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We perform a calculation of the one- and two-point correlation functions of energy density and axial
charge deposited in the glasma in the initial stage of a heavy ion collision at finite proper time. We do this
by describing the initial stage of heavy ion collisions in terms of freely evolving classical fields whose
dynamics obey the linearized Yang-Mills equations. Our approach allows us to systematically resum the
contributions of high momentum modes that would make a power series expansion in proper time
divergent. We evaluate the field correlators in the McLerran-Venugopalan model using the glasma graph
approximation, but our approach for the time dependence can be applied to a general four-point function of
the initial color fields. Our results provide analytical insight into the preequilibrium phase of heavy ion
collisions without requiring a numerical solution to the Yang-Mills equations.
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I. INTRODUCTION

Heavy ion collisions (HICs) open an experimental
window to the most extreme regimes of quantum chromo-
dynamics (QCD). More specifically, they give access to the
quark gluon plasma (QGP), an extremely hot and dense
phase of matter made up of deconfined partons. The heavy
ion physics programs at the Relativistic Heavy Ion Collider
and the Large Hadron Collider are devoted to making
precision measurements of QGP properties, such as its
collective fluidlike behavior. This feature manifests itself
experimentally through nontrivial correlations in the final
state of the collision. However, such correlations are
reflective not only of the properties of the QGP, but also
of the fluctuations of energy and momentum deposited
during the earliest stages of HICs—before the QGP is
formed (see e.g., [1]). The description of these fluctuations
requires a degree of phenomenological modeling to incor-
porate contributions from different dynamical mechanisms
(randomly changing nucleon positions, fluctuations of
partonic degrees of freedom, color charge density fluctua-
tions) whose relative importance is not yet very clear. A
further source of uncertainty is understanding the time
evolution of these fluctuations in the very early preequili-
brium stage, before hydrodynamics or even kinetic theory
is applicable. Addressing this time development is the
primary purpose of this paper.

Despite the inherent nonperturbative character of the
dynamics in the early stages of a heavy ion collision, the
color glass condensate (CGC) effective theory (see e.g.,
[2–4] for reviews) provides a formalism to analyze it in the
weak coupling limit. In this framework, the high density of
soft (small-x) partons carried by the colliding nuclei is
described in terms of gluon fields whose dynamics obey the
classical Yang-Mills equations. This approach is valid at
high energies, where the occupation numbers of small-x
gluons (more specifically, those with transverse momentum
of the order of the saturation scale Qs) are large. This
justifies the use of a classical approximation, which makes
it possible to both include nonlinear saturation effects, and
address the time development of the system in an explicit
calculation. The source of the gluon fields is the large-x
partons, represented as a collection of SU(Nc) charges. The
fluctuations are implemented in this context by describing
the density of color charges as a stochastic quantity that
varies on an event-by-event basis. In the McLerran-
Venugopalan (MV) model [5–7], it is assumed that these
random variations obey Gaussian statistics. In this work,
we will adopt the generalized Gaussian approach, where
correlators of the color charges are expressed in terms of a
two-point function, which need not, however, have pre-
cisely the form of the two-point function of the original
MV model.
In the CGC picture, the multiple interactions ensuing

after a HIC give rise to a coherent, highly dense substance
known as glasma [8]. Within a short time, this transient
state is believed to undergo an evolution process that leads
the system to local thermal equilibrium. This transition is
known as thermalization, and its precise theoretical char-
acterization remains one of the most fundamental open
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problems of the field [9–12]. The CGC formalism is well
suited to describe the earliest phase of this evolution, during
which the gluon density is large enough to warrant a
classical treatment. However, as the system expands and
becomes dilute, the classical field description starts to break
down. A series of recent works [13–16] argues that an
effective kinetic theory might provide the intermediate step
that matches the classical description with hydrodynamics,
which govern the subsequent evolution of the QGP phase.
Although this discussion is of fundamental interest in the
field, it is out of the scope of this paper.
Rather, in this work, we focus on the evolution of the

glasma state at even earlier times and its impact on the
primordial fluctuations. Quite generally, the magnitude of
such fluctuations is encoded in the following difference of
correlators:

Sfðx⊥; y⊥Þ ¼ hfðx⊥Þfðy⊥Þi − hfðx⊥Þihfðy⊥Þi; ð1Þ
where fðx⊥Þ denotes the value of a property of the glasma
at a point x⊥ of the transverse plane and the notation h…i
represents an average over the background fields. Such
correlations have been computed analytically in previous
works for both the energy density [17–19] and the axial
charge [8,18,20] deposited by the nuclei right after the
collision (i.e., for an infinitesimal positive proper time
τ ¼ 0þ). In the case of the energy density, this calculation
has found a practical application in the construction of a
model of initial conditions for HICs that was used in the
description of eccentricity fluctuations in Refs. [20–23].
Similarly, it was proposed that the two-point function of the
divergence of the Chern-Simons current might be applied
in the modeling of initial conditions of anomalous hydro-
dynamical simulations [18]. These and other potential
applications are founded on the assumption that, at least
up until proper times τ ∼ 1=Qs, the thermalization process
does not induce a significant modification of the fluctua-
tions of the relevant properties. While this assumption is
supported by studies in the case of eccentricities [24], it is
uncertain whether the same can be said about their
fluctuations, whose computation implies the integration
of the energy density two-point function over the transverse
plane. It is thus essential to have a theoretically robust
notion of the evolution of this object at later times.
The evolution of the glasma is encoded in the classical

Yang-Mills equations, for which no analytical solution has
been found so far. A full nonperturbative solution of the
time dependence, such as in the impact parameter-depen-
dent glasma (IP-glasma) model [24–26] (see also [27] for a
more recent study), relies on a numerical lattice calculation
[28,29] to evolve the system from τ ¼ 0þ (where analytical
solutions can be obtained and used as boundary conditions
to the evolution) up to a time when the solution is matched
to kinetic theory or hydrodynamics. As will be detailed in
Sec. III, some analytical approaches are based on approx-
imations such as the weak field limit, where one performs a

systematic expansion in orders of the small color source
densities [18,30–33]. The downside of the weak field limit
is that it makes the results applicable only in the dilute-
dense regime. Another strategy, first proposed in [34] and
further developed in [35–37], is based on a systematic
expansion of the gluon fields in powers of τ. This
expansion turns the Yang-Mills equations into an infinite
system of differential equations that can be solved recur-
sively. However, this is a series around the point τ ¼ 0
where the solution in the MV model is not analytical [17],
and the resulting terms are found to be plagued by UV
divergences.
Here we will follow the approach also proposed in

Ref. [35], where it is argued that using the Abelian
(linearized) version of the Yang-Mills effectively resums
the singularities, making the series finite. Remarkably, this
resummation ansatz achieves the same functional τ depend-
ence found in previous works without resorting to the weak
field limit. This would in principle come at the cost of the
validity range in τ, which according to Ref. [35] would be
reduced to very short proper times after the collision1

(τ ≪ 1=Qs). However, we argue that this limitation affects
only the low momentum modes, which are less important
for the discussion presented in this work (we focus our
study on largely UV-dominated objects—the energy den-
sity and the divergence of the Chern-Simons current).
Treating the dense-dense case by means of the linearized
Yang-Mills equations allows us to propagate the full initial
conditions of the collision (i.e., at τ ¼ 0þ) instead of taking
the first orders of an expansion of the Wilson lines in
powers of color charge densities. As we will discuss (see
also [38]), this approach introduces some gauge depend-
ence that is not there for a systematical expansion in a small
source density. However, for a relatively UV-dominated
quantity such as the energy density, both this gauge
dependence and the screening effects caused by nonlinear-
ities in the final state [39,40] should be small. In combining
the nonlinear initial condition with a linearized time
evolution, we preserve the full gluon saturation features
of the system at the initial condition.
The paper is organized as follows. In Sec. II, we briefly

discuss the basic elements of the glasma fields at τ ¼ 0þ, as
well as the specific approximations applied in this work.
We also devote a part of this section to review the
calculation of the one- and two-point functions of the
energy density and the divergence of the Chern-Simons
current of the glasma at τ ¼ 0þ. In Sec. III, we detail our
calculation of the τ evolution of these correlators. In the
final section, we present our conclusions, as well as
potential applications and continuations of this work. A
short description of the divergence of the Chern-Simons

1In Ref. [35], it is also proposed that this situation can be
improved by considering nonlinear corrections to the linearized
Yang-Mills equations.
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current and its role in the search for chiral magnetic effect
(CME) signals is included in the Appendix A, and a more
general result for the two-point correlators in Appendix B.
Last, in Appendix C, we briefly discuss the results obtained
under the MV model with a fixed coupling constant.

II. INITIAL CONDITIONS

In the following section, we briefly revisit the calculation
of one- and two-point correlators at τ ¼ 0þ. The results
described here are well established in the literature [8,17–
20]. However, reviewing them serves the twofold purpose
of showing a fuller picture of glasma evolution and fixing
notations that will be used throughout the paper. First, we
outline the basic elements of our framework.

A. The MV model

This model, presented in [5–7] provides a description
of the parton content of a nucleus in the infinite momen-
tum frame (IMF), where one sees it moving in the posi-
tive x3 direction with a very large light cone momentum
Pþ ≫ ΛQCD. The IMF naturally gives rise to two groups of
partons with vastly different dynamical features: the “hard”
modes, which carry a large momentum fraction pþ ¼ xPþ
and which could be thought of as valencelike degrees of
freedom; and the “soft” modes, which would correspond to
the small-x gluons.2 Due to Lorentz time dilation, the latter
perceive the former to be “frozen” in light cone time xþ.
Also, the uncertainty principle tells us that in the IMF the
hard modes appear to be sharply localized around the light
cone (within a distance Δx− ∼ 1=pþ). These kinematic
considerations motivate the MV model to represent the
valence quarks as static color currents,

Jμ ¼ δμþρðx⊥; x−Þ; ð2Þ

where the color source densities ρ are assumed to be very
close to a delta function in x−. As for the soft modes, at high
energies they are characterized by large occupation num-
bers (of the order of 1=αs for modes with transverse
momenta under the saturation scale Qs), which make them
amenable to a description in terms of classical fields. The
dynamics of this system are encoded in the classical Yang-
Mills equations

½Dμ; Fμν� ¼ Jν; ð3Þ

where the valence quarks enter as the source of the gluon
fields. Solving these equations in the light cone gauge, we
obtain the fields carried by the nucleus as pure gauge fields,

αiðx⊥Þ ¼ −
1

ig
Uðx⊥Þ∂iU†ðx⊥Þ: ð4Þ

Here Uðx⊥Þ are the Wilson lines, SU(Nc) elements defined
as path-ordered exponentials,

Uðx⊥Þ ¼ P− exp

�
−ig

Z
∞

−∞
dz−Φðz−; x⊥Þ

�
; ð5Þ

which characterize the interaction of an external probe with
the gluon field. The fields Φ satisfy

−∇2⊥Φðx−; x⊥Þ ¼ ρ̃ðx−; x⊥Þ; ð6Þ

where ρ̃ is the color charge density in the covariant gauge.
The field of Eq. (4) represents the small-x gluons carried by
one nucleus moving close to the speed of light in the
positive x3 direction. Similar expressions apply in the case
of a nucleus moving in the opposite direction (up to a x− →
xþ change).
In the case of a collision between two nuclei, first

analyzed in Ref. [30], the current that enters in the
Yang-Mills equations has the following form:

Jμ ¼ δμþρ1ðx⊥; x−Þ þ δμ−ρ2ðx⊥; xþÞ; ð7Þ

where the subscripts 1, 2 label the nuclei moving in the
positive and negative directions, respectively. In order to
solve these equations, one has to separately consider
different regions in spacetime. In the forward light cone
(x� > 0), one can parametrize the solutions in the form

Aiðτ; x⊥Þ ¼ αiðτ; x⊥Þ; ð8Þ

A�ðτ; x⊥Þ ¼ �x�αðτ; x⊥Þ: ð9Þ

This form enforces the Fock-Schwinger gauge condition
xþA− þ x−Aþ ¼ 0, which acts as a sort of interpolation of
the light cone gauges of each nucleus. Combining Eqs. (8)
and (9) with the fields carried by the individual nuclei
before the collision (i.e., x� < 0), the ansatz over the entire
spacetime reads

A� ¼ �θðxþÞθðx−Þx�αðτ; x⊥Þ; ð10Þ

Ai ¼ θðx−Þθð−xþÞαi1ðx⊥Þ
þ θðxþÞθð−x−Þαi2ðx⊥Þ þ θðxþÞθðx−Þαiðτ; x⊥Þ: ð11Þ

No analytical solution has been found thus far for the
system defined above at finite τ. It is possible, however, to
find exact expressions of the fields generated an infinitesi-
mal proper time after the collision (τ ¼ 0þ) in terms of α1;2.
This is done by requiring the Yang-Mills equations to be
regular at τ ¼ 0, which leads to the following boundary
conditions:

2The separation between both groups is performed at an
arbitrary momentum Λþ. The evolution of the theory with Λþ
is given by the Balitsky Jalilian-Marian Iancu McLerran Weigert
Leonidov Kovner (B-JIMWLK) renormalization equation, which
completes the CGC framework [41–47].
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αiðτ ¼ 0þ; x⊥Þ ¼ αi1ðx⊥Þ þ αi2ðx⊥Þ; ð12Þ

αðτ ¼ 0þ; x⊥Þ ¼
ig
2
½αi1ðx⊥Þ; αi2ðx⊥Þ�: ð13Þ

These expressions, along with the Yang-Mills equations,
constitute a system that yields a unique solution for τ-
evolution once the color source densities ρ1;2 are given.
In the MV model, the color charges are assumed to be

stochastic variables that obey Gaussian statistics. All the
information on the correlation functions of the color
charges is contained in the two-point function, which in
the MV model is taken to be

hρaðx⊥Þρbðy⊥Þi ¼ g2μ2δabδð2Þðx⊥ − y⊥Þ; ð14Þ

where the variance of the distribution, μ2, is a parameter
proportional to the color source number density and related
to the saturation scale Qs. This is the basic building block
for the calculation of observables in the MV model, which
are computed as ensemble averages over the color charge
distributions.
In this paper, we will need higher point correlators of

gluon fields in order to calculate the energy density two-
point function. We will calculate these in a Gaussian
approximation, by which we retain the feature that every
higher point correlator can be expressed in terms of a two-
point function. However, we will use different functional
forms of the relevant two-point function, generalizing the
local correlator (14). The building block of our calculations
is the correlator of two gluon fields in coordinate space,

hαa;iðx⊥Þαb;jðy⊥Þi ¼
δab

2

�
δijGðx⊥; y⊥Þ

þ
�
δij − 2

rirj

r2

�
hðx⊥; y⊥Þ

�
; ð15Þ

where r⊥¼x⊥−y⊥ and r ¼ jr⊥j. The functionsGðx⊥; y⊥Þ,
hðx⊥; y⊥Þ are related to the unpolarized Ĝðb⊥; k⊥Þ and
linearly polarized ĥðb⊥; k⊥Þ gluon distributions by the
following Hankel transforms [18]:

Gðx⊥; y⊥Þ ¼
1

2π

Z
dkkJ0ðkrÞĜ

�
x⊥ þ y⊥

2
; k

�
; ð16Þ

hðx⊥; y⊥Þ ¼
1

2π

Z
dkkJ2ðkrÞĥ

�
x⊥ þ y⊥

2
; k
�
: ð17Þ

As in this paper we work mainly in coordinate space, we
will henceforth refer to Gðx⊥; y⊥Þ and hðx⊥; y⊥Þ simply as
the unpolarized and linearly polarized gluon distributions,
respectively. In Gaussian models, the polarized and unpo-
larized gluon distributions are not independent, but can
both be explicitly related to the gluon dipole amplitude

[18,48], which contains all the information about the strong
interactions involved in deep inelastic scattering (DIS)
processes. Within the CGC framework, one can use differ-
ent parametrizations of this object. We will in this work
compare the Golec–Biernat Wusthof (GBW) dipole dis-
tribution to a variant of the MV model that is regularized in
a specific way, as detailed below.
The GBW model [49] was originally introduced as a

purely phenomenological parametrization to fit DIS data.
The GBW dipole amplitude reads

DGBWðr⊥Þ ¼ exp

�
−
N2

c − 1

2N2
c

Q2
sr2

4

�
; ð18Þ

and the corresponding gluon distributions become

GGBWðr⊥Þ ¼
Q2

s

g2Nc

1 − exp f− Q2
sr2

4
g

Q2
sr2=4

; ð19Þ

hGBWðr⊥Þ ¼ 0: ð20Þ
The MV model dipole amplitude, on the other hand, is

obtained by starting from the color charge correlator (14)
that is local in coordinate space. In order to obtain the
dipole amplitude and the gluon field correlator, one needs
to spread out the delta function–like color charges in the
longitudinal coordinate x− to properly calculate expectation
values of the path ordered exponentials (5). We denote
the number density of color charges integrated over x− that
appears in this procedure by μ̄2. One also needs to
regularize the long range Coulomb tails of the color field,
i.e., to invert the Laplace operator in Eq. (6). In the
literature, this is often done by introducing a “gluon mass”
infrared regulator m (see e.g., Ref. [50]). After this
procedure [18,50,51], the dipole amplitude is given by

DMVðr⊥Þ ¼ exp

�
N2

c − 1

2Nc

g4μ̄2

4πm2
ðmrK1ðmrÞ − 1Þ

�
: ð21Þ

The corresponding gluon distributions read

GMVðr⊥Þ ¼
g2μ̄2

4πNc
ðmrK1ðmrÞ − 2K0ðmrÞÞ

×
1 − exp fg4μ̄2Nc

4πm2 ðmrK1ðmrÞ − 1Þg
g4μ̄2

4πm2 ðmrK1ðmrÞ − 1Þ
; ð22Þ

hMVðr⊥Þ ¼ −
g2μ̄2

4πNc
mrK1ðmrÞ

×
1 − exp fg4μ̄2Nc

4πm2 ðmrK1ðmrÞ − 1Þg
g4μ̄2

4πm2 ðmrK1ðmrÞ − 1Þ
: ð23Þ

These expressions offer a wider range of possibilities for
phenomenology, as they allow to pinpoint the contribution
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of linearly polarized gluons to the early fluctuations of
glasma properties.
An essential feature of the MV model is that in the

UV limit (r → 0) the unpolarized gluon distribution
GMV diverges logarithmically, while the polarized one
approaches a constant. In momentum space, this corresponds
to the unintegrated gluon distribution in Eq. (16) behaving as
∼1=k2 at large momenta. In itself, this is one of the
physically attractive features of the MV model, since it
makes the integrated gluon distribution grow logarithmically
with the hard scale Q2, corresponding to a rudimentary
approximation of the Dokshizer Gribov Lipatov Altarelli
Parisi (DGLAP) evolution equations. However, it is prob-
lematic for the calculation of the τ ¼ 0þ glasma energy
density, which is proportional to Gðr ¼ 0Þ. As discussed in
detail in [17], the glasma energy density at finite τ is finite; in
the numerical classical Yang-Mills (CYM) calculations, this
UV divergence at precisely τ ¼ 0þ is regularized by the
lattice spacing and would in fact be divergent in the
continuum limit. Here we will regularize this divergence
by using a running coupling prescription. The choice we
make is to assume that the coupling g appearing as an overall
coefficient (but not the coupling in the exponent) in Eqs. (22)
and (23) runs with the distance r according to

g2ðr2Þ ¼ g2ðμ̄2Þ
ln ð4e−2γe−1m2r2 þ eÞ : ð24Þ

In the UVor small-r limit, the factor on the second lines of
Eqs. (22) and (23) approaches unity. The leading behavior of
the unpolarized gluon distribution GMVðr⊥Þ is then dictated
by theK0ðmrÞ function. Taking the coupling in the prefactor
to be the running coupling (24) and developing the Bessel
functions, the unpolarized distribution becomes

GMVðr⊥Þ⟶
r→0

g2ðr2Þμ̄2
4π

ln

�
4e−2γe−1

m2r2

�

¼ g2ðμ̄2Þμ̄2
4π

lnð4e−2γe−1m2r2 Þ
ln ð4e−2γe−1m2r2 þ eÞ

→
r→0

g2ðμ̄2Þμ̄2
4π

: ð25Þ

This has a nice physical interpretation: the total gluon
distribution as probed by a small probe r → 0 is proportional
to the number density of colored particles μ̄2 times a
coupling evaluated at the scale corresponding to this number
density g2ðμ̄2Þ.
In the dilute limit, the number density of color charges μ̄2

is the variable that has a clear physical meaning. In the
saturation regime, on the other hand, we should not be
discussing in terms of the number density, but in terms of
the saturation scale Qs, which is defined as the inverse of
the probe size r for which the nonlinear behavior of the
exponential on the second lines of Eqs. (22) and (23) starts

to matter. Thus, we eliminate the explicit dependence on μ̄2

in favor of the saturation scale, defined as

Q2
s ¼

g4ðμ̄2Þ
4π

μ̄2Nc: ð26Þ

After this procedure, our explicit expression for the gluon
distributions is

GMVðr⊥Þ ¼
Q2

s

g2ðμ̄2ÞNc

ðmrK1ðmrÞ − 2K0ðmrÞÞ
ln ð4e−2γe−1m2r2 þ eÞ

×
1 − exp fQ2

s
m2 ðmrK1ðmrÞ − 1Þg

Q2
s

m2 ðmrK1ðmrÞ − 1Þ
; ð27Þ

hMVðr⊥Þ ¼ −
Q2

s

g2ðμ̄2ÞNc

mrK1ðmrÞ
lnð4e−2γe−1m2r2 þ eÞ

×
1 − expfQ2

s
m2 ðmrK1ðmrÞ − 1Þg

Q2
s

m2 ðmrK1ðmrÞ − 1Þ
: ð28Þ

The mass regulatorm is parametrically a confinement scale
quantity, and in this work, we will take its value as
m ¼ 0.1Qs. With such a prescription, the gluon distribu-
tions GMV and hMV tend to the corresponding GBW model
expressions in the UV limit,

lim
r→0

GMVðr⊥Þ ¼
Q2

s

g2Nc
; ð29Þ

lim
r→0

hMVðr⊥Þ ¼ 0: ð30Þ

A related procedure was previously applied in [18] in the
calculation of correlators at τ ¼ 0þ by writing the MV
model results for the gluon distributions in such a way that
there is an explicit factor of g in the exponent (using the fact
that Qs ∼ g2μ). By taking this coupling to run, one
eliminates all the logarithms of mr at small r from the
Bessel functions and arrives at a form that in practice is
similar to the GBW model. In contrast, here we apply the
running coupling prescription defined by Eqs. (24) and (26)
only to the prefactors on the first lines of Eqs. (22) and (23)
and not to the exponent.
The difference between the running coupling approaches

in different sources in the literature amounts to some
extent to the question of whether the coupling should
run such that the saturation scale Qs, the color charge
density g2μ̄2, or the number density of color charged
particles μ̄2 stays fixed. Ultimately, different approaches
used in the literature, including ours, are somewhat ad hoc.
They should be judged on their effect on physics, where our
current approach is constructed to preserve a bit more the
features of the fixed coupling MV model. The effect of this
modification is better observed in the momentum space
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distributions, shown in Fig. 1. Here we can see that our
prescription indeed preserves a power-law tail in the
unpolarized gluon distribution. However, the power law
is visibly steeper than with the fixed coupling MV model,
which distinctly yields limk→∞ Ĝðk⊥Þ ∼ 1=k2. Such a
steeper power is required for our calculation here, in order
to obtain finite results in coordinate space.
Another difference between our approach and the one

used in [18] lies in the exact form of Eq. (24), specifically in
the e−2γE−1 factor contained in the argument of the
logarithm in the denominator. With such a prescription,
the subleading terms in the mr → 0 limit in Eqs. (27) and
(28) cancel exactly, resulting in a smoother distribution in
coordinate space.
Having now discussed our approach for the gluon

distribution, where Eqs. (15), (19), (20), (27), and (28)
are the essential ingredients that we will use, let us move to
what is needed to calculate the energy density two-point
function. This requires one to have a four-point function
of the color fields, which could be characterized as a
two-gluon distribution in the colliding nuclei, hαaαbαcαdi.
This is a highly complex object with a rich color structure
whose full calculation is discussed in depth in [19] for the
simpler case of two and three transverse positions. It could,
in principle, be fully evaluated in the Gaussian approxi-
mation. Doing so would, however, be rather complicated.
For the sake of simplicity, we shall thus in the present work
assume that the averaging of gluon fields obeys Gaussian
dynamics,

hαi;ax αj;by αk;cu αl;dv i ¼ hαi;ax αj;by ihαk;cu αl;dv i þ hαi;ax αk;cu ihαj;by αl;dv i
þ hαi;ax αl;dv ihαj;by αk;cu i; ð31Þ

just like the color source densities do. Here we have
adopted the shorthand notation αi;ax ≡ αi;aðx⊥Þ. The
Wick theorem–like decomposition featured in Eq. (31) is

known in the literature as the glasma graph approximation,
and it has been used in many phenomenological studies
of semihard two-particle correlations in the dense-dense
collision regime [52–56]. It will also greatly simplify the
calculations presented in this paper. This assumption has
been shown to yield exact results in the UV limit of Eq. (1),
where the connected, nonlinear contributions computed in
Ref. [19] vanish. In this regime, the dynamics linearize in
such a way that a Gaussian distribution for the color source
densities is effectively mapped onto another one for the
gauge fields. Although this approximation breaks down for
correlation distances larger than 1=Qs, it provides valuable
analytical insight for the quantities computed in the present
work. Our linearized approach for the time evolution
would, in itself, be straightforwardly generalizable to a
full nonlinear Gaussian calculation of the gauge field four-
point function at τ ¼ 0þ.

B. Glasma correlators at τ = 0+

The structure that emerges right after a HIC in the CGC
picture is characterized by the presence of purely longi-
tudinal chromoelectric and chromomagnetic fields. In the
Fock-Schwinger gauge used for the matching at τ ¼ 0,
these fields are given by

Eηðτ ¼ 0þ; x⊥Þ≡ Eη
0ðx⊥Þ ¼ −igδij½αi1ðx⊥Þ; αj2ðx⊥Þ�; ð32Þ

Bηðτ ¼ 0þ; x⊥Þ≡ Bη
0ðx⊥Þ ¼ −igϵij½αi1ðx⊥Þ; αj2ðx⊥Þ�; ð33Þ

in terms of the gluon fields carried by each nucleus prior to
the collision, αi1;2. As Eqs. (32) and (33) are the only
nonvanishing components of the field strength tensor at
τ ¼ 0þ, the gauge invariant energy density ε and the
divergence of the Chern-Simons current _ν have the follow-
ing simple forms:

εðτ ¼ 0þ; x⊥Þ≡ ε0ðx⊥Þ ¼ TrfEη
0E

η
0 þ Bη

0B
η
0g; ð34Þ

_νðτ ¼ 0þ; x⊥Þ≡ _ν0ðx⊥Þ ¼ TrfEη
0B

η
0g: ð35Þ

The expectation values of these quantities are well-known
results in the CGC literature [8,17]. Writing the previous
expressions in terms of the gluon fields and then substitut-
ing the corresponding correlators [Eq. (15)], we obtain [17]

hε0i ¼
g2

2
NcðN2

c − 1ÞG1ðx⊥; x⊥ÞG2ðx⊥; x⊥Þ; ð36Þ

h_ν0i ¼ 0; ð37Þ

where G1;2 correspond to the unpolarized gluon distribu-
tions of nuclei 1 and 2, respectively. In this result, we can
see that linearly polarized gluon distributions do not
contribute to these expectation values. In the GBW model,

1
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 0  5  10  15  20
 

0.0
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FIG. 1. Unpolarized gluon distributions in momentum space
corresponding to different models. The distribution labeled
“MV” is the one used here, Eq. (27), whereas the one labeled
“MV (no running coupling)” is the one defined by Eq. (22).
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Eq. (36) simply reads hε0i ¼ CFQ2
s1Q

2
s2=g

2, where CF ¼
ðN2

c − 1Þ=ð2NcÞ is the Casimir of the fundamental repre-
sentation. Note that in the MV model this object contains a
logarithmic UV divergence, which we regularized by
means of our running coupling prescription, but is visible

in the numerical CYM calculation as a divergence in the
continuum limit.
Let us now focus on the two-point functions of ε and _ν.

Writing them in terms of the gluon fields carried by each
nucleus, we obtain the following expressions:

hε0ðx⊥Þε0ðy⊥Þi ¼
g4

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þfabnfcdnfa0b0mfc0d0mhαi;ax αk;cx αi

0;a0
y αk

0;c0
y i1hαj;bx αl;dx αj

0;b0
y αl

0;d0
y i2; ð38Þ

h_ν0ðx⊥Þ_ν0ðy⊥Þi ¼
g4

4
δijϵklδi

0j0ϵk
0l0fabnfcdnfa

0b0mfc
0d0mhαi;ax αk;cx αi

0;a0
y αk

0;c0
y i1hαj;bx αl;dx αj

0;b0
y αl

0;d0
y i2: ð39Þ

These objects have an intricate color algebra composi-
tion, featuring four SU(Nc) structure constants whose
indices are contracted with two four-point correlators
(one per nucleus). Furthermore, the indices labeling the
transverse plane vectors also contribute to the complexity
of the formulas (and even more in the finite τ case).
Evaluating such expressions is challenging even when
employing the simplest approach available (i.e., adopting
both the glasma graph approximation and the GBW
model), which is why we used the Mathematica package
FeynCalc [57,58] to perform the algebraic manipulations
required throughout the calculation process. By applying
the glasma graph approximation and adopting the GBW
model, one is able to obtain the following formulas:

hε0ðx⊥Þε0ðy⊥Þi
hε0ðx⊥Þihε0ðy⊥Þi

− 1 ¼ 3

N2
c − 1

�
1

3

�
1 − e−Q

2
sr2=4

Q2
sr2=4

�4

þ 2

3

�
1 − e−Q

2
sr2=4

Q2
sr2=4

�2�
; ð40Þ

h_ν0ðx⊥Þ_ν0ðy⊥Þi
hε0ðx⊥Þihε0ðy⊥Þi

¼ 3

8ðN2
c − 1Þ

�
1 − e−Q

2
sr2=4

Q2
sr2=4

�4

; ð41Þ

first presented in this compact form in [18].
By performing the full calculation of the four-point func-

tion of the fields (i.e., without assuming a Gaussian-like
decomposition), one arrives at much lengthier expressions
that, remarkably, feature different asymptotic behaviors in
the Qsr ≫ 1 limit (∝ 1=r2 in the case of the energy density
and∝ 1=r4 for the divergence of the Chern-Simons current)
[19]. We expect that, since the considered quantities are
largely UV dominated, the breakdown of the glasma graph
approximation should not have a big impact on the quali-
tative conclusions of the present work. Conversely, the
discrepancy at large correlation distances will likely be
much more relevant when considering quantities that are
sensitive to the infrared. An important example of this is
given by the integral of Eq. (40) over the transverse plane,
which is a key quantity in the calculation of eccentricity
fluctuations. In fact, the infrared sensitivity enters due to

the 1=r2 falloff featured in the full calculation. This
asymptotic behavior gives rise to a correlation length that
depends on the infrared scale 1=m through a logarithmic
factor ln ðQs=mÞ. The study of the τ dependence of this
property is left for future work.

III. PROPER TIME EVOLUTION

Our goal in this section is to generalize the previous
correlators to finite proper times, τ > 0. As the respective
supports of the color charge sources are Lorentz contracted
almost to delta functions (ρ1;2 ∼ δðx�Þ), in the spacetime
region τ > 0 the Yang-Mills equations become homo-
geneous, ½Dμ; Fμν� ¼ 0. The separate components of these
equations in the comoving coordinate system ðτ; η; iÞ read

igτ½α; ∂τα� −
1

τ
½Di; ∂τα

i� ¼ 0; ð42Þ

1

τ
∂τ

1

τ
∂τðτ2αÞ − ½Di; ½Di; α�� ¼ 0; ð43Þ

1

τ
∂τðτ∂τα

iÞ − igτ2½α; ½Dj; α�� − ½Dj; Fji� ¼ 0: ð44Þ

We now want to solve these equations by linearizing
them, i.e., neglecting all the terms that are higher order
in the gauge potentials α;αi. This linearization unavoidably
introduces a gauge dependence in the calculation, since
any gauge transformation changes the value of the gauge
potentials, and thus the value of the neglected higher
order terms. However, there are several physical constraints
that allow one to choose the proper gauge. Firstly, we are
solving the equations of motion in a spacetime region
without any external charges that would introduce a static
Coulomb field. It is therefore natural to maintain the Fock-
Schwinger gauge condition Aτ ¼ 0, which is achieved
by refraining from τ-dependent gauge transformations.
Second, our physical situation is boost invariant, and it
is natural to maintain this boost invariance at the level of the
gauge potentials. This means that we do not allow our
gauge transformation to depend on the spacetime rapidity η.
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These conditions restrict us to performing gauge trans-
formations that only depend on the transverse coordinate.
The general such transformation can be written as

αðτ; x⊥Þ ¼ Uðx⊥Þβðτ; x⊥ÞU†ðx⊥Þ; ð45Þ

αiðτ; x⊥Þ ¼ Uðx⊥Þ
�
βiðτ; x⊥Þ −

1

ig
∂i

�
U†ðx⊥Þ: ð46Þ

The linearized equations of motion for the transformed
gauge potential β read

∂τ∂iβ
i ¼ 0; ð47Þ

1

τ
∂τ

1

τ
∂τðτ2βÞ − ∂i∂iβ ¼ 0; ð48Þ

1

τ
∂τðτ∂τβ

iÞ − ð∂k∂kδ
ij − ∂i∂jÞβj ¼ 0: ð49Þ

A natural choice for fixing the last degree of freedom in the
gauge transformation is to choose the transverse Coulomb
gauge defined by the condition ∂iβ

i ¼ 0. This choice
minimizes the amplitudes of the transverse components
of the fields, and one could thus argue that it is the choice
where a linearized approximation works best. Since we
refrain from time-dependent gauge transformations, we can
in general only enforce the Coulomb condition at one
specific value of τ. With the general nonlinear equations of
motion, the condition ∂iβ

i ¼ 0 is not conserved in τ [59].
However, for the linearized equations, the Coulomb con-
dition is explicitly conserved in time (47). Thus, with
linearized evolution, we can work completely in Coulomb
gauge at all values of τ, and this is what we shall do in the
following. In this case, the equations of motion reduce to

∂τ
1

τ
∂τðτ2βÞ ¼ τ∂i∂iβ; ð50Þ

∂τðτ∂τβ
iÞ ¼ τ∂k∂kβ

i; ð51Þ

which can be straightforwardly solved by Fourier trans-
forming. The general plane wave solutions for the time
dependence of the momentum modes are

βðτ; k⊥Þ ¼ β0ðk⊥Þ
2J1ðωτÞ

ωτ
;

βiðτ; k⊥Þ ¼ βi0ðk⊥ÞJ0ðωτÞ; ð52Þ

where we assume the free dispersion relation
ωðk⊥Þ ¼ jk⊥j.
We must now relate the initial conditions of the gauge

potentials, β0ðk⊥Þ and βi0ðk⊥Þ, to the gauge fields of the
incoming nuclei. In principle, we would do this by taking
the initial conditions for the gauge fields from Eqs. (12)

and (13), and performing the gauge transformation to
Coulomb gauge. This procedure was done numerically
in Ref. [38]. In this study it was found that a linear time
evolution starting from such a Coulomb gauge initial
condition is a very good approximation of the full CYM
evolution, apart from the very soft modes whose evolution
is genuinely nonlinear due to screening. Finding the
required gauge transformation (46) to Coulomb gauge is
also possible analytically in the dilute-dense case [18,32],
leading to nice k⊥-factorized expressions for the gluon
spectrum in proton-nucleus collisions that are often used in
phenomenology [60,61] (a calculation recently extended
one order higher in the color charge density in the proton
[62]). However, in the full dense-dense case that we want to
address here, finding an explicit form for the gauge trans-
formation Uðx⊥Þ from Eq. (46) is not possible analytically.
A way out of this conundrum can be found by fully
exploiting the fact that we have resolved to use a linearized
approximation for the time evolution in the region τ > 0,
and that the physics we are interested in really depend on
the electric and magnetic fields, not the gauge potentials
themselves. Thus, in fact, we do not need an explicit form
of the gauge transformation Uðx⊥Þ. Instead, it is enough to
find a gauge potential that does the following:
(1) Satisfies the Coulomb gauge linearized equation of

motion, i.e., is of the form (52), and
(2) Reproduces the initial field strength (32) and (33) at

τ ¼ 0þ when calculating the electric and magnetic
strength from the gauge potential using the linear-
ized approximation, consistently with the linear time
evolution

Thus, instead of finding an explicit form for the gauge
transformation, we obtain the gauge potential at τ > 0 by
performing a matching of the electric and magnetic fields to
the values at τ ¼ 0þ. Alternatively, one could formulate our
approach in terms of linear equations of motion for the
electric and magnetic fields themselves, as the Abelian
Maxwell equations are usually written. This equation can
then be matched to an initial condition that includes the full
nonlinear dependence in the color charges of the colliding
projectiles. This procedure enables us to include the full
nonlinear structure of gluon saturation in both colliding
projectiles at the initial time, but nevertheless obtain an
analytical expression for time evolution.
Taking this approach, it is now straightforward to fix the

initial conditions in the general solution (52) to obtain

βðτ; k⊥Þ ¼
τ

k
Eη
0ðk⊥ÞJ1ðkτÞ;

βiðτ; k⊥Þ ¼ −i
ϵijkj

k2
Bη
0ðk⊥ÞJ0ðkτÞ; ð53Þ

with Eη
0ðk⊥Þ and Bη

0ðk⊥Þ given by the Fourier transforms of
Eqs. (32) and (33). The evolution is thus described simply
as the propagation of the initial conditions as a free plane
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wave. This is a reasonable approximation for high momen-
tum modes only and therefore appropriate for largely UV-
dominated quantities such as the energy density or the
divergence of the Chern-Simons current. Correspondingly,
the full electric and magnetic fields as functions of τ are
given by

Eηðτ; k⊥Þ ¼ Eη
0ðk⊥ÞJ0ðkτÞ; ð54Þ

Eiðτ; k⊥Þ ¼ −iϵij
kj

k
Bη
0ðk⊥ÞJ1ðkτÞ; ð55Þ

Bηðτ; k⊥Þ ¼ Bη
0ðk⊥ÞJ0ðkτÞ; ð56Þ

Biðτ; k⊥Þ ¼ − iϵij
kj

k
Eη
0ðk⊥ÞJ1ðkτÞ: ð57Þ

In order to infer the τ dependence in coordinate space,
we rewrite the initial condition Eq. (32) as the following
Fourier transform:

Eη
0ðx⊥Þ ¼−igδij

Z
d2k⊥
ð2πÞ2

Z
d2u⊥½αi1ðu⊥Þ;αj2ðu⊥Þ�eik⊥ðx−uÞ⊥

≡
Z

d2k⊥
ð2πÞ2E

η
0ðk⊥Þeik⊥x⊥ ; ð58Þ

and thus, from Eq. (54), we get to

Eηðτ; x⊥Þ ¼ −igδij
Z

d2k⊥
ð2πÞ2

Z
d2u⊥½αi1ðu⊥Þ; αj2ðu⊥Þ�

× J0ðkτÞeik⊥ðx−uÞ⊥ : ð59Þ

Similar transformations of the initial conditions are
obtained for Ei and the chromomagnetic fields.
This approach to time evolution can also be applied in

the case where one of the sources is much weaker than the
other. However, we observe that by taking the dilute-dense
limit of the electric field, Eq. (59), or the resulting energy
density for τ > 0, one does not recover the known result
in the dilute-dense regime. In this limit, the object repre-
senting the gluon content of the dense nucleus is a dipole
distribution, whereas our calculation (as will be shown
later) implies the unpolarized Weizsäcker-Williams dis-
tributions of each nucleus. Both approaches yield the
same result at τ ¼ 0, since the r⊥ ¼ 0 limit of both gluon
distributions is the same. However, the convolution with the
Bessel functions introduced in Eq. (59) induces their
Fourier transforms to differ at τ > 0, because the distribu-
tions are different as functions of p⊥. This problem is not
really associated with our approach to the time dependence
per se, but rather to our inability to analytically Fourier
transform the initial fields Eqs. (32) and (33) to Coulomb

gauge. In the dilute-dense limit, this gauge transformation
can be done, and after this transformation our linearized
approach to the time dependence would reduce to the
conventional result.
Let us briefly discuss the relation of our approach to that

of Refs. [34–37], where one performs a systematic power
expansion of the fields in orders of τ. In this approach, the
Yang-Mills equations are reformulated as an infinite system
of equations for the coefficients of the series. Taking the
initial conditions Eqs. (32) and (33) as the lowest order τ0,
the remaining coefficients are obtained recursively. The
main drawback of this approach comes in the form of
UV divergences, which are carried by each term of the
series. These singularities originate in the spatial deriva-
tives and give rise to the dominant terms of the expansion.
The interpretation of this UV divergence in terms of the
Bessel functions J0;1ðkτÞ that give the (free) time depend-
ence of the momentum modes is evident. Dimensionally,
every power of τ is associated with an additional power
of momentum that is integrated over, making the higher
coefficients ever more UV divergent. Resumming the
whole series into a Bessel function, on the other hand,
actually improves the UV behavior at any nonzero value
of τ, because of the suppression Jð0;1ÞðkτÞ ∼ 1=

ffiffiffi
k

p
for

k ≫ 1=τ. This property is what makes the energy density in
the MV model (even without any running coupling) UV
finite at τ > 0, even if it is UV divergent at τ ¼ 0.3

The same asymptotic behavior Jð0;1ÞðkτÞ ∼ 1=
ffiffiffi
τ

p
for τ ≫

1=Qs ∼ 1=k directly results in the large time ∼1=τ behavior
of the energy density. This is naturally interpreted as
the effect of the boost invariant expansion of the whole
system and would be difficult to reach in a power series
expansion in τ. This is also pointed out in Ref. [35], where
the highest-derivative terms of the Yang-Mills equations
are resummed into a free field evolution. This ansatz is
technically identical to considering the linearized evolution
equations we use. Therefore, Eq. (53) can be understood
as a resummation of the high momentum modes of a τ
expansion of the forward light cone fields.

A. One-point functions

Using the formulas presented above, the τ-dependent
expectation values of the energy density and the divergence
of the Chern-Simons current read

3For a finite UV cutoff Λ, the MV model energy density has
finite limit Λ → ∞ at τ > 0, but diverges as ln2 Λ at τ ¼ 0. In the
lattice calculation, the UV cutoff Λ corresponds to 1=a, where a
is the lattice spacing. Thus, one refers to the limit Λ → ∞ as the
“continuum limit.” From this behavior, one can deduce that if one
takes the limit Λ → ∞ first and then approaches τ ¼ 0þ from
above, the continuum limit energy density will diverge as ln2 1=τ.
Thus, in the MV model at fixed coupling, a power series
expansion in τ is a series expansion around a point where the
continuum limit energy density is nonanalytic [17].
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hεðτ; x⊥Þi ¼ hTrfEηEη þ BηBη þ EiEi þ BiBigi ¼ g2

2
ðδijδkl þ ϵijϵklÞfabnfcdn

Z
p;k

Z
u;v
hαi;au αk;cv i1hαj;bu αl;dv i2

×

�
J0ðpτÞJ0ðkτÞ −

p⊥ · k⊥
pk

J1ðpτÞJ1ðkτÞ
�
eip⊥ðx−uÞ⊥eik⊥ðx−vÞ⊥ ; ð60Þ

h_νðτ; x⊥Þi ¼ hTrfEηBη þ EiBigi ¼ g2

2
fabnfcdn

Z
p;k

Z
u;v
hαi;au αk;cv i1hαj;bu αl;dv i2

×

�
δijϵklJ0ðpτÞJ0ðkτÞ − ϵijδkl

p⊥ · k⊥
pk

J1ðpτÞJ1ðkτÞ
�
eip⊥ðx−uÞ⊥eik⊥ðx−vÞ⊥ ; ð61Þ

where
R
p stands for the integration over momentum

R d2p⊥
ð2πÞ2, while

R
u corresponds to

R
d2u⊥. There are some operations that

can be performed on these general expressions before adopting a specific dipole model. For instance, by substituting the
general two-point function (15) in Eq. (61), one directly obtains that h_νi ¼ 0 for any value of τ. This is a trivial result that
reflects that our field averages are performed over a CP-even ensemble. Let us now focus on the more interesting case of the
average energy density. This object contains Fourier transforms of Bessel functions of zeroth and first order, which can be
computed analytically. Let us show this calculation explicitly. Integrating over the angular variables of the momenta θp and
θk, the second line of Eq. (60) becomesZ

dpp
ð2πÞ

dkk
ð2πÞ ðJ0ðjx − ujpÞJ0ðjx − vjkÞJ0ðpτÞJ0ðkτÞ

þ cos ðθx−u − θx−vÞJ1ðjx − ujpÞJ1ðjx − vjkÞJ1ðpτÞJ1ðkτÞÞ: ð62Þ
Then, applying the orthogonality condition of the Bessel functions,

Z
∞

0

JνðkrÞJνðsrÞrdr ¼
δðk − sÞ

s
; ð63Þ

we obtain

hεðτ; x⊥Þi ¼
g2

2
ðδijδkl þ ϵijϵklÞfabnfcdn

Z
u;v
hαi;au αk;cv i1hαj;bu αl;dv i2

×
δðjx⊥ − u⊥j − τÞ

2πτ

δðjx⊥ − v⊥j − τÞ
2πτ

ð1þ cosðθx−u − θx−vÞÞ: ð64Þ

The average energy density deposited on a transverse
point x⊥ at a certain proper time τ results from the
interference of the Weizsäcker-Williams distributions char-
acterizing each nucleus, hαi;au αk;cv i. In Gaussian models, it is
possible to interpret this object as the gluon distribution of a
nucleus probed by a gluon dipole with “legs” on transverse
positions u⊥ and v⊥. At τ ¼ 0þ, the only point that contri-
butes to the average energy density at x⊥ is x⊥, and thus this
quantity is proportional to the zero-sized dipole hαi;ax αk;cx i (a
divergent object). At finite values of τ, however, the average
energy density deposited at x⊥ has received contributions
from all those dipoles whose legs sit at a distance τ from x⊥.
As we have approximated the τ evolution with linear free
field equations, these contributions evolve as circular wave
fronts that propagate on the transverse plane at the speed of
light, thus converging on the point x⊥ at a proper time τ.
Moreover, the τ−1 factors account for the attenuation
caused by this expansion. The result of the interference

is controlled by the angle between the vectors that link u⊥
and v⊥ to x⊥ (see Fig. 2). There are thus integration
regions where the interference is destructive, making no

FIG. 2. Representation of an infinitesimal contribution to the
average energy density deposited on a point x⊥ at a proper time τ.
The shaded angle corresponds to the angle that controls the
interference effect, θ ¼ θx−u − θx−v.
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contribution to the average energy density at that point.
This happens when the considered point is located in the
middle of the gluon dipole, with cosðθx−u − θx−vÞ ¼ −1.
On the other hand, the radiation emanating from point
u⊥ ¼ v⊥ to x⊥ interferes constructively.
We can compute almost all of the integrals of Eq. (64)

analytically by adopting the GBWmodel. First, we perform
a change of variables from (u⊥, v⊥) to (s⊥ ¼ x⊥ − u⊥,
t⊥ ¼ x⊥ − v⊥). Then, we can integrate over js⊥j and jt⊥j,
obtaining

hεðτÞi ¼ g2

2
NcðN2

c − 1Þ
Z

2π

0

dθs
2π

dθt
2π

ð1þ cosðθs − θtÞÞ

×

�
Q2

s1

g2Nc

1 − exp f− Q2
s1τ

2

2
ð1 − cosðθs − θtÞÞg

Q2
s1τ

2

2
ð1 − cosðθs − θtÞÞ

�

× ð1 → 2Þ: ð65Þ

Now, after performing one more variable change to
Θ ¼ θs − θt, we can integrate over the other angle and
finally arrive at

hεðτÞi ¼ g2

2
NcðN2

c − 1Þ
Z

2π

0

dΘ
2π

ð1þ cosðΘÞÞ

×

�
Q2

s1

g2Nc

1 − exp f− Q2
s1τ

2

2
ð1 − cosðΘÞÞg

Q2
s1τ

2

2
ð1 − cosðΘÞÞ

�

× ð1 → 2Þ
≡ hϵ0i × ϕðQs1τ; Qs2τÞ: ð66Þ

This result consists of the initial expectation value for the
energy density hϵ0i multiplied by a nontrivial dilution
factor ϕ which depends on the dimensionless products
Qs1;2τ. Increasing the value of the saturation scale is
equivalent to fast-forwarding τ evolution, as this provokes
dilution to occur faster. One can also see that at large τ only
angles Θ≲ 1=ðQsτÞ contribute to the integral, thus leading
to the time dependence hεðτÞi ∼ 1=τ. In Fig. 3, we display
ϕ as a function ofQsτ for both GBWand MVmodels. Here
one can see that at τ ∼ 1=Qs our MV model prescription
(dashed curve) yields almost twice as much energy density
dilution as the GBW model (thick curve). This is inter-
preted as the effect of the larger power-law tail of fast-
evolving high k⊥ modes in the MVmodel. Also note that, if
we apply the running coupling correction defined by
Eq. (24) to suppress all the logarithms introduced by the
MV model (dot-dashed curve, corresponding to the pre-
scription used in Ref. [18]), the difference with the GBW
model at this point is much less prominent.

B. Two-point functions

Let us now focus on the calculation of two-point
functions. By expanding the τ-dependent chromoelectric
and chromomagnetic fields (54) in terms of the initial
conditions, we obtain the following expressions:

hεðτ; x⊥Þεðτ; y⊥Þi ¼
g4

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þfabnfcdnfa0b0mfc0d0m

×
Z
p;k

Z
p̄;k̄

Z
u;v

Z
ū;v̄
hαi;au αk;cū αi

0;a0
v αk

0;c0
v̄ ihαj;bu αl;dū αj

0;b0
v αl

0;d0
v̄ i

×

�
J0ðpτÞJ0ðp̄τÞ−

p⊥ · p̄⊥
pp̄

J1ðpτÞJ1ðp̄τÞ
��

J0ðkτÞJ0ðk̄τÞ−
k⊥ · k̄⊥
kk̄

J1ðkτÞJ1ðk̄τÞ
�

× eip⊥ðx−uÞ⊥eik⊥ðy−vÞ⊥eip̄⊥ðx−ūÞ⊥eik̄⊥ðy−v̄Þ⊥

¼ g4

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þfabnfcdnfa0b0mfc0d0m

Z
u;v

Z
ū;v̄
hαi;au αk;cū αi

0;a0
v αk

0;c0
v̄ ihαj;bu αl;dū αj

0;b0
v αl

0;d0
v̄ i

×
δðjx⊥ − u⊥j− τÞ

2πτ

δðjx⊥ − ū⊥j− τÞ
2πτ

δðjy⊥ − v⊥j− τÞ
2πτ

δðjy⊥ − v̄⊥j− τÞ
2πτ

× ð1þ cosðθx−u − θx−ūÞÞð1þ cosðθy−v − θy−v̄ÞÞ; ð67Þ
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FIG. 3. Energy density dilution function for the GBW (thick
curve) and MV models. Here we distinguish between the results
provided by the running coupling prescription applied in this
work (dashed curve) and the one adopted in [18] (“no logs MV”).
Note that the MV model without any running coupling or UV
cutoff would have an infinite hε0i and a finite hεðτÞi for τ > 0;
thus, plotting the ratio ϕ ¼ hεðτÞi=hε0i would not make sense.

EVOLUTION OF INITIAL STAGE FLUCTUATIONS IN THE … PHYS. REV. D 104, 014011 (2021)

014011-11



h_νðτ; x⊥Þ_νðτ; y⊥Þi

¼ g4

4
fabnfcdnfa

0b0mfc
0d0m

Z
p;k

Z
p̄;k̄

Z
u;v

Z
ū;v̄
hαi;au αk;cū αi

0;a0
v αk

0;c0
v̄ ihαj;bu αl;dū αj

0;b0
v αl

0;d0
v̄ i

×

�
δijϵklJ0ðpτÞJ0ðp̄τÞ − ϵijδkl

p⊥ · p̄⊥
pp̄

J1ðpτÞJ1ðp̄τÞ
��

δi
0j0ϵk

0l0J0ðkτÞJ0ðk̄τÞ − ϵi
0j0δk

0l0 k⊥ · k̄⊥
kk̄

J1ðkτÞJ1ðk̄τÞ
�

× eip⊥ðx−uÞ⊥eik⊥ðy−vÞ⊥eip̄⊥ðx−ūÞ⊥eik̄⊥ðy−v̄Þ⊥

¼ g4

4
fabnfcdnfa

0b0mfc
0d0m

Z
u;v

Z
ū;v̄
hαi;au αk;cū αi

0;a0
v αk

0;c0
v̄ ihαj;bu αl;dū αj

0;b0
v αl

0;d0
v̄ i δðjx⊥ − u⊥j − τÞ

2πτ

δðjx⊥ − ū⊥j − τÞ
2πτ

×
δðjy⊥ − v⊥j − τÞ

2πτ

δðjy⊥ − v̄⊥j − τÞ
2πτ

ðδijϵkl þ ϵijδkl cosðθx−u − θx−ūÞÞðδi0j0ϵk0l0 þ ϵi
0j0δk

0l0 cosðθy−v − θy−v̄ÞÞ: ð68Þ

The physical interpretation of the results (67) and (68) is
quite clear in light of our discussion of the one-point
function in Sec. III A. It consists of energy densities at
points x⊥, y⊥ resulting from spherically expanding waves
starting from points u⊥; ū⊥; v⊥; v̄⊥.
As discussed in Sec. II, the building block of these

correlators is the four-point function of the gluon
fields, hαi;au αk;cū αi

0;a0
v αk

0;c0
v̄ i. In the present work, we apply

the glasma graph approximation in order to circum-
vent the complexity that this object presents. Moreover,
in the formulas presented below, we also adopt the
GBW model, which significantly simplifies the resulting
expressions. After performing the variable changes
s⊥ ¼ x⊥ − u⊥, s̄⊥ ¼ x⊥ − ū⊥, t⊥ ¼ y⊥ − v⊥, t̄⊥ ¼ y⊥ −
v̄⊥ and computing the analytically doable integrals, we
obtain

hεðτ; x⊥Þεðτ; y⊥Þi ¼
g4

8
N2

cðN2
c − 1Þ

Z
2π

0

dθs
2π

dθs̄
2π

dθt
2π

dθt̄
2π

ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ

× ½ððN2
c − 1ÞG1ððs − s̄ÞτÞG1ððt − t̄ÞτÞG2ððs − s̄ÞτÞG2ððt − t̄ÞτÞ

þ 2G1ððs − s̄ÞτÞG1ððt − t̄ÞτÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥Þ
þG1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥ÞÞ þ ð1 ↔ 2Þ�; ð69Þ

h_νðτ; x⊥Þ_νðτ; y⊥Þi ¼
g4

64
N2

cðN2
c − 1Þ

Z
2π

0

dθs
2π

dθs̄
2π

dθt
2π

dθt̄
2π

ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ

× ½ðG1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − t̄Þτ − r⊥ÞG2ððs̄ − tÞτ − r⊥Þ
þ 2G1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥ÞÞ þ ð1 ↔ 2Þ�; ð70Þ

where G1;2 are the unpolarized gluon distributions defined
by Eq. (15). The general glasma graph expressions of
Eqs. (69) and (70) including the linearly polarized dis-
tribution are shown in Appendix B. Here we have defined
ðs − tÞτ ≡ τðŝ⊥ − t̂⊥Þ. This is a subtraction of two vectors
s and t whose moduli have been replaced by τ as a result
of the integration of the delta functions. Note that this
does not represent a transverse shift of length τ; instead,
the value of jðs − tÞτj depends on the integration variables
θs, θt. Figure 4 provides a graphical interpretation of
the transverse coordinate structure corresponding to this
expression.
The glasma graph approximation allows us to distinguish

between contributions stemming from “connected” or
“disconnected” correlators, defined as

hαi;ax αj;bx αk;cy αl;dy i

¼ hαi;ax αj;bx ihαk;cy αl;dy i
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{disconnected

þ hαi;ax αk;cy ihαj;bx αl;dy i þ hαi;ax αl;dy ihαj;bx αk;cy i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
connected

: ð71Þ

This is the usual terminology employed in previous
calculations of correlation functions at τ ¼ 0þ. Although
we have not explicitly made this distinction here, in
Eqs. (69) and (70) one can identify the connected con-
tributions as those that depend on the correlation distance
r⊥. Another remarkable aspect about the previous formulas
lies in the overall interference factor, which results simply
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from squaring that of the one-point function hεi. This
feature is maintained in the general expressions obtained
under the glasma graph approximation (see Appendix B)
and, at least in the case of the energy density, also in the full
nonlinear calculation.
As we have explicitly integrated out the highly oscil-

latory Bessel functions that originally contained the τ
dependence, the resulting expressions turn out to be
relatively simple to solve with numerical methods. We
did this for different multiples of τ ¼ 1=Qs applying the
global adaptive method built in Mathematica. The results
are shown in Fig. 5. We can see how linear Yang-Mills
evolution has a qualitatively similar effect on the glasma
properties in both models: increasing the magnitude of
long-distance fluctuations while decreasing that of the
short-distance ones. Although the definition of a correlation
length is somewhat shaky in this context (as these corre-
lations decay following a power-law tail rather than
exponentially), this trend could be roughly described as
a correlation length growth, which is one of the effects

expected to take place in any system that is approaching the
hydrodynamical regime.
Written in the form (69) and (70) [or (B1), (B2)], it is not

manifest that our expressions indeed reproduce the τ ¼ 0þ
case obtained in previous works. This can be checked
analytically by noting that setting τ ¼ 0 in Eqs. (B1) and
(B2) enables us to integrate out the interference factors
straightforwardly. By doing so, one directly obtains the
formulas presented in Sec. 3.3 of [18]. We show the result
from numerically evaluating the τ ¼ 0þ results (40) and
(41) in Fig. 5(a). The corresponding figures for the MV
model are shown in Fig. 5(b). Note that, as we adopted
a different running coupling prescription, the curves cor-
responding to the MV model at τ ¼ 0þ [thick lines in
Fig. 5(b)] do not exactly match the ones presented in [18].
As a check, we verified that our results do agree when we
include running coupling corrections in the same way.
Also, we repeated our calculations using the MV model
with fixed coupling and compared them to the curves
shown in Fig. 5(b). The comparison between these results
(included in Appendix C) illustrates how our running
coupling prescription successfully preserves nontrivial
aspects of the MV model both in coordinate and momen-
tum space.
Figure 5 shows that the decay of the correlators, both in

space and time, is significantly more pronounced under the
MV model. This is evident from the steepness of the curves
and from their decreasing normalization as we move to
larger values of τ. Indeed, in the curves corresponding to
the MV model, we observe a relatively large drop in the
values at Qsr ¼ 0 when we evolve from Qsτ ¼ 0 to
Qsτ ¼ 1. This trend is, however, stabilized for later values
of τ, decreasing at a similar pace as the GBW model result.
This is somewhat similar to the steeper decay of the
correlator with Qsr in the MV model. We attribute this
effect to the way in which r and τ enter our formulas; both
as arguments of the gluon distributionsG1;2, h1;2, as well as
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FIG. 5. Correlation functions of the energy density and the divergence of the Chern-Simons current at different values of τ for the
GBW model (left plot) and the MV model (right plot). The thin black lines in the left plot correspond to Eqs. (40) and (41).

FIG. 4. Representation of an infinitesimal contribution to the
two-point functions. For example here, the expanding spherical
waves with dotted lines correspond to a two-point function
G1ððs̄ − tÞτ − r⊥Þ, where the distance argument of G is denoted
by the dashed arrow. The contribution from the other two-point
function in the same nucleus (spherical waves with dashed lines)
is G1ððs − t̄Þτ − r⊥Þ. The shaded angles control the interference
effect.
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other functions defined in Appendix B. It is thus reasonable
that our curves exhibit a similar (although not identical)
behavior with Qsr and Qsτ.

IV. CONCLUSIONS

In this work, we have presented an analytical calculation
of one- and two-point correlators of energy density and
axial charge at finite proper times. These objects char-
acterize the average and fluctuations of energy density
and axial charge deposited throughout the initial stage of
HICs, during which a classical description of the system
is appropriate. In our calculation, we assume a free-field
evolution of the gluon fields. This setup has been pre-
viously applied in the literature for the description of
dilute-dense collisions [18,32,33,63,64]. In these works,
the initial conditions are expanded in powers of the weak
field describing the gluon content of the dilute nucleus. To
the lowest order in this expansion, the dynamics of the
system are described by the linearized Yang-Mills equa-
tions. In the present paper, we propose that the same
equations can be applied to the evolution of the full initial
conditions, which encode the saturation features of the
system. Our claim is supported by the dominance of the
high-momentum modes of a power series in proper time,
observed in [34–36,65]. The UV divergences carried by all
terms of this series are effectively resummed by consider-
ing the higher order derivatives of the Yang-Mills equations
[35]. We argue that nonlinear corrections to this approach
are negligible when focusing on quantities dominated
by large momenta, such as the energy density and the
divergence of the Chern-Simons current.
In this paper, we evaluate the initial conditions in the

glasma graph approximation, which assumes a Gaussian-
like decomposition of four-point correlators into two-point
correlators for the gluon fields. In order to obtain quanti-
tative results, we adopt the GBW and MV models, includ-
ing running coupling corrections in the last case. Our
running coupling regularization of the MV model yields a
finite result in the UV limit, while preserving a perturbative
power-law tail at large transverse momenta of the unin-
tegrated gluon distribution (a signature feature of the MV
model). This running coupling approach differs from that
of previous works [18], hence yielding slightly different
curves at τ ¼ 0þ. In the GBW model, in contrast, the
unintegrated gluon distribution falls off as a Gaussian at
large transverse momenta. Nevertheless, for the energy
density correlator, the two parametrizations give qualita-
tively similar results.
Yang-Mills evolution was analytically computed for all

correlators up until a proper time τ ¼ 4=Qs. The evolution
of the average energy density deposited on a given point
can be described through a dimensionless dilution factor,
which accounts for both the attenuation and the interference
of the expanding plane waves that describe the gluon
propagation in the plane transverse to the collision axis.

We observe that in the MV model this dilution effect
is noticeably more rapid than for the GBW dipole corre-
lator. This can be naturally understood as the effect of a
larger relative contribution of fast-evolving large transverse
momentum modes in the MV model, where they are only
suppressed as a power law and not a Gaussian. The effect
of time evolution over the considered two-point corre-
lators can be described as an elongation of the correlation
length, a trend that is suggestive of a transition toward the
hydrodynamical regime.
The glasma graph approximation has been adopted here

merely for calculational convenience, and we expect it to be
relatively well satisfied apart from the longest coordinate
separations r≳ 1=Qs. However, our approach for comput-
ing the time dependence is much more general, and can
be applied to any initial color fields, as long as the four-
point function of the Weizsäcker-Williams fields of the
colliding nuclei can be computed. A reliable application of
our results into the study of eccentricity harmonics will
require doing this and reevaluating our τ-dependent corre-
lators in the full MV model, i.e., beyond the glasma graph
approximation. This is due to the sensitivity of the mean-
squared eccentricity fluctuations to large-scale correlations
(Qsr > 1), a regime that lies outside the validity region of
the glasma graph approximation.
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APPENDIX A: THE DIVERGENCE OF THE
CHERN-SIMONS CURRENT

The chiral anomaly of QCD induces a transformation of
left- into right-handed quarks, or equivalently, a generation
of axial charge N5,

dN5

dt
¼ dðNR − NLÞ

dt

¼ −
g2Nf

8π2

Z
d3xTrfFμνðxÞF̃μνðxÞg; ðA1Þ
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where F̃μν ¼ 1
2
ϵμνρσFρσ is the dual of the field strength

tensor and Nf represents the number of flavors. In this
formula, we can see how the production rate of axial charge
is directly related to the properties of the gauge fields
entering the right-hand side of the equation. This term
implicitly includes various contributions to axial charge
production, one of them stemming directly from the
topological structure of QCD.
We can define distinct topological classes of gauge field

configurations labeled by the following quantity:

Qw ¼ g2

16π2

Z
d4xTrfFμνðxÞF̃μνðxÞg; ðA2Þ

a topological invariant known as winding number.
These classes are separated by potential barriers with
heights of order ΛQCD, which suppress the Qw fluctuations
at low temperature. However, that is not the case in a high
temperature medium such as the QGP. At T ∼ ΛQCD, Qw

fluctuations happen with a rate that can be directly related
to dN5=dt. This relation is expressed in terms of the Chern-
Simons current, defined as

Kμ ¼ ϵμνρσAa
ν

�
Fa
ρσ þ

g
3
Ab
ρAc

σ

�
; ðA3Þ

and whose divergence reads

∂μKμ ¼ −
1

4
TrfFμνðxÞF̃μνðxÞg≡ _νðxÞ: ðA4Þ

It is convenient to rewrite Eq. (A1) in terms of the
divergence of the Chern-Simons current,

dN5

dt
¼ g2Nf

2π2

Z
d3x_νðxÞ: ðA5Þ

Based on this relation, in the present work, we take _ν as the
fundamental object controlling axial charge generation.
This effect may manifest experimentally in off-central
HICs, where large background electromagnetic fields are
generated [66]. These fields, when in the presence of
deconfined chirally unbalanced matter, induce a separation
of charges that gives rise to an electric dipole along the
direction of angular momentum. This is known as the chiral
magnetic effect, and it translates into nontrivial azimuthal
correlations in the hadron spectrum [67,68]. This signal,
however, is obscured by large background effects that
produce similar back-to-back correlations. Reducing this
uncertainty is currently a major goal of the high energy
QCD community, both on the experimental [69–73] and the
theoretical side [18,74–76]. In this context, it is of para-
mount importance to constrain the dynamical origin of
CME signatures. The calculation of _ν correlators presented
in this paper accounts for the τ evolution of potential
contributions emerging from event-by-event color charge
fluctuations during the glasma phase. This source, although
unrelated to the topological structure of QCD, can have a
sizable effect on final state observables related to CP
violation. The exploration of this possibility is left for
future phenomenological studies.

APPENDIX B: TWO-POINT FUNCTIONS
IN THE GLASMA GRAPH

APPROXIMATION

In the following Appendix, we display the general
expressions of the correlators of the energy density and
axial charge deposited in two points x⊥ and y⊥ of the
transverse plane at a proper time τ within the glasma graph
approximation as follows:

hεðτ; x⊥Þεðτ; y⊥Þi

¼ g4

8
N2

cðN2
c − 1Þ

Z
2π

0

dθs
2π

dθs̄
2π

dθt
2π

dθt̄
2π

ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ

× ½ððN2
c − 1ÞG1ððs − s̄ÞτÞG1ððt − t̄ÞτÞG2ððs − s̄ÞτÞG2ððt − t̄ÞτÞ

þ 2G1ððs − s̄ÞτÞG1ððt − t̄ÞτÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥Þ
þG1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥Þ
þ 2G1ððs − s̄ÞτÞG1ððt − t̄ÞτÞh2ððs − tÞτ − r⊥Þh2ððs̄ − t̄Þτ − r⊥Þfððs − tÞτ − r⊥; ðs̄ − t̄Þτ − r⊥Þ
þG1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥Þh2ððs − t̄Þτ − r⊥Þh2ððs̄ − tÞτ − r⊥Þfððs − t̄Þτ − r⊥; ðs̄ − tÞτ − r⊥Þ
þ h1ððs − tÞτ − r⊥Þh1ððs̄ − t̄Þτ − r⊥Þh2ððs − tÞτ − r⊥Þh2ððs̄ − t̄Þτ − r⊥ÞÞ þ ð1 ↔ 2Þ�; ðB1Þ
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h_νðτ; x⊥Þ_νðτ; y⊥Þi ¼
g4

64
N2

cðN2
c − 1Þ

Z
2π

0

dθs
2π

dθs̄
2π

dθt
2π

dθt̄
2π

ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ

× ½ðG1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − t̄Þτ − r⊥ÞG2ððs̄ − tÞτ − r⊥Þ
þ 2G1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥ÞG2ððs − tÞτ − r⊥ÞG2ððs̄ − t̄Þτ − r⊥Þ
− 2h1ððs − tÞτ − r⊥Þh1ððs̄ − t̄Þτ − r⊥Þh2ððs − tÞτ − r⊥Þh2ððs̄ − t̄Þτ − r⊥Þ
þ 4G1ððs − tÞτ − r⊥ÞG1ððs̄ − t̄Þτ − r⊥Þh2ððs − s̄ÞτÞh2ððt − t̄ÞτÞfððs − s̄Þτ; ðt − t̄ÞτÞ
− h1ððs − tÞτ − r⊥Þh1ððs̄ − t̄Þτ − r⊥Þh2ððs − t̄Þτ − r⊥Þh2ððs̄ − tÞτ − r⊥Þg1ðτ; r; θÞ
− 4h1ððs − tÞτ − r⊥Þh1ððs̄ − t̄Þτ − r⊥Þh2ððs − s̄ÞτÞh2ððt − t̄ÞτÞg2ðτ; r; θÞÞ þ ð1 ↔ 2Þ�: ðB2Þ

For the sake of compactness, we have defined the following functions:

fðx⊥; y⊥Þ ¼ cos ð2ðθx − θyÞÞ ¼ 2

�
x⊥ · y⊥
xy

�
2

− 1; ðB3Þ

g1ðτ; r; θÞ ¼ fððs − tÞτ − r⊥; ðs − t̄Þτ − r⊥Þfððs̄ − t̄Þτ − r⊥; ðs̄ − tÞτ − r⊥Þ
þ fððs − tÞτ − r⊥; ðs̄ − tÞτ − r⊥Þfððs̄ − t̄Þτ − r⊥; ðs − t̄Þτ − r⊥Þ
− fððs − tÞτ − r⊥; ðs̄ − t̄Þτ − r⊥Þfððs − t̄Þτ − r⊥; ðs̄ − tÞτ − r⊥Þ; ðB4Þ

g2ðτ; r; θÞ ¼ fððs − s̄Þτ; ðs − tÞτ − r⊥Þfððt − t̄Þτ; ðs̄ − t̄Þτ − r⊥Þ
þ fððs − s̄Þτ; ðs̄ − t̄Þτ − r⊥Þfððt − t̄Þτ; ðs − tÞτ − r⊥Þ
− fððs − s̄Þτ; ðt − t̄ÞτÞfððs − tÞτ − r⊥; ðs̄ − t̄Þτ − r⊥Þ: ðB5Þ

The indicated integrals were performed numerically with
Mathematica to obtain the curves shown in Fig. 5.

APPENDIX C: TWO-POINT FUNCTION
OF ENERGY DENSITY IN THE MV
MODEL WITH FIXED COUPLING

The energy density of the glasma fields in the MVmodel
is finite for all τ > 0, which allows to compute the τ
evolution of its correlators without resorting to any UV
regularization scheme. Under this approach, we could

compare results in the GBW and fixed coupling MV
models exclusively at finite τ values, or alternatively,
regularize the UV divergence only at τ ¼ 0þ. Instead of
that, in this work, we adopt the running coupling pre-
scription described in Sec. II A, which defines a variant of
the MV model that we consistently apply throughout the
whole τ range considered. This ansatz also gives rise to less
numerically demanding integrals.
However, the fixed coupling MV model yields some

nontrivial results that are worth remarking. In Fig. 6, one
can see that the correlator corresponding to the MV model
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FIG. 6. Correlation functions of the energy density computed under different running coupling prescriptions at different proper times.
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with no running coupling (thick curve) features a sig-
nificantly steeper falloff at large transverse separations.
The correlator enters this fast decay region somewhat
abruptly (at r ≈ 2=Qs for τ ¼ 1=Qs and at r ≈ 4=Qs for
τ ¼ 2=Qs), giving rise to a nontrivial profile that hints at the
formation of a relatively flat plateau at short correlation
distances. Remarkably, this characteristic shape is also
visible in the correlators obtained under our running
coupling prescription, although it appears less prominently
and at later proper times [around τ ¼ 2=Qs, as can be seen
in Fig. 6(b)].

In Fig. 6, we also display the correlator obtained by
applying the running coupling prescription Eq. (24) to all
the coupling constants of Eqs. (22) and (23) (green dashed
curve). This curve, labeled as MV (no logs), shows none
of the features mentioned above, being qualitatively iden-
tical to the GBW result. The comparison between these
correlators supports our particular choice for the running
coupling prescription, as it was made with the aim of
preserving (to the extent possible) the nontrivial aspects of
the fixed coupling MV model while simultaneously pro-
viding finite results at τ ¼ 0þ.
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