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We present predictions for the distribution of rapidity gaps in realistic kinematics of future electron-ion
colliders, based on numerical solutions of the original Kovchegov-Levin equation and of its next-to-leading
extension taking into account the running of the strong coupling. We find that for the rapidities we have
considered, the fixed and the running coupling equations lead to different distributions whose general shape
is rather insensitive to the chosen prescription in the running coupling case. The obtained distributions for
the fixed coupling framework exhibit a shape characteristic of a recently proposed partonic picture of
diffractive dissociation already at rapidities accessible at future electron-ion colliders. The modification of
this shape in the running coupling case can also be understood qualitatively from that picture. Our results
confirm the relevance of measurements of such observables for the microscopic understanding of
diffractive dissociation in the framework of quantum chromodynamics.

DOI: 10.1103/PhysRevD.104.014014

I. INTRODUCTION

The observation of diffractive events accounting for
about 10% of all events in deeply inelastic electron-proton
collisions at DESY HERA [1,2] was a striking experi-
mental discovery. By definition, a diffractive event has a
large rapidity gap in the final state [3], namely a large
angular sector in detector in which no particle is measured,
which is interpreted as the signature of color singlet
exchange. As the high rate of such events can be interpreted
as a smoking gun for the onset of high parton density
effects [4–7], and diffractive events can give insights into
the spatial distribution of the gluonic content of hadrons
(for a review, see Ref. [8]), their detailed investigation is
among main goals at future electron-ion colliders [9–11].
Of particular interest for diffractive deep-inelastic scat-

tering (diffractive DIS) processes is diffractive vector
meson (V) production, γ�h → Vh0, and diffractive disso-
ciation, γ�h → Xh0, where the virtual photon mediating the
interaction is dissociated into an inclusive set of particles
(X) in the final state (h0 is either the hadron h or an excited
state of hwith the same quantum numbers). In recent years,
the knowledge on the former has been advanced greatly by
numerous studies (see e.g., Refs. [8,12] and references
therein). The diffractive dissociation has also been inves-
tigated for a long time (see Ref. [13] for a review).

Nevertheless, recent developments in this topic are quite
limited, especially in understanding the diffraction at a
microscopic level. The partonic content of the hadrons has
signatures in the final state, such as the size of the rapidity
gap. Therefore, the rapidity gap distribution is an important
observable, as it can provide indications on the detailed
microscopic mechanism of the diffraction.
In order to address that diffractive observable, an elegant

formulation was established in the framework of quantum
chromodynamics (QCD) [14–22], which provides detailed
predictions for diffractive cross sections of the scattering of
a quark-antiquark (qq̄) dipole with a nucleus, in the form of
nonlinear evolution equations. It is referred to as the
Kovchegov-Levin formulation, which relies on the color
dipole picture [4–6,23–25]. The first investigation on the
rapidity gap distribution in the dipole-nucleus scattering
was already presented in Ref. [14] based on the analytical
solution of a simplified version of the Kovchegov-Levin
equation at leading order. This equation was then studied
numerically in Ref. [15–17], with a short discussion on the
rapidity gap distribution in the nuclear scattering of the
dipole [16]. The diffractive onium-nucleus cross section at
a fixed rapidity gap, which is directly related to the rapidity
gap distribution by a normalization to the total cross section
(see Eq. (1) below), has also been investigated recently in
the double logarithmic approximation [26], based on the
same formalism. In a slightly different approach, there has
been an attempt recently in deriving the rapidity gap
distribution in the diffractive dissociation of small dipoles
off nuclei at an asymptotic high energy based on the color
dipole model [27,28]. Additionally, there were also differ-
ent analytical and numerical model-dependent analyses on
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the diffractive mass spectrum [9,25], which is related
through a simple identity to the rapidity gap distribution.
In this work, we mainly study the rapidity gap distri-

bution in diffractive deep-inelastic virtual photon-nucleus
scattering. The investigation is based on the aforemen-
tioned QCD dipole model of DIS and numerical solutions
to nonlinear evolution equations in both fixed coupling
[14,18–21,29,30] and running coupling scenarios [22,31–
33]. We will start by discussing dipole-nucleus scattering,
and then, move on to virtual photon-nucleus scattering,
which is measurable at colliders. Indeed, the former is more
fundamental in the theoretical sense, as the color dipole is a
convenient QCD object to represent a virtual photon in DIS
at high energy, and it is better controlled theoretically.
Furthermore, its characteristics would be manifested in the
virtual photon-nucleus scattering since the latter is a mere
weighted average of the former over the dipole transverse
sizes. Phenomenologically, our purpose is to produce
predictions for the distribution of diffractive gaps, which
can be extracted from the outputs of future electron-ion
colliders, such as BNL-EIC (recently approved) [9,10] or
CERN-LHeC (under design) [11].
The paper is organized as follows. In the next section, we

will introduce the Kovchegov-Levin formulation of the
diffractive DIS and define the quantities of interest for the
current analysis. The partonic picture for diffractive dis-
sociation proposed in Refs. [27,28] from which the rapidity
gap distribution can be derived is also briefly reviewed in
this section. In Sec. III, the numerical results on diffractive
gap distributions for the nuclear scattering of both color
dipole and virtual photon will be presented. We will then
discuss the effects of the running coupling correction to
diffraction and compare to available results on the dif-
fractive distributions in Sec. IV. Finally, in Sec. V, we will
summarize and conclude.

II. FORMALISM

A. Dipole model and Kovchegov-Levin
formulation for diffractive dissociation

At high energy, it is convenient to describe the DIS
process in a frame where the virtual photon fluctuates into a
qq̄ dipole (hereafter referred to as onium) long before the
interaction with the nuclear target (see Fig. 1). The virtual
photon-nucleus interaction is then translated into the
interaction between the onium and the nucleus.
Diffraction corresponds to the exchange by a color-neutral
gluonic state. In this picture, the nuclear scattering cross
sections of a virtual photon can be written as a virtuality-
dependent weighted average of the scattering cross sections
of onia off the nucleus over dipole transverse sizes. The
rapidity gap distribution, which is defined as the diffractive
cross section at a fixed rapidity gap Y0 normalized to the
total inclusive cross section for the scattering of a virtual
photon γ� of virtuality Q2 off a nucleus A at a total rapidity

Y ¼ ln ½ðŝþQ2Þ=Q2�, where ŝ is the squared center-of-
mass energy of the scattering process, reads

Rγ�A≡
�
−

1

σγ
�A
tot

dσγ
�A
diff

dY0

�
ðQ2;Y;Y0Þ

¼
R
d2r

R
1
0 dz

P
p¼L;T;fjψf

pðr;z;Q2Þj2½−dσqq̄Adiff
dY0

ðr;Y;Y0Þ�R
d2r

R
1
0 dz

P
p¼L;T;fjψf

pðr;z;Q2Þj2σqq̄Atot ðr;YÞ
;

ð1Þ

where integrations are performed over all possible trans-
verse sizes r of the onium, and over all momentum fractions
z of the virtual photon carried by the quark. The probability
density functions jψf

L;Tðr; z; Q2Þj2 of the quantum fluc-
tuation γ� → qfq̄f in longitudinal (L) and transverse (T)
polarizations for a quark flavor f are given by [24,34]

jψf
Lðr; z; Q2Þj2 ¼ αemNc

2π2
4Q2z2ð1 − zÞ2e2fK2

0ðrafÞ; ð2Þ

jψf
Tðr;z;Q2Þj2

¼ αemNc

2π2
e2ffa2fK2

1ðrafÞ½z2þð1− zÞ2�þm2
fK

2
0ðrafÞg; ð3Þ

where r ¼ jrj, a2f ¼ Q2zð1 − zÞ þm2
f, and mf and ef are

the mass and the charge of a quark of flavor f, respectively.
The total onium-nucleus cross section σqq̄Atot is related to the
forward elastic scattering amplitude N by

σqq̄Atot ðr; YÞ ¼ σ02Nðr; YÞ; ð4Þ

where we assume impact parameter independence of N in
such a way that the impact-parameter integration results in
an overall dimensionful parameter σ0. The diffractive cross
sections σqq̄Adiff ðr; Y; Y0Þ and σγ

�A
diffðQ2; Y; Y0Þ for the nuclear

FIG. 1. Schematic illustration of the diffractive dissociation of a
virtual photon (γ�) with virtuality Q2 off a nucleus (A) in the
dipole picture. The photon fluctuates into an onium of size r,
which then interacts with the nucleus and is dissociated into an
inclusive set of particles with invariant mass MX (for the relation
between MX and Y0, see below) in the final state. The nucleus is
kept intact, leaving a rapidity gap Y0. The total relative
rapidity is Y.
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scattering of the onium and the virtual photon, respectively,
are defined for a minimal rapidity gap Y0. Assuming
again the impact parameter independence, σqq̄Adiff can be
expressed as

σqq̄Adiff ðr; Y; Y0Þ ¼ σ0NDðr; Y; Y0Þ; ð5Þ

where the function NDðr; Y; Y0Þ represents the diffractive
onium-nucleus cross section per unit impact parameter with
the minimal gap Y0, and σ0 is as in Eq. (4).

The knowledge on the onium-nucleus scattering
profiles N and ND is then essential to the investigation
of diffractive patterns. In the dipole picture, the onium
may further evolve by QCD radiations to a complex
Fock state at the interaction time. At low Bjorken-x
(Y ¼ lnð1=xÞ) and large number of colors Nc, the QCD
evolution of the elastic amplitude N of an onium of size
r with a nucleus in rapidity Y is governed, at leading
order, by the Balitsky-Kovchegov (BK) nonlinear equa-
tion [29,30]

∂N
∂Y ðr; YÞ ¼

Z
d2r1KLOðr; r1; r2Þ½Nðr1; YÞ þ Nðr2; YÞ − Nðr; YÞ − Nðr1; YÞNðr2; YÞ�; ð6Þ

with the leading-order kernel KLOðr; r1; r2Þ given by [35]

KLOðr; r1; r2Þ ¼
ᾱs
2π

r2

r21r
2
2

; ð7Þ

where r2 ¼ jr2j ¼ jr − r1j, and the QCD coupling ᾱs ≡ αsNc
π is kept fixed. The initial condition for the BK equation is

assumed to be given by the McLerran-Venugopalan (MV) amplitude [36,37]:

NMVðr; Y ¼ 0Þ ¼ 1 − exp

�
−
r2Q2

A

4
ln

�
eþ 1

r2Λ2
QCD

��
; ð8Þ

where QA is the nuclear saturation momentum at zero rapidity, which encodes the nuclear (A) dependence of the
amplitude N (see the Appendix).
Meanwhile, the diffractive cross section ND was found to obey the leading-order Kovchegov-Levin (KL) equation [14],

valid in the same limits to the BK equation (6), which is expressed as

∂ND

∂Y ðr; Y; Y0Þ ¼
Z

d2r1KLOðr; r1; r2Þ½NDðr1; Y; Y0Þ þ NDðr2; Y; Y0Þ − NDðr; Y; Y0Þ

− 2Nðr1; YÞNDðr2; Y; Y0Þ − 2Nðr2; YÞNDðr1; Y; Y0Þ
þ NDðr1; Y; Y0ÞNDðr2; Y; Y0Þ þ 2Nðr1; YÞNðr2; YÞ�; ð9Þ

with the initial condition set at Y0:

NDðr; Y ¼ Y0; Y0Þ ¼ N2ðr; Y0Þ: ð10Þ

For the sake of convenience for the numerical calculation, we introduce the cross section per impact parameter Nin
defined by

Ninðr; Y; Y0Þ ¼ 2Nðr; YÞ − NDðr; Y; Y0Þ; ð11Þ

which encodes all inelastic contributions to the scattering. It is straightforward to show that Nin also satisfies the leading-
order BK equation (6). From Eqs. (10) and (11), the initial condition for Nin reads

Ninðr; Y ¼ Y0; Y0Þ ¼ 2Nðr; Y0Þ − N2ðr; Y0Þ: ð12Þ

While the BK equation is known at next-to-leading order [32,33,38,39], the KL equation beyond the leading order has not
been established. The only known subleading correction to the KL equation comes from the running of the strong coupling
[22], which is known as one of the largest corrections to the color dipole evolution. To include such correction, one replaces
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the leading-order kernel (7) by a theoretical-motivated running coupling kernel Krc. Different prescriptions have been
proposed [32,33,40]. In the current analysis, we consider the following ones:

(i) the Balitsky prescription [32] in which the kernel KLO is replaced by the following expression:

Krc ≡ KBalðr; r1; r2Þ ¼
ᾱsðr2Þ
2π

�
r2

r21r
2
2

þ 1

r21

�
ᾱsðr21Þ
ᾱsðr22Þ

− 1

�
þ 1

r22

�
ᾱsðr22Þ
ᾱsðr21Þ

− 1

��
; ð13Þ

(ii) the so-called “parent dipole” prescription [40] in
which the coupling runs with the size r:

Krc ≡ Kpdðr; r1; r2Þ ¼
ᾱsðr2Þ
2π

r2

r21r
2
2

: ð14Þ

We follow Refs. [40,41] to regularize the running coupling
ᾱsðr2Þ to avoid the Landau pole. In particular, for dipole
sizes under some threshold r ≤ rthres, the coupling is
computed from the following expression:

ᾱsðr2Þ ¼
12Nc

ð11Nc − 2NfÞ lnð 4C2

r2Λ2
QCD

Þ ; ð15Þ

where the number of quark flavors Nf and the number of
colors Nc are fixed at values Nf ¼ 3 and Nc ¼ 3, respec-
tively. The constant C reflects the uncertainty in the Fourier
transform from momentum space to coordinate space.
Meanwhile, for larger dipole sizes, r > rthres, the coupling
is frozen to a fixed value ᾱthres defined by ᾱthres ≡ ᾱsðr2thresÞ.
In terms of ND or of Nin, and of N, the distribution of

rapidity gaps in diffractive onium-nucleus scattering can be
written as

Rdip ≡ −
1

2N
∂ND

∂Y0

¼ 1

2N
∂Nin

∂Y0

: ð16Þ

B. Diffractive dissociation of small onia
off nuclei from a partonic model

We are now going to review the recently proposed
partonic model for diffractive dissociation, which is mainly
based on Refs. [27,28,42].
We consider the nuclear scattering of an onium of size r

at a large total rapidity Y (Y ≫ 1), in a frame such that the
original onium is boosted to a rapidity Ỹ (0 < Ỹ ≤ Y). In
such frame, the BK evolution admits a statistical interpre-
tation. Let us start by the realization of the high energy
evolution on the wave function of the onium. In one step of
evolution, a soft gluon can appear in the onium wave
function, as being emitted from either the quark or the
antiquark. This single soft gluon emission is, at large Nc,
tantamount to a branching from one parent dipole (r) to two
daughter dipoles (r1 and r2) whose probability, at leading

order, is given by Eq. (7) [35]. Such dipole branching is
then iterated in the course of evolution. As a result, the Fock
state of the onium at the rapidity Ỹ appears as a stochastic
set of dipoles with various transverse sizes.
We now define Pðr; ỸjRÞ as the probability of having at

least one dipole larger than some size R in thewave function
of the initial onium of size r evolved to the rapidity Ỹ [42]. It
is straightforward to show that the BK equation (6) also
controls the rapidity evolution of the probability Pðr; ỸjRÞ,
with the initial condition given by Pðr; Ỹ ¼ 0jRÞ ¼
θ½lnðr2=R2Þ�. If we further assume the onium is small
such that

1 ≪ ln
2

rQsðYÞ
≪

ffiffiffiffi
Y

p
; ð17Þ

thenPðr; ỸjRÞ andNðr; YÞ have the same functional form at
asymptotic high rapidities, up to appropriate substitutions
[42]. In Eq. (17), QsðYÞ is the nuclear saturation scale at
rapidity Y. The region defined by Eq. (17) is known as the
“scaling region,” since in this region, the total cross section is
effectively a function of the scaling variable ln ½2=ðrQsðYÞÞ�
only, which property is referred to as geometric scaling [43].
Let us now consider a particular frame in which the

nucleus is boosted to a rapidity Y0 > 0, and the onium
evolves to the remaining rapidity Ỹ0 ≡ Y − Y0. Taking the
initial onium to be smaller than the inverse saturation scale
2=QsðYÞ, to have a diffractive event with a significant
probability, there should be a fluctuation which creates at
least one large dipole whose size is larger than the inverse
saturation scale 2=QsðY0Þ in the onium wave function at
Ỹ0. Such dipole will scatter off the nucleus with a
probability of order unity, and with a high fraction
(∼1=2) for elastic processes in which the nucleus is kept
intact. In addition, since different dipoles in the onium’s
Fock state at Ỹ0 interact differently with the nucleus, the
onium will be dissociated into particles in the final state.
We then have a diffractive event with rapidity gap Y0

measured from the nucleus.
In the spirit of that picture, the diffractive cross section

with fixed gap Y0 is proportional to the probability
Pðr; Ỹ0j2=QsðY0ÞÞ. The rapidity gap distribution for the
diffractive dissociation of onia of size in the scaling
window (17) is then expressed as [27,28]
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Rdip
asymp ¼ cD

�
Y

Y0ðY − Y0Þ
�
3=2

; ð18Þ

which is valid for Y; Y0; Y − Y0 ≫ 1. The constant cD is
undetermined from the above-mentioned model. However,
we have recently shown this constant reads [44]

cD ¼ 1ffiffiffiffiffi
ᾱs

p ln 2

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p ð19Þ

where χðγÞ ¼ 2ψð1Þ − ψð1 − γÞ − ψðγÞ, and γ0 solves the
equation χ0ðγ0Þ ¼ χðγ0Þ=γ0. The distribution (18) indicates
diffractive events with small rapidity gaps (Y0 ≪ Y=2) or
large rapidity gaps (Y0 ≫ Y=2) are more probable to occur
than events with moderate gaps (Y0 ∼ Y=2).
While an asymptotic analytical expression of the rapidity

gap distribution is available in the fixed coupling case, there
are still no analytical calculations of such quantity when
taking into account the running coupling correction. One
motivation of the current numerical analysis is to check
whether the above-mentioned prediction for the asymptotic
behavior of the rapidity gap distribution already manifests
at finite rapidities, and whether the running coupling effects
could make differences to the predicted diffractive gap
pattern in Eq. (18).

III. NUMERICAL EVALUATION OF
DIFFRACTIVE CROSS SECTIONS

Let us first present our choices of kinematic variables.
We select two following values of rapidity:

(i) Y ¼ 6, or the Bjorken x variable x ¼ e−Y ≈ 0.002.
This value of Y is accessible at BNL-EIC for
low to moderate center-of-mass energies [9], such
as

ffiffiffi
s

p ¼ 90 GeV or
ffiffiffi
s

p ¼ 45 GeV (A ≥ 56), and at
CERN-LHeC for

ffiffiffiffiffiffiffiffi
sePb

p ¼ 877 GeV (70 GeV—
2.75 TeV) [11].

(ii) Y ¼ 10, or x ≈ 4.5 × 10−5. It is accessible at CERN-
LHeC at

ffiffiffiffiffiffiffiffi
sePb

p ¼ 877 GeV.
For the photon virtuality, we select pertubative values in

the range Q2 ¼ 1–10 GeV2.
We shall start with a detailed study of the diffractive

onium-nucleus scattering for different onium sizes since
this is the process whose asymptotics was analyzed
theoretically and since the virtual photon-nucleus cross
sections are just onium-nucleus cross sections average over
the size of the onium weighted by squared wave function of
the virtual photon [see Eq. (1)]. In order to see the
convergence toward the asymptotic solution known ana-
lytically, we additionally present the results for an unre-
alistic rapidity Y ¼ 30. In the second part, we shall address
actual observables at an electron-ion collider.

A. Onium-nucleus scattering

The nuclear scattering of an onium of size r depends on
which kinematic regime it resides. There are two main
relevant regimes which are separated by the saturation
scale QsðYÞ: the dilute one (r < 2=QsðYÞ) in which the
scattering probability is small, and the saturation one
(r > 2=QsðYÞ) in which that amplitude is of order unity.
Therefore, it is convenient to introduce the scaling variable

τ≡ ln
2

rQsðYÞ
ð20Þ

to characterize the regime of the scattering, where the
saturation momentum QsðYÞ is defined by the condition
Nðr ¼ 2=QsðYÞ; YÞ ¼ 0.5. Positive values of τ parametrize
the dilute regime (N → 0 when τ → ∞), while its negative
values parametrize the saturation region (N → 1 when
τ → −∞).
Figure 2 shows the rapidity gap distributionsRdip for the

onium picked in the saturation regime (τ ≤ 0). As the
onium becomes larger in size, we are closer to the black-
disk limit at which there should be an equal probability of
1=2 of having elastic and inelastic scatterings. These
contributions are excluded from the definition of the
distribution Rdip. Consequently, the contribution from
diffractive scatteringRdip is suppressed as τ becomes more
negative. Such suppression is stronger if the running of the
strong coupling is included. Additionally, for the onium
sizes far enough from the inverse saturation scale, large
rapidity gaps are suppressed compared to the small and
medium ones. The τ ≤ 0 regime has not been studied
theoretically.
The rapidity gap distributions in the dilute regime (τ > 0;

Fig. 3) reflect general features of the aforementioned
partonic picture for diffractive dissociation, which can be
extended to the case of running coupling evolution. For the
onium sizes close to the inverse saturation momenta, large-
gap diffraction dominates over small-gap diffraction since
it is readily to have fluctuations generating dipoles whose
size is of order inverse saturation scale at Y0 in the early
stages of the evolution of the onium. As the onium becomes
smaller, large-dipole splittings are more probably to occur
in later stages of the evolution, since the onium needs more
rapidity to develop. Consequently, the contribution of small-
gap diffraction becomes more important compared to large-
gap one. When the onium size approaches the color trans-
parency limit [24], where N ∼ ðrQAÞ2 → 0 as r → 0, large-
dipole fluctuations are less probable, and the contribution of
diffractive dissociation to the onium-nucleus scattering is
suppressed. At such limit, the contribution from the inelastic
scattering would dominate the interaction.
Considering the fixed coupling case, the hammock shape

predicted by the partonic picture of diffraction is already
exhibited at realistic values of rapidity (Y ¼ 6 and Y ¼ 10;
see Fig. 3). In order to check that this peculiar shape
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corresponds indeed to the onset of the asymptotics in
Eq. (18), we push the calculation to a higher value of the
total rapidity Y, in particular Y ¼ 30 (see Fig. 4), even
though this rapidity is not accessible at planned electron-
ion colliders. We see that the distributions in the scaling
region have a similar shape to the predicted asymptotics

(see the plot for τ ¼ 3.4). However, finite-rapidity correc-
tions are significant even at such rapidity, which screen the
asymptotic behavior. Furthermore, we see that the ham-
mock shape also presents in the distributions with the
running coupling correction, or for the onium sizes in the
saturation region and close to the inverse saturation scale.

FIG. 3. Rapidity gap distributions for different onium sizes picked in the dilute region (τ > 0) for Y ¼ 6 (first row) and Y ¼ 10
(second row) considering three schemes: fixed coupling and two running coupling prescriptions considered in the current analysis.

FIG. 2. Rapidity gap distributions for different onium sizes picked in the saturation region (τ ≤ 0) at Y ¼ 6 (first row) and Y ¼ 10
(second row) considering three schemes: fixed coupling and two running coupling prescriptions considered in the current analysis.
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In summary, the rapidity gap distribution for the dif-
fractive onium-nucleus scattering depends on the regime
(either saturation or dilute) where the onium is picked, and
on its relative size compared to the inverse saturation scale.
The running of the QCD coupling modifies the distribution
in comparison to the fixed coupling case, however it is not
susceptible to the selection of the running coupling
prescription. In the case of fixed coupling, the rapidity
gap distributions for the onium sizes in the dilute regime

and not very far from the inverse saturation scale exhibit the
peculiar shape predicted by the aforementioned partonic
picture for diffractive dissociation.

B. Virtual photon-nucleus scattering

Let us start with the diffractive cross section with a
minimal rapidity gap Y0 normalized to the total cross
section:

�
σdiff
σtot

�
γ�A

ðQ2; Y; Y0Þ ¼
R
d2r

R
1
0 dz

P
p¼L;T;fjψf

pðr; z; Q2Þj2σqq̄Adiff ðr; Y; Y0ÞR
d2r

R
1
0 dz

P
p¼L;T;fjψf

pðr; z; Q2Þj2σqq̄Atot ðr; YÞ
; ð21Þ

which estimates how close to the black-disk limit we are.
As shown in Fig. 5, the ratio varies slowly with respect to
the virtuality Q2 and is closer to its black-disk limit value
0.5 at lowerQ2, since larger onium sizes close to saturation
are more probable to be probed. It also depends on the total
rapidity Y, which becomes larger at a higher total rapidity
Y. For example, for Q2 ¼ 4 GeV2 and fixed coupling,
diffractive events are predicted to account for about 15%–
25% at Y ¼ 6 and about 23%–32% at Y ¼ 10 of total
scattering events, depending on the value of the minimal
gap used as the threshold to probe diffractive events in
practice. Such contribution is estimated to be higher by a

few percent when taking into account the running of the
strong coupling.
Figure 6 presents the dependence of the rapidity gap

distributions on the virtualityQ2. With the chosen set of the
virtuality Q2, the quantity lnðQ=QsÞ, which is the typical
value of the pre-defined scaling variable τ, varies in the
range −0.35≲ lnðQ=QsÞ≲ 1.34 for Y ¼ 6 and −1.1≲
lnðQ=QsÞ ≲ 0.82 for Y ¼ 10, considering both fixed and
running coupling cases. Therefore, the dominant contribu-
tion should come from onium sizes in the vicinity of the
inverse saturation scales, as shown by the similarity
between the shapes of the obtained distributions and of

FIG. 4. Rapidity gap distributions for different onium sizes picked in the saturation region (first row) and in the dilute region (second
row) for the total rapidity Y ¼ 30 considering three schemes: fixed coupling and two running coupling prescriptions considered in the
current analysis. In the case of fixed coupling and τ > 0, the asymptotic prediction in Eq. (18) with the constant cD in Eq. (19) is
superimposed (the black dashed curve).
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the distributions in such regime presented previously. As
Q2 increases, smaller onia are more probable to be probed,
and the scattering gets away from the black-disk limit.
Consequently, the distributions become larger and acquire a

larger contribution from the dilute regime. Notice that, for
large Q2 such that Q ≫ Qs, the dominant contribution
comes from small onia approaching the color transparency
limit, and hence the distribution should be suppressed.

FIG. 6. Dependence of the rapidity gap distributions on the virtuality Q2 at two values of the total rapidity Y ¼ 6 (first row) and
Y ¼ 10 (second row) considering three schemes: fixed coupling and two running coupling prescriptions considered in the current
analysis.

FIG. 5. Dependence of the ratio ðσdiff=σtotÞγ�A on the minimal rapidity gap Y0 and on the virtualityQ2 at two values of the total rapidity
Y ¼ 6 (first row) and Y ¼ 10 (second row) considering three schemes: fixed coupling and two running coupling prescriptions
considered in the current analysis.
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Such behaviors are also seen in the rapidity gap distribu-
tions considering only the transverse or longitudinal
polarization of the virtual photon shown in Fig. 7. We
see that two polarizations give comparable contributions.
In Fig. 8, the rapidity gap distributions for two large

nuclei with a particular choice of kinematics are plotted.
With a larger nucleus, the initial nuclear saturation momen-
tum, and hence saturation momenta at higher rapidities,
become larger. Therefore, the typical scaling variable
lnðQ=QsÞ becomes smaller, and the distributions are sup-
pressed. This suppression is weak, due to the fact that the
initial saturation momentum is a slowly varying function of
A, Q2

A ∼ A1=3 (see the Appendix).
We can translate the distribution of the rapidity gap Y0

into the distribution of the (squared) invariant mass M2
X of

the diffractive inclusive final state X, which is referred to as
diffractive mass spectrum. For this purpose, we employ the

relation Y0 ¼ Y − lnM2
XþQ2

Q2 . The diffractive mass spectrum

is then related to the rapidity gap distribution as follows:

1

σγ
�A
tot

dσγ
�A
diff

dM2
X
¼ Rγ�A

M2
X þQ2

: ð22Þ

The mass spectra at the total rapidity Y ¼ 6 are shown in
Fig. 9 for different values of the photon virtuality Q2. We
see that the low-mass regime dominates over the high-mass
one, which basically agrees with the general behavior of the
obtained rapidity gap distributions that large-gap diffrac-
tion is preferred. The above-mentioned relation between the

FIG. 8. Rapidity gap distributions at the total rapidity Y ¼ 6 and the virtuality Q2 ¼ 4 GeV2 for two different nuclei A ¼ 208 and
A ¼ 64 considering three schemes: fixed coupling and two running coupling prescriptions considered in the current analysis.

FIG. 7. Rapidity gap distributions considering only the tranverse (first row) or the longitudinal (second row) polarization at the total
rapidity Y ¼ 6 considering three schemes: fixed coupling and two running coupling prescriptions considered in the current analysis.
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rapidity gap Y0 and the diffractive mass M2
X has a peculiar

consequence: while there is a minimum in the rapidity gap
distributions, no local minimum is manifested in the mass
spectra. Furthermore, when Q2 increases, the interaction
becomes more inelastic as smaller onia are more likely to
be probed. Consequently, the low-mass regime is sup-
pressed, and it is more possible for the virtual photon to be
dissociated into a high-mass system in the final state at
higher Q2.

IV. DISCUSSION

A. Effects of the running coupling correction to
diffractive dissociation

A generic effect of the running of the strong coupling is
to suppress the emission of color dipoles with small
transverse size in the wave function of the onium, which
slows down the small-x evolution. As a consequence, one
would expect to have smaller dipoles in the typical Fock
state evolved from an initial onium at the time of interaction
when the coupling is fixed than when the running of the
coupling is included. Therefore, in the running coupling
case, there should be a larger portion of dipoles in the wave
function of an onium such that τ < 0 located in the
saturation region. The scattering is then more elastic and
we are closer to the black-disk limit, which results in a
stronger suppression of the rapidity gap distributions Rdip

at τ < 0.
The running of the coupling also causes the evolution of

a small onium to be generally slower than a large one, as it
reduces the branching rate when the size of the parent
dipole becomes smaller. A consequence of such effect is to
diminish the contribution of the small-onium component
(or the dilute domain) to the diffractive dissociation of the
virtual photon. Therefore, saturation effects become more
significant, and the ratio ðσdiff=σtotÞγ�A is closer to its black-
disk limit value when the running of the strong coupling is
taken into account, even if the running coupling saturation
momentum is smaller than the fixed coupling one
(see Fig. 5).
We can extend heuristically the partonic picture for

diffractive dissociation presented in Sec. II B when the

coupling is fixed to the running coupling case at a large
value of the total rapidity, Y ≫ 1. However one should first
notice the following essential difference between two cases.
If the coupling is fixed, the nuclear saturation scale at a
rapidity Y0 is given by [45,46]

Q2
s;fcðY0Þ ¼ Q2

A exp

�
ᾱsχ

0ðγ0ÞY0 −
3

2γ0
lnðᾱsY0Þ

�
; ð23Þ

and the size of the largest dipole in the typical evolution
configuration of an onium of size r at the rapidity Ỹ0 ≡
Y − Y0 is [27]

R2
s;fcðỸ0Þ ¼ r2 exp

�
ᾱsχ

0ðγ0ÞỸ0 −
3

2γ0
lnðᾱsỸ0Þ

�
: ð24Þ

The similarity between Qs;fc and Rs;fc is due to the twofold
interpretation of the BK equations: it describes the evolution
not only of the elastic scattering amplitude but also
of a statistical measure for the region of large dipole
sizes (see Sec. II B). We can see that, when the onium is
picked in the dilute domain (τ > 0) and Y0; Ỹ0 ≫ 1, then
½Q2

s;fcðY0ÞR2
s;fcðỸ0Þ�=4 < 1, namely all dipoles constituting

the typical evolution configuration of the onium at the
rapidity Ỹ0 are smaller than the inverse saturation scale
2=Qs;fcðY0Þ. In addition, the Y0 dependences of the leading
terms in the exponents in Eqs. (23) and (24) cancel each
other, so the rapidity gap distribution is predominantly
shaped by the logarithmic terms in the exponents.
The situation is different in the running coupling case.

Indeed, the running of the strong coupling modifies the
saturation scale, so that it evolves more slowly with the
rapidity Y0 as [46]

Q2
s;rcðY0Þ ¼ Λ2

QCD exp ½αcðY0 þ δ1Þ1=2 þ βcðY0 þ δ2Þ1=6�;
ð25Þ

where

FIG. 9. Dependence of the diffractive mass spectra on the virtuality Q2 at the total rapidity Y ¼ 6.
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αc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8χ0ðγ0Þ

3

r
≃ 3.61; and

βc ¼
3

4
ξ1

�
χ00ðγ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.5γ0χðγ0Þ

p
�

1=3
≃ −5.36: ð26Þ

[ξ1 ¼ −2.338 � � � is the rightmost zero of the Airy function
AiðxÞ]. In Eq. (25), we add correction terms δ1;2 of order 1,
which would be important at finite rapidities. Similar to the
fixed coupling case, the largest dipole size in the typical
evolution configuration of an onium of size r is also
expected to evolve with rapidity as Qs;rc,

R2
s;rcðỸ0Þ ¼ r2 exp ½αcỸ1=2

0 þ βcỸ
1=6
0 �; ð27Þ

where subleading corrections similar to δ1;2 in Eq. (25) are
neglected. Eqs. (25) and (27) are up to multiplicative
constants. Taking the onium in the dilute regime, it is
possible that at a certain stage of the evolution, the typical
configuration of the onium at Ỹ0 overlaps with the saturation
region of the nucleus evolved to the rapidity Y0, namely
½Q2

s;rcðY0ÞR2
s;rcðỸ0Þ�=4 > 1. Denote τ0 as the smallest scal-

ing variable such that Rs;rcðỸ0Þ < 2=Qs;rcðY0Þ, for all
Y0; Ỹ0 > 0. We consider the two following cases:

(i) τ > τ0 (see Fig. 10 (left) for τ ¼ 1.0, 2.2). In this
case, we can employ the model of large-dipole
fluctuations. Following Ref. [27] and Sec. II B,
the rapidity gap distribution is proportional to
Pðr; Ỹ0j2=Qs;rcðY0ÞÞ. Since P now solves the run-
ning coupling BK equation, we can employ its

asymptotic solution derived in Refs. [45,46]. The
asymptotic rapidity gap distribution reads

Rdip ∼ Ỹ1=6
0

�
Q2

s;rcðY0ÞR2
s;rcðỸ0Þ

4

�γ0

× Ai
�
ξ1 þ

3ξ1
4βc

ln
h

4
Q2

s;rcðY0ÞR2
s;rcðỸ0Þ

i

Ỹ1=6
0

�
ð28Þ

(ii) τ < τ0 (see Fig. 10 (left) for τ ¼ 0.8). For such
chosen values of the onium size, it is possible that
Rs;rcðỸ0Þ > 2=Qs;rcðY0Þ for moderate values of Y0,
and Rs;rcðỸ0Þ < 2=Qs;rcðY0Þ for Y0 close to 0 or Y.
For the latter, Eq. (28) can be applied, while for the
former, the model of large-dipole fluctuations cannot
be employed. On the other hand, as discussed in the
previous section, when saturation effects are more
significant, the contribution of diffraction at a fixed
rapidity gap is less. Therefore, distribution is more
suppressed when the largest dipole size of the typical
onium’s evolution configuration Rs;rcðỸ0Þ becomes
larger (and larger than the inverse saturation
scale 2=Qs;rcðY0Þ).

We plot Eq. (28) at Y ¼ 30 in Fig. 10 (right) for different
onium sizes and with a particular choice of δ1;2 such that
δ1 > δ2. Due to the argument in the point (ii) for τ < τ0 and
the analytical continuity, the distribution for τ ¼ 0.8 in the
range of Y0 such that Rs;rcðỸ0Þ > 2=Qs;rcðY0Þ (the gap in
the distribution for τ ¼ 0.8) has the hammock shape and
the overall distribution is similar to the one for τ ¼ 1.0.
When τ is close to τ0, the distribution (28) is dominated by

FIG. 10. Left: value of the quantity ½Q2
s;rcðY0ÞR2

s;rcðỸ0Þ�=4 as a function of the rapidity gap Y0 at different onium sizes in the running
coupling case. This is larger than 1 if the typical configuration of the onium at Ỹ0 overlaps with the saturation region of the nucleus
evolved to Y0. Right: the rapidity gap distribution rescaled by the total cross section ð2NÞ (the overall constant is set to 1) at different
onium’s sizes. Here we require that Eq. (28) is applicable if ½Q2

s;rcðY0ÞR2
s;rcðỸ0Þ�=4 < 0.96. The total rapidity is Y ¼ 30, and the

correction terms δ1;2 are set to values 6.5 and 1.1, respectively.
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the Airy function, and large-gap diffraction is favored. The
contribution of the small-gap region becomes more impor-
tant at smaller onium sizes. At a certain point, the power
term ð…Þγ0 plays the dominant role, and the large-gap
contribution is suppressed. Physically, this suppression is
due to the fact that very small onia evolve slowly, so they
need a considerably large rapidity interval to develop and
create large-dipole fluctuations. Such general behaviors are
exhibited in the results presented above. Certainly, our
discussion here is, in principle, valid for large Y; Y0, and
Ỹ0. Finite-rapidity effects should deform the shape of the
distributions predicted asymptotically.

B. Comparisons to other studies

Very recently, the diffractive dissociation has been
studied in Ref. [47], which predicted that about 20% of
the events will be diffractive in ePb collisions at
Q2 ¼ 2 GeV2, and this ratio does not vary much at
different values of the Bjorken x (or correspondingly the
rapidity Y), based on several models. In the current
analysis, that ratio is estimated to be about 18% (large-
gap threshold) to 27% (small-gap threshold) at Y ¼ 6, and
about 25% to 35% at Y ¼ 10 (considering only the fixed-
coupling case), which are, in general, fairly higher than the
value of 20%. In fact, the models present in Ref. [47] would
be applied more appropriately for the diffractive scattering
with large rapidity gaps (or high mass). In such regime, our
prediction is comparable to the predicted value in the
mentioned reference.
In Ref. [16], the diffractive cross sections at fixed (and

large) rapidity gaps in the fixed coupling scenario were
plotted for Y ¼ 10 at different onium sizes close to the
saturation scale. They have a similar trend to the case of
Y ¼ 10 in our analysis, with no maximum observed. From
our results, the maximum appears only at a large value of
rapidity (Y ¼ 30) (see Fig. 4, in the saturation region). As
such maximum was suggested to be the signature of the
scaling phenomena, we believe that ND would exhibit well
the scaling behavior at high rapidities.
The mass spectra from our calculation have a quite

similar shape to the curves of the same quantity shown in
Ref. [9] calculated based on the models of saturation [48–
50], and of leading-twist shadowing (LTS) [51,52]. In
comparison to the results of the former, there are two
different features. Firstly, in the mass spectra shown in
Ref. [9] derived from a model of saturation, there is
maximum in the low-mass region. Such maximum does
not appear in our results. Furthermore, the saturation model
predicted a lower-lying distribution at a higher Q2 for all
possible values of M2

X. However, our results show that, the
Q2-dependence of the mass spectra in the high-mass region
is different from the one in the low-mass region.
Finally, one can make a comment on the nuclear

dependence of the distribution of rapidity gaps. Its sup-
pression when increasing A would lead also to the

suppression of the diffractive mass spectrum. Such behav-
ior seems to qualitatively agree with the results derived
from the LTS model [9,51,52], which implies the nuclear
shadowing effect. Indeed, the nuclear shadowing is usually
explained by multiple scattering (see Ref. [53] and refer-
ences therein), which becomes important for large onium
sizes (r≳ 2=Qs), i.e., in the saturation region, which is
better probed with larger nuclei when fixing the photon
virtuality.

V. CONCLUSION

To summarize, in the present paper we have presented
numerical results for the distribution of rapidity gaps in the
diffractive deep-inelastic virtual photon-nucleus scattering.
They are based on the well-established QCD evolution
equations at small-x in both fixed and running coupling
scenarios. Our main points can be recapped as follows:

(i) The diffractive events are predicted to account for a
significant fraction in the nuclear scattering of a
virtual photon at low to moderate values of the
virtuality Q2. At higher Q2, their contribution is
suppressed. Furthermore, the predicted values for
the running coupling case are rather higher than for
the case of fixed coupling.

(ii) The running coupling correction significantly modi-
fies the rapidity gap distribution in comparison to the
case in which the coupling is fixed. While the
distributions for different prescriptions of the QCD
running-coupling are different in magnitude, their
general shape essentially remains unchanged with
respect to the variation of the running-coupling
prescription.

(iii) For the chosen kinematics, large-gap diffraction is
more favored in the deep-inelastic virtual photon-
nucleus scattering. The shape of the rapidity gap
distributions reflects the shape predicted by the
recently developed partonic picture for diffractive
dissociation. For the case of fixed coupling, it can be
explained completely by the term −3=ð2γ0Þ lnY of
the saturation scale [see Eq. (23)]. Meanwhile, both
Y1=2 and Y1=6 terms in the expression of the running-
coupling saturation scale play essential roles in
shaping the rapidity gap distribution.

Our analysis again demonstrates that the study of the
rapidity gap distribution could reveal the underlying partonic
mechanism of diffractive dissociation. Therefore, such
observable would be important to be measured at a future
electron-ion collider.
The current analysis neglects the impact parameter

dependence. While we believe that the general trend is
similar when taking into account that dependency, there
could be a significant modification on the rapidity gap
distribution to be understood. In addition, further develop-
ments for the inclusion of subleading corrections appear to
be important. Finally, finite-rapidity investigations are of
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importance for a better understanding of diffractive dis-
sociation in electron-ion collisions.

ACKNOWLEDGMENTS
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APPENDIX: NUMERICAL SETUP

The dipole profiles N and Nin obey the BK equations in
both fixed-coupling and running-coupling scenarios. To
solve such integrodifferential equations, we use the fourth-
order Runge-Kutta method with a rapidity step size
hY ¼ 10−2. Solutions are stored in a grid of the onium size
variable r in which 1000 points are spaced equally in
logarithmic scale in the range 10−14 ≤ rΛQCD ≤ 102.
Integrals are computed using the mid-point quadrature
scheme. For rΛQCD < 10−14, we use the power-law extrapo-
lation (assuming a power lawαrβ in the tail), while in the case
of rΛQCD > 102, we stabilize the profiles at 1 (saturation).
Different parameters for the calculation are set as

follows:
(i) The QCD parameter ΛQCD ¼ 0.217 GeV. This

value is obtained by requiring that the value of the
running coupling at the mass of the Z0 boson is
ᾱsðr2 ¼ 4C2=M2

Z0Þ ¼ 0.1104 [54], with MZ0 ¼
91.18 GeV.

(ii) Fixed coupling ᾱs ¼ 0.14.
(iii) The freezing value for the running coupling

ᾱthres ¼ 0.5.
(iv) The constant C in the running coupling is manually

set to the value C2 ¼ 6.5 [41].1

(v) Nuclear saturation scale Q2
A ¼ 0.26A1=3Q2

p0, where
A is the nuclear mass number and the saturation
scale of proton Qp0 at zero rapidity is assumed to be
ΛQCD. The factor 0.26 leads to the smallness of the
Q2

A=Q
2
p0, which was interpreted as a weak nuclear

enhancement [49].
(vi) Masses of quarks mu ¼ md ¼ ms ¼ 140 MeV,

mc ¼ 1.5 GeV. The number of active quarks in
the flavor sum in Eqs. (2) and (3) is determined
from the condition Q2 > 4m2

f.

To check the validation of the numerical calculation, we
plot the saturation scales as functions of rapidity and fit
them for different scenarios (for A ¼ 208) (see Fig. 11). For
the fixed coupling case, the saturation curve is fitted with
the following function:

Qfc
s ðYÞ ¼ af exp ðbfY − cf lnYÞ: ðA1Þ

Otherwise, the function

Qrc
s ðYÞ ¼ ar exp ½brðY þ dr1Þ1=2 þ crðY þ dr2Þ1=6� ðA2Þ

is fitted to the data points.
Fitting parameters are shown in Table I. The fitting values

of the leading coefficients bf and br are close to their well-

established theoretical values [45,46,55], which reads bðtÞf ¼
ᾱsχ

0ðγ0Þ=2 ≈ 0.342 and bðtÞr ¼ αc=2 ≈ 1.804, respectively.
Furthermore, for the fixed coupling case, the value of the
next-to-leading coefficient cf from the fit also approximates

to its theoretical value cðtÞf ¼ 3=ð4γ0Þ ≈ 1.195.

FIG. 11. Saturation momenta extracted from the solutions to the
BK equations in three different schemes. Black lines are fitting
results using functions Eq. (A1) and Eq. (A2) (for Y ≥ 1).

TABLE I. Values of the parameters in Eqs. (A1) and (A2)
obtained from corresponding fits to the numerical data points
shown in Fig. 11.

Kernel af bf cf

KLO 1.035 0.342 1.174

Kernel ar br cr dr1 dr2

Kpd 0.419 1.805 −3.374 7.862 11.131
KBal 0.111 1.810 −3.352 9.432 4.635

1In Ref. [41], the authors used the solution to the running
coupling BK equations to fit the data. For the MV initial condition
with an anomalous dimension γ, the fitting value of C2 is 6.5.
Here we take this value as a reference.
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