Constraining the solar neutrino survival probability curve by using ⁶Li, ⁷Li, ¹²C, ¹⁸O, ¹⁹F, and ⁴²Ca nuclear targets

Y. Fujita,^{1,2,*} K. Zuber⁽⁾,^{3,†} and H. Fujita⁽⁾

¹Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

³Institute for Nuclear and Particle Physics, Technische Universität Dresden, D-01069 Dresden, Germany

(Received 8 October 2020; accepted 24 June 2021; published 23 July 2021)

Precise measurement of the survival probability P_{ee} of solar electron neutrino (ν_e) as a function of its energy [$P_{ee}(E_{\nu e})$] is one of the key issues in neutrino physics. Current P_{ee} data, due to their limited accuracy, still allow for nonstandard interactions (NSIs) to be alternatives to the standard one, which is based on the MSW-LMA prediction. In order to determine P_{ee} values at several values of $E_{\nu e}$ with higher accuracy, we propose to use several target nuclei with different threshold energies for ν_e detection. We examined charged-current (CC) responses of various nuclei seeking the ones: (a) having large and concentrated Gamow-Teller (GT) transition strength in the low excitation-energy region, and (b) having appropriate and a variety of reaction Q values, i.e., ≈ 1 to 17 MeV, in the (ν_e, e^-) reaction. As a result, we found that systematic solar ν_e measurements with target nuclei ⁶Li, ⁷Li, ¹²C, ¹⁸O, ¹⁹F, and ⁴²Ca can put strong constraints on the $P_{ee}(E_{\nu e})$ curve and thus on these NSI models. In addition, we notice that three of these nuclei, ⁶Li, ⁷Li, and ¹²C, have large and concentrated neutral-current (NC) responses with detection threshold-energies of 3.56, 0.48, and 15.11 MeV, respectively. Note that the NC measurement is flavor independent. Thus, the measured results should represent the original strength of ν_e from the Sun.

DOI: 10.1103/PhysRevD.104.013004

I. INTRODUCTION

Since the experimental finding of the continuous β decay spectra observed about a century ago and its solution by Pauli in 1930 [1] proposing a new lepton nowadays called neutrino that shares energy with the emitted electron, the physics on neutrino has expanded enormously. Shortly after, energy production via fusion reactions in stars has been proposed by von Weizsäcker and Bethe [2-5]. Pontecorvo followed the neutrino hypothesis of Pauli and suggested that neutrino (i.e., the electron neutrino ν_e) can also be produced in the Sun. In addition, for the detection of ν_e , he even proposed to use the reaction of ν_e on the target nucleus ³⁷Cl into ³⁷Ar [6]. Many years later, this led into the Homestake chlorine experiment which successfully measured solar ν_e for the first time [7,8]. Important finding of this experiment is that they observed a reduced number of $\nu_e s$ than expected from the standard solar modeling.

Improved radiochemical experiments have been performed based on the ν_e reaction on the target nucleus ⁷¹Ga into ⁷¹Ge. Owing to the small reaction Q value of 0.23 MeV, even the low-energy $pp-\nu_e$, which is dominant, could be detected. Measurements were performed by the GALLEX [9,10], GNO [11], and SAGE [12] experiments and again they all confirmed a deficit of the ν_e flux. In addition, the Kamiokande experiment and its upgrades, measuring higher energy ⁸B- ν_e , also confirmed the deficit [13].

In the SNO experiment, target nucleus deuteron has been used, which allowed a simultaneous neutral-current (NC) and charged-current (CC) measurement [14]. In the CC measurement, they also found the deficit of the ν_e flux. On the other hand, in the NC measurement, which is flavour blind and all kinds of neutrinos contribute, the total number of detected neutrinos was in agreement with the total number of solar ν_e s expected from the standard solar modeling. This finding was a strong evidence that a neutrino can change its flavor.

Further measurements have been made by Borexino. This solar neutrino detector is based on an ultrapure liquid scintillator. They could observe almost all kinds of $\nu_e s$ produced in the *pp*-chain (except the ν_e from the *hep* reaction) by using $\nu_e - e^-$ elastic scattering [15]. On the basis of their observation, values of ν_e survival probability P_{ee} , i.e., the probability of $\nu_e s$ produced in the Sun still being detected as $\nu_e s$ on the Earth, were derived at four values of ν_e energy ($E_{\nu e}$) [15–17] (see Fig. 1). Although the uncertainties are rather large, we see that the values of P_{ee} are more or less constant in the low $E_{\nu e}$ region and they become smaller at higher $E_{\nu e}$ region. The constant but

fujita@rcnp.osaka-u.ac.jp

kai.zuber@tu-dresden.de

FIG. 1. Theoretical predictions and experimental data for the ν_e survival probability P_{ee} as a function of its energy $E_{\nu e}$ (original figure: from [20]). Theoretical prediction from the MSW-LMA solution is shown by the pink band, where uncertainties of oscillation parameters are included. Also shown are the MSW-LMA + nonstandard interaction (NSI) solutions for $\epsilon' = -0.5, +0.5, \text{ and } +1.0$. Four experimental P_{ee} values from the latest Borexino analysis under the HZ-SSM assumption are plotted for $pp-\nu_e$, $^7\text{Be}-\nu_e$, $pep-\nu_e$, and also $^8\text{B}-\nu_e$ [15]. In addition to these, a P_{ee} value for $^7\text{Be}-\nu_e$ is available from KamLAND-Zen measurement [21], and values for $^8\text{B}-\nu_e$ are available from Super-Kamiokande [13] and SNO [22]. For the six candidates of target nuclei to be discussed in this paper, the threshold energies for ν_e detection, i.e., the Q_{EC} values, are indicated.

reduced values of $P_{ee} \approx 0.55$ in the $E_{\nu e} < 1$ MeV region can be qualitatively explained by the effects of vacuum oscillation. On the other hand, the smaller P_{ee} values at higher energies (>1 MeV) shows that the Mikheyev-Smirnov-Wolfenstein (MSW) effect, i.e., the matter effect inside the Sun [18,19], should also be taken into account.

The measured data points can constrain the shape of the theoretical $P_{ee}(E_{\nu e})$ curve; we see in Fig. 1 that they are, to some extent, consistent with the $P_{ee}(E_{\nu e})$ curve derived by the MSW-LMA (large mixing angle) solution [20]. However, given the large experimental uncertainty, there still remains some room for beyond Standard Model (BSM) physics, like the one assuming nonstandard interaction (NSI) (see, e.g., Ref. [23] and references in [20]).

Seeking a better accuracy in the $P_{ee}(E_{\nu e})$ measurement, here we propose to use several target nuclei with different ν_e -detection threshold energies. In addition, we request each target nucleus to have compact and strong ν_e -detection response in the low excitation-energy (E_x) region. As will be discussed in detail in Sec. IV, we find, in total, six candidates of target nuclei having these properties by investigating the whole nuclear chart. Their Q values cover the full ν_e energy range of our interest, i.e., from 0.9 MeV up to 17 MeV.

Note that the very light particle ν_e can induce mainly the angular-momentum-transfer $\Delta L = 0$ components of the CC-induced transition. In nuclear physics, the corresponding transitions are well defined; they are the Gamow-Teller

(GT) and Fermi transitions. Therefore, we discuss the ν_e response-function of each target nucleus quantitatively in terms of the distributions of B(GT) and B(F) strengths, i.e., the reduced GT and Fermi transition strengths.

II. NUCLEAR PHYSICS BACKGROUND

A. Solar neutrino induced reaction and β -decay

Solar electron neutrinos (solar ν_e s) can be detected by using CC-induced reactions, i.e., the charge-exchange reactions (CE reactions) on target nuclei ${}^{A}[Z]_{N}$. The reaction is expressed by

$${}^{A}[\mathbf{Z}]_{N}(\nu_{e}, e^{-})^{A}[\mathbf{Z}+1]_{N-1}, \qquad (1)$$

where A is the mass number, Z the proton number, N the neutron number, and A = Z + N. [Z] and [Z + 1] are the elements with proton numbers Z and Z + 1, respectively. The active interaction here is the weak interaction. The Q value in the ν_e -induced CE reaction is the β^+ -decay $Q_{\rm EC}$ value of the final nucleus ${}^{A}[Z + 1]_{N-1}$. Therefore, only those ν_e s having energies $E_{\nu e} > Q_{\rm EC}$ are detected by a target nucleus.

In the reaction shown by Eq. (1), $\nu_e s$ make mostly Fermi and GT transitions with target nuclei. These transitions are caused by the simple isospin (τ) and spin-isospin ($\sigma\tau$) operators, respectively [24,25]. They are called the "allowed transitions" in β decays due to their $\Delta L = 0$ nature.

The τ -operator can change a neutron in a nucleus into a proton and vice versa. Thus, its contribution is essential in β decays and also in the ν_e -induced CE reactions. It is noted that τ -operator cannot change the spacial nor spin structures in nuclei. As a result, the total reduced Fermi transition strength, i.e., B(F) = N - Z, concentrates, in principle, in the transition to the isobaric analog state (IAS). Note that the value of B(F) shows the sensitivity for detecting ν_e by means of Fermi transition.

In GT transitions caused by the $\sigma\tau$ -operator, change in spin structure is additionally allowed. Therefore, the available total sum of the GT strengths, given by the Ikeda GT sum-rule (GT-SR) [26]

$$\Sigma B(\mathrm{GT}^{-}) - \Sigma B(\mathrm{GT}^{+}) = 3(N - Z), \qquad (2)$$

can be distributed into a number of GT-excited states (GT states) in the final nuclei, where $B(\text{GT}^{\pm})$ are the reduced GT transition strengths in the β^{\pm} directions, respectively. Note that the value of B(GT) shows the sensitivity for detecting ν_e by means of GT transition.

B. Gamow-Teller responses in nuclei

Since the 1980s, it was gradually recognized that GT and also Fermi transitions can be studied by means of hadronic CE reactions [25]. Note that β decays can study GT

transitions only inside the β -decay Q windows, but they can give absolute values of B(GT). On the other hand, hadronic CE reactions can study GT transitions to higher E_x region, but only relative values of B(GT) can be studied. Thus, β decay and hadronic CE reaction are complementary [25].

It was found that hadronic CE reactions, such as (p, n) or (³He, t) reactions (here t stands for triton, i.e., ³H), performed at intermediate incoming energies of $E_i > 100 \text{ MeV/nucleon}$ selectively excite GT transitions with $\Delta L = 0$ at the scattering angle $\Theta \approx 0^{\circ}$ [25,27]. Note that under these conditions, the reaction mechanism is simple. As a result, although there are some exceptions, a close proportionality between the cross sections at $\Theta = 0^{\circ}$ and the B(GT) values

$$\sigma(0^{\circ}) \simeq \hat{\sigma}^{\text{GT}}(0^{\circ}) B(\text{GT}), \qquad (3)$$

has been empirically established [25,27–32]. Here, $\hat{\sigma}^{\text{GT}}(0^{\circ})$ is the unit GT cross section at $\Theta = 0^{\circ}$. Note that $\Delta L = 0$ transitions are most prominent at $\Theta = 0^{\circ}$.

Here, the (³He, t) reaction on a target nucleus ${}^{A}[Z]_{N}$ can be written as

$${}^{A}[\mathbf{Z}]_{N}({}^{3}\mathrm{He}, t){}^{A}[\mathbf{Z}+1]_{N-1}, \tag{4}$$

and we see a similarity with Eq. (1), although this reaction is caused by the hadronic strong interaction.

As discussed, GT transition strength can be distributed in a number of states. In addition, the distributions are largely dependent on the structures of individual nuclei and some of them are extreme [25,28,33]. In order to deduce the nuclear response caused by the (ν_e, e^-) CE reaction, let us discuss the GT response in the β^- -direction that can be studied by the (p, n)-type (³He, t) reaction. Note that in this reaction, approximately one-order-of-magnitude better energy resolution can be achieved compared to the traditionally used (p, n) reaction [25]. As a result, even weak GT transitions are well studied.

One of the extreme structures of GT excitations, but well studied in (p, n)-type CE reactions since the 1980s, is the GT resonance (GTR) [28,34]. GTR structures are commonly observed in higher E_x regions ($E_x \approx 5-15$ MeV) of neutronexcess (N > Z) nuclei. They carry a large part of the GT strength allowed by the GT-SR value [see Eq. (2)] and show resonancelike structures. In the ${}_{17}^{37}$ Cl₂₀(3 He, t) ${}_{18}^{37}$ Ar₁₉ reaction, a GTR with a bumplike structure has been observed as fragmented states in the $E_x \approx 8$ MeV region of 37 Ar [35] [see Fig. 2(a)]. As a result, only a small portion of GT strength remains for the states in the $E_x < 5$ MeV region.

On the other hand, there are several extreme cases in which most of the observed GT strength is concentrated in one or two low- E_x states. Typical examples are the low-energy super GT (LeSGT) states [33,36–38]. The LeSGT state is the lowest GT state in the final nucleus and carries a large part of the GT-SR strength. In the ${}_{18}^{18}O_{10}({}^{3}\text{He}, t){}_{9}^{18}\text{F}_{9}$

 ${}^{37}\text{Cl}({}^{3}\text{He}, t){}^{37}\text{Ar}$ [35] of (a) FIG. 2. Spectra and (b) ¹⁸O(³He, t)¹⁸F [36] CE reactions measured at $\Theta = 0^{\circ}$ with an energy resolution of ≈ 30 keV. The origins of the E_x axes are shifted by the amount of g.s.-g.s. $Q_{\rm EC}$ values, i.e., 0.81 and 1.66 MeV for the ³⁷Ar and ¹⁸F nuclei, respectively. As a result, the minimum energy of ν_e needed to excite each state, i.e., the $Q_{\rm EC}$ value, can be seen directly. The B(GT) value derived by using Eq. (3) is given for each GT state. In the 37 Ar spectrum [(a)], the vertical scale is expanded [in terms of B(GT)] by a factor of 2.5 compared to that of (b). In the ¹⁸O \rightarrow ¹⁸F transition [(b)], the GT strength is much concentrated in the $J^{\pi} = 1^+_1$ g.s., i.e., the LeSGT state [36]. The IAS at 1.04 MeV is excited with B(F) = N - Z = 2.

CE reaction, a LeSGT state has been observed as a pronounced and sharp ground state (g.s.) in ¹⁸F [36]. It carries a very large B(GT) value of 3.08 [see Fig. 2(b)]. Note that this value is two orders-of-magnitude larger than the B(GT) value of 0.03 in the ³⁷Cl g.s. \rightarrow ³⁷Ar g.s. GT transition [35].

III. FOR THE ACCURATE STUDY OF $P_{ee}(E_{\nu e})$

Seeking a better accuracy in the study of $P_{ee}(E_{\nu e})$, we start with a short review of the representative ν_e -detection projects from a viewpoint of GT responses of target nuclei used in them.

In the Homestake experiment [7], ν_e s were detected by the ${}^{37}_{17}\text{Cl}_{20}(\nu_e, e^-){}^{37}_{18}\text{Ar}_{19}$ CE reaction taking the advantage of small Q_{EC} value of 0.81 MeV. As we have seen, the CC response of ³⁷Cl for ν_e can be examined by the ${}^{37}\text{Cl}({}^{3}\text{He}, t){}^{37}\text{Ar}$ reaction at $\Theta = 0^{\circ}$ [Fig. 2(a)]. With the exception of the 4.98 MeV state, which is known to be the IAS of ³⁷Cl g.s. carrying the total Fermi transition strength of B(F) = N - Z = 3 and a weak GT transition strength of B(GT) = 0.06 [35], other states carrying the GT strength are fragmented and weak in ³⁷Ar [35]. In particular, all GT states up to $E_x = 5$ MeV have small B(GT)values of ≤ 0.1 . For example, the g.s. carries a very small B(GT) of 0.03. Therefore, we see that the detection efficiency of ³⁷Cl-based ν_e detectors should be low for low-energy ν_e s. In addition, the GT response of ³⁷Cl for ν_e in total is very complicated as a function of $E_{\nu e}$. Therefore, with the data from a ³⁷Cl-based ν_e detector, it seems it is almost impossible to decompose the obtained energy spectra into the number of ν_e as a function of $E_{\nu e}$.

In the projects GALLEX [9,10], GNO [11], and SAGE [12], one of the middle heavy nuclei ⁷¹Ga was used as the target nucleus of their ν_e detectors. Owing to the very small reaction $Q_{\rm EC}$ value of 0.23 MeV of the ${}^{71}_{31}{\rm Ga}_{40}(\nu_e, e^-){}^{71}_{32}{\rm Ge}_{39}$ CE reaction, even the main part of the $pp-\nu_e$ was detected. However, as we can see from the ⁷¹Ga(³He, t)⁷¹Ge spectrum given in Ref. [39], the GT strength distribution in ⁷¹Ge is even more fragmented than in ³⁷Ar. In addition, the GT strength is moved up more in the GTR region. Therefore, we also see that ⁷¹Ga-based ν_e detectors are not appropriate for the purpose of deriving the $P_{ee}(E_{\nu e})$ curve.

In the Borexino measurement, $\nu_e - e^-$ elastic scattering is used. Therefore, the response of their detector as a function of $E_{\nu e}$ is more or less linear. As discussed, using this simple response, they could derive the P_{ee} values for ν_e s emitted in the *pp*-, ⁷Be-, *pep*-, and ⁸B-processes [20]. However, it seems that the derivation of P_{ee} values is still not easy; the contributions of all of the ν_e -producing processes having their own ν_e intensity distributions (see Fig. 3) should be taken into account in a single overall analysis. As we see in

FIG. 3. The flux of solar ν_e s from various fusion processes as a function of $E_{\nu e}$. The $Q_{\rm EC}$ values of candidates for target nuclei are indicated.

Fig. 1, the P_{ee} values derived at four $E_{\nu e}$ values are associated with relatively large uncertainties.

On the basis of the discussions given above, we now propose to use several target nuclei having following properties for the $P_{ee}(E_{\nu e})$ study:

- (a) target nuclei should have compact response functions; strengths of GT (and also Fermi) transitions should be concentrated in a single or at most a few excited states in the low- E_x region,
- (b) they should have appropriate $Q_{\rm EC}$ values in the range of $\approx 1-17$ MeV to study P_{ee} at different $E_{\nu e}$.

IV. NUCLEI HAVING CONCENTRATED GT AND FERMI TRANSITION STRENGTHS

We discuss here the properties of GT and also Fermi transitions for the six candidates of target nuclei. They are, in the order of increasing $Q_{\rm EC}$ value, ${}^{7}_{3}{\rm Li}_{4}$, ${}^{18}_{8}{\rm O}_{10}$, ${}^{9}_{9}{\rm F}_{10}$, ${}^{6}_{3}{\rm Li}_{3}$, ${}^{42}_{20}{\rm Ca}_{22}$, and ${}^{12}_{6}{\rm C}_{6}$. Note that each of them can detect the ν_{e} s with energies higher than its $Q_{\rm EC}$ value. These nuclei, in total, cover the $Q_{\rm EC}$ range from 0.9 up to 17 MeV. From Fig. 3, we can identify which fusion processes in the Sun can be studied by each target nucleus.

For the discussions given below, the nuclear structure data compiled in Refs. [40,41] are used.

A. GT and Fermi response of ⁷₃Li₄

The g.s.-g.s. transition of ${}_{3}^{7}\text{Li}_{4}(\nu_{e}, e^{-})_{4}^{7}\text{Be}_{3}$ CE reaction has a small Q_{EC} value of 0.86 MeV, as we see in Fig. 4. Nuclei ⁷Li and ⁷Be are the $T_{z} = \pm 1/2$ mirror nuclei, where T_{z} is the z component of isospin T and defined by $T_{z} = (N - Z)/2$ (in the definition of nuclear physics). In mirror nuclei, proton number Z and neutron number N are reversed. Therefore, as for the strong interaction is concerned, they are the same nuclei, and thus, their nuclear structures should be identical. The action of the electromagnetic (EM) interaction (Coulomb force), however, is

FIG. 4. Energy-level diagram and GT and Fermi transitions in A = 7 nuclei. Properties of excitations caused by the ⁷Li(ν_e, e^-)⁷Be CE reaction are indicated in red. Decay properties of the states in ⁷Be are shown in blue. The strength [B(GT) = 1.06] in the square brackets given for the GT transition from the ⁷Li g.s. to the ⁷Be 0.43 MeV state is borrowed from that of the mirror (isospin analogous) GT transition studied in the β^+ decay of the ⁷Be g.s. to the ⁷Li 0.48 MeV state.

different and thus symmetry of their structures can be broken to some extent.

The experimentally obtained ⁷Li(p, n)⁷Be spectrum measured at the scattering angle $\Theta = 0^{\circ}$ and at an intermediate incoming energy of $E_p = 160$ MeV [42] shows that only two states are excited, i.e., the g.s. and the 0.43 MeV state of ⁷Be. Angular distribution analysis showed that both of them are excited by $\Delta L = 0$ transitions, indicating that these states are excited by Fermi and/or GT transitions.

Since ⁷Li and ⁷Be are mirror nuclei, the Fermi transition strength of B(F) = N - Z = 1 should be concentrated in the g.s.-g.s. transition. The contribution of the GT transition in this g.s.-g.s. transition can be derived by analyzing the β^+ -decay data of ⁷Be into ⁷Li. The obtained B(GT) = 1.19 is large.

In the ⁷Li(ν_e, e^-)⁷Be CE reaction, the 0.43 MeV state is purely excited by the GT transition. A large B(GT) value of 1.06 is estimated assuming the isospin symmetry of analogous GT transitions between the $T_z = \pm 1/2$ mirror nuclei (see the caption of Fig. 4). By detecting the 0.43 MeV γ ray, the GT excitation of the 0.43 MeV, $J^{\pi} =$ $1/2^-$ state in ⁷Be with a $Q_{\text{EC}} = 1.29$ MeV is identified. The β^+ decay of the ⁷Be g.s. can be studied by detecting the 0.51 MeV annihilation γ .

The target nucleus ⁷Li is attractive, because it is also sensitive to NC excitation. In the $T_z = \pm 1/2$ mirror nuclei ⁷Li and ⁷Be, the 0.48 MeV state in ⁷Li is the analogous state of the 0.43 MeV state in ⁷Be, where we know that the latter is excited with a large B(GT) value of 1.06 from the g.s. of ⁷Li. Therefore, the 0.48 MeV state in ⁷Li should also be strongly excited by neutrinos with all flavors by means of the spin-*M*1 excitation (inelastic scattering) caused, like the GT transition, by the $\sigma\tau$ operator [25]. The excitation of the ⁷Li, 0.48 MeV state is identified by the study of the 0.48 MeV γ ray.

B. GT and Fermi response of ${}^{18}_{8}O_{10}$

The Fermi and GT transitions are separated when they start from nuclei with even Z and even N numbers (*e-e* nuclei). As we have seen in Fig. 2(b), the main part of the GT strength is concentrated in the ${}_{9}^{18}O_{10}, 0^{+}$ g.s. \rightarrow ${}_{9}^{18}F_{9}, 1^{+}$ g.s. transition. As discussed, this strong transition is the LeSGT transition. In Fig. 5, we see that the associated B(GT) value is very large [B(GT) = 3.08], where the $Q_{EC} = 1.66$ MeV. This B(GT) value is obtained from that of the β^{+} decay of the ${}^{18}F, 1^{+}$ g.s. to the ${}^{18}O, 0^{+}$ g.s. after correcting the difference of spin Clebsch-Gordan (CG) coefficients associated with the transitions for reversed directions. The 1.04 MeV, 0^{+} IAS in ${}^{18}F$ is excited by the Fermi transition with the strength of B(F) = 2.

By detecting the 1.04 MeV γ ray, the excitation of the IAS with a $Q_{\rm EC} = 2.70$ MeV is identified. The β^+ decay of

FIG. 5. Energy-level diagram and the prominent GT and Fermi transitions in A = 18 nuclei. Properties of $T_z = +1 \rightarrow 0$ transitions caused by the ¹⁸O(ν_e, e^-)¹⁸F CE reaction are indicated in red. Decay properties of ¹⁸F are shown in blue. Properties of $T_z = -1 \rightarrow 0$ transitions from ¹⁸Ne to ¹⁸F are shown in black. We see that the $T_z = \pm 1 \rightarrow 0$ mirror g.s.–g.s. GT transitions have B(GT) values of 3.08(2) and 3.09(3), respectively; they are consistent within uncertainties.

the ¹⁸F g.s. can be studied via the detection of the 0.51 MeV annihilation γ .

One of the attractive features of the target nucleus ¹⁸O, with the $Q_{\rm EC}$ value of 1.66 MeV, in combination with the target nucleus ⁷Li, with the $Q_{\rm EC}$ value of 0.86 MeV, is the possibility of studying three kinds of CNO- ν_e s in detail. They are the ¹³N- ν_e , ¹⁵O- ν_e , and ¹⁷F- ν_e having maximum $E_{\nu e}$ values of 1.12, 1.73, and 1.74 MeV, respectively (see Fig. 3). The ⁷Li-based detector is sensitive to all of them. On the other hand, the ¹⁸O-based detector can detect only the ¹⁵O- ν_e and ¹⁷F- ν_e .

C. GT and Fermi response of ${}^{19}_{9}F_{10}$

The target nucleus ${}_{9}^{19}F_{10}$ and the final nucleus ${}_{10}^{19}Ne_9$ are $T_z = \pm 1/2$ mirror nuclei. Therefore, just like the case of A = 7 mirror nuclei, both Fermi and GT transitions can contribute in the g.s.—g.s. transition, where the Fermi transition strength B(F) = N - Z = 1 (see Fig. 6).

We see that the GT + Fermi response of ¹⁹F is very simple. The ¹⁹F(p, n)¹⁹Ne spectrum measured at $\Theta = 0^{\circ}$ and at an intermediate incoming energy of $E_p = 120$ MeV

FIG. 6. Energy-level diagram and the prominent GT + Fermi g.s.-g.s. transitions in A = 19 nuclei. Properties of the transition caused by the ${}^{19}F(\nu_e, e^-){}^{19}Ne$ CE reaction are indicated in red. Decay properties of the g.s. of ${}^{19}Ne$ are shown in blue.

(energy resolution $\Delta E \approx 400$ keV) [43] shows that only one state, i.e., g.s. of ¹⁹Ne, dominates the spectrum. In addition, recent high-resolution ¹⁹F(³He, *t*)¹⁹Ne measurement ($\Delta E \approx 40$ keV) confirmed that the higher E_x GT states are all very weak [44].

The contribution of GT strength in this strong g.s.–g.s. transition can be studied by analyzing the β^+ -decay data of ¹⁹Ne into ¹⁹F. As a result, we notice that a large B(GT) value of 1.61 coexists with the Fermi transition strength of B(F) = 1, as we see in Fig. 6.

The $Q_{\rm EC}$ value is 3.24 MeV. Therefore, the ⁸B- ν_e and $hep-\nu_e$ above this energy can be detected (see Fig. 3). The β^+ decay of the ¹⁹Ne g.s. can be studied by the detection of 0.51 MeV annihilation γ .

D. GT response of ⁶₃Li₃

As shown in Fig. 7, the Z = N = 3 odd-odd nucleus ⁶Li has $T_z = 0$, and thus the 1⁺ g.s. has T = 0. Since no analogous state of the ⁶Li g.s. with T = 0 is expected in the $T_z = -1$ nucleus ⁶Be, no Fermi transition is expected in the ${}_{5}^{6}\text{Li}_{3}(\nu_e, e^{-}){}_{4}^{6}\text{Be}_{2}$ reaction.

The ${}^{6}\text{Li}(p, n){}^{6}\text{Be}$ CE reaction performed at $E_p = 160$ and 200 MeV [42] reports only one strong and concentrated GT transition, i.e., the ${}^{6}\text{Li}, 1^{+}$ g.s. $\rightarrow {}^{6}\text{Be}, 0^{+}$ g.s. transition. Therefore, it is expected that only the ${}^{6}\text{Be}$ g.s. is strongly excited in the ${}^{6}\text{Li}(\nu_e, e^{-}){}^{6}\text{Be}$ CE reaction.

The $Q_{\rm EC}$ value is 4.29 MeV. Therefore, the ⁸B- ν_e and $hep-\nu_e$ above this energy can be detected (see Fig. 3). The g.s. of ⁶Be excited by the (ν_e, e^-) CE reaction decays into α and two protons.

The ⁶Li target can detect neutrinos with all three flavors via the NC excitation of the 3.56 MeV, 0^+ state. Note that this state is the IAS of the 0^+ g.s. of ⁶He and ⁶Be with isospin T = 1. Therefore, this 0^+ state should be excited strongly from the 1^+ g.s. of ⁶Li by the spin-*M*1 transition

FIG. 7. Energy-level diagram and GT transitions in A = 6 nuclei, where ${}_{2}^{6}\text{He}_{4}$ and ${}_{4}^{6}\text{Be}_{2}$ are mirror nuclei. Properties of the excitation caused by the ${}^{6}\text{Li}(\nu_{e}, e^{-}){}^{6}\text{Be}$ CE reaction are indicated in red. The strength [B(GT) = 1.58] in the square brackets, given for the GT transition from the ${}^{6}\text{Li}$ g.s. to the ${}^{6}\text{Be}$ g.s., is borrowed from that of the mirror (isospin analogous) GT transition studied in the β^{-} decay of the ${}^{6}\text{He}$ g.s. to the ${}^{6}\text{Li}$ g.s., where the factor of three, i.e., the difference of the relevant spin CG coefficients, is corrected.

caused by the $\sigma\tau$ operator [25]. The excitation of this state can be identified by the detection of the 3.56 MeV γ ray.

E. GT and Fermi response of ⁴²₂₀Ca₂₂

Like in the A = 18 system, the Fermi and GT transitions starting from the *e-e* nucleus ${}^{42}_{20}Ca_{22}$ excite the $J^{\pi} = 0^+$ g.s. (the T = 1 IAS) and $J^{\pi} = 1^+$ GT states in the final nucleus ${}^{42}_{21}Sc_{21}$, respectively [37]. Again, like in the A = 18 system, the main part of the GT strength, i.e., B(GT) = 2.17 is concentrated in the GT transition to the 0.61 MeV, lowest 1^+ state (see Fig. 8). Note that this state is also the LeSGT state (see the ${}^{42}Ca({}^{3}He, t){}^{42}Sc$ spectrum shown in Ref. [37]).

Due to the large $Q_{\rm EC}$ value of 6.43 MeV in the Fermi transition and that of 7.04 MeV in the GT transition, the ν_e detector using this target nucleus ⁴²Ca will be rather silent; only the higher end part of ⁸B- ν_e and $hep-\nu_e$ can be detected (see Fig. 3).

By detecting the 0.61 MeV γ ray, the excitation of the 1⁺, LeSGT state is identified. The β^+ decay of the ⁴²Sc g.s. (the IAS) can be studied by the detection of the 0.51 MeV annihilation γ .

FIG. 8. Energy-level diagram and the prominent GT and Fermi transitions in A = 42 nuclei. Properties of excitations caused by the ${}^{42}\text{Ca}(\nu_e, e^-){}^{42}\text{Sc}$ CE reaction are indicated in red, while the decay properties of isospin analogous GT transitions from ${}^{42}\text{Ti}$ are shown in black. The strength [B(GT) = 2.17] in the square brackets for the GT transition from the ${}^{42}\text{Ca}$ g.s. to the 0.61 MeV state in ${}^{42}\text{Sc}$ is borrowed from that of the mirror (isospin analogous) GT transition studied in the β^+ decay of the ${}^{42}\text{Ti}$ g.s. to the 0.61 MeV state in ${}^{42}\text{Sc}$. Decay properties of the states in ${}^{42}\text{Sc}$ are shown in blue.

FIG. 9. Energy-level diagram and the important transitions in A = 12 nuclei. Properties of the GT transition caused by the ${}^{12}C(\nu_e, e^-){}^{12}N$ CE reaction are indicated in red. The decay properties of the 1⁺ g.s. of ${}^{12}N$ and its IAS at 15.11 MeV in ${}^{12}C$ are shown in blue. Note that the vertical energy scale of this diagram is reduced by a factor of two compared to those for other target nuclei.

F. GT response of ${}^{12}_{6}C_{6}$

The GT response of ¹²C has been studied by ${}_{6}^{12}C_{6}(p, n){}_{7}^{15}N_{5}$ experiments (see e.g., Refs. [27,28,45]). They report that the *B*(GT) value of 0.89(1) concentrates in the ${}^{12}C$, 0^{+} g.s. $\rightarrow {}^{12}N$, 1^{+} g.s. transition. No Fermi transition is expected in the CE reaction starting from the $T = T_{z} = 0$, *e-e* nucleus ${}_{6}^{12}C_{6}$. Therefore, a very simple and concentrated GT response is expected in the ${}^{12}C(\nu_{e}, e^{-}){}^{12}N$ CE reaction (see Fig. 9).

Due to the large $Q_{\rm EC}$ value of 17.3 MeV, only the $hep - \nu_e$ can be selectively detected. The 1⁺ g.s. of ¹²N excited in the (ν_e, e^-) CE reaction decays back to the 0⁺ g.s. of ¹²C by the β^+ decay with an \approx 95% probability. Its half-life is 11.0 ms.

The 15.11 MeV, 1⁺ state of ¹²C is the IAS of the 1⁺ g.s. of ¹²N with isospin T = 1. Therefore, this state should be well excited by means of the NC (in this case, by means of the $\sigma\tau$ operator) from the 0⁺ g.s. of ¹²C by the neutrinos with all flavors. The γ -decay branching ratio from this state to the g.s. is high (\approx 76%). The detection of this high-energy γ , however, is not easy.

V. SUMMARY AND OUTLOOK

Traditionally it has been thought that solar neutrino detectors should be capable of detecting low-energy ν_e with high intensity. For this purpose, good choices were to use target nuclei ${}^{A}[Z]_{N}$ with smaller reaction Q values (Q_{EC} values) in the ${}^{A}[Z]_{N}(\nu_e, e^-){}^{A}[Z+1]_{N-1}$ CE reaction. Taking other conditions also into account, target nuclei 37 Cl and 71 Ga were preferably selected. In particular, the Q_{EC} value

of ⁷¹Ga is very small; it is only 0.23 MeV. Note that this enabled the detection of low-energy $pp-\nu_e$.

For the measurement of the $P_{ee}(E_{\nu e})$ values, i.e., the survival probability of electron neutrino ν_e as a function of its energy, however, we found that the GT and Fermi responses of these target nuclei are not ideal from a nuclear structure point of view; their GT responses are rather fragmented and also their GT strengths are all weak in the region of low excitation energy.

Progress has been made by the Borexino experiment. They use the simple $\nu_e - e^-$ elastic scattering. Therefore, in their measurement, the response for $\nu_e s$ is linear as a function of $E_{\nu e}$. They reported P_{ee} values at four $E_{\nu e}$ values in the region between 0.3 to 10 MeV. Their values are consistent with the P_{ee} curve assuming the standard MSW-LMA prediction. However, their measured P_{ee} values (and also those from other experiments; see the caption of Fig. 1) are not precise enough to reject BSM physics, like the one assuming NSI.

Seeking a better determination of the P_{ee} values at different $E_{\nu e}$ values, we proposed here to use several target nuclei with different reaction $Q_{\rm EC}$ values, i.e., ⁷Li, ¹⁸O, ¹⁹F, ⁶Li, ⁴²Ca, and ¹²C with the $Q_{\rm EC}$ values of 0.86, 1.66, 3.24, 4.29, 6.43, and 17.3 MeV, respectively. The splendid point of these target nuclei is the simple GT and Fermi responses; most of the GT and also Fermi strengths are concentrated in the low E_x region of the final nuclei, i.e., ⁷Be, ¹⁸F, ¹⁹Ne, ⁶Be, ⁴²Sc, and ¹²N, respectively. Therefore, by using these target nuclei, we expect:

- (1) ν_e s with energies higher than the $Q_{\rm EC}$ value of each target nucleus are selectively and efficiently detected, and also
- (2) the analysis to derive P_{ee} values for ν_e s having above the $Q_{\rm EC}$ values becomes simpler, and thus more reliable.

As discussed, among these candidates of target nuclei, three of them, i.e., ⁷Li, ⁶Li, and ¹²C, have large and concentrated NC responses with detection threshold energies of 0.48, 3.56, and 15.11 MeV, respectively. Note that the NC measurement, not like that of CC, is flavor independent. Therefore, the measurement should represent the original strength distribution of ν_e s produced in the Sun. It is suggested that P_{ee} values can be better determined by making a combined and consistent analyses of the data from the CC and NC measurements.

In summary, we proposed several target nuclei suited for the $P_{ee}(E_{\nu e})$ measurements on the basis of nuclear structure point of view. How to realize the neutrino detectors using the proposed target nuclei is still a remaining open question. One of the recent technical options is to realize water-based liquid scintillators (WbLS) [46] loaded with these proposed isotopes. We, however, admit that further technical studies and also discussions in the scientific society are needed.

ACKNOWLEDGMENTS

Y. F. thanks the support by JSPS KAKENHI, Japan, under No. JP15K05104. K. Z. and Y. F. thanks DFG for supporting the exchange program between TU Dresden and Osaka University within the framework of the "Excellence Initiative of the German Federal and State Governments." The main part of the discussions given in this article are made on the basis of the experimental results accumulated in the high energy-resolution (³He, t) measurements performed at RCNP, Osaka. The authors are indebted to the members of the accelerator group and also the Grand Raiden spectrometer group for making these experiments possible.

- [1] W. Pauli, letter to L. Meitner, *Dear Radioactive Ladies and Gentlemen* (1930), http://cds.cern.ch/record/83282.
- [2] C. F. v. Weizsäcker, Z. Phys. 38, 176 (1937).
- [3] C. F. v. Weizsäcker, Z. Phys. 39, 633 (1938).
- [4] H. A. Bethe and C. L. Critchfield, Phys. Rev. 54, 248 (1938).
- [5] H. A. Bethe, Phys. Rev. 55, 434 (1939).
- [6] B. Pontecorvo, Report PD-205, Division of Energy, Chalk River, Ontario, 1946.
- [7] R. Davis, Jr., D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
- [8] B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain, and J. Ullman, Astrophys. J. 496, 505 (1998).
- [9] W. Hampel et al., Phys. Lett. B 447, 127 (1999).
- [10] F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, Phys. Lett. B 685, 47 (2010).
- [11] M. Altmann et al., Phys. Lett. B 616, 174 (2005).
- [12] J. N. Abdurashitov et al., Phys. Rev. C 80, 015807 (2009).
- [13] K. Abe *et al.* (Super-Kamiokande Collaboration), Phys. Rev. D **94**, 052010 (2016).
- [14] S. N. Ahmed *et al.* (SNO Collaboration), Phys. Rev. Lett. 92, 181301 (2004).
- [15] M. Agostini *et al.* (Borexino Collaboration), Nature (London) 562, 505 (2018).
- [16] M. Agostini *et al.* (Borexino Collaboration), Phys. Rev. D 100, 082004 (2019).
- [17] M. Agostini *et al.* (Borexino Collaboration), Phys. Rev. D 101, 062001 (2020).
- [18] L. Wolfenstein et al., Phys. Rev. D 17, 2369 (1978).
- [19] S. P. Mikheyev and A. Yu. Smirnov, Il Nuovo Cimento C 9, 17 (1986).
- [20] S. K. Agarwalla *et al.* (Borexino Collaboration), J. High Energy Phys. 02 (2020) 038.
- [21] A. Gando *et al.* (KamLAND Collaboration), Phys. Rev. C 92, 055808 (2015).
- [22] B. Aharmim *et al.* (SNO Collaboration), Phys. Rev. C 88, 025501 (2013).
- [23] A. Friedland, C. Lunardini, and C. Pena-Garay, Phys. Lett. B 594, 347 (2004).
- [24] A. Bohr and B. R. Mottelson, *Nuclear Structure*, Vol. 1 (Benjamin, New York, 1969).

- [25] Y. Fujita, B. Rubio, and W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011), and references therein.
- [26] K. Ikeda, S. Fujii, and J. I. Fujita, Phys. Rev. Lett. 3, 271 (1963).
- [27] T. N. Taddeucci, C. A. Goulding, T. A. Carey, R. C. Byrd, C. D. Goodman, C. Gaarde, J. Larsen, D. Horen, J. Rapaport, and E. Sugarbaker, Nucl. Phys. A469, 125 (1987), and references therein.
- [28] J. Rapaport and E. Sugarbaker, Annu. Rev. Nucl. Part. Sci. 44, 109 (1994), and references therein.
- [29] R. G. T. Zegers et al., Phys. Rev. C 74, 024309 (2006).
- [30] Y. Fujita et al., Phys. Rev. C 59, 90 (1999).
- [31] Y. Fujita et al., Phys. Rev. C 67, 064312 (2003).
- [32] Y. Fujita et al., Phys. Rev. C 75, 057305 (2007).
- [33] Y. Fujita et al., Phys. Rev. Lett. 112, 112502 (2014).
- [34] F. Osterfeld, Rev. Mod. Phys. **64**, 491 (1992), and references therein.
- [35] Y. Shimbara et al., Phys. Rev. C 86, 024312 (2012).
- [36] H. Fujita et al., Phys. Rev. C 100, 034618 (2019).
- [37] Y. Fujita et al., Phys. Rev. C 91, 064316 (2015).
- [38] Y. Fujita, Y. Utsuno, and H. Fujita, Eur. Phys. J. A **56**, 138 (2020).
- [39] D. Frekers et al., Phys. Rev. C 91, 034608 (2015).
- [40] Nuclear Data Evaluation Project, Triangular Universities Nuclear Laboratory: https://nucldata.tunl.duke.edu/.
- [41] Evaluated Nuclear Structure Data File, National Nuclear Data Center, Brookhaven National Laboratory: https://www .nndc.bnl.gov/ensdf/.
- [42] J. Rapaport et al., Phys. Rev. C 41, 1920 (1990).
- [43] J. Rapaport, C. Gaarde, J. Larsen, C. Goulding, C. D. Goodman, C. Foster, D. J. Horen, T. Masterson, E. Sugarbaker, and T. N. Taddeucci, Nucl. Phys. A431, 301 (1984).
- [44] D. Kahl et al., Eur. Phys. J. A 55, 4 (2019).
- [45] B. D. Anderson, L. A. C. Garcia, D. J. Millener, D. M. Manley, A. R. Baldwin, A. Fazely, R. Madey, N. Tamimi, J. W. Watson, and C. C. Foster, Phys. Rev. C 54, 237 (1996).
- [46] M. Yeh, S. Hans, W. Beriguete, R. Rosero, L. Hu, R. L. Hahn, M. V. Diwan, D. E. Jaffe, S. H. Kettell, and L. Littenberg, Nucl. Instrum. Methods Phys. Res., Sect. A 660, 51 (2011).