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A simple exactly solvable model is proposed for describing the decays ϒð4SÞ → B0B̄0 and
ϒð4SÞ → BþB−. Our predictions agree with available experimental data. Using this model, we analyze
the Coulomb effects in the spectra of these decays. It is shown that the frequently used assumption of
factorization of Coulomb effects is not fulfilled. The Coulomb interaction leads to the difference in
the positions and heights of the peaks corresponding to the charged and neutral modes. As a result,
the ratio of probability of ϒð4SÞ → BþB− decay and ϒð4SÞ → B0B̄0 decay is a nontrivial function of
energy.
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I. INTRODUCTION

The study of resonances of mass MR, which slightly
exceeds the particle-antiparticle pair production threshold
Mth, is a very important task. Such a study makes it
possible to investigate in detail the effects of strong
interaction in the region where perturbation theory is
not applicable. Of particular interest is the case when
MR −Mth is of the order of the resonance width ΓR, since
in this case the shape of the resonance curve becomes very
nontrivial. In addition, the low relative velocity of a
pair of charged particles makes the influence of
Coulomb effects very important. In particular, these
conditions correspond to the decays of ϒð4SÞ → B0B̄0

and ϒð4SÞ → BþB−.
For resonance ϒð4SÞ, we have MR ¼ 10579.4

�1.4 MeV, MR −Mth ¼ 20.1� 1.4 MeV for neutral
mesons and 20.7� 1.4 MeV for charged mesons,
ΓR ¼ 20.5� 2.5 MeV, and the sum of the probabilities Wc
andWn of the decays ϒð4SÞ → BþB− and ϒð4SÞ → B0B̄0,
respectively, is almost 100%. Note that the mass difference
MB0 −MBþ ≈ 0.3 MeV ≪ ΓR, and in the first approximation
this difference can be neglected.
Currently, there are a number of experimental works

devoted to the decays of the ϒð4SÞ meson [1–10]. The
parameter t ¼ πα=v ≈ 0.37, which determines the magni-
tude of the Coulomb effects, is not small (here v is the

velocity of the B meson, α is the fine-structure constant,
ℏ ¼ c ¼ 1). Therefore, it would be possible to estimate the
magnitude of the Coulomb effects using the Sommerfeld-
Gamow-Sakharov factor, Wc=Wn ∼ t=½1 − expð−tÞ� ≈ 1.2.
However, the value of this ratio given in the PDG tables
[11] is much smaller, Wc=Wn ¼ 1.058� 0.024. Various
theoretical approaches have been proposed to estimate
Coulomb effects in ϒð4SÞ → BB̄ decays with completely
different qualitative predictions of the magnitude of these
effects [12–18]. In these works, either the Breit-Wigner
approximation, or the Flatté formula, or the description of
final-state interaction of mesons in the one-loop approxi-
mation have been applied. In addition, to take into account
the electromagnetic interaction, the hypothesis was used,
according to which the cross section for the production of
charged mesons is equal to the cross section for the
production of neutral mesons, multiplied by the
Sommerfeld-Gamow-Sakharov factor and by the ratio of
phase spaces corresponding to decays into charged and
neutral mesons. All these approaches have not succeeded to
describe experimental data, and at present there is no
consensus regarding the nature of the ϒð4SÞ resonance.
The appearance of experimental data for the resonance

shape of ϒð4SÞ [8,9] allows one to make progress in
understanding Coulomb effects. Unfortunately, these
experimental data contain information only on the shape
of the spectral line for the sum Wc þWn, and the
ratioWc=Wn is measured only at the energy corresponding
to the maximum of this sum. However, there is a question
whether the positions of peaks in the spectrum of charged
and neutral B mesons coincides, and how the Coulomb
interaction affects the shape and position of these peaks.
In our paper, we have suggested a simple exactly solvable

model that describes the available experimental data and
allows us to answer, at least qualitatively, the questions
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mentioned above. Of course, at present it is not known much
about the exact interaction Hamiltonian of B mesons.
However, for our purposes, this is not a big problem.
This is similar to the situation with the phenomenological
description of the quarkonium spectra, where completely
different analytical representations of the potentials are used,
and all of them describe both the quarkonium spectra and the
wave functions well enough. Therefore, we expect our
predictions to clarify the physics of near-threshold resonan-
ces and explain the meaning of observed effects.

II. THEORETICAL APPROACH

Technically, the method for solving the problem under
discussion is similar to that developed for calculating the cross
section of eþe− annihilation into proton-antiproton and
neutron-antineutron pairs near the pair production thresholds
[19–21]. The main difference of these two problems, in
addition to different spins, angularmomenta, and a significant
mass difference of the proton and neutron, is the high
probability ofmesonproduction near the nucleon-antinucleon
pair production threshold. Therefore, in ϒð4SÞ → BB̄ decay
wecanuse theusual potential insteadof anoptical potential, as
in the case of nucleon-antinucleon pair production.
In our problem a BB̄ pair is produced in a state with an

orbital angular momentum l ¼ 1. At small distances, a
pair of bb̄ quarks is produced in a state with zero isospin,
which, as a result of hadronization, transforms into a

superposition of interacting BþB− and B0B̄0 mesons. Due
to the electromagnetic interaction of charged mesons, a
state with isospin zero is admixed with a state of isospin
one. As a result, the probabilities of charged and neutral
meson pair production are different. Of course, the
difference between the masses of Bþ and B0 also leads
to the isospin violation, but this difference is very small
(∼0.3 MeV), and can be ignored in the first approxima-
tion. The Coulomb interaction of b quarks at small
distances also results in an isospin symmetry violation.
However, as already mentioned above, the magnitude of
the Coulomb effects is determined by the parameter
t ¼ πα=v, where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMR − 2mbÞ=mb

p
∼ 0.7, and mb

is the b-quark mass. Therefore, t ∼ 0.03 ≪ 1 and the
Coulomb interaction of b quarks at small distances is
insignificant. Hence, the effect of isospin symmetry
violation is mainly related to the Coulomb interaction
of mesons in the final state.
Following [21], consider the radial wave functionΨTðrÞ ¼

ðUðcÞðrÞ; UðnÞðrÞÞ of aBB̄ pair, whereUðcÞðrÞ corresponds to
a pair of chargedBmesons, andUðnÞðrÞ corresponds to a pair
of neutral B mesons, T means transpose. It is convenient to
pass from the wave function ΨTðrÞ to the wave function
ψTðrÞ ¼ krΨTðrÞ ¼ ðuðcÞðrÞ; uðnÞðrÞÞ, where k ¼ ffiffiffiffiffiffiffiffiffiffi

MBE
p

,
MB is themassof themeson, andE is theenergyof theBB̄pair,
counted from Mth ¼ 2MB. The function ψðrÞ satisfies the
equation

�
−

1

MB

∂2

∂r2 þ
2

MBr2
þ VðrÞ þ VexðrÞ

�
0 1

1 0

�
−
α

r

�
1 0

0 0

�
− E

�
ψðrÞ ¼ 0;

VðrÞ ¼ 1

2
½V1ðrÞ þ V0ðrÞ�; VexðrÞ ¼

1

2
½V1ðrÞ − V0ðrÞ�; ð1Þ

where V1ðrÞ and V0ðrÞ are the potentials of meson
interaction in the states with isospin one and zero, respec-
tively. The potential VexðrÞ leads to the transitions
BþB− ↔ B0B̄0.
It is necessary to find two solutions ψ iðrÞ of (1) with

asymptotics at large distances

ψT
1 ðrÞ ¼

1

2i
ðS11χþc − χ−c ; S12χþn Þ;

ψT
2 ðrÞ ¼

1

2i
ðS21χþc ; S22χþn − χ−n Þ: ð2Þ

Here Sij are some functions of energy and

χ�c ¼ exp f�i½kr − π=2þ ηk lnð2krÞ þ σk�g;

χ�n ¼ exp ½�iðkr − π=2Þ�; σk ¼
i
2
ln
Γð2þ iηkÞ
Γð2 − iηkÞ

;

ηk ¼
MBα

2k
; ð3Þ

where ΓðxÞ is the Euler Γ function.

The probabilities Wc and Wn of decays ϒð4sÞ → BþB−

and ϒð4sÞ → B0B̄0, respectively, are

Wc ¼ Nk

���� ∂∂rUðcÞ
1 ð0Þ − ∂

∂rU
ðnÞ
1 ð0Þ

����2;
Wn ¼ Nk

���� ∂∂rUðcÞ
2 ð0Þ − ∂

∂rU
ðnÞ
2 ð0Þ

����2; ð4Þ
where N is some constant. This constant is the same for
both channels since it is determined by the physics of small
distances, while all other factors appear due to the inter-
action at large distances. Recall that the superscripts (c) and
(n) in the functions UðrÞ denote the first and second
components of the radial wave function ΨðrÞ, and the
subscripts 1 and 2 in these functions correspond to the first
and second solutions of the wave equation. As a
model potential, we choose VðrÞ ¼ −V0θða − rÞ and
VexðrÞ ¼ gδðr − aÞ, where θðxÞ is the Heaviside function,
δðxÞ is the Dirac δ function, V0, g, and a are some
parameters. Of course, potentials can be written in very
different forms. We have chosen the simplest model, which,
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on the one hand, allows a simple analytical solution, and on
the other hand, is sufficient to describe the available
experimental data. Since we were interested in the effect
of charge-exchange interaction at large distances, we chose
the position of delta function at the point r ¼ a. Using this
potential model, it is easy to obtain an analytical solution,

which simplifies the analysis of the influence of Coulomb
effects on the probability of pair production. We are
confident that, at least qualitatively, our predictions corre-
spond to the actual experimental situation.
For r < a, the solutions are regular at the point r ¼ 0 and

have the form

uðcÞ1;2ðrÞ ¼ A1;2F ðyÞ; uðnÞ1;2ðrÞ ¼ B1;2fðyÞ;

F ðyÞ ¼ Cq

3
y2e−iyFðiηq þ 2; 4; 2iyÞ; fðyÞ ¼ sin y

y
− cos y;

Cq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πηqð1þ η2qÞ

1 − expð−2πηqÞ

s
; y ¼ qr; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBðEþ V0Þ

p
: ð5Þ

Here Fðb; c; zÞ is the confluent hypergeometric function of the first kind, A1;2 and B1;2 are some coefficients. Note that the
index q in the functions Cq and ηq indicates the momentum dependence (and correspondingly the energy dependence) of
these functions.
For r > a the solutions are

uðcÞ1 ðrÞ ¼ 1

2i
½S11Hþðk; xÞ −H−ðk; xÞ�; uðnÞ1 ðrÞ ¼ 1

2i
S12hþðxÞ;

uðcÞ2 ¼ 1

2i
S21Hþðk; xÞ; uðnÞ2 ðrÞ ¼ 1

2i
½S22hþðxÞ − h−ðxÞ�;

Hþðk; xÞ ¼ 4i exp½ixþ iσk − πηk=2�x2Uð2 − iηk; 4;−2ixÞ;
H−ðk; xÞ ¼ −4i exp½−ix − iσk − πηk=2�x2Uð2þ iηk; 4; 2ixÞ;

hþðxÞ ¼
�
1

x
− i

�
eix; h−ðxÞ ¼

�
1

x
þ i

�
e−ix;

x ¼ kr; k ¼
ffiffiffiffiffiffiffiffiffiffi
MBE

p
: ð6Þ

Here Uðb; c; zÞ is the confluent hypergeometric function of the second kind. The following relations hold:

F ðyÞ ¼ 1

2i
½Hþðq; yÞ −H−ðq; yÞ�; fðyÞ ¼ 1

2i
½hþðyÞ − h−ðyÞ�:

Using the continuity of the function ψðrÞ at the point r ¼ a and the condition

ψ 0ðaþ 0Þ − ψ 0ða − 0Þ ¼ MBg

�
0 1

1 0

�
ψðaÞ;

we find the coefficients Ai and Bi. As a result, we obtain the probabilities Wc and Wn

Wc ¼ b
kq2

M3
B

���� qD fCq½khþ0ðkaÞfðqaÞ − qhþðkaÞf0ðqaÞ� −MBghþðkaÞF ðqaÞg
����2;

Wn ¼ b
kq2

M3
B

���� qD f½kHþ0ðkaÞF ðqaÞ − qHþðkaÞF 0ðqaÞ� − CqMBgHþðkaÞfðqaÞg
����2;

D ¼ ½khþ0ðkaÞfðqaÞ − qhþðkaÞf0ðqaÞ�½kHþ0ðkaÞF ðqaÞ − qHþðkaÞF 0ðqaÞ�
−M2

Bg
2hþðkaÞHþðkaÞfðqaÞF ðqaÞ; ð7Þ
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where b is some constant andZ0ðxÞ≡ ∂ZðxÞ=∂x. Recall that
the constant b is the same for both channels since it is
determined by the physics of small distances. It is the ratio
R of the cross section eþe− → BB̄ to the Born cross section
eþe− → μþμ−, that is usually presented in the experimental
papers. Taking into account slow energy dependence of the
cross section of μþμ− production in the energy region
considered, we choose the constant b to reproduce this ratio
R. The expressions (7) are exact within the model under
consideration and are very convenient for analyzing various
effects.

III. DISCUSSION OF THE RESULTS

It turned out that our predictions are rather sensitive to
the value of parameter g. However, comparison with
experimental data shows that g is very small. Below we
put g ¼ 0, so the expressions (7) become much simpler

Wc ¼ b
kq2

M3
B

���� qCq

kHþ0ðkaÞF ðqaÞ − qHþðkaÞF 0ðqaÞ
����2;

Wn ¼ b
kq2

M3
B

���� q
khþ0ðkaÞfðqaÞ − qhþðkaÞf0ðqaÞ

����2: ð8Þ

Our analysis shows that the observed resonance ϒð4SÞ is
related to a low-energy state in the p wave having the
energy ER ¼ MR − 2MB much smaller than the potential
V0. Therefore, the potential V0 can be chosen in the form

V0 ¼
ðnπÞ2
MBa2

− ẼR; n ¼ 3; 4; 5; 6…; ð9Þ

where ẼR ≈ 22 MeV is a parameter close to the value of the
resonance energy ER. It only slightly depends on a and is
almost independent of n. It turned out that for any a in the
interval 2 fm ≤ a ≤ 2.5 fm and for n ≥ 3, the curves for
Wc and Wn, described by Eqs. (8) and (9), have similar
shapes (up to the general scale b), so that the ratio Wc=Wn
conserves. Below we use the values V0 ¼ 269 MeV,
a ¼ 2.5 fm, b ¼ 23, g ¼ 0. These values correspond
to n ¼ 5.
The dependence of Wc and Wn on E (8) is shown in

Fig. 1. The solid curve corresponds to Wc and the dotted
curve corresponds toWn. It is seen that there are two peaks
with the different positions and heights, the distance
between peaks is ∼2 MeV. This is a consequence of the
Coulomb interaction, since in the absence of this inter-
action the peaks would coincide (recall that we did not take
into account the small mass difference of Bþ and B0).
Naturally, taking into account the electromagnetic inter-

action results in a different energy dependence of the decay
probabilities in the charged and neutral modes. This is why
the positions of the peaks in different modes are also
different and cannot be identified as the mass of a single
resonance. Within our approach, it is not too difficult to

take into account the small mass difference between
charged and neutral B mesons. This difference also shifts
the positions of the peaks (∼0.6 MeV). However, this effect
is essentially less significant than that of the Coulomb
interaction. Besides, it is not important for the energy
dependence of the ratio Wc=Wn. Therefore, for the sake of
simplicity in discussing the nature of the ϒð4SÞ resonance,
in this work we do not take into account this mass
difference.
The width of each peak is approximately 17 MeV, and

the width of Wtot ¼ Wc þWn is about 20 MeV, which is a
consequence of the different positions of the peaks Wc and
Wn. The energy dependence ofWtot is shown in Fig. 2 by a
dashed curve, and Wtot averaged over the beam-energy
spread of PEP-II is shown by a solid curve. The same figure
shows experimental data from Ref. [9], which are based on
Ref. [8] and take into account radiative corrections and
radiative return. Assuming Gaussian distribution with
Δ ¼ 4.6 MeV, averaging was carried out according to
the formula

FIG. 1. Energy dependence ofWc (solid curve) andWn (dotted
curve).

FIG. 2. Energy dependence of the probabilityWtot ¼ Wc þWn
(dashed curve) and hWtoti (solid curve). The dots show the
experimental data that take into account the radiative corrections
and the radiative return [9].
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hWðEÞi ¼
Z

∞

0

WðE0Þ exp
�
−
ðE − E0Þ2

2Δ2

�
dE0ffiffiffiffiffiffi
2π

p
Δ
: ð10Þ

One can see very good agreement between the predictions
and the experimental data everywhere, except for the region
above 35 MeV, which is most likely due to the close
threshold of B�B̄ and BB̄� pair production.
The energy dependence of the ratio Wc=Wn is shown in

Fig. 3. The dotted curve corresponds to Eq. (8) while the
solid curve is the ratio of probabilities averaged over the
beam-energy spread. It is seen that the ratio Wc=Wn
strongly depends on E, and near the maximum of Wtot
the function Wc=Wn − 1 passes through zero. The ratio
Wc=Wn increases rapidly at lower energy and can reach 1.4
at E ∼ 10 MeV.
The assumption that Wc ¼ C2

kWn is very often used to
describe Coulomb effects, where Ck is given by Eq. (5)
with the replacement q → k. Note that the function C2

k is
nothing but the well-known Sommerfeld-Gamow-
Sakharov factor corresponding to a p wave. The energy
dependence of the ratio Wc=C2

kWn is shown in Fig. 4. It is
seen that the hypothesis of factorization of the Coulomb
effects does not work. Note that Wn ∝ k3 and Wc →
const ≠ 0 at E → 0 so that Wc=C2

kWn tends to a constant,
but this constant is not equal to unity. The violation of the
factorization of Coulomb effects was first noted in [21]

when describing the production of nucleon-antinucleon
pairs in eþe− annihilation near the threshold.

IV. CONCLUSION

In our work, we have suggested a simple description
of the decay probabilities ϒð4SÞ → BþB− and
ϒð4SÞ → B0B̄0. Our results are in good agreement with
the available experimental data. We predict the existence of
two peaks whose positions and heights differ due to
Coulomb effects. Moreover, the ratio Wc=Wn is a nontrivial
function of energy, which increases rapidly as the energy
decreases with respect to the peak position. It is also shown
that the frequently used assumption of factorization of the
Coulomb corrections is not in agreement with the exact
results. We believe that our approach can also be applied to
describe other resonances having the energies close to the
thresholds of decay into corresponding mesons. Such
resonances include, for example, Xð3872Þ, whose nature
is still widely discussed. However, in this case the mass
difference of charged and neutral mesons is more important
than the effect of the Coulomb interaction.
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