. This is qualitatively in agreement with the lattice
simulations as shown in Refs. [40,44]. However, the
opposite conclusion holds for the off-diagonal screening

masses MðabÞ
D . In addition, one can show that all the

screening masses approach
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NαsC=π

p
in the zero-

temperature limit. For SUð3Þ, given Td ¼ 0.27 GeV and
g ≈ 1.87 (this is the value predicted by the two-loop
running coupling at Td),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NαsC=π

p
≈ 0.31 GeV, which

is comparable to the above-mentioned lattice results.
We are not going to discuss the corresponding results

based on the holonomous gluon self-energyΠab;cd
pert;μνðPabÞ or

Πab;cd
cons;μνðPabÞ obtained in the perturbation theory. This is

because the static limit of the resummed propagator
D̃ab;ba

00 ðω → 0Þ is not well defined. In fact, it is straightfor-
ward to show the following:

D̃ab;ba
cons;00ðω → 0Þ ¼ 1

p2 þ g2T2
P

eðB2ðqaeÞ þ B2ðqebÞÞ þ iJ0ðqa;qbÞ
2p ðln ωþp

ω−p −
2p
ω Þjω→0

;

D̃ab;ba
pert;00ðω → 0Þ ¼ 1

p2 þ g2T2
P

eðB2ðqaeÞ þ B2ðqebÞÞ þ iJ0ðqa;qbÞ
2p ðln ωþp

ω−pÞjω→0
− ξ

p4 ðJ0ðqa; qbÞÞ2
; ð96Þ

FIG. 1. The ratioMD=mD as a function of T=Td for SUð2Þ (left) and SUð3Þ (right). The corresponding results at T → T−
d are denoted

by a circle for diagonal gluons and by a triangle for off-diagonal gluons.

FIG. 2. The ratio MD=T as a function of T=Td for SUð2Þ (left) and SUð3Þ (right). For numerical evaluations, we use the two-loop
perturbative running coupling.
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with

J0ðqa; qbÞ ¼ 4π

3
g2T3

X
e

ðB3ðqaeÞ þ B3ðqebÞÞ: ð97Þ

With the constraint contribution, the screening mass be-
comes divergent due to the appearance of an unexpected
term ∼1=ω in the static limit. On the other hand, using the
nontransverse Πab;cd

pert;μνðPabÞ, the screening mass is gauge
dependent. In addition, the retarded solution ipab

0 → ωþ iϵ
leads to a different result in the static limit as compared to
the advanced solution ipab

0 → ω − iϵ, because for the
logarithmic term we have ln ωþp�iϵ

ω−p�iϵ jω→0
¼∓ iπ. All of

these problems are related to the anomalous term
∼Kab;cdðqÞ or ∼B3ðxÞ in the gluon self-energy which
vanishes when the background field equals zero. This is
again an example to show the necessity of looking at only
solutions that satisfy the equations of motion.

VII. SUMMARY AND OUTLOOK

In this work, we have computed the resummed gluon
propagator in a QCD plasma with nonzero holonomy
which was realized by introducing a classical background
field for the vector potential A0. Being crucial for many
processes with soft momentum exchange, the resummed
propagator was obtained through the Dyson-Schwinger
equation where, as a necessary input quantity, the gluon
self-energy in a holonomous plasma has been calculated
previously in an effective theory where nonzero holonomy
can be dynamically generated.
Because of the transversality of the gluon self-energy in a

constant background field, the resummed propagator for
off-diagonal gluons as given in Eq. (50) is formally
analogous to that in the perturbative QGP with vanishing
holonomy. The real difficulties in the computation exist in
the color structure related to the diagonal gluons. The
double-line basis, as extensively used before, is convenient
to compute in the presence of a background field. However,
due to overcompleteness, diagonal gluons are mixed in the
double-line basis, and the propagator associated with each
individual gluon cannot be uniquely determined. Instead, as
shown in Eq. (65), the color summation

P
a;b P

a;bD̃a;b
μν ðPÞ

has a definite expression in which all the background field
dependence can be cast into the determinants of a series of
matrices, and the corresponding evaluation turns out to be
rather complicated when N is large.
After analytically continued to Minkowski time, the

static limit of the resummed gluon propagators was also
discussed which offered an insight into the screening
effects in a holonomous plasma. In general, introducing
nonzero holonomy merely amounts to modifications on the
perturbative Debye mass mD, and the resulting HQ poten-
tial, which remains the standard Debye screened form, is
always deeper than the screened potential in the

perturbative QGP. Therefore, a weaker screening and, thus,
a more tightly bounded quarkonium state can be expected
in a holonomous plasma. In addition, both the diagonal and
off-diagonal gluons become distinguishable by their modi-
fied screening masses MD as given in Eqs. (71) and (88),
respectively.
The explicit T dependence of the modifications on the

perturbative mD as described by the ratio MD=mD was
derived by imposing the equations of motion for the
background field. Taking SUð2Þ and SUð3Þ as examples,
the deviation of MD=mD from its high-temperature limit
where the ratio approaches to one is dramatic only near the
deconfinement temperature Td, according to the plots in
Fig. 1. As the temperature decreases to Td, the modified
screening masses have nonvanishing values with the only

exception of the screening mass Mð1Þ
D associated with the

diagonal gluon in SUð2Þ, which drops to zero as T → Td.
Furthermore, there is a jump in the modified screening
masses at the deconfinement temperature forN > 2, and this
is naturally expected in first-order phase transitions inSUðNÞ
gauge theories. We also discussed the behavior ofMD=T as
a function of the temperature T which, as shown in Fig. 2,
exhibits a very similar T dependence as observed in lattice
simulations. As a nonmonotonic function ofT, the change of
MD=T with decreasing temperature can be understood as a
competition between the running of the strong coupling
which increases MD=T and the influence of the nonzero
holonomy, which, in turn, leads to the decrease of the ratio.
We point out that the above conclusions are based on the

use of holonomous gluon self-energy obtained in the
effective theory where, by embedding two-dimensional
ghosts isotropically into four dimensions, a new contribu-
tion arising in the effective potential ensures a nonzero
holonomy at any finite temperature. Dropping such a
contribution, the computation of the resummed gluon
propagator with holonomous gluon self-energy in pertur-
bation theory does not involve anything new, as we already
discussed. However, the equations of motion suggest a
vanishing background field in perturbation theory; there-
fore, deviating from the perturbative vacuum turns out to be
not self-consistent due to the violation of the equations of
motion. In particular, even taking q → 0 may cause
problem in the perturbation theory, because one would
encounter ambiguous expressions of the type “0=0” in the
static limit; see Eq. (96). This indicates that the system has
to stay exactly in the perturbative vacuum. As a result,
generating nonzero holonomy from the equations of motion
is essential in a holonomous plasma; however, perturbation
theory fails to do so. Finally, to generalize our computation
to full QCD, one should also include a new term in the
action analogous to what has been done in the pure gauge
theories. It is expected to cancel the same anomalous term
∼Kab;cdðqÞ showing up in the fermionic contributions to
the holonomous gluon self-energy. This will be investi-
gated in future work.
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APPENDIX A: RESUMMED PROPAGATOR FOR OFF-DIAGONAL
GLUONS OBTAINED FROM Πab;cd

pert;μνðPabÞ
With the perturbative gluon self-energy Πab;cd

pert;μνðPabÞ, the inverse propagator in covariant gauge reads

ðD̃−1Þab;cdμν ðPabÞ ¼
�
ðPabÞ2δμν − Pab

μ Pab
ν

�
1 −

1

ξ

��
Pab;cd þ Πab;cd

pert;μνðPabÞ

≡Aab;cdAμνðPabÞ þ Bab;cdBμνðPabÞ þ Cab;cdPab
μ Pab

ν þ Eab;cdMμMν; ðA1Þ

where Aab;cd, Bab;cd, and Cab;cd are formally the same as those given by Eq. (44) but the corresponding structure functions
now take the following forms:

FT=Lðqa; qb; PabÞ ¼ g2T2ΠT=LðPabÞ
X
e

ðB2ðqaeÞ þ B2ðqebÞÞ − ΠT=LðPabÞJðqa; qb; pab
0 Þ;

GT=Lðqa; qc; PÞ ¼ −2g2T2ΠT=LðPÞB2ðqacÞ; ðA2Þ

with

Jðqa; qb; pab
0 Þ ¼ 4π

3
g2T2

T
pab
0

X
e

ðB3ðqaeÞ þ B3ðqebÞÞ: ðA3Þ

In addition, the introduced new term in Eq. (A1) is defined as Eab;cd ¼ δadδbcJðqa; qb; pab
0 Þ.

Assuming the following expression for the resummed gluon propagator:

D̃ab;cd
μν ðPabÞ ¼ Xab;cdAμνðPabÞ þ Yab;cdBμνðPabÞ þ Zab;cdPab

μ Pab
ν þWab;cdMμMν; ðA4Þ

according to Eq. (48), we arrive at

½ðpab
0 Þ2 þ FLðqa; qb; PabÞ�

�ðPabÞ2
ðpab

0 Þ2 Y
ab;cdBμνðPabÞ þWab;cdBμσðPabÞ ·MσMν

�

þ Xab;cd½ðPabÞ2 þ FTðqa; qb; PabÞ�AμνðPabÞ þ 1

ξ
Zab;cdPab

μ Pab
ν þ Jðqa; qb; pab

0 ÞWab;cdMμMν

þ Jðqa; qb; pab
0 ÞYab;cdpab

0 MμMσ · BσνðPabÞ þ 1

ξ
Wab;cdpab

0 Pab
μ Mν þ Jðqa; qb; pab

0 ÞZab;cdpab
0 MμPab

ν

¼a≠bδadδbcδμν: ðA5Þ

Since the extra projection operator MμMν is orthogonal only to AμνðPabÞ, as compared to Eq. (49), many new terms
associated withWab;cd and Jðqa; qb; pab

0 Þ are present in the above equation. Similarly, by requiring the coefficients of all the
Lorentz tensor structures expect δμν to vanish, the resummed propagator in Eq. (A4) can be determined by the following
result:
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Xab;cd ¼ 1

ðPabÞ2 þ FTðqa; qb; PabÞ ;

Yab;cd ¼ ðpab
0 Þ2

ðPabÞ2
1þ ξJðqa; qb; pab

0 Þ=ðPabÞ2
F0
Lðqa; qb; PabÞ þ ½ðpab

0 Þ2 þ FLðqa; qb; PabÞ�ξJðqa; qb; pab
0 Þ=ðPabÞ2 ;

Zab;cd ¼ ξ

ðPabÞ4
F0
Lðqa; qb; PabÞ þ ðpab

0 Þ2Jðqa; qb; pab
0 Þ=ðPabÞ2

F0
Lðqa; qb; PabÞ þ ½ðpab

0 Þ2 þ FLðqa; qb; PabÞ�ξJðqa; qb; pab
0 Þ=ðPabÞ2 ;

Wab;cd ¼ −
ξJðqa; qb; pab

0 Þ=ðPabÞ2
F0
Lðqa; qb; PabÞ þ ½ðpab

0 Þ2 þ FLðqa; qb; PabÞ�ξJðqa; qb; pab
0 Þ=ðPabÞ2 ; ðA6Þ

where

F0
Lðqa; qb; PabÞ ¼ ðPabÞ2 þ ðPabÞ2

ðpab
0 Þ2 FLðqa; qb; PabÞ þ p2

ðPabÞ2 Jðq
a; qb; pab

0 Þ: ðA7Þ

Notice that we omit a common color factor δadδbc in Eq. (A6).

APPENDIX B: RESUMMED GLUON PROPAGATOR IN SUð3Þ
In this appendix, we will present the calculation of the resummed gluon propagator D̃a;b

μν ðPÞ in SUð3Þ under the special
constraint

X
e

D̃e;c
μν ðPÞ ¼ 0 ðc ¼ 1; 2; 3Þ: ðB1Þ

Starting from Eq. (53) with c ¼ 1, we have the following equations:

A2;2ðX 2;1 − X1;1Þ þA2;3ðX3;1 − X1;1Þ ¼ −
1

3
;

A3;3ðX 3;1 − X1;1Þ þA3;2ðX2;1 − X1;1Þ ¼ −
1

3
: ðB2Þ

The solutions of the above equations can be easily obtained:

X2;1 − X1;1 ¼ 1

3

A2;3 −A3;3

A2;2A3;3 −A2;3A2;3 ;

X3;1 − X1;1 ¼ 1

3

A2;3 −A2;2

A2;2A3;3 −A2;3A2;3 : ðB3Þ

In addition, setting a ¼ 1 in Eq. (57), the equations for X1;2 − X1;1 and X1;3 − X1;1 read,

A2;2ðX 1;2 − X1;1Þ þA3;2ðX1;3 − X1;1Þ ¼ −
1

3
;

A3;3ðX 1;3 − X1;1Þ þA2;3ðX1;2 − X1;1Þ ¼ −
1

3
: ðB4Þ

Since Aa;b ¼ Ab;a, it is obvious to see that X1;2 − X1;1 ¼ X2;1 − X 1;1 and X1;3 − X1;1 ¼ X3;1 − X1;1, namely,
X1;2 ¼ X 2;1, X 1;3 ¼ X3;1. The solutions for other unknowns Xa;c − X c;c and Ya;c − Yc;c can be obtained by simply
repeating the above procedure, which we do not show here.
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Adding the constraint X1;1 þ X 2;1 þ X 3;1 ¼ 0 to
Eq. (B3), the solutions for Xa;1 with a ¼ 1; 2; 3 can be
obtained as

X1;1 ¼ 1

9

A1;1 − 4A2;3

A2;2A3;3 −A2;3A2;3 ;

X2;1 ¼ −
1

9

A2;1 þ 2A3;3

A2;2A3;3 −A2;3A2;3 ;

X3;1 ¼ −
1

9

A3;1 þ 2A2;2

A2;2A3;3 −A2;3A2;3 : ðB5Þ

The determination of other components of Xa;b follows
exactly the same way. For example, impose the constraint
X1;2 þ X2;2 þ X3;2 ¼ 0 on Eq. (53) with c ¼ 2, and then
Xa;2 with a ¼ 1, 2, 3 are uniquely determined. In addition,
we find that there exists a general expression for Xa;b,
which reads

Xa;b ¼ −2
Pa;b

P0
e;f A

e;f þAa;bP0
e;fðAe;eAf;f −Ae;fAe;fÞ ða; b ¼ 1; 2; 3Þ:

ðB6Þ

Given the above discussions, the determination of
Ya;b is straightforward; we list only the result for com-
pleteness:

Ya;b ¼ −
2p4

0

P4

Pa;b
P0

e;f B
e;f þ Ba;bP0

e;fðBe;eBf;f − Be;fBe;fÞ ða; b ¼ 1; 2; 3Þ:

ðB7Þ

Finally, the solutions for Za;b are unchanged as com-
pared to the bare propagator. For general SUðNÞ, using the
constraint

P
e Z

e;c ¼ 0, we have

Za;b ¼ Pa;b ξ

P4
: ðB8Þ

In terms of Ãa;b given in Eq. (63), the final expression
for D̃a;b

μν ðPÞ of SUð3Þ takes the following form:

D̃a;b
μν ðPÞ ¼ 1

P̃2

Pa;b − 2ðT2

T̃2Þð1 − P2

P̃2Þð
P0

ef Ã
e;fPa;b þ Ãa;bÞ

1 − 2ðT2

T̃2Þð1 − P2

P̃2Þ
P0

ef Ã
e;f þ 6ðT2

T̃2Þ2ð1 − P2

P̃2Þ2
P0

efg Ã
e;fÃg;e

AμνðPÞ

þ p4
0=P

4

p̃0
2

Pa;b − 2ðT2

T̃2Þð1 − p2
0

p̃0
2Þð

P0
ef Ã

e;fPa;b þ Ãa;bÞ
1 − 2ðT2

T̃2Þð1 − p2
0

p̃0
2Þ
P0

ef Ã
e;f þ 6ðT2

T̃2Þ2ð1 − p2
0

p̃0
2Þ2

P0
efg Ã

e;fÃg;e
BμνðPÞ þ ξ

Pa;b

P4
PμPν; ðB9Þ

were T̃ is defined in Eq. (61).
For zero background field, due to the vanishing Ãa;b, the diagonal gluon propagator becomes

D̃a;b
μν ðP; q → 0Þ ¼

�
1

P̃2
AμνðPÞ þ

p4
0=P

4

p̃2
0

BμνðPÞ þ
ξ

P4
PμPν

�
Pa;b: ðB10Þ

We point out that, with Eqs. (52) and (B1), all the
diagonal gluon propagators for SUð3Þ are uniquely deter-
mined without resorting to Eq. (56). The obtained solutions
for D̃a;b

μν is symmetric in color space, i.e., D̃a;b
μν ¼ D̃b;a

μν ; as a
result, Eq. (56) is satisfied automatically. In fact, we find
that such a conclusion actually holds for general SUðNÞ if
the special constraint

P
e D̃

e;c
μν ðPÞ ¼ 0 with c ¼ 1; 2;…; N

is adopted.

APPENDIX C: CALCULATION OFP
a;bP

a;bD̃a;b
μν ðPÞ FOR GENERAL SUðNÞ

To make our presentation compact, we first introduce the
following shorthand notations. The N × N matrix A in
color space has the explicit form

A ¼

0
BBBBB@

A1;1 A1;2 � � � A1;N

A2;1 A2;2 � � � A2;N

..

. ..
. . .

. ..
.

AN;1 AN;2 � � � AN;N

1
CCCCCA; ðC1Þ

with

Aa;b ¼
8<
:

P̃2 − 1
N P̃

2 þ 2g2T2ΠTðPÞ
P
e
B̂2ðqaeÞ for a ¼ b;

− 1
N P̃

2 − 2g2T2ΠTðPÞB̂2ðqabÞ for a ≠ b;

ðC2Þ
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where the definitions of P̃2 and B̂2ðxÞ can be found in
Eqs. (61) and (63), respectively. In addition, A½a� is defined
as a ðN − 1Þ × ðN − 1Þ matrix which is obtained by
removing the 2N − 1 elements in the ath row and ath
column from A. Because

P
e A

e;c ¼ P
e A

c;e ¼ 0, the
determinant of A vanishes. For the same reason, one
can also show that the determinant of A½a� is independent
on the value of a where a ¼ 1; 2;…; n. Furthermore,
A½a�fbg is used to denote a matrix that constructed by
two successive steps. First, we replace the N elements in
column b of matrix A with −1=N and then remove the
2N − 1 elements in the ath row and ath column from the
previous obtained matrix.
We start by considering the solutions for Xa;c þ Xc;a −

Xa;a − X c;c for general SUðNÞ. According to Eq. (53), we
choose c to be some fixed value j and solve this equation
for the N − 1 unknowns Xa;j − X j;j with a ≠ j. Using the
Cramer’s rule, the solution for one specified unknown
X i;j − X j;j is formally written as

X i;j − X j;j ¼ jA½j�figj
jA½j�j : ðC3Þ

Similarly, we choose a to be some fixed value i in Eq. (57),
and the solution for X j;i − X i;i reads

X j;i − X i;i ¼ jA½i�fjgj
jA½j�j : ðC4Þ

Summing up the above two equations, we have the
following expression for X i;j þ X j;i − X i;i − X j;j:

X i;j þ X j;i − X i;i − X j;j ¼ −
jA½i;j�j
jA½i�j ¼ −

jA½i;j�j
jA½j�j ; ðC5Þ

where we have used

jA½j�figj þ jA½i�fjgj ¼ −jA½i;j�j ðC6Þ

and A½i;j� is a ðN − 2Þ × ðN − 2Þ matrix obtained by
removing the 4N − 4 elements in the ith and jth rows as
well as the ith and jth columns from matrix A.
Although it is not very obvious, Eq. (C6) can be straight-

forwardly obtained in the following way. Performing
the sequential elementary row and column operations9 on
A½i�fjg, Rj ↔ Rj−1; Rj−1 ↔ Rj−2;…R2 ↔ R1 and then
Cj ↔ Cj−1; Cj−1 ↔ Cj−2;…C2 ↔ C1, the obtained matrix
A½i�fjg has the same determinant as A½i�fjg. After similar
transformations, Ri ↔ Ri−1; Ri−1 ↔ Ri−2;…R2 ↔ R1 and
then Ci↔Ci−1;Ci−1 ↔Ci−2;…C2 ↔C1, A½j�fig becomes

A½j�fig while the determinant also remains unchanged.
These two matrices A½i�fjg and A½j�fig are identical except
the elements in the first row. Therefore, we arrive at the
following equation:

jA½j�figj þ jA½i�fjgj ¼ jA½j�figj þ jA½i�fjgj≡ jAsumj:
ðC7Þ

The elements in the first row of the introduced ðN − 1Þ ×
ðN − 1Þ matrix Asum are given by

ðAsumÞ1;a ¼ ðA½j�figÞ1;a þ ðA½i�fjgÞ1;a; ðC8Þ

with a ¼ 1; 2;…; N − 1, while other elements are the same
asA½j�fig orA½i�fjg. Adding rows 2 toN − 1 to the first row,P

N−1
i¼1 Ri → R1, such an elementary row operation does not

change the determinant of Asum, and the resulting matrix is
denoted as Asum. On the one hand, due to

P
e A

e;c ¼P
e A

c;e ¼ 0, the only nonvanishing element in the first
row ofAsum is ðAsumÞ1;1 ¼ −1. On the other, after removing
the elements in the first row and column from Asum, the
resulting ðN − 2Þ × ðN − 2Þ matrix is nothing but A½i;j�.
Then it is clear to see the validity of Eq. (C6).
The determinants in Eq. (C5) are not easy to compute for

arbitrary N which depend on the momentum P as well as
the background field Acl

0 . In this work, we are particularly
interested in the influence of the background field on the
resummed gluon propagators; therefore, it makes sense to
eliminate the P dependence in the determinants which as a
result will depend only on Acl

0 . We find this is doable with
the following two steps.
As shown in Eq. (C2), there is a common term P̃2

appearing in ðA½i;j�Þa;a. With the basic properties of the
determinant of a matrix, the first step is to rewrite jA½i;j�j as

jA½i;j�j ¼
XN−2

k¼0

P̃2ðN−2−kÞŜ½i;j�k : ðC9Þ

In the above equation, Ŝ½i;j�k denotes a sum of the determi-
nants which reads

Ŝ½i;j�k ¼
X

afkg
½i;j�

											

Âa1;a1 Âa1;a2 � � � Âa1;ak

Âa2;a1 Âa2;a2 � � � Âa2;ak

..

. ..
. . .

. ..
.

Âak;a1 Âak;a2 � � � Âak;ak

											
; ðC10Þ

with the special case Ŝ½i;j�0 ¼ 1. The shorthand notation afkg
has been defined in Sec. V B. In addition,

P½i;j� requires
that summation indices a1; a2;…; ak cannot be equal to the
specified values i or j when run from 1 to N. The k × k
matrix Â in the above equation is given by

9Ra ↔ Rb stands for swapping rows a and b. The column
operation Ca ↔ Cb is for swapping columns a and b.
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Âa;b ¼ Aa;b − δabP̃2: ðC11Þ

According to Eq. (59), in order to compute the quantity Pab;cdD̃ab;cd, we should actually consider the sum
P

i>j jA½i;j�j,
which can be written as

X
i>j

jA½i;j�j ¼
XN−2

k¼0

P̃2ðN−2−kÞC2
N−kŜk; ðC12Þ

where C2
N−k is the binomial coefficient and Ŝk is differentiated from Ŝ½i;j�k only by the fact that the set of indices afkg now run

from 1 to N. Accordingly, the superscript of Ŝ½i;j�k has been removed. When k ¼ 0, we have Ŝ0 ¼ 1.
Notice that every element in matrix Â has a term−P̃2=N. The second step is to take this term out from Ŝk, and we can show											

Âa1;a1 Âa1;a2 � � � Âa1;ak

Âa2;a1 Âa2;a2 � � � Âa2;ak

..

. ..
. . .

. ..
.

Âak;a1 Âak;a2 � � � Âak;ak

											
¼ −

1

N
P̃2

Xk
i¼1

											

Āa1;a1 Āa1;a2 � � � Āa1;ak

Āa2;a1 Āa2;a2 � � � Āa2;ak

..

. ..
. . .

. ..
.

Āak;a1 Āak;a2 � � � Āak;ak

											
Ci→1

þ

											

Āa1;a1 Āa1;a2 � � � Āa1;ak

Āa2;a1 Āa2;a2 � � � Āa2;ak

..

. ..
. . .

. ..
.

Āak;a1 Āak;a2 � � � Āak;ak

											
; ðC13Þ

where Ci → 1 indicates the replacement of all the elements in column i with 1 and the matrix Āa;b is defined as

Āa;b ¼ 2g2T2ΠTðPÞ
�X

e

B̂2ðqaeÞδab − B̂2ðqabÞð1 − δabÞ
�
: ðC14Þ

Because Āb;a ¼ Āa;b and
P

e Ā
e;c ¼ 0, we can derive the following identity:

X
afkg

Xk
i¼1

											

Āa1;a1 Āa1;a2 � � � Āa1;ak

Āa2;a1 Āa2;a2 � � � Āa2;ak

..

. ..
. . .

. ..
.

Āak;a1 Āak;a2 � � � Āak;ak

											
Ci→1

¼ N
X
afk−1g

											

Āa1;a1 Āa1;a2 � � � Āa1;ak−1

Āa2;a1 Āa2;a2 � � � Āa2;ak−1

..

. ..
. . .

. ..
.

Āak−1;a1 Āak−1;a2 � � � Āak−1;ak−1

											
; ðC15Þ

which leads to our final result for the determinant of A½i;j�:

X
i>j

jA½i;j�j ¼ P̃2ðN−2Þ XN−2

k¼0

�
6

N

�
k
�
T2

T̃2

�
k
�
1 −

P2

P̃2

�
k
ðN − k − 1ÞS̃k; ðC16Þ

where T̃2 is defined in Eq. (61). According to Eq. (62), S̃k denotes a sum of determinants of matrix Ã with
Ãa;b ¼ Āa;b=ð2g2T2ΠTðPÞÞ. The matrix element Ãa;b depends only on the background field and vanishes when Acl

0 ¼ 0.
As before, S̃0 ¼ 1; therefore, only the term k ¼ 0 contributes for vanishing Acl

0 .
The corresponding calculation of the determinant of A½j� in Eq. (C5) can be carried out in a similar way. As mentioned

before, the determinants of A½a� for a ¼ 1; 2;…; N are all equal, so we have

jA½j�j ¼ 1

N

XN
e¼1

jA½e�j ¼
XN−1

k¼0

P̃2ðN−1−kÞ N − k
N

Ŝk

¼ P̃2ðN−1Þ

N

XN−1

k¼0

�
6

N

�
k
�
T2

T̃2

�
k
�
1 −

P2

P̃2

�
k
S̃k: ðC17Þ

Given the above discussions, the calculation of Yi;j þ Yj;i − Yi;i − Yj;j becomes a trivial repetition. After taking into
account Eq. (58), it is straightforward to write down the final expression for

P
a;b P

a;bD̃a;b
μν ðPÞ, which has been given

in Eq. (60).
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