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Based on the Dyson-Schwinger equation, we compute the resummed gluon propagator in a holonomous
plasma that is described by introducing a constant background field for the vector potential A,. Because of
the transversality of the holonomous hard thermal loop in gluon self-energy, the resummed propagator has
a similar Lorentz structure as that in the perturbative quark-gluon plasma where the holonomy vanishes. As
for the color structures, since diagonal gluons are mixed in the overcomplete double-line basis, only the
propagators for off-diagonal gluons can be obtained unambiguously. On the other hand, multiplied by a
projection operator, the propagators for diagonal gluons, which exhibit a highly nontrivial dependence on
the background field, are uniquely determined after summing over the color indices. As an application of
these results, we consider the Debye screening effect on the in-medium binding of quarkonium states by
analyzing the static limit of the resummed gluon propagator. In general, introducing nonzero holonomy
merely amounts to modifications on the perturbative screening mass m and the resulting heavy-quark
potential, which remains the standard Debye screened form, is always deeper than the screened potential in
the perturbative quark-gluon plasma. Therefore, a weaker screening and, thus, a more tightly bounded
quarkonium state can be expected in a holonomous plasma. In addition, both the diagonal and off-diagonal
gluons become distinguishable by their modified screening masses M p, and the temperature dependence

of the ratio M, /T shows a very similar behavior as that found in lattice simulations.

DOI: 10.1103/PhysRevD.104.014015

I. INTRODUCTION

At high temperatures, the properties of the quark-gluon
plasma (QGP) created during ultrarelativistic heavy-ion
collisions can be computed in the hard-thermal-loop (HTL)
resummed perturbation theory. On the other hand, at low
temperatures, the confined phase can be modeled by a
hadron resonance gas. The challenge appears in the
intermediate region, termed as “semi-QGP,” where neither
of the above-mentioned theoretical tools is reliable since
the effects of nonperturbative physics play an impor-
tant role.

As the order parameter for deconfinement in SU(N)
gauge theory, the values of the Polyakov loop are nonzero
but less than unity in semi-QGP. The partial deconfinement
is described by introducing nonzero holonomy for
Polyakov loops. To do so, one can consider a classical
background field A§ as a diagonal and traceless color
matrix for the timelike component of the vector potential.
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Thermodynamics of a holonomous plasma can be analyzed
by computing the effective potential in the (constant)
background field AY!, which takes the eigenvalues of the
thermal Wilson line as variables [1-8]. Perturbatively, the
effective potential reaches a minimum when the back-
ground field vanishes. Therefore, a complete deconfine-
ment happens at all temperatures. In order to drive the
transition to confinement, nonperturbative terms, which
generate complete eigenvalue repulsion in the confining
phase, have to be included. Constructed in such a way,
matrix models have been widely studied in recent years, not
only for pure gauge theories, but also for quantum
chromodynamics (QCD) with dynamical quarks [9-13].
The physics in semi-QGP is of particular interest,
because the temperatures probed in most of the high-
energy experiments carried out at Relativistic Heavy lon
Collider (RHIC) and the Large Hadron Collider (LHC) are
not far above the critical temperature. Besides the thermo-
dynamical properties, physical quantities near thermal
equilibrium have also been investigated with nonzero
holonomy for Polyakov loops which exhibit different
behaviors as compared to those in the perturbative QGP.
For example, the shear viscosity computed in semi-QGP is
suppressed near the critical temperature [14]. As ideal
electromagnetic signals, the production of dileptons
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calculated in a matrix model has a mild enhancement;
conversely, the production of photons is strongly sup-
pressed in the presence of a background field [15,16]. In
addition, discussions on the transport coefficients as well as
the collisional energy loss of a heavy quark in semi-QGP
can be found in Refs. [17-19].

For processes involving soft momentum exchange, it is
necessary to use the resummed propagator, which includes
an arbitrary number of self-energy insertions into the bare
propagator. The expression of the resummed gluon propa-
gator is well known in the perturbative QGP where the
holonomy vanishes. As an important quantity in many
theoretical and phenomenological applications, viscous
corrections to the resummed gluon propagator in thermal
equilibrium have been studied in Refs. [20-24].
Furthermore, influence due to the presence of a magnetic
field has also been considered in recent works [25-27]. On
the other hand, in a holonomous plasma, the explicit form
of the resummed gluon propagator with Agl # 0 adopted in
the foresaid works relies on certain approximations; for
example, one needs to assume an infinitely large number of
the colors or neglect an anomalous term ~73 in the
perturbative gluon self-energy that appears only with
nonvanishing holonomy.

There is a long history of the computation of the gluon
self-energy in a holonomous plasma. In Ref. [28], it has
been computed at one-loop order in the HTL perturbation
theory, and there is a nontransverse piece showing up in the
obtained result. As argued in Ref. [29], gauge-invariant
sources, which are nonlinear in the gauge potential A, give
rise to a novel constrained contribution at one-loop order
which restores the transversality of the holonomous gluon
self-energy. As already mentioned before, perturbatively,
the system would be always in a completely deconfined
vacuum, since the equations of motion lead to a vanishing
background field. In order to generate a nonzero holonomy
dynamically, an effective theory has been proposed in
Ref. [30], where additional contributions from two-
dimensional ghosts were introduced into the action and
the resulting gluon self-energy remains transverse. Given
the holonomous gluon self-energy, the main obstacle to
compute the resummed propagator lies in the complicated
color structure when one performs the inversion through the
Dyson-Schwinger equation. In this paper, we make a first
attempt to calculate the resummed gluon propagator in
semi-QGP for general SU(N). In addition, as a direct
application of the obtained results, we also consider the
modifications on the screening masses due to a nonvanish-
ing holonomy which provides important information on the
in-medium binding of quarkonium states.

The rest of the paper is organized as the following. In
Sec. II, we briefly introduce the double-line basis which
will be adopted in our calculation. In Sec. 111, the bare gluon
propagator in a holonomous plasma denoted as
(Do)sbed(P) is discussed. It is an intuitive example to

understand the complicated color structure we will encoun-
ter in the computation of the resummed propagator. For
completeness, in Sec. IV, we give a short review on the
holonomous gluon self-energy obtained in previous stud-
ies. Based on the Dyson-Schwinger equation, the
resummed gluon propagator D2“(Pe?) is computed in
Sec. V, where the calculations are carried out for the
diagonal and off-diagonal gluons separately. After analyti-
cally continued to real time, in Sec. VI, the static limit of
the propagator D42“Y(w, p) is analyzed, which gives new
insights into the screening effect in a holonomous plasma.
A short summary can be found in Sec. VII. In addition,
some details about the calculations performed in this work
are provided in three appendixes.

II. THE INVERSE PROPAGATORS AT TREE
LEVEL IN THE DOUBLE-LINE BASIS

In the presence of a constant background field A{, the
double-line basis has been widely used in previous studies
to compute the effective potential [8] as well as the quark
and gluon self-energies for SU(N) gauge theories [28]. For
completeness, we will briefly review the double-line basis
and give the inverse propagators at tree level for later use.
More details can be found in Ref. [31].

The generators of the fundamental representation are
given by the projection operators

(1) g = %P?S, (1)

with
Pt — ugh — L g, (2)
cd c¥d N cd

For SU(N), these color indices a, b, ¢, and d run from 1 to
N. The N> — N off-diagonal generators with a # b are
normalized as

tr(14 ha) — % 3)

In addition, we have N diagonal generators ¢ which
satisfy

tr(raa??) = % (5“b - %) (4)

In the above equations, a and b are fixed indices, and there
is no summation over them. In the double-line basis, the
number of generators for SU(N) is N 2. therefore, this basis
is overcomplete.

Notice that the upper indices ab of the generators refer to
the indices in the adjoint representation which are denoted
by a pair of the fundamental indices. The lower indices
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cd refer to the matrix elements in the fundamental
representation.
The Lagrangian of SU(N) gauge theory is given by

LA, —0,A, —iA, A (5)

L= %tr(Gﬁ,,) and G, =0,4,
The gauge fields can be expanded around some fixed
classical values as A, = Af} + gB,, and B, corresponds to
the quantum fluctuation. Including the gauge-fixing term
(the gauge-fixing parameter is denoted by &) and ghost
fields # in the Lagrangian

1 _
L —Tr(D§'B,)* = 2Tr(7DS'D,n), (6)

gauge — g
we can write down the corresponding terms related to the

(inverse) gluon propagator at tree level in the action,
S = [d*xL, as the following:

S = / d4xTr{B" (-(D;1)25,w

+ <1 - é) D§'DS + 2ig[GS,. ...])B”} +-. (7
In the above equations, the classical covariant derivative is
defined as DS = 0, — ig[Ad, ...].

We consider the classical background field as a constant
diagonal matrix for the timelike component of the vector
potential, namely, (Ag)),, = 0“5, with Y.V 0 =0 for
SU(N) gauge group. Consequently, the classical covariant
derivative acting upon the fields in the adjoint representa-
tion has a simple form in momentum space, D —
—iP/‘jh t*’, and the corresponding momentum associated
with an adjoint color index ab reads

P> = (pg’.p) = (0, + Q* = 0".p). (8)

where w,, is the Matsubara frequencies of bosons. Then it is
straightforward to write down the inverse bare gluon
propagator in momentum space:

58S
S5BL4(P)S5B(—P)

1
— <(Pab)25’w _ (1 _ E) Pﬁngb> 'Pab,cd‘
9)
As one can see, this is a trivial generalization of
(Dy")ax<d(P) in the case where A§ =0, since there is
only a constant and color-dependent shift in the energies.

The inverse ghost propagator can be obtained in the same
way, and the result is given by

(D5 e (pe) =

oS
o (P)o(—P)

— (Pab)Zpab,cd_ (10)

Adding the quark contribution (D + m)y to the pure
gauge action, the inverse quark propagator has the follow-
ing explicit form':

oS
by (P)67” (=P)

where Py associated with a fundamental color index a is
defined as Pj; = (p§.p) = (@, + Q% p) with @, being the
Matsubara frequencies of fermions.

The inverse quark propagator has a trivial color structure
59 therefore, the corresponding bare propagator is a
diagonal matrix in color space—explicitly, we have

= (=iP% + m)s§®, (11)

5ab

(W (P)p"(=P)) = P (12)

On the other hand, the inverse gluon or ghost propagator
containing the projection operator P4 and the color
structure of the bare propagator is not as simple as the quark
propagator. We will give a detailed discussion in the next
section.

III. THE BARE GLUON PROPAGATOR IN A
CONSTANT BACKGROUND FIELD

Before we start to discuss the resummed gluon propa-
gator, it is worthwhile to analyze the color structure of the
bare propagator in the double-line basis. As we will see,
there exists an issue that the exact forms of the gluon
propagators cannot be uniquely determined. For general
SU(N) gauge theories, the N?> — N off-diagonal generators
1“b with a # b are identical to those in the Carton space;
however, as compared to the N — 1 diagonal generators in the
Carton space, the N diagonal generators ¢ are overcom-
plete, which is believed to be the origin of such an ambiguity
we will encounter. One thing to note is that, although the
discussion on the bare gluon propagator turns to be simple, a
very similar strategy can be generalized to compute the
resummed propagator which will be considered in Sec. V.

We rewrite the inverse bare propagator as given in
Eq. (9) as

~ , Pabpgb
(05t (P) = | (P (8 - T
1
+ Epszgb:| Pab,cd’ (13)

In the fundamental representation, the classical covariant
derivative D! = 9, — igA¢ acting upon the fermionic field y*
is DSy (x) - —iPay*(P).
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where the mutually orthogonal projections &, (P“ngb )/(P??)* and P4’ P&’ are the natural extension of those used in

A¢' = 0. The unity in the Lorentz space is defined as 6,,, while in the color space it is given by Pab-cd Therefore, the gluon

propagator D¢ [either the bare propagator (Do)“” <d or the resummed one D4“‘] satisfies the following identity:
Z(D )ab ef(Pab) Dfe .cd Pfe ZDab ef Pab) ( )gs;Cd(Pfe) — 5lwfpab.cd' (14)

o.ef o.ef

The bare gluon propagator (Dg)42“/(P*") used in Ref. [28] reads

Papel 1

and one can easily check that the above form of the propagator satisfies the desired identity [Eq. (14)]. However, as we will
show, Eq. (15) is not a unique solution, and the bare propagator is not necessary to be proportional to the projection operator
Pabcd More generally, we assume the following form for the bare propagator:
boed abPab bed
b,cd b\ __ ab,c H ab,c b pab
(Do) (P°) = X} <5/w (P2 > + Zy PP (16)

We first consider the bare propagator for off-diagonal gluons, which is denoted as (DO)‘”’ d with a # b. By definition, we
can show that

D (D)l (P) - (Do) (P1e)E Y " (DGt yabte (Pab) (Do)t (P

ef.o c

abPab
a ab,cd v ab.cd pab pa ab,c a#b o c
= (P)2 X} <5W _(MPT)Z> EZ PP P = pabeds " Togedshes,, (17)

This equation holds when the following conditions are satisfied:
(Pab>2‘)(gb-0d — sadgbe,

[
+ o 2Py = 0. (18)

_5ad5bc
(Pab)Z 5

This leads to the results X5 = 575> /(P)? and Z5"! = 57187/ (P?)* for a # b. Therefore, we find

ab,c ab\9%b cad she 1 PabPﬁb é ab pa
Do 24 { i (= T ) + Gy PP 19

Alternatively, one can consider ), ,-(Do)i</(P®)- (D Nhcd(Pre) = 8, P4 with ¢ #d. Consequently,
(Dy)sbed(P%) with ¢ # d can be determined which is identical to Eq. (19), as expected. In addition, the above result
also indicates vanishing gluon propagators (Do)zf"‘d (P) and (Do)‘d“”( ) when ¢ # d.

As we can see, the bare propagators for off-diagonal gluons can be uniquely determined which have relatively simple
color structures proportional to the projection operator P**:¢¢, The only nonvanishing component (DO)“b ba(paby for a # b
is the same as the one used in Ref. [28]; see Eq. (15).

Next, we consider the bare propagators for diagonal gluons, (DO)%’“ = (DO)I‘j;f. From here on, the diagonal color index
aa will be denoted by a single letter a in order to keep the notation compact. Similarly, we have

Z(D—l)a.ef(P) . (D )fe,L'(Pfe) — [ p2yac _P_sze,c 5 _ PyPu
0 Juo 0)ov 0 N 0 HY P2

ef.o e

Zac__ Zec — pa.c 20
(5 Z )PP = Pes, (20)
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It leads to the following equations:

. P? :
PG =TS X = P,

1 P? =
—peep (ogeem_N"zee) =0, (21
s (52 NE2 ) 2!

We start with the first equation for Xj. For a given c, there
are N equations corresponding to a=1,2,....N
However, they are not completely independent. Because
S, P4cd = 0, any equation can be derived from the other
N —1 equations. Therefore, we drop the equation with
a = ¢, and the other N — 1 independent equations for X'j*
can be written as

1 1
1 Xac XCC _ XeC_XCC _

e#a,c
a=1,...,c—1,c+1,...,N. (22)
Instead of X, we consider Xj“ — X5 with a # c. For a

fixed ¢, there are N —1 unknowns in Eq. (22). The
coefficient matrix reads

1 1 1
-5 - N
L 14 -1
N N N
. . N E (23)
1 1 1
¥ W -y

whichisa (N —1) x (N
being the diagonal elements and —; for other elements.
The determinant of this matrix can be calculated for general
SU(N), and the result simply equals 4. Using Cramer’s
rule, it is straightforward to obtain the solutions of Eq. (22),
and the N> — N unknowns X;¢ — X(¢ are all equal to
—1/P?, where a,c = 1,2,...,N and ¢ # a.

Similarly, the N — 1 independent equations for Z;“ —
Z(¢ are given by

. . . 1
— 1) symmetric matrix with 1 — 5

a,c c,C 1 e,c c,C . 5
<1—N)(Z Zo)—ﬁZ(ZO _ZO)__W’

e#a,c
a=1,....,.c=1,c+1,....N, (24)
which suggests a simple relation Z{°—Z;° =
% (X5 — X5°). As a result, we have
a,c C,C 1 a,c c,c é
X=Xy -y Z=Zi - ate (29)

On the other hand, we should also consider

D (Do)ic! (P) - (DF)5< (PI€) = Paes,,,  (26)
ef.o

which determines the unknowns X§°—AXG“ and

Z5° — 2y“. Following exactly the same procedure as
the above, we can further show that
Xa,c _ X(l,(l 1 Zu,C _ Zd,a é 2
o =% Tp2 0 T%0 Tpa a#c. (27)

Summing up Egs. (25) and (27), the relations among the
unknowns in the propagator are found as

1 1
Xy = X = Xy = X - .
Zc.a_gac_gaa_i ZC.C_£ a#c (28)
0 — “0 p? 0o T pa .

The above result shows that the bare propagators
(Dy)¢ (P) can be uniquely determined as long as any

one component [such as (Dg);'(P) or (Dy).,?(P)] is
specified. In general, we can get only the following
expression:

(DORE )= DU ) =P )= i )
~ om0 5 @

Equation (29) is familiar, which is the same as the bare
propagators for the N> — 1 gluons when the standard choice
for the generators of a gauge group is adopted.2
Furthermore, it is interesting to point out that if one special
constraint ) ,(Dy)%(P) =0 is imposed, the diagonal
gluon propagators can be uniquely determined which are
identical to those in Eq. (15).

Although the exact form of the gluon propagator for
diagonal gluons cannot be specified without extra constraint,
one can still draw a conclusion based on the above
obtained results. Like the inverse bare gluon propagator,
(Dg)abed(PaP) is also symmetric when we flip the

Lorentz and/or color indices; namely, (Dg)u<!(P*") =
(Dy)ieba(Pic). As a consequence, Y., ,-(Dg')ibes -
(Do)f eed — =§,P*<d  will automatically lead to
> oo (Do)l ff (D" = 8, P> and vice versa.
On the other hand, the ambiguity of the bare gluon

propagator (Dy);:¢(P) does not turn out to be a real
problem. Generally speaking, not the individual

’In this case, the propagator is proportional to &8, where A

and B refer to adjoint indices running from 1 to N> —1 for
SU(N).
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components of the propagator but some proper combinations of them are of practical interest. For example, the quantity

S wved Pap.caDiie“*(P) is the one we are interested in, which will be studied in Sec. VI. With the above results, we can
show that

Zpab,cd(Do)ﬁf’Cd(Pab) =

abed

DD P = 5 S Doz (P

—ZDWWW’N;wmwm+v%b]>mw>
_Z uhhu (P + (N—l)[é —(1=-¢)-

(30)

In the above equation, we have used Egs. (25) and (27). (DO)“b ba(pab) for a # b can be found in Eq. (19), and Z/ indicates
terms with a = b are excluded. The previous ambiguity does not show up after summing over the color indices. In Eq. (30),
contributions from the diagonal gluons do not affected by the background field, while for the off-diagonal gluons there is a
simple shift in the energies, i.e., po — p3’. For a vanishing background field, the above result reduces to the following

expected form:

> Pap.eaDo)ied(P) =

abed

(N>=1)|6

PP 1
P> | P

,uy_(l_g) (31)

Finally, we mention that the bare ghost propagator shares similar properties as the gluon propagator. The corresponding
discussion can be carried out by using exactly the same method as above.

IV. THE GLUON SELF-ENERGY AT NONZERO
HOLONOMY

In this work, we are interested in the resummed gluon
propagators D42“Y(Pe) which are expected to provide
information on the screening effects induced by the
light partons in a holonomous plasma. Given the dis-
cussions on bare propagators in Sec. III, one may naturally
conjecture that the individual components of the
resummed gluon propagators for diagonal gluons
cannot be uniquely determined; however, the ambiguity
would be absent in some special combinations, such as
S aved Pap.caDiie“(P??). Tn addition, how the resummed
gluon propagator in the perturbative QGP would be
modified by the background field A§' in a holonomous
plasma is obviously another interesting question that
needs to be addressed.

Zfef.gh,aa (DO)ZUC (P) — fef,gh,cc c
a

=bfm%>

~ |ow-01-9

The above issues can be clarified by computing the
resummed gluon propagator Do “/(P%) based on the
Dyson-Schwinger equation where the holonomous gluon
self-energy IT%“/(P%) needs to be inserted. Within the
perturbation theory, the leading-order 1% (P“?) has been
calculated in Ref. [28] within HTL approximation, where
Eq. (15) was used for the bare propagators. In principle, one
can choose other possible forms for the diagonal propagators;
however, the obtained gluon self-energy does not depend on
any specific choice. This is easy to see by considering the
bare propagator and its associated structure constant
fabedel — j(59d5f 5¢b — 547 5¢b§ed) /4/2. For the contribu-
tion from the gluon-loop diagram, we have the color
summation ., f¢/-9hab pabcd(paby for each bare gluon
propagator. Here, only diagonal components matter; there-
fore, we need to show

+Zfefghaa Zyc( )
a#c
PP, 1 . ‘
”—} prferomee 3 Jfel o (Do) (P)
a
PP, 1
—} S foee, (32)
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In the above equation, all the color indices except a are fixed and ¢ # d applies. In the second line of this equation, we have used
the relation given in Eq. (29). Clearly, there is no ambiguity appearing after summing over the color indices. The same analysis
also applies to the ghost-loop diagram. In addition, such an issue does not show up in the bare quark propagator; therefore, the
perturbative gluon self-energy has been uniquely determined, although a specified form of the gluon and ghost bare propagator
was used in Ref. [28].

Fog completeness, we also list the explicit result of the HTL gluon self-energy in a constant background field which
reads’

Mertu (P") = (KK (q) + (my)™"*4(q)) (I (P*") Ay (P*?) + T1 (P*?) By, (P*)) = K" (q)M,M,. ~ (33)

pert;uy

where
ab,c 471'9 T3 a c = ae e
Kered(q) = =3 P =5 0915" > " (B3 (¢) + B3 (¢)) (34)
e=1
and
N
(mél)ab,cd(q) 2T2 |:6ad5bcz ae +BZ( )) 25ab50dB (q ) (35)
e=1

In the above equations, ¢** = ¢* — ¢* and ¢“ = Q/(2xT). In addition, we also use g to denote any arbitrary g* for
a=1,2,...,N. The Bernoulli polynomials B, (x) are periodic functions of x, with period 1. For 0 < x < 1, the first four
Bernoulli polynomials as relevant in the present work take the following forms:

3 1 1
Bs(x) = x3 —Zx* + = x, By(x)=x*-2x+x2——. (36)

1
By(x) =x*—x+—
H(x) =x"—x+ 2 2 30"

1
B - ) )
1(x) =x 3 6
For arbitrary values of x, the argument of the Bernoulli polynomials should be understood as x — [x] with [x] the largest
integer less than x, which is nothing but the modulo function.
For convenience, the gluon self-energy in Eq. (33) has been expressed in terms of the mutually orthogonal projection

operators, which are defined as

b pab gab yrab
PP PEb MM

AW(Pab) = 5;w - (Pah)Z - (Mah)Z ’
B () = i )
Here, M, is the heat-bath vector, which in the local rest frame is given by M, = (1,0,0,0), and
7ab M- P ab
MpP =M, — (Pab) Py (38)

is the part that is orthogonal to P4”. In addition, the two structure functions IT;(P*) and IT; (P*") take similar forms as their
counterparts in A = 0:

*In Ref. [28], contributions from fermions are also obtained. We drop the fermionic terms for simplicity.
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I (Pab) _ (lpgb)Q 1— (ipgb)Z — p2 nipgb +p
T To2p2 2ipab inab _ ’
p py P Ipy"— P
i ab\2 [;,,ab taab
i (pery = (L [P 1P 2Py | 59)
P> L2p ipf"-p

where p = |p|.

For vanishing background field, the new hard thermal loop K¢ does not contribute, while Eq. (35) becomes the
perturbative Debye mass square m2, = Ng*T?/3 times the projection operator P**?, As a result, the gluon self-energy

reduces to the following well-known result’:

Hgé}nc,ju(Pv q = 0) = m%) [HT(P)A/M/(P) + HL(P)Byv(P)]Pab’Cd' (40)

Although having the expected form at vanishing holonomy, the holonomous gluon self-energy as given in Eq. (33) is not

ab,cd

ab
transverse, Py I,

(P) = —pabKab-cd(g)M,. On the other hand, as discussed in Ref. [29], gauge-invariant sources, which

are nonlinear in the gauge potential A, generate a novel constrained contribution ~X%<4(q) M M, to the gluon self-energy at
one-loop order in the perturbation theory. It exactly cancels the last term in Eq. (33), and the total gluon self-energy

T125:¢4,(P?) remains transverse:

Méonsiu (P7) = (K4 (q) + (m) > (q)) (Tlp (P*?) Ay, (P™") + T1,(P**) B,,, (P*")). (41)

However, for any gauge-invariant source, there is an unex-
pected discontinuity in the free energy appearing at the
order of ~g* as the holonomy vanishes. For details, see
Refs. [29,32].

It turns out that both the nontransversality and disconti-
nuity as mentioned above are related to the anomalous term
~IKb-<d( g) involving the third Bernoulli polynomial B(q)
in the holonomous gluon self-energy. Adding the constraint
contribution leads to only a partial cancellation of
Kb-<d(g). Another issue arising here is the nonvanishing
expectation value of the holonomous color current, which
indicates that an extra term should be included in the action
to ensure a vanishing result. As discussed in Ref. [30],
embedding two-dimensional ghosts isotropically into four

. N
b,cd c
H:ff;ﬂl/(Pab) = <(m§1)ab' “(q) +92C@

Since the two projection operators A, (P*?) and B, (P*")
are both orthogonal to P,‘;h , the gluon self-energy from the
effective theory is also transverse.

Finally, it is worth to note that the above gluon self-
energies are all symmetric under the exchange of the
Lorentz indices u <> v as well as the color indices a <
dand b < c.

*Like the bare gluon propagator, if the standard choice for the
generators is used, we will have 5% instead of P in Eq. (40).
In this case, the gluon self-energy is a diagonal matrix in color
space with equal nonzero elements.

dimensions, a new contribution proportional to the second
Bernoulli polynomial B,(q) appears in the effective poten-
tial which modifies the equations of motion and leads to a
nonzero holonomy ¢ ~ C/T? at high temperature. Here, the
cutoff scale C has dimensions of mass square and corre-
sponds to the upper limit of the transverse momentum k3 of
the embedded fields. In such an effective theory, the
holonomous color current vanishes as expected, because
the contribution from two-dimensional ghosts exactly
cancels that from perturbative theory. Furthermore, the
free energy to ~g° becomes continuous due to the absence
of the anomalous term X*“(g) in the holonomous gluons
self-energy, which finally takes the following simple
form:

)(nﬂpabm(wb) 11, (P)B,, (P). (42)

V. THE RESUMMED GLUON PROPAGATOR IN A
CONSTANT BACKGROUND FIELD

Given the above result for the gluon self-energies, the
resummed gluon propagator D%““(P%) can be determined
with the Dyson-Schwinger equation. In the following, we use

the gluon self-energy in the effective theory Hgfbf’;;‘,f (P®)asan

example to illustrate the calculation. Technically, there is not
anything new in our computation when replacing

H:f';';;‘j(P“”) with T, (P?) or T (PaP),
In covariant gauge, the inverse propagator can be

formally written as
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(D )lej cd(Pab> (Pab) 5 Pabpab( §>:|'Pah cd +HZZZ/; Cd(Pab)
= Aah,chﬂy(Pab) + Bah,chlw(Pah) + Cab’CdPZthb, (43)

where
1
Aah cd __ 5ud6hc[(Puh) + FT(CI”, qh’ Pah)] + 5ah5cd |:_NP2 + GT(CI”, qc, P)] ,

1
Bab cd __ 5ad5bc[( a )2 + FL(qa, qb’Pab)] + 5ab56d |:_Np(2) + GL(qa, qC,P):| ,
1 1

Cab cd __ 5ad5bc 5ab5cd . 44

In the above equation, the modified structure functions are defined by

Fru(g. g P%) = Ly, (PO0) {TZZ (g%) + Balq™)) + CN/<4n2>]
Gry(q*. q°. P) = ="Mz, (P)[2T*By(q“°) + C/(47%)). (45)

Because of the transversality of the gluon self-energy, the Lorentz structure of the resummed propagators is a trivial
generalization of that in A§l = 0, where three projection operators A, (P*), B,,(P®’), and P4”P4 are all orthogonal to

each other. In addition, due to the symmetries of TTj,“*(P??), the inverse propagator (D!)2-¢d(P4?) is also invariant under
the following exchanges of indices: u <> v, a < d, and b < c. Using the fact that ) Gz, (q". q¢°.P) =
—Fr1(q%, ¢* P), we find } A%< =3 A4 =0, and the same relation holds for B**? and C“*“?. Therefore,
one can easily show the following identities:

Z(D l)ab .cc Z(D ccab =0. (46)

c

Equation (46) is essential, which ensures the resummed gluon propagators share the very similar properties as the bare ones.
As a result, the corresponding discussions in Sec. III can be generalized to the resummed solutions straightforwardly. In
general, the resummed gluon propagator can be written as

ﬁﬁf,c‘d(})ab) _ Xab.chlw(Pab) + yab,chlw<Pab) + Zab.cdpsz;zb‘ (47)
In the rest of this section, the calculations of DN,‘ff’Cd(P“b) for diagonal and off-diagonal gluons will be carried out separately.

A. Resummed propagators for off-diagonal gluons

For off-diagonal gluons, the color structure in Di““(P%) with a # b turns out to be simple, which is similar to that in
Eq. (17). From the basic definition,

Z(DN )ab ef(Pab)Dfe Cd(Pfe)‘”&b Z(D'"—l)z{b)_,ba (Pab)DNgf’Cd(Pab) _ 'Pab,cd5 ”7&b5ad5b65 (48)

ef.o o

we can get

1
Xab,cd[(Pab)Q + FT(qa’ qb’ Pab)]Aﬂy(Pab) + Ezab’Cszngb

(Pab)z

ab,c ab\9%b cad she
e VBP0, (49)

+ [(pg)> + FL(q". q°, P)]

014015-9
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It follows that the coefficient of 6, should equal 5445P¢ while the coefficients of the other tensor structures in Lorentz space,
for example, of M,M,, M ”P,‘}b , and ijbP,‘}b , should vanish. Therefore, we arrive at the following result:

1 (pg")*/(P")*

4
A (P?) +
24+ Fr(q. qb, P®)" ™ (Pe?)* + Fr(q". q°. P*")

(Pab>4

ﬁzf,cd (Pab)aib50d5bt‘ { (Pgb)

B,,(PY) + PZbP,‘fb}. (50)

The above expression is symmetric under the exchanges of Lorentz and color indices, 4 <> v, a <> d, and b < c;
therefore, the following two matrices are commutable as required, namely,

S—1\ab.e ab\ Rfe.cd [ pfeya#ED sab.ef [ pa S_1\fe.cd e
D (Dbl (Pa) DL (PT) Ry " Dy (P) (D)5 (P1°). (51)
ef.o ef.o

In the presence of a nonzero background field, Eq. (50) can be considered as a natural extension of the resummed propagator
in the perturbative QGP [33], because they are structurally similar. As for the corrections from the background field, beside the
shift in the energies, i.e., py — pi’, there are also modiﬁcbatilons on the structure functions as given in Eq. (45).

Obviously, when the holonomous gluon self-energy [éoney. (P®) is used, the resummed gluon propagator has the same

expression as Eq. (50), where the modified structure function F7,; (g, q", P%%) is now given by Eq. (A2). On the other

Hab,cd

hand, due to the loss of the transversality, the corresponding calculation with Tl

We present the corresponding results in Appendix A.

(P“?) turns to be relatively involved.

B. Resummed propagators for diagonal gluons

The resummed propagators for diagonal gluons behave quite differently from the off-diagonal ones due to the much more
complicated color structure. By definition, the diagonal components of the resummed propagator satisfy

D (D7V)ee(P)DgS (P) = P<5,,. (52)

e,o

Taking into account the relation given in Eq. (46), the basic method for performing this computation is indeed very
similar to what we have done for the bare propagators. For a given ¢, we drop one equation with @ = ¢, and the other N — 1
independent equations correspond to @ = 1,...,c—1,c+1,..., N can be written as

ZAa,eXe.c — Aa,a(xa.c — XC,C) + ZAH,&‘(XE,C — XL’.C) — _i

N (53)

e e#a,c

where the term A%“X“‘ has been rewritten as —» .. A““AX“¢. Unlike the coefficient matrix in Eq. (23), which is
independent on the background field, with the insertion of the gluon self-energy contribution, we cannot find a simple
expression for the corresponding determinant for general SU(N). In general, the N> — N unknowns X'*¢ — X< in Eq. (53)
are not equal although uniquely determinable by using the Cramer’s rule.’ Equations for Y*¢ — V¢ and Z%¢ — Z%¢ (c is
fixed and a # ¢) can be obtained in a similar way as

(UN7) a,c C,C a.e e,.c C,C\ —— 1 pg
By Vo) + e;éga,c‘B (0% yee) = NP+ (54)
1 1 &1
1 —— | (Z7ac — Zec) — —(ReC — 7y = =
(1-3)¢ -3 )=t (59)

Notice that the equations for Z*¢ — Z¢ have no dependence on the background field which are identical to Eq. (24)
for Z5 — Z“.
To proceed further, we also consider

Y D (P)YD)es (P) = Pe5,, (56)

5Here, we need to make an assumption that the determinant of the coefficient matrix is nonzero.
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which leads to the following equation for X%¢ — X*:

1
ce( pa.c _ yaa ec(yae _ Yaa) — _ 57
e )+ > A )=-% (57

e#a,c

Comparing with Eq. (53) and using the fact that A%> = A%,
one can show X*? = x4, Similarly, Y** is also unchanged
when we flip the color indices: Y*? = Y>¢.

According to Eq. (56), Z4¢ — Z%% also satisfies the
same equations as the bare ones. Together with Eq. (55), we
arrive at

c,a a,c a,a 5 c,c é

Z':Z':Z'—FZZ'—F (Cl;éC). (58)
On the other hand, for general N, explicit solutions for
Eqgs. (53) and (54) cannot be obtained, although they are
formally solvable. The reason is that calculating determi-
nants of the (N — 1) x (N — 1) matrices turns to be very

prab,cdﬁzf.c‘d(}mb)

abed
— Z Dab ba Pab
= Z Db (pab)

~ 1
_ /Dal/j,bapab _
DB P -

hard due to the nontrivial dependence on the background
field. One thing to note is that Eq. (58) indicates Z%¢ =
Z%¢ for a # ¢. However, X%% — X“¢ and Y** — Y, in
general, depend on the background field and vanish only
when g — 0.

In order to demonstrate the above method in a more
explicit way, we take SU(3) as an example to calculate the
resummed propagators for diagonal gluons in Appendix B.
Besides ﬁﬁ'f - lj,i;f, the results for individual components
ljﬁ;f, which could be useful in other related studies, are also
obtained under an extra constraint >, D5 (P) = 0. The
generalization to arbitrary N is, in principle, straightfor-
ward; however, as just mentioned, computation of the
determinants of large matrices will be the major obstacle.

Multiplied by the projection operator, the color summa-
tion 3 pea P24Da Y (P®) is a quantity of particular
interest which can also be uniquely determined by follow-
ing a similar discussion as the bare ones:

Z’EZ;”(P) - (N=1)) D (P)
221)55 -

o)

-5 P)

a>c a

— 3 UG (P) + D (P) - D (P) = D (P (59)

a>c

In the above equation, terms containing off-diagonal components can be determined by Eq. (50). In addition, contributions
from other terms with diagonal components can be expressed as

(N)k(1+ﬂ)k( - I;Tz)k(N — k- I)Sk

(P)

Na 1 Na ~Nb.a Na,a Nb.
> PUrDl(P) = ~N > 1D’ (P) + Dy’ (P) = Dji (P) — Dy’ (P)]
ab a>b
£ 1225
- (N_1>FPMPV+P2

(6 (1

N uv
o0 @) T (L= R) S,

2 ~
=N —k=1)S,

i (po)*/P* >

B, (P), (60)

%) 5 —
B DR -0
where
. N .. N
P* =P+ gngZHT(P) and  py> = pd+ = 3 FT2I, (P), (61)
with 72 = T?(1 + ) and = 3C/(47*T?). In the above equation, the summation of a series of determinants is defined as
~/2'1a1.al Aal,az leal,ak
. Aazﬂl Aazﬂz Aaz,ak
Sk = Z . (62)
ik} . :
./Zlak'al Jztak,az Aak’ak
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with

~,Zia.b _ Zl}z(qae>5ab _ Bz(qab)(l _ 5ab)’

1

By(q") = By(q*") - c (63)

In addition, the shorthand notation ay;, denotes a set of
indices ay, a,, ..., a; which run from 1 to N and satisfy
a; < a, <---<ayg. Details about the derivation of
Eq. (60) can be found in Appendix C.

We emphasize that Eq. (60) presents only a formal
solution for the diagonal contributions which have rather
complicated dependences on the background field.
However, the virtue of Eq. (60) lies in the fact that all
the ¢ dependences have been cast into the determinants
which vanish in the limit ¢ — 0. For a given &, there are C 5‘\,
(the binomial coefficient) terms in the summation S, and
complications will dramatically increase when N is getting
larger and larger.

N-1
- 1

Y PbDl(P) = [ .

o ! P2+ X 2T (P) (1 + 5

i=1

(1+5)

AP

An alternative way to present the background field effect
is to introduce a new set of variables /4; with
i=1,2,...,N—1. These variables have a nontrivial
dependence on the determinant summations S, which is
given by the following equations:

where ay;, follows the same definition as before except that
the indices ay, a,, ..., a; run from 1 to N — 1 in Eq. (64).
Recall that the elements of the real symmetric matrices
involved in Sy satisfy 3, A% = 0; it can be proved that S,
is positive when £ is even, and it becomes negative for odd
k. Consequently, one can straightforwardly show that these
new variables 4; <0 fori=1,2,...,N - 1.

In terms of 4;, a more compact form of 3", , P*“* D’ (P)
can be found as

(po)*/P*
P+ 5 7T L (P) (1 + g 4i)

¢
Byu(P) + 53 PuPy|.

(65)

Such an expression is certainly more significant, because it can be considered as an analog to the resummed propagator in
the perturbative QGP with vanishing holonomy where 4; = 0. Equation (65) also indicates that nonzero background field
modifies the transverse gluon self-energy I1;(P) as well as the longitudinal part I1; (P) in the same manner.

In principle, ", , P D&P(P) depends on all the diagonal propagators D%’ (P). However, it is interesting to point out
that this color summation can be simply expressed in terms of Di;"(P) if the special constraint >, D5’(P) = 0 with
a=1,2,...,N is adopted. For general SU(N), it can be shown that

a,b ab

For the diagonal components, the nontransverse term
~M,M, in T1%:¢ (P“") vanishes, because Bj(x) is odd.

pert;uv
Therefore, the resummed gluon propagator D (P)

obtained from Hgé’ﬁfﬁy(P“h) is the same as that from

Hggﬁiiy(P“”). The corresponding calculation can be carried
out in exactly the same way as above, and the explicit result
is identical to Eq. (60) or (65), where one needs only to set

the cutoff scale C to be zero, namely, # = 0 and 7% = T~.

VI. THE SCREENING EFFECT IN A
HOLONOMOUS PLASMA

As a direct application of the obtained results, the
resummed gluon propagator obtained in imaginary time
can be analytically continued to Minkowski time with

S P e) = (~3 ) S0 )+ (1o ) S0eP) - 5P (66)

a a

i pgb — . We are interested in the static limit w — O,
which provides information about the screening effect in a
holonomous plasma. A similar problem for the SU(2)
gauge theory has been discussed in Ref. [34], where special
attention was paid on the nonperturbative infrared dynam-
ics which is parameterized by a gluon mass originated from
the Gribov ambiguity [35]. In this work, emphasis is placed
on the modifications resulting from a nonzero holonomy on
the in-medium screening effect. Therefore, the following
discussions are based on the effective theory with two-
dimensional ghosts where a nonzero holonomy can be
generated dynamically through the equation of motion.

The definition of the real-time heavy-quark (HQ) poten-
tial through the Fourier transform of D4“Y(w — 0) can be
formulated as the following [36]:
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VQQ( lg}’o / elPr tab Ijggcd(w = O)(th)fe

colors

—_J d p zprpab cdDab Cd(a) N 0)’ (67)

colors

where the quark-gluon vertex reads igy, (1), in the double-line basis and Tr(#*°°?) = 1P*><¢_In addition, all the color
indices should be summed, and an extra N in the denominator denotes the color average of the heavy quarks. Equation (67)
also indicates that ) .4 P“h*”dﬁgg"'d(P) is actually the quantity in question which, as already shown, can be uniquely
determined without any extra constraint.

As a simple example, we first look at the static limit of the bare gluon propagator which is given by
(D)ibcd (@) — 0) = Pebcd/ p2. Notice that (Dy)io“‘(w, p) has no ¢ dependence after analytically continued to real
time. Using the identity > ., P*cdPabcd = N2 — 1, Eq. (67) leads to a Coulomb potential —a,C/r with a;, = ¢*/(4x)
and Cp = (N*-1)/(2N).

Another example is to consider the static limit of the resummed gluon propagator D”b Cd(w — 0) at extremely high
temperature where the background field ¢ — 0. Using Eq. (50), it can be shown that the N? — N off-diagonal gluons
contribute equally, and we get the following familiar form:

1 (po)*/P* ¢
Db (P, g — 0) = (N? —N){ A (P) + B,,(P) +-=P,P, (68)
Z P>+ 5T (P) o5 T (P) Pt
For the diagonal gluons, since both 4; vanish as ¢ — 0, Eq. (65) reduces to a very simple form as
1 (po)*/P* ¢
PebDEP (P, g — 0 —1{ A, (P)+ B, (P)+—=P,P, (69
22 )= WD e, ) O e e, () P e ’

In principle, the contribution from two-dimensional ghosts in the effective theory can be neglected in the high-temperature
limit 7 > /C, where the variable § = 3C/(47°T?) is negligible. Therefore, 72 in Egs. (68) and (69) has been replaced by
T? for consistency.

As expected, the result of 3> ;. P*><4Dir“(P, ¢ — 0) computed in the double-line basis is identical to that obtained by
using the standard generators of SU(N) where the N> — 1 gluons give equal contributions. Analytically continuing to
Minkowski time with ipy; — @ and taking the limit @ — 0, we find that

B 1
fpab,cdDabst(w - 0,9 — 0) = (N2 - 1)7 (70)
abzcd 00 p* + mip,

Therefore, the Fourier transform in Eq. (67) gives the well-known Debye screened potential —a;Cre™"? /r in the
perturbative QGP.

It turns out that the interaction between the heavy quark and antiquark is not affected by the presence of the holonomy at
tree level. On the other hand, the resummed gluon propagator has a nontrivial dependence on the background field;
accordingly, one can expect that the Debye screening in the perturbative QGP would be modified when the nonzero
holonomy is taken into account.

A. Screening effect from diagonal gluons
According to Eq. (65), the static limit of ), , 73“”’15861’ can be expressed as

N-1 N-1
ZP“bDab (0 —0)

o ) (71)
i—1 P2+ = p* + i (1+N(l+ﬁ)l)

with 773, = N ¢*T?/3. As we can see, contributions from each diagonal gluon are inversely proportional to p? plus a
g-modified mass square; therefore, the N — 1 diagonal gluons become distinguishable by the associated screening masses

./\/lg> with i = 1,2, ..., N — 1. We start by considering SU(2) gauge theory and parameterizing the diagonal color matrix
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A{l as q' = —¢q? = s/4. Because of the periodicity of
Bernoulli polynomials, S, actually depends on a set of
variables Ag'/ defined as Ag”/ = |q"/ — n"/|, where n"/ is an
integer that is closest to the value of ¢/. Without losing any
generality, one can assume 0 < s <1, and it is easy to

compute S;, which can be expressed as §; = s2/2 — 5. Asa
result, the explicit form of Eq. (71) for SU(2) reads

> P DG (@ — 0) =
a,b

where the modified screening mass Mﬁ)” is given by

MO = mD\/l + B +352/2 - 3s. (73)

Nonzero holonomy results in corrections on the Debye
screening effect in the thermal medium which can be
described by the ratio between the modified screening mass
Mp in a holonomous plasma and the Debye screening
mass mp in the perturbative QGP. It is clear from the above
equation that this ratio depends on both the background
field s and the parameter # = 3C/(47>T?). However, these
two variables s and f are not independent; their relation can
be obtained from the equations of motion in the effective
theory. For general SU(N), the total effective potential in
the holonomous plasma is given by [30]

N 24 2
27°T CT
v = 3 P (sl + G- il ).
a,b=1

(74)

which leads to the following equations of motion:

N 272
> sanl) (5 Ballg ) + €1 (1)) =0, (75
b=1

Notice that we will simply adopt a constant parameter C in
the following discussions. For quantitatively more reliable
results, a refined confining potential should be employed
where the parameter C could become 7" dependent. The
same purpose can be achieved by including the effects of
wave function renormalizations in the gluons and ghost
propagators [37-39].

For SU(2), the background field s in the deconfined
phase is given by s = (1 — /1 —2f), while at low temper-
atures s = 1 corresponds to the confining vacuum. By
requiring that the phase transition occurs at 7, when
V(s=1)=V(s=(1—-/1=-2p(T=T,))), we can deter-
mine the cutoff C = 27°T?/3, which indicates < 1/2 for
T > T,. Therefore, the ratio Mp/m, takes the following
simple form:

MY Jmp = \J1=T2/T2, (76)

Performing the Fourier transform, Eq. (72) also leads to a
Debye screened potential in the deconfined phase.
According to Eq. (76), the screening effect is reduced in
a holonomous plasma. In the high-temperature limit, the
nonperturbative contribution ~C in the effective theory can

be neglected, and Mﬁ)” becomes identical to the perturba-
tive mp. In addition, when the temperature approaches to
T, from above, i.e., T — T, the modified screening mass

Mg) drops to zero smoothly and a vacuum Coulomb
potential arises at the deconfinement temperature. Because
the background field s = 1 in the confining vacuum, when
T approaches to T, from below, i.e., T — T, we also find
a vanishing screening mass for the diagonal gluon accord-
ing to Eq. (73), where f = 1/2. Therefore, Mg) is
continuous at the critical point, in accord with the fact
that the phase transition is second order for SU(2).

Next, we consider the screening effect for SU(3) where
we have more than one diagonal gluon. In general, we
parameterize the diagonal color matrix A§ as ¢! = —¢> =
s/3 and ¢* =0, which actually corresponds to a real-
valued Polyakov loop. Similarly as before, one assumes
0 < s <1, and the explicit results of S, and S, are given,
respectively, by

< 4

~ 1

Solving Eq. (64) for A, and 4,, we find 4, = s?/3 — s and
ly = s> — 5s/3. Therefore, Eq. (71) can be written as

i | 1
Pt DSl (@ — 0) = + ,
Z PP (MR pP (M)
(78)
with
./\/l(Dl):mD\/1+ﬁ+2s2/3—2s and
MP = mp/1+ 425 — 105/3. (79)

As we can see, the two diagonal gluons can be distin-
guished by their screening masses in a holonomous plasma.
According to the equations of motion, the background field
in the deconfined phase is given by s = (3 — /9 —24p3)/4.
Furthermore, that the first-order phase transition happens at
the deconfinement temperature determines the value of the
cutoff C = 407%T2/81, which indicates  equals 10/27
when T = T,. Then, it is straightforward to show the
following ratio between the modified screening mass and
the perturbative mp:
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My Jmp 2;\/1 +1/9 —8072/(97?) and
M fmy =2\ o~ 5073/ 072) 4 \fo — 073 072

(80)

In the deconfined phase, M(Dl) is always larger than

Mg), and they become identical to mp only in the limit
T — . Equation (80) also shows that both of the modified
screening masses are smaller than the perturbative Debye
mass mp; thus, a reduced screening effect can be expected
in a holonomous plasma. However, at the deconfinement
temperature, neither of modified screening masses van-
ishes, which is different from the behavior found in SU(2).
In fact, we find M(Dl)/mD =+/3/3 and ./\/lg)/mD =+/3/9
when T — T. Therefore, a Debye screened potential
persists in the deconfined phase, and no vacuum
Coulomb potential shows up at the deconfinement temper-
ature. On the other hand, in the confined phase where
s =1, the two modified screening masses as given in
Eq. (79) are the same, and Mg)/mD = Mg)/mD =/3/9
when 7 — T;.6 The jump in the screening mass MS) at
the critical point reflects the nature of the first-order phase
transition in SU(3) gauge theory. This is significantly
different from the second-order phase transition in
SU(2), where the modified screening mass becomes
continuous. The same behavior is also found in the lattice
simulations [40].

To generalize the above results to SU(N), we need to
calculate the determinants in S, and solve the equations for
A; as given in Eq. (64) for arbitrary N. However, this would
be rather tedious when N is large. In addition, the back-
ground field, in general, cannot be parameterized with a
signal variable for N > 3, which further complicates the
situation. To proceed further, we will focus on the high-
temperature region where Ag” < 1; then the dominant
contribution from S, is proportional to the kth power of
Aqg and gets suppressed when k is large. Within the
leading-order approximation, only S, contributes, while S
with £ > 1 becomes negligible. Thus, Eq. (64) is simplified
into A+ 4+ Ay =882 ,.;AqU. Since
there is no unique solution for 4; in this case, it is natural
to assume that all the N —1 4;’s are equal. Under this
assumption, however, the N — 1 diagonal gluons are no
longer distinguishable by their modified screening masses.
Consequently, Eq. (71) takes the following form:

®However, this is not true for general SU(N). For example,
under the straight-line ansatz Eq. (83), we find that only two of
three screening masses (for diagonal gluons) in SU(4) become
identical when T — T7.

S P Dg (@ — 0) & (N = 1)

a,b

—_, 81
p?+ M3 (81)

where the modified screening mass M3 is given by
My =my|14f -2 S agi|. (82)
b= b N(N-1) 4= '

As mentioned before, the parameter f is related to the
background field ¢ via the equations of motion. For general
SU(N), we adopt the straight-line ansatz for the back-
ground field [11]:

CN-2it1
~ oy %

i

q (83)
which satisfies the constraint ¥ | ¢’ = 0 and also leads to
a real-valued Polyakov loop. In the above equation, 0 <
s <1 and the perturbative vacuum corresponds to s = 0,
while the confining vacuum is at s = 1. Notice that Eq. (83)
corresponds to the exact solutions for two and three colors.
For N > 3, the deviation from the straight line turns out to
be very small [11]. Since our discussion here applies at high
temperature, therefore, we consider s < 1 in order to be
consistent with the previous assumption Ag”/ < 1. Solving
Eq. (75) with the above ansatz, the following identity can
be derived:

S:“m@(“%)

+\/25—80<1—%>ﬁ>. (84)

Equivalently, we find f~s up to linear order in s.
According to the above discussions, the modified screening
mass as given in Eq. (82) can be expressed as

N+2

M3, = m3, (1 - s>, fors <1,  (89)
where we have used },_; Ag" = (N? — 1)s/6. As we can
see, the modified screening mass is reduced for nonzero s,
and the deviation from mp becomes smaller when N
increases. Comparing Eq. (85) with Eq. (73) in the limit
s < 1, it is direct to see the equivalence for SU(2). For
SU(3), Eq. (79) leads to two different screening masses
Mip/mp=+1—s and Myp/mp=+/1-717s/3 for
s < 1. On the other hand, Eq. (85) shows a modified
screening mass Mp/mp = /1 — 5s/3. In fact, the equiv-
alence can be shown by looking at the corrections to the
Debye screening potential in the perturbative QGP, as in
both cases the corrections up to linear order in s are the
same and equal to —5sa;mpe"""? /18.
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Based on the above analysis, the following conclusion
can be drawn for general SU(N), that is, introducing a
small but nonzero background field merely amounts to
modifications on the perturbative Debye mass m, and the
corresponding HQ potential is always deeper than the
perturbative screened potential characterized by mp, which
suggests a weaker screening and, thus, a more tightly
bounded quarkonium state in a holonomous plasma. In
addition, performing the Fourier transform, the resulting
HQ potential remains the standard Debye screened form
which can be expressed as’

N-—-1
Voolrs < 1) = -— % gmrmo/1-535 (86
r

The above discussions for the diagonal gluons are based
on the effective theory for a holonomous plasma with
contributions from two-dimensional ghosts. When the
resummed gluon propagators D%’(P) obtained from

Hgé’r‘ﬁffy(P“b ) or Hggﬁgffw(P“h) are considered, the corre-
sponding analysis turns to be very similar, and one needs
only to set # = 0 in Eq. (71). However, we point out that the
above results depend on the use of the equations of motion
which generate nonzero holonomy at any finite temperature
in the effective theory. On the other hand, dropping the
contributions from two-dimensional ghosts, the system
would be always in the perturbative vacuum which actually
corresponds to vanishing holonomy. In this case, nonzero
holonomy has to be introduced by hand which does not
obey the corresponding equations of motion in the pertur-
bation theory. In particular, the modified screening mass
square could be negative with certain values of the back-
ground field, and this does not appear in our above
discussions. The necessity of looking only at solutions
that satisfy the equations of motion was also found in
related studies [29,30,32].

B. Screening effect from off-diagonal gluons

The resummed propagator for off-diagonal gluons has a
relatively simple form as given in Eq. (50) which does not
contain complicated determinants. After analytically con-
tinuing to Minkowski time, we get the following result for
the temporal component of the resummed propagator:

D (w—0)
B 1
PGP (Ba(q%) +Ba(q)) + CN/ (42%)]

(87)

Formally, we can also define the modified screening mass
for each off-diagonal gluons:

"In this subsection, Voo(r) actually refers to the HQ potential
associated with diagonal gluons; namely, terms with a # b are
excluded in the color summation in Eq. (67).

(MY = 1+ 5B + Bala) +

for a # b, (88)

which reduces to the perturbative m?, in the high-temper-
ature limit where 7 > /C and the background field g — 0.

For SU(2), the two off-diagonal gluons have the same
modified screening mass. Taking g' = —¢> = 4/s, it is
easy to show

Mgz) _ M(DZI) _ mD\/l + B+ 3s%/4 - 35/2. (89)

Following what we have done for the diagonal gluons, one
should further take into account the equations of motion
s = (1 —+/T1=2p) and choose C = 22%T2/3; thus, the

temperature dependence of Mﬁ)‘” is found to be

MED = M2 = mD\/W- (90)

Comparing with Eq. (76), we find that, at a given temper-
ature, the screening mass for off-diagonal gluons is larger
than the diagonal one; therefore, the former has a smaller

reduction in the screening effect. Notice that Mgz) has a

nonvanishing value v/3my,/2 as T — T either from above
or from below. Therefore, only diagonal gluon is
unscreened at the deconfinement temperature for SU(2).
There are six off-diagonal gluons in SU(3) but only two
different screening masses which are denoted as Mg3) and

ME)B). With the same parameterization of the background
field as for the diagonal gluons, we can show that

My = mD\/l +p+75?/9-5s/3 and

MUY = mpJ1+ 4+ 1052/9 - 2s. (1)

Imposing the following conditions s = (3 — /9 —24p)/4
and C = 407272 /81, we arrive at

\/405 —40(T,4/T)* +27+/81 —80(T,/T)?
M(23) _
b =D 18v2 ’

" /243 = 80(T4/T)? + 9/81 = 80(T,,/T)?
= mp .

Mp™ = 18

(92)

At a given temperature in the deconfined phase, ME)B) is

always larger than MSB), and these two modified screen-
ing masses are both smaller than the perturbative mp.
Similar as SU(2), off-diagonal gluons show a stronger
screening effect as compared to the diagonal ones, since
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their screening masses are larger than those given in
Eq. (80). In addition, we find M<D23)/mD =7/9 and
/\/lg3)/mD =1/43/9 as T — T. In the confined phase
with s = 1, the two screening masses in Eq. (91) have the
same value and /\/15323)/1111) :Mg3>/mD =1/39/9 as
T — T7. Itis clear that there is also a jump in the screening

masses for off-diagonal gluons at the critical point.
|

For general SU(N), given the straight-line ansatz
Eq. (83), one can also derive an analytical expression

for the screening mass ./\/l(gb) in the deconfined phase
which, due to the rather complicated from, is not listed
here. However, in the high-temperature limit where s is
small enough, we can show that

M fmp, = \/1 + BN + 1)(a+b) = 3(a? + b?) — (2N + 3N))]

N2

In the above equation, the small but nonzero background
field s leads to a reduced screening mass Mgb); therefore,
the screening effect related to the off-diagonal gluons is
also weakened in a holonomous plasma.

Furthermore, we can study the behavior of ./\/lgb) at the
deconfinement temperature. In the confined phase, the

modified screening mass is simplified to Mg’m/ml) =

\/1+ BN?/N. Therefore, there is only one screening mass
for all the off-diagonal gluons as 7" — T7;. Explicitly, we

have
() - (Y] ()
mp N mp T—T} mp T-T,
o (N?-4)
~ N%2(3 —2N?)?

In Fig. 1, we show the ratio Mp/mp as a function of
T/T, for SU(2) (left) and SU(3) (right). The correspond-
ing results at 7 — T are denoted by a circle for diagonal
gluons and by a triangle for off-diagonal gluons.
Quantitatively, the deviation from unity becomes negligible
when T is higher than ~4T ;, where the background field is
too small to induce visible modifications on the perturba-
tive Debye mass mp. On the contrary, in the semi-QGP
region, namely, from 7'; to about 4T ;, a reduced screening
is clear to see from these plots. However, it is not possible
to make a direct comparison with the lattice simulations
where the new feature that the N> — 1 gluons are distin-
guishable by their associated screening masses has not been
taken into account. On the other hand, as shown in Fig. 2,
the qualitative behaviors of the ratio M, /T as a function of
T /T, indeed are very similar to those found in the lattice
simulations, not only for pure gauge theories [41] but also
for two-flavor QCD [42,43]. In general, the ratio M, /T is
not a monotonic function of 7. In the high-temperature
region where the holonomy is small, it grows with
decreasing 7', which can be understood as a consequence

for s < 1. (93)

[
(ab) _ 4 2 _ 2
MEP = mp\/(3N* + 1IN = 17)/(10N? — 15) /N
for T — T73. (94)

Instead of showing the corresponding result at 7 — T, we
can look at the jump in the screening masses at the critical
point which exists for N > 2 and is given by the following
expression:

[B(N* + N>+ N+ 1)(a+b)—3(N*>+1)(a®>+ b*) — (BN?> + 8N? + 3N - 2)].  (95)

[

of the increase in the running coupling. There exists a
turning point at a temperature close to but above 7'; where
the ratio M /T starts to fall.® In fact, for temperatures
close to T;, the influence of the nonzero holonomy, which
leads to the decrease of M /T, becomes dominant over the
running effect of the strong coupling which, in turn,
increases the ratio.

It is worth noting that presumably the above discussions
on the screening effect in a holonomous plasma are
applicable only in the deconfined phase where gluons
are the physical degrees of freedom. When applying
Eq. (74) to the confined regime, some of the thermody-
namic quantities go negative [9,11]; therefore, a refined
effective potential that incorporates contributions from
glueballs turns out to be important for a consistent analysis
at temperatures below T, Despite the above-mentioned
issues, a naive generalization of the obtained results to the

8For SU (2), MEJ”) /T also decreases with decreasing 7' when
T is very close to T,;. This may be not very clear to see from the
plot.
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The ratio M /my, as a function of T/T, for SU(2) (left) and SU(3) (right). The corresponding results at 7 — T are denoted

by a circle for diagonal gluons and by a triangle for off-diagonal gluons.
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FIG. 2. The ratio Mp/T as a function of T/T, for SU(2) (left) and SU(3) (right). For numerical evaluations, we use the two-loop

perturbative running coupling.

confined phase can be carried out by taking the background
field s = 1. Consequently, we find that the ratio M /my,
grows with decreasing 7, which is in contrast to the
observation as shown in Fig. 1. Furthermore, by assuming
the leading-order perturbative form mp ~ g7 persists even

in the confined regime, the diagonal screening masses MEQ
increase with decreasing 7 provided that the coupling g is
fixed. This is qualitatively in agreement with the lattice
simulations as shown in Refs. [40,44]. However, the
opposite conclusion holds for the off-diagonal screening

masses Mgb). In addition, one can show that all the

screening masses approach +/Na,C/zm in the zero-
|

temperature limit. For SU(3), given T, = 0.27 GeV and
g~ 1.87 (this is the value predicted by the two-loop
running coupling at T,), \/Na,C/z ~0.31 GeV, which
is comparable to the above-mentioned lattice results.

We are not going to discuss the corresponding results
based on the holonomous gluon self-energy ngbﬁ‘;;fu(P“b ) or
Hﬁ‘gﬁiib (P?) obtained in the perturbation theory. This is
because the static limit of the resummed propagator
Dis"(w — 0) is not well defined. In fact, it is straightfor-
ward to show the following:

- 1
Db (@ — 0) = . :
P+ TS, (Ba(q%) + By(q)) + L) (inete — 20y
- 1
Digton(@ — 0) = (96)
pert;00 19 b ’
P2+ @T2Y (By(g%) + By(q?) + L (n22D)|  — 4 (J'(q% q"))?
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with
1( a b 4r 273 ae eb
I q") =59gT > "(B3(q“) + B3(q*)).  (97)

With the constraint contribution, the screening mass be-
comes divergent due to the appearance of an unexpected
term ~1/w in the static limit. On the other hand, using the
nontransverse Hgf&f,‘fy(P“b), the screening mass is gauge
dependent. In addition, the retarded solution i p(‘)’b — o+ i€
leads to a different result in the static limit as compared to

the advanced solution ipg” — w — ie, because for the

o+ptie o
ol =F im All of

these problems are related to the anomalous term
~Kabcd(g) or ~Bs(x) in the gluon self-energy which
vanishes when the background field equals zero. This is
again an example to show the necessity of looking at only
solutions that satisfy the equations of motion.

logarithmic term we have In

VII. SUMMARY AND OUTLOOK

In this work, we have computed the resummed gluon
propagator in a QCD plasma with nonzero holonomy
which was realized by introducing a classical background
field for the vector potential A,. Being crucial for many
processes with soft momentum exchange, the resummed
propagator was obtained through the Dyson-Schwinger
equation where, as a necessary input quantity, the gluon
self-energy in a holonomous plasma has been calculated
previously in an effective theory where nonzero holonomy
can be dynamically generated.

Because of the transversality of the gluon self-energy in a
constant background field, the resummed propagator for
off-diagonal gluons as given in Eq. (50) is formally
analogous to that in the perturbative QGP with vanishing
holonomy. The real difficulties in the computation exist in
the color structure related to the diagonal gluons. The
double-line basis, as extensively used before, is convenient
to compute in the presence of a background field. However,
due to overcompleteness, diagonal gluons are mixed in the
double-line basis, and the propagator associated with each
individual gluon cannot be uniquely determined. Instead, as
shown in Eq. (65), the color summation >, , P Df;’ (P)
has a definite expression in which all the background field
dependence can be cast into the determinants of a series of
matrices, and the corresponding evaluation turns out to be
rather complicated when N is large.

After analytically continued to Minkowski time, the
static limit of the resummed gluon propagators was also
discussed which offered an insight into the screening
effects in a holonomous plasma. In general, introducing
nonzero holonomy merely amounts to modifications on the
perturbative Debye mass mip, and the resulting HQ poten-
tial, which remains the standard Debye screened form, is
always deeper than the screened potential in the

perturbative QGP. Therefore, a weaker screening and, thus,
a more tightly bounded quarkonium state can be expected
in a holonomous plasma. In addition, both the diagonal and
off-diagonal gluons become distinguishable by their modi-
fied screening masses M, as given in Egs. (71) and (88),
respectively.

The explicit 7 dependence of the modifications on the
perturbative mj, as described by the ratio Mp/mp was
derived by imposing the equations of motion for the
background field. Taking SU(2) and SU(3) as examples,
the deviation of Mp/mp from its high-temperature limit
where the ratio approaches to one is dramatic only near the
deconfinement temperature 7, according to the plots in
Fig. 1. As the temperature decreases to 7, the modified
screening masses have nonvanishing values with the only

exception of the screening mass Mg) associated with the
diagonal gluon in SU(2), which drops to zero as T — T.
Furthermore, there is a jump in the modified screening
masses at the deconfinement temperature for N > 2, and this
is naturally expected in first-order phase transitions in SU(N')
gauge theories. We also discussed the behavior of M, /T as
a function of the temperature 7" which, as shown in Fig. 2,
exhibits a very similar T dependence as observed in lattice
simulations. As a nonmonotonic function of 7', the change of
M p/T with decreasing temperature can be understood as a
competition between the running of the strong coupling
which increases M /T and the influence of the nonzero
holonomy, which, in turn, leads to the decrease of the ratio.

We point out that the above conclusions are based on the
use of holonomous gluon self-energy obtained in the
effective theory where, by embedding two-dimensional
ghosts isotropically into four dimensions, a new contribu-
tion arising in the effective potential ensures a nonzero
holonomy at any finite temperature. Dropping such a
contribution, the computation of the resummed gluon
propagator with holonomous gluon self-energy in pertur-
bation theory does not involve anything new, as we already
discussed. However, the equations of motion suggest a
vanishing background field in perturbation theory; there-
fore, deviating from the perturbative vacuum turns out to be
not self-consistent due to the violation of the equations of
motion. In particular, even taking g — 0 may cause
problem in the perturbation theory, because one would
encounter ambiguous expressions of the type “0/0” in the
static limit; see Eq. (96). This indicates that the system has
to stay exactly in the perturbative vacuum. As a result,
generating nonzero holonomy from the equations of motion
is essential in a holonomous plasma; however, perturbation
theory fails to do so. Finally, to generalize our computation
to full QCD, one should also include a new term in the
action analogous to what has been done in the pure gauge
theories. It is expected to cancel the same anomalous term
~Kb-<d(g) showing up in the fermionic contributions to
the holonomous gluon self-energy. This will be investi-
gated in future work.
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APPENDIX A: RESUMMED PROPAGATOR FOR OFF-DIAGONAL
GLUONS OBTAINED FROM IT2¢  (peb)

pert;uy

Hab,cd

With the perturbative gluon self-energy ITier.,,

(P?), the inverse propagator in covariant gauge reads

- 1
(D—l )Zf.cd(Pab) _ (Pab)Zéﬂy _ Pﬁbpgb (1 _ E>:| 'Pab,cd + Hgé?r»g;iy(Pab)

= Aab,chlw (Pab) + Bab,chm/(Pab) + Cab,cdpszgb + gab,chﬂMw (Al)

where A%-cd Bab.cd and C4<d are formally the same as those given by Eq. (44) but the corresponding structure functions
now take the following forms:

Fr/1(q".q". P™) = Ty, (P)> "(By(q“) + B2(q*)) = Ty (P)J (. " pgP).

e
Gryi(q*. q°. P) = =2g°T*Iz;, (P)B,(q“), (A2)

with

¥ T X
Ia"q"pi’) = 5 9T P > (B3(q*) + B3(q")). (A3)
0 e

In addition, the introduced new term in Eq. (A1) is defined as £90¢4 = §%5°J (g%, ¢, pgb).
Assuming the following expression for the resummed gluon propagator:

ljzllj,cd(Pab) — Xab.chm/(Pab) + yab.ch/w (Pab) + Zab,cdpszgb + Wab.chﬂMw (A4)
according to Eq. (48), we arrive at

(Pab)Z
(p§")?

1
+ Xab,cd[(Pab)Z + FT(‘]a, qb7pab)]A!w(Pab) + Ezab’CszbPzL/lb + J(t]a, qb’pgb)wab,ch”Mb

[(pgb)Z 4 FL(qa, qb’ Pab)] yab.chm/(Pab> 4 Wab.chﬂo_(Pab) . MGMD

1 .
+ J(qa’ qb’ pgb));ab,cdpgb1‘4”1‘40r . Bo—y(Pab) + Ewab,cdpngZbMy + J(qa’ qb’ pgb)Zab,cdpngMPlc/zb

a#b o c
2 sudgpes,,. (A5)

Since the extra projection operator M, M, is orthogonal only to AW(P“Z’ ), as compared to Eq. (49), many new terms
associated with W4 and J (g%, ¢", paP) are present in the above equation. Similarly, by requiring the coefficients of all the
Lorentz tensor structures expect §,,, to vanish, the resummed propagator in Eq. (A4) can be determined by the following
result:

014015-20



RESUMMED GLUON PROPAGATOR AND DEBYE SCREENING ... PHYS. REV. D 104, 014015 (2021)

th,cd — 1
(P®)? + Fr(q®. q". P**)’
yabea _ (P6)? 1 +&J(q% ¢°, p")/ (P*)? ’
(P F(q% " P?) + [(p§")* + FLq". q". P& (q" . 4", p§") / (P™")?
gabed _ S Fi(q".q" P™) + (p§")*I(q". q", p§")/ (P")?
(P) FY (g " P™) + [(P§")* + Frq® 4" P™)ET (g 4" ")/ (P™")*
Wab.cd — _ &g 4" Pgb)/(P“h)z (A6)

F(q".q" P") + [(p§") + Fi(q*.q" P*))EI (¢ 4" pg") [ (P")*

where

(Pab)Z , , p2
(pgb)z FL(qa’ q ’Pll ) + (Pab>2

Fi(q®.q". P*") = (P*)? + J(q". 4", pg"). (A7)

Notice that we omit a common color factor §¢6”¢ in Eq. (A6).

APPENDIX B: RESUMMED GLUON PROPAGATOR IN SU(3)

In this appendix, we will present the calculation of the resummed gluon propagator D% (P) in SU(3) under the special
constraint

Y Di(P)=0  (c=1.2.3). (B1)

Starting from Eq. (53) with ¢ = 1, we have the following equations:

1
22( 21 _ yll 23(p30 _ yMy = 2
222 )+ A2 )= -3
1
A3’3(X3’1 _ Xl,l) +,A3’2(X2’1 _ Xl,l) — _g‘ (BZ)
The solutions of the above equations can be easily obtained:
w2l _ :1 A3 — 33
3A2,2A3,3 _ A2’3A2’3 ’
1 A2,3 _A2.2
A3 -l = 3 A22A33 — Q2323 (B3)
In addition, setting a = 1 in Eq. (57), the equations for X'> — X! and X'3 — X! read,
1
22( 12 _ yll 32013 _ plly = —
222 )+ A )= -3
1
A3 = XY 4 A23(X12 - Y1) = -3 (B4)

Since A%’ = A>“ it is obvious to see that X! — XLl =21 — X1 and X'3 - X = 3 — XL namely,
X2 = x21 X3 = X3! The solutions for other unknowns X%¢ — X¢ and )*¢ — )¢ can be obtained by simply
repeating the above procedure, which we do not show here.
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Adding the constraint X'+ X214+ X3 =0 to
Eq. (B3), the solutions for X*! with a = 1,2,3 can be
obtained as

a1 AN -4
= 0 2233 _ 23420
), 1 A2 433
e = TO P23 _ 23230
3,1 22
prYes 1 Al +24 (BS)

_§A2.2A3,3 — A23 p23°

The determination of other components of X*? follows
exactly the same way. For example, impose the constraint
X124 X224+ X3 =0 on Eq. (53) with ¢ = 2, and then
X2 with a = 1, 2, 3 are uniquely determined. In addition,
we find that there exists a general expression for X?,
which reads

Given the above discussions, the determination of
Yt is straightforward; we list only the result for com-
pleteness:

2py PN BT 4 B
p* Z/e’f(Be.er»f _ Be,fBe,f)

ya,h — (a,b = 1,2,3)

(B7)
Finally, the solutions for Z%? are unchanged as com-

pared to the bare propagator. For general SU(N), using the
constraint »_, Z¢¢ = 0, we have

N (B8)
fpa,b ! Ae,f + .Aa'b
Xeb =2 — Ze'f . (a,b=1,2,3).
Ze.f(Ae,eAf,f _Ae,fAe.f) .
(B6) In terms of A given in Eq. (63), the final expression
for Dg; (P) of SU(3) takes the following form:
|
- 1 Pab —2() (1 -5) (3L, APt + A%
Dzyb(P) _ ﬁ S — (TZ),( ~e§2)( sz - — / )~e’f — Aﬂ,,(P)
1=2(p) (1 =) 20 A+ 6()*(1 = 5)* ey A A
2 2 Te a na,
pi/P* P —2(5)(1 —%)( o A Fpab 4 Aob) pab
- D 2 12 i 1 qef T2\2 PivaN~ oS ~geBW(P) + ZjFP”PW (B9)
07 1=2(w)(1=5%) >obp AY +6()°(1 = 5%)° >y A AP
were T is defined in Eq. (61). B
For zero background field, due to the vanishing A%?, the diagonal gluon propagator becomes
- 1 o/P
D/ (P.g = 0) = (A, (P)+ pofz B,,(P) +£4P”Py pab, (B10)
P Do P
|
We point out that, with Egs. (52) and (B1), all the AL A2 AN
diagonal gluon propagators for SU(3) are uniquely deter- AU 22 ... 2N
mined without resorting to Eq. (56). The obtained solutions A= , (C1)
for D,‘j;,b is symmetric in color space, i.e., Ijﬁ;f’ = D~Z;,“; as a : : ’ :
result, Eq. (56) is satisfied automatically. In fact, we find AN N2 ANN
that such a conclusion actually holds for general SU(N) if
the special constraint Y, Di (P) = 0 with ¢ = 1,2,...,N
is adopted. with
APPENDIX C: CALCULATION OF © 1 . N
s P4D% (P) FOR GENERAL SU(N) o PP = P+ 20 T (P)_By(q%)  fora=b,
To make our presentation compact, we first introduce the —LP? - 28 T°11;(P)B, (¢") for a # b,
following shorthand notations. The N x N matrix A in
color space has the explicit form (€2)
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where the definitions of P> and B,(x) can be found in
Egs. (61) and (63), respectively. In addition, Al is defined
as a (N—1)x (N —1) matrix which is obtained by
removing the 2N — 1 elements in the ath row and ath
column from A. Because ) , A%“ =), A% =0, the
determinant of A vanishes. For the same reason, one
can also show that the determinant of Al is independent
on the value of a where a =1,2,...,n. Furthermore,
Al {b} is used to denote a matrix that constructed by
two successive steps. First, we replace the N elements in
column b of matrix 4 with —1/N and then remove the
2N — 1 elements in the ath row and ath column from the
previous obtained matrix.

We start by considering the solutions for X*¢ 4 X% —
X4 — xe< for general SU(N). According to Eq. (53), we
choose ¢ to be some fixed value j and solve this equation
for the N — 1 unknowns X%/ — X/ with a # j. Using the
Cramer’s rule, the solution for one specified unknown
X — X7 is formally written as

Ay

X — Xl =
AU

(C3)

Similarly, we choose a to be some fixed value i in Eq. (57),
and the solution for X7 — X'/ reads

[y;
i A

Xt
|AU|

(C4)

Summing up the above two equations, we have the
following expression for X/ + X/ — X — xi:

y iy iy . | Al | ALY
i,] jii . Vi Vi) — - _
X+ X X X |Am| |.AU] , (C5)
where we have used
|AU{i}] + A} = —| Al (Co)

and Al is a (N —2)x (N —2) matrix obtained by
removing the 4N — 4 elements in the ith and jth rows as
well as the ith and jth columns from matrix A.
Although it is not very obvious, Eq. (C6) can be straight-
forwardly obtained in the following way. Performing
the sequential elementary row and column operations9 on
Al{j}, R; <> Rj_|.R;_; <> R;5....Ry <> R, and then
Cj < Cj_1,Cj_y < Cj_,...Cy < Cy, the obtained matrix
AL} has the same determinant as A{j}. After similar
transformations, R; <> R;_{,R;_; <> R;_,,...R, <> R; and
then C; < C;_;,C;_; <> C;_,,...C, <> Cy, AVl{i} becomes

°R, <> R,, stands for swapping rows a and b. The column
operation C, <> C}, is for swapping columns a and b.

AU{i} while the determinant also remains unchanged.
These two matrices A{j} and AV {i} are identical except
the elements in the first row. Therefore, we arrive at the
following equation:

AV + AP} = LAV} + 1A} = A
()

The elements in the first row of the introduced (N — 1) x
(N — 1) matrix A, are given by

(Agum) " = (AT{i}) 1+ (AL},

witha = 1,2, ..., N — 1, while other elements are the same
as AU{i} or AU1{j}. Adding rows 2 to N — 1 to the first row,
S°M'R; = Ry, such an elementary row operation does not

change the determinant of Ay, and the resulting matrix is
denoted as A,,. On the one hand, due to >, A“‘ =
> . A% =0, the only nonvanishing element in the first
row of Ay, is (Agm) "' = —1. On the other, after removing
the elements in the first row and column from A, the
resulting (N —2) x (N —2) matrix is nothing but A"/,
Then it is clear to see the validity of Eq. (C6).

The determinants in Eq. (C5) are not easy to compute for
arbitrary N which depend on the momentum P as well as
the background field A§. In this work, we are particularly
interested in the influence of the background field on the
resummed gluon propagators; therefore, it makes sense to
eliminate the P dependence in the determinants which as a
result will depend only on A§'. We find this is doable with
the following two steps.

As shown in Eq. (C2), there is a common term P?
appearing in (Al1)*% With the basic properties of the
determinant of a matrix, the first step is to rewrite | A"/ as

(C8)

-2
P2N-2-k) S][(lvl] )

MZ

Al = (c9)

k

Il
=}

In the above equation, S‘,E” ]

nants which reads

denotes a sum of the determi-

Aal,al Aal.az “2[“"“"'

3l | A AT AR

Sy :Zam A S |, (c10)
_:A\la""al ;lak,ag Aak,ak

with the special case S‘g I = 1. The shorthand notation agry

has been defined in Sec. V B. In addition, >_/ requires
that summation indices a, a,, ..., a; cannot be equal to the
specified values i or j when run from 1 to N. The k x k

matrix A in the above equation is given by
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J’Z‘a,b _ .Au'h _ 5abP‘2' (Cll)

According to Eq. (59), in order to compute the quantity P*? D4 we should actually consider the sum 5", j | AL,
which can be written as

N—

> LAl Z PNk S (C12)

i>j k=l

(=)

where C3,_, is the binomial coefficient and S, is differentiated from S‘ -7 only by the fact that the set of indices a;y now run

from 1 to N. Accordingly, the superscript of S §l) has been removed. When k = 0, we have SO =1.
Notice that every element in matrix A has a term —P? /N. The second step is to take this term out from S «» and we can show

Aal,ul J’Zlu].az . Aal,ak ~;‘al.azl Aa,,az . ;tal,aA ;4511-(11 ;tal,az . ;lal,ak
;Z[“Z’”l 2{“2'“2 .. .,21‘12*‘” 1 k| A% Adar L. A% A%ar @ A2
) I Y A A CE
. . . . i=1 : : T, : . . . .
Aak,a, 2‘“’6””2 ... Aak”k ;4‘11“01 ~,Zlﬂkaaz - ;lakﬂk o ;lakqﬂ] Aaksaz . ;l“kﬂk
—

i

where C; — 1 indicates the replacement of all the elements in column i with 1 and the matrix A%? is defined as
A0 =201y () (S halg®)o = Bala)(1 = 5%) ). c14)

Because A”¢ = A% and 3, A% = 0, we can derive the following identity:

_;lalﬂl ;ltllﬂz . _;l“l,“k Aalsal ;tﬂl»ﬂz . .;lalvak—l
k| A faar L [d2ax Ada A o Aa2ake
> S . =N> . . R (C15)
agy i=1 . . : afp-1} . . .
Aakval _;lak»az A ;laksak Aak—l »ay ;lak—l»az . _;l“k—lvak—l
Ci—1

which leads to our final result for the determinant of A"/
N2
. - 6\ Kk [T*\* P2\ k -
|AlLA| = pAN-2) <> () <1 - > (N—k—=1)S,. (C16)

where 72 is defined in Eq. (61). According to Eq. (62), §k denotes a sum of determinants of matrix A with
AP = A%t /(2 T*T1;(P)). The matrix element A*” depends only on the background field and vanishes when AS' = 0.

As before, So = 1; therefore, only the term k = O contributes for vanishing Ag‘.
The corresponding calculation of the determinant of AU in Eq. (C5) can be carried out in a similar way. As mentioned
before, the determinants of A% for a = 1,2, ..., N are all equal, so we have

Aot
() (1) (- ii) Sk e

k=0

Given the above discussions, the calculation of )’/ + )/ — Vi — Y/ becomes a trivial repetition. After taking into
account Eq. (58), it is straightforward to write down the final expression for >, , P**D{;’(P), which has been given
in Eq. (60).
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