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Inspired by recent progress on classical limits of scattering amplitudes, we show that hard thermal loops
can be obtained from classical limits of off-shell currents. The classicality of hard thermal loops is made
manifest by associating classical wavenumbers to soft particles. We compute the classical limit of these
currents in QED, QCD, and gravity. Our proposal does not involve the introduction of ghosts.
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I. INTRODUCTION

In past decades progress in the field of scattering
amplitudes has improved our ability to make predictions
in scattering experiments [1]. Recently, techniques devel-
oped originally to tackle problems in perturbative quantum
field theory are being applied to the study of classical
observables and have led to insights about the classical
limit, see e.g., [8–24]. We would like to single out two
developments in scattering amplitudes. First, a generaliza-
tion of Feynman’s tree theorem [25] (known as loop-tree
duality [26–36]) which relates multi-loop amplitudes and
phase space integrals and whose integrand is a tree-level
amplitudelike object [37]. The loop tree-duality can also be
formulated in terms of response functions which can be
obtained from the zero temperature Schwinger-Keldysh
formalism [27,45]. Second, the novel framework intro-
duced by Kosower-Maybee-O’Connell (KMOC) [11] to
study classical observables from amplitudes. The KMOC
formalism is based on expectation values of operators
between initial states and thus is akin to the zero temper-
ature Schwinger-Keldysh formalism itself.
In this paper we are interested in relating these two ideas

to thermal field theory. In their form however we cannot
directly apply them since in thermal field theory one is
usually interested in currents (rather than scattering ampli-
tudes) from which the thermodynamic properties of the
system can be derived. Although the methods we will
develop can be applied to QED, QCD and gravity, our

primary example is a non-Abelian plasma in the high
temperature limit.
The limit of high temperature T in perturbative thermal

QCD is useful for the description of collective phenomena
in plasmas. This limit can be consistently incorporated into
an effective theory known as hard thermal loop (HTL)
effective theory [46–50]. At the core of HTL effective
theory is the resummation of one-loop diagrams with the
property of having external soft momenta and internal hard
loop momenta. Hard thermal loops (HTLs) are nonlocal
currents which are not only gauge invariant but obey simple
Ward identities. Assuming a small coupling g the soft
momenta are of order gT and the hard momenta of order T.
HTLs can be computed from the forward scattering of
thermal particles [50] which is reminiscent of the loop-tree
duality for scattering amplitudes at zero temperature
[26,27]. On the other hand, HTLs can be reformulated
in the language of classical kinetic theory [51,52] and can
be obtained from solutions of kinetic equations [53].
The classicality of HTLs and their equivalence with

solutions of kinetic equations raises the question of whether
we can directly obtain them as a classical limit understood
as the limit of ℏ → 0 of a quantum current. Inspired by the
KMOC approach to classical observables, we propose a
map between classical limits of off-shell currents at zero
temperature and HTL currents. This map is based on the
simple observation that to extract classical limits of
scattering amplitudes one should distinguish between the
momentum p of a particle and its wavenumber p̄

p≡ ℏp̄; ð1Þ
which we interpret as the distinction between soft and
hard in HTL currents. As we will see, taking the classical
limit will correspond to the high temperature limit. This
scaling is the same one required to study the classical
dynamics of gravitational waves from quantum field theory.
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Hence we will mostly use the KMOC approach but
other strategies to obtain the classical limit may be used
as well. e.g., [12,20,54].

II. FROM KINETIC THEORY TO CLASSICAL
LIMITS OF OFF-SHELL CURRENTS

The dynamics of non-Abelian plasmas is described by
QCD at finite temperature at distances ℏ=T ≲ d ≲ ℏ=ðgTÞ.
For the rest of the paper we will use units in which
kB ¼ c ¼ 1, but keep ℏ ≠ 1 since we are interested in the
study of the classical limit. The leading-order thermal
effects can be studied employing relativistic kinetic theory,
which is applicable at scales where the average distance
between particles is of order ℏ=T and such that the plasma
is characterized by the Debye length ℏ=ðgTÞ. In the
microscopic approach to kinetic theory [55], we are
interested in an ensemble of pointlike particles character-
ized by a phase-space distribution f ≡ fðx; p; cÞ, where the
color degrees of freedom c of the plasma are treated as
continuous classical variables. The phase space variables
obey Wong equations [59]

dkμ

dτ
¼ gcaðτÞFa μνðxðτÞÞvνðτÞ; ð2Þ

dca

dτ
¼ gfabcvμðτÞAb

μðxðτÞÞccðτÞ; ð3Þ

DμFa
μνðxÞ ¼ JaνðxÞ ¼ g

Z
dΦðkÞdc kνcafðx; k; cÞ; ð4Þ

where the Lorentz invariant phase space measure is
defined by dΦðkÞ≡ d4k

ð2πÞ4Θðk0Þ2πδðk2−m2Þ. Specializing

to the case of SUð3Þ the color measure is defined by
dc≡ d8c cRδðcaca − q2Þδðdabccacbcc − q3Þ, where the
color part ensures the conservation of the Casimir invar-
iants qi, and cR is a normalization constant defined such
that

R
dc ¼ 1 [60]. In the collisionless case the Vlasov-type

equation for the distribution function fðx; k; cÞ is given by

df
dτ

¼ kμ
� ∂
∂xμ − gfabcAb

μcc
∂
∂ca − gcaFa

μν
∂
∂kν

�
f ¼ 0: ð5Þ

It is well known that both Wong and Vlasov equations can
be derived from suitable classical limits [61]. The Vlasov
equations arises from the classical limit of the correspond-
ing equation for the Wigner operator [62–64].
In this paper however, we are interested in the classical

limits of currents leading to solutions of the kinetic
equations rather than a derivation of kinetic equations
themselves. Equation (5) can be solved iteratively by
expanding fðx; k; cÞ around the equilibrium state. In
equilibrium the distribution function only depends on the
energy k0 of the system and we can expand it in powers of
the coupling g

fðx; k; cÞ ¼ fð0Þðk0Þ þ Δð1Þfðx; k; cÞ þ…; ð6Þ

where ΔðiÞfðx; k; cÞ is of order OðgiÞ. We can then use the
equilibrium distribution function to solve for Δð1Þfðx; k; cÞ
and reinsert it to find Δð2Þfðx; k; cÞ and so on. From Eq. (4)
we can write the total current as [65]

JμaðxÞ ¼ Δð1ÞJμaðxÞ þ Δð2ÞJμaðxÞ þ…: ð7Þ

The currents can be expressed in the form

JaμðxÞ ¼ Πab
μνAν

b þ
1

2
Πabc

μνρAν
bA

ρ
c þ…; ð8Þ

where Πab���
μν��� are thermal currents [66], which can be

matched against those obtained from the high temperature
limit of thermal QCD (See e.g., Ref. [67]). One can thus
conclude that HTL are classical [53,68]. Notice that despite
our choice of units we will keep our classical quantities
independent of ℏ as they should. The setup leading to
Eq. (7) is reminiscent of the one to obtain perturbative
solutions from classical equations of motion [54,69–75]
which can be matched to classical limits of scattering
amplitudes. Within the KMOC formalism this is done by
defining certain observables which are well defined both
classically and quantum mechanically [11,16,76]. Besides
the distinction between the momentum p of a particle and
its wavenumber p̄ the introduction of appropriate coherent
states is required to take the classical limit. Since we are
interested in off-shell currents rather than observables, we
cannot directly apply the KMOC formalism but as we will
see many of its characteristics remain.
The classical limit of amplitudes in the KMOC formal-

ism is slightly different in QED and QCD due to the
presence of color in the latter. In QCD the dimensionless
coupling g scales as ḡ

ffiffiffi
ℏ

p
. In QED the dimensionless

coupling e scales as ē=
ffiffiffi
ℏ

p
and similarly for gravity [77].

The scaling in QCD is complemented by scaling of the
color factors, so ultimately we can use the same procedure
in Ref. [11] to obtain the classical limit. Adopting the
conventions of Ref. [76] we have

½Ca;Cb� ¼ iℏfabcCc; ð9Þ

emphasizing that C corresponds to an operator and
hpijCajpji≡ðCaÞji ¼ℏðTaÞij. The corresponding classical
color charge ca ≡ hψ jCajψi is obtained from appropriate
coherent states jψi. In the spinless case gravity does not
bring any new ingredients other than complexity so the
KMOC algorithm follows the QED one.
The interplay between soft and hard momenta is very

generally linked to the classical limit, usually through the
Eikonal approximation, and thus it is tempting to relate it
the HTL approximation. However, operationally in the
HTL approximation one integrates over hard momenta
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running in the loop k ∼ T and considers external soft
momenta p ∼ gT. The results are then expanded in powers
of jpj=jkj, see Ref. [67] for a summary of the rules to
compute HTLs. By associating classical wavenumbers to
the external soft momenta such that they scale with ℏ, an
expansion in powers of ℏ will correspond to an expansion
in high temperature. This formal equivalence can also be
observed at the level of the dimensional reduced effective
action [78]. Physically this has the interpretation of
matching the high temperature regime to the classical
regime.
In momentum space the coefficients in Eq. (8) can be

written as follows [50,80]:

Πa1a2…an
μ1μ2���μn ðpÞ ¼

Z
dΦðkÞNðk0ÞHa1a2…an

μ1μ2���μn ðk; pÞ; ð10Þ

where Nðk0Þ is some distribution function and Hn ≡
Ha1a2…an

μ1μ2���μn ðk; pÞ is the integrand of the HTL current. If
we are interested in fermions we will define the distribution
function with a minus sign due to the presence of a fermion
loop. We have used the shorthand notation p to express the
dependence on the full set of external momenta p1;…; pn.
A generating functional has been given in Refs. [49,81].
In thermal perturbation theory the integrands in Eq. (10)

can be constructed by considering permutations of comb
diagrams (See Fig. 1). This approach can be applied
systematically to a variety of theories including gravity
[45,88–95]. For on-shell amplitudes at zero temperature
Eq. (10) is the usual forward limit [26,27,45] and hence a
current at zero temperature is a natural candidate to relate
the classical limit and the high temperature limit. Therefore,
we consider the current represented in Fig. 2 which can be
computed using the Feynman rules of the theory under
consideration. These currents have the property of having n
particles off shell while the momentum of the massive
particle running in the loop is on shell, that is k2 ¼ m2.
The forward limit is in general singular; therefore we

must consider a regularization scheme. We define F as
the set of all Feynman graphs and S as the set of tadpole
graphs—i.e., those graphs containing a zero-momentum
internal edge (see Fig. 3). Suppressing color and Lorentz
indices, we consider the following regularized current

Anðk; p1;…; pn; kÞ≡
X

G∈FnS
fðGÞ; ð11Þ

where fðGÞ is a rational expression of the form
NðGÞ=DðGÞ. The regularized current is simply obtained
by removing tadpole graphs [96]. In the following we
assume that the current is regulated. The classical limit of
this current will be defined by

Ānðk; p̄1;…; p̄nÞ≡ eTrðlim
ℏ→0

Anðk;ℏp̄1;…;ℏp̄n; kÞÞ; ð12Þ

which is obtained by performing a Laurent expansion in
powers of ℏ after rescaling the momenta of the soft particles
and couplings following the algorithms in Refs. [11,16,76].
The operator eTr depends on whether the theory is colored
or not. We define it by

eTrð•Þ≡�
ℏn−2Trð•Þ QCD;

Idð•Þ QED and gravity;
ð13Þ

where Id is the identity operator and the ℏn−2 is required on
dimensional grounds. We adopt the convention that our
classical results will depend on the dimensionless coupling
g ¼ ḡ

ffiffiffi
ℏ

p
and e ¼ ē=

ffiffiffi
ℏ

p
, and that the external momenta is

associated to wavenumbers. If desired one may restore the
dependence on momenta by dimensional analysis. In the
case of QCD, this requires an overall inverse power of ℏ in
Eq. (13). The currents just defined are in general gauge
dependent. Similar currents occur for example in the
Berends-Giele recursion [97].
We propose mapping the integrand in (10) in momentum

space to the classical limit of the n-point forward current

Ānðk; p̄1;…; p̄nÞ ↔ Hnðk; p1;…; pnÞ; ð14Þ

and similarly for QED and gravity.
Using the imaginary-time formalism,where time is traded

with the temperature and the structure of the propagator is
similar to the zero temperature case, we can relate zero-
temperature amplitudes and finite-temperature amplitudes
by analytic continuation (see e.g., Ref. [98]). The currents
we are proposing are amplitudelike objects and their
computation is not based on sums over permutations of

FIG. 1. Typical comb diagrams required for the calculation of
currents in the high temperature limit. The wavy lines represent
gauge bosons. The solid lines represent massive particles such as
scalars or quarks, or massless particles such as gauge bosons or
ghosts.

FIG. 2. Off-shell current. The blob represents a sum over tree-
level Feynman diagrams. Off-shell gauge bosons can be photons,
gluons or gravitons.
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comb diagrams (see Fig. 1) as the usual forward scattering
approach to thermal field theory [50]. Let us also remark that
although we are considering the case where only massive
particles appear in the loop, this case can also be utilized to
study the case in which hard gauge particles run in the loop
since the tensor structures are the same [99]. Thus, it is
enough to discuss the casewithmatter loops. The pure gauge
calculation with ghosts included appears e.g., in Ref. [45]. It
is in this sense that ghosts will not be required. From an
amplitudes point of view this is a simple consequence of our
calculation being a tree-level one.
In order to model the non-Abelian plasma we use the

Lagrangian

L ¼
�
ðDμφ

†ÞDμφ −
m2

ℏ2
φ†φ

�
−
1

4
Fa
μνFa μν; ð15Þ

where Dμ ¼ ∂μ þ igAa
μTa, and the field strength tensor

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν. For QED we employ the

Abelian version of this Lagrangian. Let us remark that
Eq. (5) and its Abelian version describe a plasma for
spinless particles and therefore this Lagrangian is the
appropriate one to consider in the classical limit [100].
We use the Feynman gauge for computations and adopt the
following normalization of the generators of the Lie algebra

TrðCaCbÞ ¼ ℏ2

2
δab: ð16Þ

III. QED

As our first example we will consider a QED plasma
where the equilibrium distribution is given by the Fermi-
Dirac distributionNðk0Þ≡−1=ðexpðk0=TÞþ1Þ, and where
the sign is included to indicate that we are interested in
matching the high temperature limit of n-point functions in
QED with a fermion running in the loop. Recall that in our
approach, however, the classical limit is taken from scalar
QED sincewe are solving the spinless Vlasov equation. The
regulated current is simplyAnðk;ℏp̄1;…;ℏp̄n; kÞ, where all
photons are outgoing. Let us consider the simple case n ¼ 2
whose contributing diagrams are shown in Fig. 3. Using the
rescaled momenta a simple calculation leads to

Aμνðk;ℏp̄1;ℏp̄2; kÞ ¼ 2e2
�
ημν þ kνð4p̄1

2kμ − 4k · p̄1p̄1
μÞ − 4kμk · p̄1p̄1

ν þ ℏ2p̄1
2p̄1

μp̄1
ν

4ðk · p̄1Þ2 − ℏ2ðp̄1
2Þ2

�
; ð17Þ

where we have used p2 ¼ −p1. Upon performing a Laurent
expansion in powers of ℏ we obtain

Āμνðk; p̄Þ ¼ 2e2
�
ημνþ p̄1

2kμkν

ðk · p̄1Þ2
−
kνp̄1

μþ kμp̄1
ν

k · p̄1

�
; ð18Þ

which recovers the OðT2Þ HTL two-photon integrand.
Notice that the propagators considered for our cur-

rents do not have an iϵ term. In order to recover the
retarded temperature dependent currents we consider the
analytic continuation p̄0

n → p̄0
n þ iϵ and p̄0

i → p̄0
i − iϵ,

for i ¼ 1;…; n − 1, where we assume that the vertex
corresponding to p̄n corresponds to the one with the
largest time [91]. Finally, we can perform the radial
integration by parametrizing kμ¼jkjKμ with Kμ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=jkj2

p
;k=jkjÞ [45,88,95] (see Appendix A).

This simple example summarizes our approach in
general: first consider the n-point regulated current (12),
then compute the current using Feynman graphs or
Berends-Giele recursions, etc., and calculate the classical

limit with the replacement ℏp̄i for the gauge bosons.
Physical propagators are obtained by analytic continuation.
In Ref. [50] “superleading” terms in the temperature

expansion appear, which cancel after all permutations of
graphs are considered. In our approach we are not consid-
ering permutations (e.g., in the n ¼ 2 case we are only
summing 3a–3c in Fig. 3) so it is interesting to ask if
“superleading”terms appear here too. In our approach these
terms have the form kμ1 � � � kμn=ðℏn−1ðk · p̄1Þ � � � ðk · p̄n−1ÞÞ
and hence they correspond to (if any) singular terms in the
classical limit. In our general expression in Eq. (12)
these terms cancel (QED) or vanish (QCD). The HTL
currents truly arise as classical limits of the currents
Aμνðk;ℏp̄1;ℏp̄2; kÞ. For a neutral QED plasma it is well
known that higher point functions are either vanishing or
subleading (see e.g., Ref. [102]). We can however consider a
non-neutral plasma which would still be described by the
Vlasov equation and thus study generalizations of HTL for
higher point functions in QED [95]. After taking the classical
limit and keeping terms of Oðℏ0Þ it is straightforward
to compute higher-order corrections in the temperature.

(a) (b)

(d)

(c)

FIG. 3. Diagrams related to the two-point function in QED,
QCD and gravity: Diagrams (a)–(c) contribute to the regularized
forward limit. Diagram (d) leads to a one-loop diagram with zero
momentum, i.e., a tadpole.
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We have checked up to n ¼ 4 that our methods reproduce
those obtained from the thermal field theory approach [95].
(A three-point example is given in Appendix B.)

IV. QCD AND GRAVITY

The QED case illustrates the procedure of taking the
classical limit for the kinematics. The new ingredient in

QCD is color. The lowest-order contribution requires the
calculation of a diagram with a three-gluon vertex as shown
in Fig. 3, which leads to a tadpole diagram and therefore
removed [103]. Notice that the first diagram in Fig. 3 does
not lead to a tadpole since the internal edge with zero
momentum is not present. Computing the current and
taking the classical limit leads to

Aμ1μ2
a1a2ðk;ℏp̄Þ ¼

ḡ2

ℏ

�
Ca1 · Ca2

�
ημ1μ2 −

2kμ1kμ2

ℏk · p̄1

þ p̄1
2kμ1kμ2

ðk · p̄1Þ2
−
kνp̄1

μ

k · p̄1

−
kμ1 p̄μ2

1

k · p̄1

�

þ Ca2 · Ca1

�
ημ1μ2 þ 2kμ1kμ2

ℏk · p̄1

þ p̄1
2kμ1kμ2

ðk · p̄1Þ2
−
kμ2 p̄1

μ1

k · p̄1

−
kμ1 p̄1

μ2

k · p̄1

�
þOðℏÞ

�
; ð19Þ

where Ca · Cb ≡ ðCaÞijðCbÞjk. At first sight this expression contains singular terms of the form kμ1kμ2=ðℏk · p̄1Þ, which we
mentioned previously. However using Lie algebra (9) these produce classical terms with a vanishing trace. Therefore after
tracing we obtain the well-known result for QCD

Āμ1μ2
a1a2ðk; p̄Þ ¼ δa1a2Πμ1μ2ðp̄1Þ≡ δa1a2g2

�
p̄1

2kμ1kμ2

ðk · p̄1Þ2
−
kμ2 p̄1

μ1

k · p̄1

−
kμ1 p̄1

μ2

k · p̄1

þ ημ1μ2
�
: ð20Þ

Notice that the final result is expressed in terms of the dimensionless coupling ḡ
ffiffiffi
ℏ

p
. We now consider the three-point

function. We decompose the current in a basis of color factors as follows:

Aμ1μ2μ3
a1a2a3ðk;ℏp̄; kÞ ¼

X
σ∈S3

Caσ1 · Caσ2 · Caσ3Jμ1μ2μ3ðσ1; σ2; σ3Þ:

The kinematic coefficients Jμ1μ2μ3ðσ1; σ2; σ3Þ are straightforward to compute—but lengthy and not presented here. The
leading contribution in the classical limit is of orderOð1=ℏÞ, i.e., singular at first sight. However upon tracing we can bring
the result into the form

Āμ1μ2μ3
a1a2a3ðk; p̄Þ ¼ 2

ḡ3ℏ

ℏ3=2 ½TrðCa1 · Ca3 · Ca2Þ − TrðCa1 · Ca2 · Ca3Þ�A
μ1μ2μ3
QED

ℏ
; ð21Þ

where

Aμ1μ2μ3
QED ¼

X
σ∈Cyclic

�
2kμσ1kμσ2

k · p̄σ3

�
p̄
μσ3
σ1

k · p̄σ1

−
p̄
μσ3
σ2

k · p̄σ2

�
þ kμσ1kμσ2kμσ3

�
p̄2
σ1

ðk · p̄σ1Þ2
�

1

k · p̄σ2

−
1

k · p̄σ3

���
; ð22Þ

where Cyclic is the set of cyclic permutations of f1; 2; 3g.
Notice that in the commutative case Eq. (21) is simple
telling us that singular terms vanish in the classical limit
since the operator eTr is replaced by the identity operator.
Using Eqs. (9) and (16) we find

Āμ1μ2μ3
a1a2a3ðk; p̄Þ ¼ ig3fa1a2a3Aμ1μ2μ3

QED ; ð23Þ

where the current satisfies the identity

p̄3μ3Ā
μ1μ2μ3
a1a2a3ðk;p̄Þ¼ igfa1a2a3 ½Πμ1μ2ðp1Þ−Πμ1μ2ðp2Þ�: ð24Þ

Remarkably, we find that the kinematic structure of the
current is encoded in the commutative QED part in a similar
way as the classical color and momentum impulse observ-
ables [76]. Although we can continue computing the next
contributions in a similar fashion, it is well known that we
can reconstruct higher-point functions usingWard identities
and the above relation [47,48]. The expression (22) agrees
with previously computed expressions in Refs. [93,104].
There is no new ingredient in gravity regarding the

classical limit and therefore we can apply our formalism for
this case too. HTLs for gravity (reviewed in Ref. [105]) are
relevant for the physics of the early Universe. They have
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been investigated in Refs. [89,106]. We expand in powers
of the graviton coupling κ with κ2 ¼ 32πG and set
gμ1μ2 ¼ ημ1μ2 þ κhμ1μ2 . The two-point graviton function
can be computed from the diagrams in Fig. 3 with the

gluon replaced by a graviton, where as in QCD we regulate
the current by removing contributions from the three-
graviton vertex. Using the conventions in Ref. [107] the
calculation is straightforward and leads to

Āαβ;γδðk; p̄Þ ¼ 1

2
κ2
�
p̄1

2kαkβkγkδ

ðk · p̄1Þ2
−
kβkγkδp̄1

α þ kαkγkδp̄1
β þ kαkβkδp̄1

γ − kαkβkγp̄1
δ

k · p̄1

þ ηβγkαkδ þ ηβδkαkγ þ ηαγkβkδ þ ηαδkβkγ
�
; ð25Þ

which agrees with the result in Ref. [89]. In general the
two-point graviton function depends on the representation
of the graviton field but one can redefine it in terms of the
above expression to obtain a two-point function indepen-
dent of the graviton parametrization [89].

V. DISCUSSION

In this paper we have shown that HTLs arise from
classical limits of off-shell currents. The classical nature
of hard-thermal loop amplitudes was made manifest by
relating the momenta of the soft particles to wavenumbers.
The classical limit is then obtained following the KMOC
algorithm. In this way, the high temperature limit is formally
equivalent to an expansion in powers of ℏ thus allowing a
map between HTL amplitudes and classical limits of off-
shell currents. The off-shell currents encode the information
of permutation of comb diagrams and can be easily
computed from Feynman diagrams or Berends-Giele recur-
sions. Since our off-shell currents in the classical limit are
gauge invariant and satisfy Ward identities, their “on-shell”
properties would be interesting to study, in particular the
Britto-Cachazo-Feng-Witten [108] recursion, the color-
kinematics duality and the double copy [109–111]. For
general off-shell currents these properties are generallymore
difficult to make manifest than for amplitudes [112–114].
At the classical level the double copy is much more flexible
but the idea of a formal replacement between color and
kinematics is preserved [115]. This classical double copy is
appropriate to relate gravity and QCD in the high temper-
ature limit.
On the more phenomenological side the inclusion of spin

and collisions [116] would be relevant for a more complete
description of a non-Abelian plasma from kinetic theory.
Vlasov equations with spin can be obtained from first
principles using Wigner functions and thus it would be
interesting to describe currents with spin. (See e.g.,
[120,121] for a recent application of Wigner functions in
the case with collisions.) The KMOC formalism has been
applied to the spin cases in Ref. [16]. In principle, the spin
case would require considering classical limits of spinor
wavefunctions. Collision functions in kinetic theory can be
obtained from Wigner functions, which can be computed

using scattering amplitudes [122]. Perhaps one can study
the inclusion of collisions considering classical limits of
scattering amplitudes within Wigner functions.
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APPENDIX A: TEMPERATURE DEPENDENCE

The temperature can be recovered following the pro-
cedure in Ref. [95], where the reader can check details. For
simplicity, let us consider the two-point QED example and
consider Eq. (10). Using our map, we have

Πμνðp̄Þ ¼
Z

d4k
ð2πÞ4 θðk0Þ2πδðk

2 −m2Þ

× Nðk0ÞĀμν
2 ðk; p̄Þ; ðA1Þ

which leads to

Πμνðp̄Þ¼ 1

ð2πÞ3
Z

d3kNð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p Āμν
2 ðk;p̄Þ

����
k0¼þ

ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p :

ðA2Þ

Let us define k0 ¼ jkjK0 with K0 > 0 and use spherical
coordinates
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Πμνðp̄Þ¼ 1

ð2πÞ3
Z

djkjjkj2NðjkjK0Þ
2jkjK0

Z
dΩĀμν

2 ðk;p̄Þ
����
k0¼jkjK0

:

ðA3Þ

We can simplify the above expression by introducing the
unit vector vector K̂ ¼ k=jkj and defining the four vector

Kμ ¼ ðk0=jkj;k=jkjÞ; ðA4Þ

such that kμ ¼ jkjKμ. Since Āμν
2 ðk; p̄Þ is a homogeneous

function of degree zero in k we can then write

Πμνðp̄Þ ¼ 1

ð2πÞ3
Z

∞

0

djkjjkj2NðjkjK0Þ
2jkjK0

Z
dΩĀμν

2 ðK; p̄Þ:

ðA5Þ

Using K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=jkj2

p
and the change of variables

x ¼ jkj=T leads to

Πμνðp̄Þ ¼ −
1

ð2πÞ3 IðT;mÞ
Z

dΩĀμν
2 ðK; p̄Þ; ðA6Þ

where we have included a minus sign to indicate that we are
interested in the classical limit where a fermion is running
in the loop. The temperature dependence is then obtained
from

IðT;mÞ≡T2

Z
∞

0

dx
x2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þm2

T2

q 1

exp
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þm2

T2

q 

þ1

: ðA7Þ

APPENDIX B: THREE-POINT QED EXAMPLES

We calculate the three-point function for QED. The
current requires the computation of 12 graphs. We will
write the current in terms of the following bases of tensor
structures

Āμ1μ2μ3ðk; p̄Þ ¼ 2e3

ðk · p̄1Þ2
X23
i¼1

T iai; ðB1Þ

where

a1 ¼
p̄2

2p̄1 · p̄3

ðk · p̄2Þ2
þ p̄3

2p̄1 · p̄2

ðk · p̄3Þ2
−
2p̄1 · p̄2p̄1 · p̄3

k · p̄2k · p̄3

; a2 ¼ −p̄1
2; a3 ¼ −

p̄2
2ðk · p̄1Þ2
ðk · p̄2Þ2

;

a4 ¼ a12 ¼ −k · p̄1; a5 ¼
ðk · p̄1Þ2
k · p̄2

; a6 ¼ a7 ¼ −
p̄3

2k · p̄1

ðk · p̄3Þ2
þ p̄1 · p̄3k · p̄1

k · p̄2k · p̄3

a8 ¼
p̄2

2k · p̄3

ðk · p̄2Þ2
þ p̄3

2

k · p̄2

−
2p̄1 · p̄2

k · p̄2

; a9 ¼ a10 ¼
k · p̄1

k · p̄2

; a11 ¼ −
p̄3

2ðk · p̄1Þ2
ðk · p̄3Þ2

;

a13 ¼ a20 ¼ −
p̄2

2k · p̄1

ðk · p̄2Þ2
þ p̄1 · p̄2k · p̄1

k · p̄2k · p̄3

; a14 ¼ a21 ¼ a22 ¼ −
ðk · p̄1Þ2

k · p̄2k · p̄3

; a15 ¼
k · p̄1

k · p̄2

;

a16 ¼
p̄2

2

k · p̄3

þ p̄3
2k · p̄2

ðk · p̄3Þ2
−
2p̄1 · p̄3

k · p̄3

; a17 ¼ a18 ¼ a23 ¼
k · p̄1

k · p̄3

; a19 ¼
ðk · p̄1Þ2
k · p̄3

and

T 1 ¼ kμ1kμ2kμ3 ; T 2 ¼ ημ2μ3kμ1 ; T 3 ¼ ημ1μ3kμ2 ; T 4 ¼ ημ2μ2 p̄2
μ1 ; T 5 ¼ ημ1μ3p̄2

μ2 ;

T 6 ¼ kμ2kμ3 p̄2
μ1 ; T 7 ¼ kμ1kμ3 p̄2

μ2 ; T 8 ¼ kμ1kμ2 p̄2
μ3 ; T 9 ¼ kμ2 p̄2

μ1 p̄2
μ3 ; T 10 ¼ kμ1 p̄2

μ2 p̄2
μ3 ;

T 11 ¼ ημ1μ2kμ3 ; T 12 ¼ ημ2μ3 p̄3
μ1 ; T 13 ¼ kμ2kμ3 p̄3

μ1 ; T 14 ¼ kμ3p̄2
μ2 p̄3

μ1 ; T 15 ¼ kμ2p̄2
μ3p̄3

μ1 ;

T 16 ¼ kμ1kμ3 p̄3
μ2 ; T 17 ¼ kμ3p̄2

μ1p̄3
μ2 ; T 18 ¼ kμ3 p̄3

μ1p̄3
μ2 ; T 19 ¼ ημ1μ2 p̄3

μ3 ;

T 20 ¼ kμ1kμ2 p̄3
μ3 ; T 21 ¼ kμ2p̄2

μ1p̄3
μ3 ; T 22 ¼ kμ1 p̄2

μ2p̄3
μ3 ; T 23 ¼ kμ1 p̄3

μ2 p̄3
μ3 :

We have checked that this result is equivalent to the high temperature limit computed in Ref. [95]. The equivalence
between these functions and solutions of the Abelian version of Eq. (5) is discussed Ref. [95].
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