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Starting from the first renormalized factorization theorem for a process described at subleading power in
soft-collinear effective theory, we discuss the resummation of Sudakov logarithms for such processes in
renormalization-group improved perturbation theory. Endpoint divergences in convolution integrals, which
arise generically beyond leading power, are regularized and removed by systematically rearranging the
factorization formula. We study in detail the example of the b-quark induced h → γγ decay of the Higgs
boson, for which we resum large logarithms of the ratio Mh=mb at next-to-leading logarithmic order.
We also briefly discuss the related gg → h amplitude.
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I. INTRODUCTION

Soft-collinear effective theory (SCET) [1–3] provides an
efficient framework for addressing the problem of scale
separation for cross sections and decay rates in high-energy
physics. In order to fully establish SCET as a systematic
and versatile tool and apply it to several observables of
phenomenological interest, it is important to understand its
structure beyond the leading order in power counting.
Indeed, much recent work has aimed at exploring factori-
zation theorems at subleading power—a problem that turns
out to be unexpectedly intricate and subtle. Specific
applications considered include the study of power correc-
tions to event shapes [4,5] and transverse-momentum
distributions [6], the threshold factorization for the Drell-
Yan process [7–10], and power-suppressed contributions to
Higgs-boson decays [11,12]. One finds that technical
complications arise which do not occur at leading power.
The most puzzling one is the appearance of endpoint-
divergent convolution integrals over products of compo-
nent functions, each depending on a single scale [5,10–17].
While several of these studies derived factorized expres-
sions for cross sections or decay rates in terms of
convolutions of bare matching coefficients with SCET
matrix elements, in most cases the presence of endpoint

divergences prevented the establishment of a proper fac-
torization formula in terms of renormalized objects.
In [11,17] we have initiated a detailed discussion of

SCET factorization at subleading power for processes
subject to rapidity divergences. As a concrete example
we have factorized the decay amplitude for the radiative
Higgs-boson decay h → γγ mediated by the Higgs cou-
pling to bottom quarks. This pseudo-observable starts at
subleading power in the SCET expansion. The absence of a
leading-order contributions ensures that relatively few
SCET operators appear in the factorization theorem, and
we have succeeded to derive the nonlocal renormalization-
group evolution equations (RGEs) for the various SCET
operators and Wilson coefficients at one and (in part) two-
loop order. The h → γγ decay amplitude receives large
logarithms of the form ααnsLk, where α and αs are the
QED and QCD couplings, respectively, and L ¼
lnð−M2

h=m
2
b − i0Þ and k ≤ 2nþ 2. In order to resum these

logarithms it is necessary to factorize the amplitude into
objects depending only on one of the three relevant scales
set by the Higgs-boson massMh, the massmb of the bottom
quark and the intermediate scale

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mhmb

p
. From a phe-

nomenological point of view, the contributions to the
h → γγ amplitude mediated by bottom and charm quarks,
to which our approach can be applied, account for about
1.6% of the decay rate (at leading order and using quark
pole masses), while the analogous contributions to gg → h
production lower the rate by approximately 13%.
In extensions of the Standard Model with enhanced
Yukawa couplings of the bottom and charm quarks, these
contributions can be much enhanced (see e.g., [18]).
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The development of a formalism that allows for a consistent
resummation of Sudakov logarithms for subleading-power
observables is therefore important for high-precision pre-
dictions of Higgs-boson production and decay in the
Standard Model and beyond.
The “bare” factorization formula for the decay amplitude

contains three terms consisting of unrenormalized SCET
operators multiplied by bare Wilson coefficients, which
account for the hard matching corrections arising when the
“full theory” (the Standard Model with top quarks inte-
grated out) is matched onto SCET. In its simplest form, the
factorization formula reads

Mb ¼ Hð0Þ
1 hOð0Þ

1 i þ 2

Z
1

0

dzHð0Þ
2 ðzÞhOð0Þ

2 ðzÞi

þHð0Þ
3

Z Z
∞

0

dlþ
lþ

dl−

l−
Jð0Þð−MhlþÞJð0ÞðMhl−Þ

× Sð0Þðlþl−Þ; ð1Þ

where the h → γγ matrix elements are evaluated on shell.
The three terms correspond to different regions of loop
momenta giving rise to leading contributions to the decay
amplitude Mb (with the photon polarization vectors
removed), as illustrated in Fig. 1. The operator O1 contains
a Higgs field coupled to two collinear gauge fields
describing photons moving along opposite light-like direc-
tions n and n̄. It descents from full-theory graphs in which

all internal momenta are hard, of order Mh. The operator
O2ðzÞ contains a Higgs field, an n̄-collinear photon field
and two n-collinear b-quark fields, which share the
momentum of the n-collinear photon. The variable z
denotes the longitudinal momentum fraction carried by
one of the quarks. This operator is generated by full-theory
graphs in which a loop momentum is collinear with the
photon direction n and carries virtuality of order mb. The
factor 2 in front of this term arises because there is an
analogous contribution with n and n̄ interchanged. Finally,
the third operator consists of the time-ordered product of
the scalar Higgs current with two subleading-power terms
in the SCET Lagrangian, in which hard-collinear fields are
coupled to a soft quark field. It arises from full-theory
graphs containing a soft quark propagator between the two
photons, with all momentum components of order mb. The
other quark propagators are then off-shell with virtualities
of order

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mhmb

p
. Because of this scale hierarchy, the

h → γγ matrix element of this operator can be factorized
further into a convolution of two jet functions with a soft
function, as shown in (1).
Major complications arise from endpoint-divergent con-

volution integrals in the second and third term in (1), which
need to be properly identified and regularized. The pres-
ence of a soft-quark contribution has been identified as the
source of these endpoint divergences. The integral over z in
the second term contains singularities at z ¼ 0 and z ¼ 1,
because at lowest order in perturbation theory the Wilson

coefficient Hð0Þ
2 ∝ ½zð1 − zÞ�−1 while the matrix element

hOð0Þ
2 i is z independent. Likewise, the integrals over lþ and

l− in the third term contain singularities for l� → ∞, since
at lowest order the jet and the soft functions are given by
constants. In higher orders, some of these endpoint diver-
gences are regularized by the dimensional regulator
D ¼ 4 − 2ϵ, but others require an additional rapidity
regulator [19–21]. In [11] we have regularized the rapidity
divergences by means of an analytic regulator imposed on
the convolution variables z and l�. The singular contri-
butions in the rapidity regulator cancel in the sum of the
second and third term of the factorization formula. This
requires that for z → 0 or 1 these two terms must have
closely related structures, which is ensured by two exact,
D-dimensional refactorization conditions, which have been
proven using SCET methods in [17]. With the help of these
relations we have recast the factorization formula in such a
way that the singularities in the second term are removed by
subtractions of the integrand.
In this paper, we use the formalism developed in [17] to

perform the resummation of large Sudakov logarithms for
the h → γγ decay amplitude beyond the leading-logarith-
mic approximation. This is the first time such a resumma-
tion has been accomplished in SCET. We begin by briefly
recalling the derivation of the renormalized factorization
formula. We then focus on the term in the formula that
contains the leading logarithmic (LL) and next-to-leading

FIG. 1. Leading regions of loop momenta contributing to the
decay amplitude. The convolution symbol ⊗ in the second term
means an integral over z.
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logarithmic (NLL) contributions and perform analytically
the resummation of logarithmic corrections at leading order
in RG-improved perturbation theory. From this result,
we derive the infinite tower of LL and NLL logarithms.
We then briefly discuss the extension of our approach to the
related gg → h process, showing that the presence of
colored particles in the initial state does not pose any
new difficulties.

II. FACTORIZATION WITH
ENDPOINT DIVERGENCES

The main accomplishment of our work [17] was the
derivation of a renormalized factorization formula for the
b-quark induced h → γγ amplitude, in which all bare
quantities are replaced by their renormalized counterparts.
The result reads (with z̄≡ 1 − z)

Mb ¼ H1ðμÞhO1ðμÞi þ 2

Z
1

0

dz½H2ðz; μÞhO2ðz; μÞi − ⟦H2ðz; μÞ⟧⟦hO2ðz; μÞi⟧ − ⟦H2ðz̄; μÞ⟧⟦hO2ðz̄; μÞi⟧�

þ lim
σ→−1

H3ðμÞ
Z

Mh

0

dl−

l−

Z
σMh

0

dlþ
lþ

JðMhl−; μÞJð−Mhlþ; μÞSðlþl−; μÞ
����
leading power

; ð2Þ

which is free of endpoint divergences. The symbol ⟦fðzÞ⟧
means that one retains only the leading terms of a function
fðzÞ in the limit z → 0 and neglects higher power correc-
tions. The limit σ → −1 in the last term must be taken by
analytic continuation. Note the important fact that the hard
cutoffs in the third term are not put in by hand, but are an
unavoidable consequence of eliminating the endpoint
divergences in the second term by means of plus-type
subtractions. The presence of these cutoffs breaks the
homogeneous power counting of the SCET matrix ele-
ments, and only the leading-power contributions to the last
term should be kept for consistency. This effect is a
manifestation of the collinear anomaly, the fact that a
classical symmetry of SCET under rescalings of the light-
cone vectors n and n̄ is broken by quantum effects [19]. As
we will see later, the presence of the cutoffs gives rise to a
highly nontrivial structure of large logarithmic corrections
to the decay amplitude.
Establishing relation (2) has been nontrivial, because the

presence of cutoffs on some of the convolution integrals
does not commute with renormalization. For example, the
renormalization condition for the soft function reads
Sðw; μÞ ¼ −

R∞
0 dw0ZSðw;w0ÞSð0Þðw0Þ [22], and an analo-

gous equations holds for the jet function J [23,24]. Moving
the cutoffs from the bare to the renormalized functions
gives rise to extra terms, which individually have a rather
nontrivial structure. We have shown that, to all orders
of perturbation theory, the sum of the extra terms depends
on the high scale Mh only and can be absorbed
into the renormalization condition for the hard matching

coefficient Hð0Þ
1 .

While the derivations in [11,17] have focused on one
particular observable, the method developed there, i.e., the
removal of endpoint divergences using plus-type subtrac-
tions andD-dimensional refactorization conditions, is more
general and can be applied to other observables as well. As
an important example, we will discuss the case of Higgs

production in gluon-gluon fusion, which is more compli-
cated due to the presence of colored particles in the
initial state.

III. SUDAKOV RESUMMATION AT
SUBLEADING POWER AND NLL ORDER

In [17,22,24] we have derived the explicit form of the
RGEs obeyed by all quantities entering the factorization
formula (2). It follows from the structure of these equations
that, if the factorization scale μ is chosen of order the hard
scale Mh, both the LL and NLL corrections to the decay
amplitude are contained in the last term, T3, shown in the
second line of (2). This contribution is enhanced, because
the integrals over l� produce two powers of large rapidity
logarithms. As mentioned earlier, this is a consequence of
the collinear anomaly [19]. In previously studied examples
where the collinear anomaly appears the rapidity loga-
rithms take on a simpler form and (typically) exponentiate.
In the present case their structure is more complicated,
because they arise from a double integral over a rather
complicated integrand. Previous authors have resummed
the series of the leading double logarithms of order
ααnsL2nþ2 [25–28], which are contained in T3. These
resummations were not based on a factorization formula,
but on a relation of the leading logarithmic contributions to
the h → γγ amplitude (those arising from soft-quark
exchange) with the off-shell Sudakov form factor studied
in [29]. For practical applications, it is however important
to go beyond the LL approximation and perform the
resummation in RG-improved perturbation theory. Only
then it is ensured that all large logarithms are exponenti-
ated. Here we illustrate this for the case of T3.
At next-to-leading order in QCD perturbation theory, the

explicit expressions for the hard, jet and soft functions
contain logarithmic contributions involving different
scales. The hard function H3 is given by
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H3ðμÞ ¼
ybðμÞffiffiffi

2
p

�
−1þ αs

3π

�
ln2

−M2
h − i0
μ2

þ 2−
π2

6

��
; ð3Þ

where ybðμÞ denotes the running b-quark Yukawa cou-
pling. For the jet function one obtains [23]

Jðp2; μÞ ¼ 1þ αs
3π

�
ln2

−p2 − i0
μ2

− 1 −
π2

6

�
: ð4Þ

Finally, the renormalized soft function is given by [22]

Sðw; μÞ ¼ −
α

3π
mbðμÞ

�
Saðw; μÞ; w > m2

b;

Sbðw; μÞ; w < m2
b;

ð5Þ

where in the prefactor mbðμÞ is the running b-quark mass,
while the two cases are differentiated by whether the
variable w is larger or smaller than the b-quark pole mass
mb. Specifically, one finds (for ŵ≡ w=m2

b)

Saðw; μÞ ¼ 1þ αs
3π

�
−L2

w − 6Lw þ 12 −
π2

2
þ gðŵÞ

�
;

Sbðw; μÞ ¼
4αs
3π

lnð1 − ŵÞ½Lm þ lnð1 − ŵÞ�: ð6Þ

where Lw ¼ lnðw=μ2Þ, Lm ¼ lnðm2
b=μ

2Þ, and the function
gðŵÞ vanishes for ŵ → ∞. The soft function vanishes
linearly for w → 0. It is evident from the above expression
that there is no single choice of the factorizations scale μ for
which all three functions are free of large logarithms.
The RGEs for the jet and soft functions have been

derived up to two-loop order in [22–24]. Choosing a high
value μ ¼ μh ∼Mh for the factorization scale (see above),
and using the explicit solutions of the RGEs for J and S
derived in these works, we have obtained a closed analytic
expression for T3 at leading order (LO) in RG-improved
perturbation theory. It reads (omitting for simplicity the −i0
prescription in the last three factors of the first line)

TLO
3 ¼ α

3π

ybðμhÞffiffiffi
2

p
Z

Mh

0

dl−

l−

Z
Mh

0

dlþ
lþ

mbðμsÞe2SFðμs;μhÞ−2SFðμ−;μhÞ−2SFðμþ;μhÞ
�
−Mhl−

μ2−

�
a−Γ
�
−Mhlþ

μ2þ

�
aþΓ
�
−lþl−

μ2s

�
−asΓ

×

�
αsðμsÞ
αsðμhÞ

�
−
γs;0
2β0e−2γEa

þ
Γ
Γð1 − aþΓ Þ
Γð1þ aþΓ Þ

e−2γEa
−
Γ
Γð1 − a−ΓÞ
Γð1þ a−ΓÞ

e4γEa
s
ΓG2;2

4;4

�−asΓ; −asΓ; 1 − asΓ; 1 − asΓ
0; 1; 0; 0

���� m2
b

−lþl−

�
: ð7Þ

The Sudakov exponent SF and the exponents aiΓ are
given by [30]

SFðμi; μhÞ ¼
CFγ

cusp
0

4β20

�
4π

αsðμiÞ
�
1 −

1

r
− ln r

�

þ
�
γcusp1

γcusp0

−
β1
β0

�
ð1 − rþ ln rÞ þ β1

2β0
ln2r

�
;

aΓðμi; μhÞ ¼
CFγ

cusp
0

2β0
ln
αsðμhÞ
αsðμiÞ

≡ aiΓ; ð8Þ

where r ¼ αsðμhÞ=αsðμiÞ, γcusp0;1 are the one- and two-loop
coefficients of the cusp anomalous dimension [31], β0;1 are
the corresponding coefficients of the QCD β-function, and
γs;0 ¼ −6CF is the one-loop anomalous dimension of the
soft function [22]. The object G2;2

4;4ð� � � jxÞ is a Meijer
G-function (see e.g., [32,33]). This function vanishes for
jxj → ∞ (and hence the region where lþl− ≪ m2

b gives a
power-suppressed contribution to T3), whereas it
approaches Γ2ð1þ asΓÞ=Γ2ð1 − asΓÞ for x → 0.
The matching scales μ� for the jet functions and μs for

the soft function must be chosen such that the matching
conditions at these scales are free of large logarithms. This
is a nontrivial requirement, because the jet and soft
functions depend on the variables l�, which are integrated
from the soft region (lþl− ∼m2

b) into the hard region
(lþl− ∼M2

h). It is therefore necessary that one sets the

matching scales dynamically under the integral [22], such
that μ2s ∼ lþl− and μ2� ∼Mhl� up to Oð1Þ factors, see (4)
and (6). (The three scale parameters should however not be
lowered below m2

b, because the region where lþl− is
parametrically smaller than m2

b gives a power-suppressed
contribution to the decay amplitude.) When this is done, all
large logarithms are resummed into ratios of running
couplings. Corrections omitted in (7) are thus suppressed
by powers of αs. They can be included systematically
by calculating the matching conditions and anomalous
dimensions to higher orders. For the method of dynamical
scale setting to be consistent, it is important that the
renormalized soft function Sðw; μÞ in (5) does not
develop large logarithms of the form lnnðw=m2

bÞ in the
limit where w ≫ m2

b [17], because otherwise it would need
to be refactorized when the variables l� in (2) are in the
hard region. This property of the soft function follows
from the fact that its RGE is independent of the b-quark
mass [22].
Equation (7) is the main result of this work, which

accomplishes for the first time the resummation of
Sudakov logarithms for a subleading-power quantity in
RG-improved perturbation theory. As a cross check, we
have reexpanded the resummed expression (7) in a pertur-
bative series and extracted the infinite tower of LL and
NLL contributions of order ααnsLk with k ¼ 2nþ 2 and
k ¼ 2nþ 1. We find (with CF ¼ 4

3
and β0 ¼ 11 − 2

3
nf)
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MNLL
b ¼ α

3π
mb

ybðμ̂hÞffiffiffi
2

p L2

2

X∞
n¼0

ð−ρÞn 2Γðnþ 1Þ
Γð2nþ 3Þ

×

�
1þ 3ρ

2L
2nþ 1

2nþ 3
−

β0
CF

ρ2

4L
ðnþ 1Þ2

ð2nþ 3Þð2nþ 5Þ
�
;

ð9Þ

where ρ ¼ CFαsðμ̂hÞ
2π L2 with L ¼ lnð−M2

h=m
2
b − i0Þ and

μ̂2h ¼ −M2
h − i0, and mb denotes the pole mass. Our

normalization of the amplitude is chosen such that this
result can be compared directly with the findings of [26].
We observe a disagreement in the second term in brackets,
which is quoted in this reference as 3ρ

2L
nþ1
2nþ3

. The infinite
sums in (9) can be expressed in closed form in terms of a
hypergeometric function and the Dawson integral.

IV. FACTORIZATION AND RESUMMATION
OF THE gg → h AMPLITUDE

It is straightforward to apply the formalism developed in
[17] to the closely related b-quark induced contributions to
the gg → h production process [34]. The different contri-
butions to the decay amplitude and the corresponding
SCET operators have the same form as shown in Fig. 1
(with photon fields replaced by gluon fields), and the
renormalized factorization theorem is of the same form as
in (2). The presence of colored particles in the external
states does not invalidate our approach of dealing with the
endpoint divergences. However, it implies that the gg → h
amplitude by itself is not an infrared-safe quantity. Soft and
collinear emissions from the initial-state gluons give rise to
additional 1=ϵn poles, which must be factored off and
absorbed into the renormalization of the gluon distribution
functions. This is accomplished by means of a global
renormalization factor in the MS scheme [31,35], such that

MggðμÞ ¼ Z−1
gg ðμÞMð0Þ

gg ; ð10Þ

where Mð0Þ
gg refers to the bare gg → h production ampli-

tude. The renormalized amplitude carries an overall scale
dependence, which compensates the μ dependence of the
parton distribution functions and the relevant soft function.
At LO in RG-improved perturbation theory, we find

MggðμÞ ¼ e2SAðμ̂h;μÞ αsðμÞ
αsðμ̂hÞ

Mggðμ̂hÞ; ð11Þ

where the quantity SA is obtained by replacing CF → CA in
the expression for SF given above. The Sudakov resum-
mation for the quantity Mggðμ̂hÞ can be performed in a
similar way as for the h → γγ case, by generalizing the
RGEs for the soft and jet functions to the non-Abelian case
[34]. In analogy with the result (9), we obtain

MNLL
b;gg ðμ̂hÞ¼ δAB

αsðμ̂hÞ
2π

mb
ybðμ̂hÞffiffiffi

2
p L2

2

×
X∞
n¼0

ð−ρgÞn
2Γðnþ1Þ
Γð2nþ3Þ

�
1þ CF

CF−CA

3ρg
2L

2nþ1

2nþ3

−
β0

CF−CA

ρ2g
4L

ðnþ1Þ2
ð2nþ3Þð2nþ5Þ

�
; ð12Þ

where ρg ¼ ðCF−CAÞαsðμ̂hÞ
2π L2, andA,B are the color indices of

the gluons. Remarkably, the series of LL and NLL terms in
the “Abelian process” h → γγ and the “non-Abelian proc-
ess” gg → h are related to each other by a simple replace-
ment of color factors. For the LL contributions this was first
shown in [27], and the result is extended here to NLL order.
The series of NLL corrections has recently also been studied
using non-SCETmethods [36]. In the Erratum to their paper,
the authors present a formula which agrees with (12).

V. CONCLUSIONS AND OUTLOOK

Based on a renormalized SCET factorization theorem for
an observable appearing at subleading power in the ratio of
two hierarchical mass scales m ≪ M, in which endpoint-
divergent convolution integrals are regularized by plus-type
subtractions and the use of exact D-dimensional refacto-
rization conditions, we have performed the first resumma-
tion of Sudakov logarithms for a subleading-power
quantity (T3) in RG-improved perturbation theory. We
have focused on the example of the b-quark induced h →
γγ decay of the Higgs boson, and we have briefly discussed
the “non-Abelian” extension to the case of Higgs produc-
tion in gluon-gluon fusion. Reexpanding our main result
(7) in a perturbative series, we have extracted the infinite
towers of leading and next-to-leading logarithmic correc-
tions to the h → γγ and gg → h amplitudes, finding that
results for the subleading terms obtained using other
methods need to be corrected. The techniques we have
developed—the elimination of endpoint divergences using
a rearrangement of the bare factorization formula based on
refactorization conditions, and the resummation of large
logarithms using dynamical scale setting—are more gen-
eral and can be applied to many other power-suppressed
observables as well. Important examples include the non-
Abelian extension of our work to Higgs production in
gluon fusion [34], as well as power corrections to trans-
verse-momentum spectra in Drell-Yan and Higgs produc-
tion, jet-veto cross sections, the pion form factor, exclusive
nonleptonic two-body decays of Bmesons, and others. Our
methods are likely also needed to understand subleading-
power factorization for observables not susceptible to
rapidity divergences. For example, recently refactorization
conditions analogous to those derived in [11,17] were used
to resum the leading double-logarithmic corrections present
in the off-diagonal DGLAP splitting kernels for large x
[16]. Our results thus constitute an important step toward
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establishing a robust framework for studying SCET fac-
torization and scale separation at subleading order in scale
ratios.
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