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The assumption that the Standard Model is an effective field theory (SM EFT) of a more fundamental
theory at a higher (than electroweak) energy scale implies a growth of cross sections for electroweak
vector-boson scattering (VBS) processes signaling the appearance of a resonance (or resonances) near that
scale. In this article, we investigate in detail SM EFT effects from dimension-six operators in VBS with
like-sign-W production in fully leptonic decay modes at the high-luminosity LHC (HL-LHC). We find that
these effects are important for a handful of operators, most notably for the operator composed of three
SUð2Þ field-strength tensors responsible for strong transversely polarized vector-boson interactions.
Current global fits on Wilson coefficients allow for an observable signal at the HL-LHC, if not accessible
with the current LHC data set.
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I. INTRODUCTION

It is widely believed that the Standard Model (SM) [1–3]
is an effective, low-energy field theory (EFT) approxima-
tion [4–6] to a more fundamental theory (UV theory) which
overtakes the SM at energies (at least several times) higher
than the electroweak (EW) scale. One of the most important
processes that may shed light on the dynamics of the
UV theory is electroweak vector-boson scattering (VBS).1

This claim is true for the following reasons:
(i) VBS processes are directly related to the mechanism

of electroweak symmetry breaking, and as such
are regarded as complementary to Higgs boson
measurements at the LHC.

(ii) Although inaccessible directly, heavy particles (con-
stituents of the UV theory) may leave a trace by
modifying the strength and dynamics of electroweak
interactions, spoiling, for example, the (at most
constant) center-of-mass energy (s) behavior of
the SM VV → VV (V ¼ W�; Z; γ) amplitudes. In
the SM EFT, this results in a growth of cross sections
at energies immediately after the electroweak scale.

(iii) In the SM, even when next-to-leading-order correc-
tions are included, VBS processes feature a particu-
larly slow slope with energy in comparison to other
electroweak processes [8].

Therefore, points (ii) and (iii) imply potential sensitivity
to the UV theory particles, especially to those strongly
interacting with EW gauge bosons.
Unfortunately, there is no VV collider available2;

however, the VV → VV reactions are indirectly accessible
at the LHC, particularly within its high-luminosity phase
(HL-LHC), through the process pp → 2 jetsþ 2 lepton
pairs. While all of the elastic processes, e.g., ZZ;WZ;
W�W�;W�W∓ have been extensively investigated at the
LHC, the same-sign WþWþ process in the fully leptonic
decay mode was the first process to be observed3 at 5σ [12]
(based on the 13 TeV data set), and is currently confirmed
at a sensitivity far above 5σ [11]. For that reason, in this
paper we investigate in detail the VBS process through
WþWþ scattering, namely, the reaction

pp → 2 jetsþWþ�Wþ�

→ 2 jetsþ 2 charged-leptonsþ 2 neutrinos:

This is exemplified by Fig. 1 for a particular final state.
Throughout this work, we mostly focus on the HL-LHC
experimental perspectives.
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1For a review, see Ref. [7].

2Interestingly, in a certain setup it has been argued that a muon
collider could effectively be regarded as such [9,10].

3The actual measurement involves a sum of both WþWþ and
W−W− processes; WþWþ makes up about 4=5 of it [11].
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We follow the SM EFT approach4 in which the correc-
tions from heavy and decoupled UV states [14] can be
parametrized by a number of i-indexed dimension-six
operators Qi added to the SM Lagrangian, associated
with dimensionless (or dimensionful) Wilson coefficients
Ci (or fi) as

L¼LSMþ
X
i

Ci

Λ2
Qiþ…≡LSMþ

X
i

fiQiþ… ð1:1Þ

The mass scale Λ denotes the lightest mass among the
heavy particle masses within the UV theory. Although the
EFT expansion in Eq. (1.1) is written up to 1=Λ2, in one
occasion below we will fill in the “…” with several
dimension-eight operators where the dimensionless
Wilson coefficients are suppressed by four powers of Λ’s.
The real advantage of the EFTapproach follows from the

fact that one can study the discovery potential of physics
beyond the SM (BSM) without any knowledge of theories
that may lie ahead by making use of a limited number
of operators arranged order by order in a 1=Λ expansion.
More precisely, here we consider the SM EFT theory that
matches UV models featuring linearly realized electroweak
symmetry breaking, where the Higgs field is part of the
SM Higgs doublet. The SM EFT basis of nonredundant
operators was first constructed at dimension six (commonly
referred to as the Warsaw basis [15]) and very recently at
dimension eight [16,17].
It is a common approach in both experimental and

theoretical literature to use EFT to study VBS channels
as an indirect search for BSM physics [18–22]; for a recent
review, see Ref. [23]. The point of focus of such studies
is usually the VVVV quartic couplings, i.e., the operators
that modify quartic gauge couplings (QGCs) and simulta-
neously leave intact trilinear gauge couplings (TGCs) and
Higgs-gauge boson interactions. In SM EFT such kind
of physics arise from dimension-eight operators [24,25]
and, consequently, the searches are typically conducted as
if there was no effect arising from dimension-six operators.
Here we investigate the validity of this assumption, given
experimental constraints on dimension-six interactions
(which necessarily modify TGCs) emerging from indepen-
dent channels, by studying in detail the like-sign W-boson

production through VBS at the (HL-)LHC. We would like
to emphasize that the aim of this work is not to accurately
model possible BSM signals, but to check which dimen-
sion-six operators can produce non-negligible effect as
allowed by the most up to date experimental constraints
from non-VBS processes on the corresponding Wilson
coefficients (including also the important issue of bounding
background operators), which include new LHC Run 2
results. The numerical significance of dimension-six oper-
ators in VBS has been pointed out in Refs. [26,27].
Concerning the bounds on dimension-six operators,

we use the ones reported in Refs. [28,29] (non-four-fermion
operators) and [30,31] (four-fermion operators).5 In
Refs. [28,29], the truncation of EFT cross sections was
performed consistently at dimension six, namely, no
ðdimension-sixÞ2 terms were considered that would arise
from squaring the ðSMþ dimension-sixÞ amplitude. It is
known that the inclusion of the latter significantly improves
the constraints from diboson production channels.
However, dimension-eight effects in the EFT expansion
are then generally expected to be significant as well, if
the underlying UV interactions are not particularly strong.
Therefore, the inclusion of ðdimension-sixÞ2 terms in
principle implies losing model independence within EFT
[33]. On the other hand, there is a certain sensitivity to the
dimension-six Wilson coefficients in the cross sections
and the reported limits are, therefore, to be understood as
conservative constraints.
There are many LHC analyses, a partial list being

Refs. [11,12,34,35]. Thus far, many VV → VV processes
have been discovered, but within errors they agree with the
SM. Interestingly, current experimental precision does not
constrain the “weak coupling” regime, leaving plenty of
space for new physics effects. It is particularly attractive
since the uncertainties after LHC Run 2 are (by far)
“statistics dominated” [11].
The paper is organized as follows. In Sec. II we present

the relevant EFT operators and, using analytical formulas
from the Appendix, theoretically motivate the more tech-
nical subsequent analysis. The core numerical analysis for
VBS at the (HL-)LHC is presented in Sec. III. We conclude
with Sec. IV.

II. WARMING UP:W +W + → W +W + SCATTERING

As we mentioned in the Introduction, although LHC
experimental analyses of VBS are optimized for QGCs
(dimension-eight operators), it is important, if not neces-
sary, to examine the impact of TGCs (dimension-six
operators) on “golden” process WþWþ→WþWþ.6 After
all, dimension-six operators arise at leading order in the
EFT expansion. At tree level in SM EFT, as we prove

FIG. 1. Feynman diagram depicting a VBS process.

4For a review see, Ref. [13].

5Notice, however, the discussion in Ref. [32].
6In Sec. III we also examine the effect of “background”

dimension-six operators, which affect other subprocesses.
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explicitly, the process WþWþ → WþWþ is gauge invari-
ant, that is, independent of the gauge-fixing parameter, and
hence its self-study is well defined. In both the SM
and SM EFT at leading order there are seven Feynman
diagrams, shown in Fig. 2, mediated by a photon, a Z
boson, and a Higgs boson in both the t and u channels, plus
a contact diagram. Following closely the Warsaw basis
notation [15], the Lagrangian (1.1) is affected at tree level
by five CP-conserving (CPC) and three CP-violating
(CPV) dimension-six operators, shown in Table I.
The leading high-energy helicity amplitudes are given in

the Appendix. We work in the Warsaw basis and use the
Feynman rules in Rξ gauges from Ref. [36]. The operators
QφWB and QφW̃B disappear from the leading-s helicity
amplitudes inWW → WW processes. This is easily seen by
looking at the SM EFT Feynman rules and using the
Goldstone boson equivalence theorem [37–43], where for
these operators (and specifically the WW → WW channel)
there are no associated contact four-point interactions
involving Goldstone bosons or contact interactions with
fourW’s proportional to CφWB or CφW̃B. One may think that
there may be contributions from gluing the three-point
vector-boson vertices shown in Fig. 2 where these inser-
tions exist, but it can be proved explicitly that any
s-enhanced amplitude cancels out when consistently
expanding the Z mass, the latter being also affected by
CφWB. Another important feature is the appearance of the
t-channel enhancement ð1 − cos2 θÞ, where θ is the scatter-
ing angle, in the denominator of leading SM amplitudes;
see, for example, Mþþþþ in Eq. (A11). This is in contrast
to the fact that none of the SM EFT amplitudes have such a

t-channel enhanced factor that is accompanied by a growth
of energy; see Eqs. (A17)–(A25).
Furthermore, in Appendix we also arrange analytical

expressions for the helicity cross sections, following the
notation where T stands for transverse helicities �1 and L
stands for longitudinal gauge bosons with helicity 0. In the
SM, the dominant polarized cross sections come with the
following ratios:

σTTTT∶σLLLL∶σLTLT∶σTLTL∶σTLLT∶σLTTL

≈ 1∶
1

8.5
∶

1

8.0
∶

1

8.0
∶

1

8.0
∶

1

8.0
: ð2:1Þ

As we already mentioned, in the SM all polarized cross
sections are enhanced by the t-channel factor, but for the
TTTT mode there is an accidentally enhanced factor of
8 with respect to the other modes, as can easily be seen
from Eqs. (A26)–(A28).
In SM EFT there are interference effects between the SM

and dimension-six operators only in the LLLL mode (or
“0000”mode).CP-violating contributions enter in themixed
and pure transverse channels, similar to their CP-conserving
counterparts. The cross sections have the symbolic form
σ ∼ SM2 þ SM× dim 6þ dim 62. Following this pattern,
we obtain [ḡ2 is the SUð2ÞL gauge coupling]

σTTTTðsÞ ≈
ḡ4

s

�
AT

1 − c2
þ BT · 0

þ ΓTḡ2
�jCW j

ḡ2

�
2
�

s
Λ2

�
2

þ � � �
�
; ð2:2Þ

FIG. 2. Tree-level Feynman diagrams filling in the white blob of Fig. 1. The Wilson coefficients associated with the operators affecting
each vertex are also shown.

TABLE I. Dimension-six operators, in the Warsaw basis, modifying the process WþWþ → WþWþ.

X3 φ4D2 X2φ2

CPC QW ¼ ϵIJKWνI
μ W

ρJ
ν WμK

ρ Qφ□ ¼ ðφ†φÞ□ðφ†φÞ QφW ¼ φ†φWI
μνWμνI

QφD ¼ ðφ†DμφÞ�ðφ†DμφÞ QφWB ¼ φ†τIφWI
μνBμν

CPV QW̃ ¼ ϵIJKW̃νI
μ W

ρJ
ν WμK

ρ QφW̃ ¼ φ†φW̃I
μνWμνI

QφW̃B ¼ φ†τIφW̃I
μνWμνI
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σLLLLðsÞ ≈
ḡ4

s

�
AL

1 − c2
þ BL

�
Cφ□

ḡ2

��
s
Λ2

�

þ ΓL

�
Cφ□

ḡ2

�
2
�

s
Λ2

�
2

þ � � �
�
; ð2:3Þ

where Ai; Bi;Γiði ¼ T; LÞ are dimensionless coefficients
read from Eqs. (A26) and (A27) that depend upon the cutting
angle c≡ cosðθcutÞ and ratios of vector-boson and Higgs
masses, and “…” are corrections from higher than six-
dimensional operators. The corresponding expression for
σLTLT and related cross sections are similar in form to
Eq. (2.2). In order to clearly justify our points, we focus
only on CW and Cφ□ contributions in Eqs. (2.2)–(2.3).
Full analytical expressions are given in Eqs. (A26)–(A28) of
the Appendix.
In a weakly coupled UV theory with perturbative

decoupling, dimensional analysis [44] results in
CW ≈ g3=ð4πÞ2; Cφ□ ≈ g2. These effects could be impor-
tant only if AL ≈ ð1 − c2ÞBLðs=Λ2Þ which is never the case
for c ≈ 1 and s < Λ2, which suggests weak sensitivity to
the small coupling regime in the WþWþ process. This
result, however, does strongly depend on the cutting angle
θcut. For example, in differential cross section distributions
for the LLLL mode, there are zeros for different values
of SM EFTCφ□ and/orCφD input values! This case study is
however statistics limited at the LHC mainly because the
SM dominant TTTT mode will not be affected, but may be
important for future HL-LHC studies.
In a strongly coupled UV theory or in a UV theory with

composite gauge bosons the loop suppression of CW may
not be dictated by gauge invariance. Naive dimensional
analysis [45] in such an extreme case may result in SM EFT
coefficients as big as CW ≈ 4π and Cφ□ ≈ ð4πÞ2. What is
most important here is the fact that the prefactors in
Eq. (2.2), ΓT ¼ 36

ffiffiffi
2

p
=π and AT ¼ 64=π, are quite big

and of the same order of magnitude. This guarantees large
cross sections and visible effects in SM EFT. For example,
if CW ¼ Cφ□ ≫ 1, then the TTTT mode is again bigger
than the LLLL mode cross section by a factor of
g2ΓT=ΓL ¼ 144

ffiffiffi
2

p ðGFm2
WÞ ≃ 15. In this case, only con-

tributions with dim 62 in Eqs. (2.2)–(2.3) are dominant,
an approximation which is independent of the cutting
angle θcut.
We demonstrate these effects in Fig. 3. We have chosen

Λ ¼ 4 TeV and two nonzeroWilson coefficients:CW ¼ 4π
which affects only the TTTT and LTLT modes, and
Cφ□ ¼ −4π which affects only the LLLL mode.7 The
set of input values, although indicative, are consistent with
the bounds from diboson production and electroweak fits
[28] (see below) when marginalized over other coefficients.
Obviously, the appearance of factors ðs=Λ2Þn; n ¼ 1, 2 in
Eqs. (A26)–(A28) make the cross sections rise. As
explained, the dominant mode is σTTTT , i.e., the effect of
CW seems the most promising. The steep rise of the LLLL
cross section for low

ffiffiffi
s

p
is due to the interference of SM

and new physics arising from dimension-six operators.
From the right panel of Fig. 3 it is obvious that the TTTT
and LLLL cross sections are enhanced by a factor of ∼10
long before the EFT validity upper bound,8 s ≈ Λ2, which
encourages us to proceed to a more realistic VBS analysis
at the LHC. We do this in the next section.
Furthermore, in the case of transverse gauge boson

scattering, we consider the effect of dimension-eight
operators. It is well known [46,47] that dimension-eight
operators may dominate (up to cancellations between
coefficients induced by the UV theory) the VBS cross
sections at energies

FIG. 3. Left: Polarized cross sections for the three mode cross sections (A26)–(A28) as a function of the c.m. energy
ffiffiffi
s

p
. We have

chosen as input values the coefficients shown at the top of the figures and θcut ¼ π=18. Right: Similarly for the ratios of the polarized
cross sections with respect to the SM result.

7The minus sign in Cφ□ results in constructive interference.
8Tree-level unitarity bounds are discussed in detail in the next

section.
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s
Λ2

≫
ḡ
g�

: ð2:4Þ

Herewe consider the case of strongly coupled (or composite)
transverse polarizations of W ’s in the so-called Remedios
models of Ref. [46]. In these models, CW ∼ g� and
Ct0;t1;t2;t10 ∼ g2�, with the latter being the Wilson coefficients
of dimension-eight operators defined in Appendix. There,
we calculate all dominant helicity amplitudes with leading-s
and s2 behavior. All but one independent helicity amplitude
are masked by the t-channel photon and Z-boson exchange
from the SM. The exception is the helicity-violating ampli-
tude Mþþ−− (or M−−þþ). When the coupling g� of the
integrated UV theory is strong, i.e., much larger than the
SUð2Þ gauge coupling ḡ, these amplitudes give a large and
positive contribution to the cross section. We therefore
conclude that the inclusion of only the dimension-six
operator CW is a robust conservative limit to WþWþ

VBS. Notice also that ðdimension-sixÞ2 contributions in
the amplitude come with opposite sign to the dimension-
eight contributions when positivity constraints [48–50] are
taken into account, which improves the EFT convergence.9

The situation is clearly explained in Fig. 4.
It is remarkable that in the case of Remedios-like

scenarios the estimate on Wilson coefficients, based on
power counting as given in Ref. [46], does not allow
for fulfilment of positivity bounds. This suggests that
positivity constraints [Eqs. (6.7)–(6.12) of Ref. [49]] con-
stitute a significant limitation to models with composite
dynamics of transverse electroweak modes. Notice how-
ever that these conditions can still be satisfied if, e.g.,
departures from the power-counting estimate are present
in the strongly coupled regime, such as Ct0 ¼ Ct1 ¼
Ct10 ¼ jCW j2 ¼ g2� and Ct2 ≥ 5g2�.

III. THE REALISTIC STUDY:
pp → jjW +W + AT THE LHC

In this section we describe the steps of our analysis and
present numerical results relying on Monte Carlo simu-
lations. The reaction in question is pp → jjWþWþ →
jjll0νlνl0 , where l ¼ eþ; μþ. The main goal is to estimate
possible effects in same-sign WW scattering in the HL-
LHC setup via the EFT approach. We analyze in an
uncorrelated way one operator at a time while setting all
of the remaining Wilson coefficients to zero. Strictly
speaking, the above choice implicitly assumes a certain
subset of BSM scenarios where it is valid. Indeed, it

constitutes a realistic assumption, e.g., (a) in the case of
certain universal models with only bosonic weakly coupled
BSM sector [52,53] (given the current experimental con-
straints on EFT coefficients), and (b) scenarios in which
transversal modes of vector bosons have composite origin
[46,53]. Nevertheless, the only nontrivial aspect that the
above simplification misses is interference terms between
different operators. Given the fact that different operators
interfere only if they modify the same helicity amplitudes
[54], the interference is significantly limited in our setup–
see Eqs. (A17)–(A25) of the Appendix.
Below we focus on the largest possible deviations, using

as our “benchmarks” the experimentally allowed boundary
values for each fi in Eq. (1.1). We take as the source both
the individual-operator-at-a-time limits and those from
the global fit as they can be considered complementary
within certain scenarios of new physics. In the latter case,
correlations between different operators are in principle
important. We comment on the validity of our one-
operator-at-a-time analysis below. Likewise, we also dis-
cuss the effects of background EFT operators.

A. Perturbative unitarity bounds
and unitarization issues

The EFT operators in Table I induce WW → WW
amplitude growth [see Eqs. (A17)–(A25)], which ulti-
mately leads to violation of probability conservation at
some energy scale

ffiffiffiffiffi
sU

p
, a certain WW pair invariant mass,

the latter being a function of fi. In principle, it may happen
that

ffiffiffiffiffi
sU

p
is within the accessible range of WW mass,

and in fact we find that this is sometimes the case.

FIG. 4. Effects of ðdimension-sixÞ2 and dimension-eight oper-
ator contributions for CW ¼ g�, Ct0;t1;t2;t10 ¼ g2�, with g� ¼ 4π in
the so-called Remedios model for WþWþ elastic scattering. The
curves show the transversely polarized cross section σTTTT
starting from the SM (lower curve), and ending at the full
SMþ dim 6þ dim 62 þ dim 8 (upper curve) helicity amplitudes.
In Remedios the cross section cannot be smaller than the dim6
curve (orange curve).

9See Ref. [51] for an interesting example in which the growth
with energy, although substantial, does not lead to limitations due
to pure EFT convergence. Cases studied are operators that
contribute to neutral anomalous TGC. Such operators start at
dimension eight in SM EFT. Interestingly, the identified observ-
ables at eþe− colliders feature ðdimension-eightÞ2 term suppres-
sion, leading to a “genuine” dimension-eight analysis.
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Since predictions of the EFT amplitudes are ill defined
above

ffiffiffiffiffi
sU

p
, the issue has to be addressed in some way in

the analysis. In this work we apply additional weights to
events above MWW ¼

ffiffiffiffiffi
sU

p
in the original nonregularized

samples generated with Monte Carlo simulations. The
weights are in general operator dependent. The applied
procedure is supposed to ensure that the total WW-
scattering BSM cross sections after regularization behave
like 1=s for MWW >

ffiffiffiffiffi
sU

p
, and so it approximates the

principle of constant amplitude, at least after some averag-
ing over the individual helicity combinations [55]. Our
choice of unitarization is often referred to in the literature as
the (helicity-averaged) “Kink” method.10 We find the
above-mentioned weight to be equal to ð

ffiffiffiffiffi
sU

p
=MWWÞ3.5

for the operator QW and ð
ffiffiffiffiffi
sU

p
=MWWÞ1.5 for Qφ□ and

QφW .
11 We refer to such a unitarized signal estimate as the

total BSM signal.
Technically,

ffiffiffiffiffi
sU

p
is determined by using the perturbative

(tree-level) partial-wave unitarity condition [57,58]. The
statement regarding sU from this condition is that for
energies s > sU, perturbativity of the EFT necessarily
breaks down. In more detail, the unitarity limit has
been determined by studying all helicity combinations
for both WþWþ and WþW− elastic scattering ampli-
tudes.12 For each helicity amplitude, the first nonvanishing
partial wave T ðJÞ (where always J ¼ 0, 1, or 2) is
identified and the unitarity bound is found. The scale
where unitarity is violated,

ffiffiffiffiffi
sU

p
, is then identified as the

lowest value among all such bounds. More explicitly, at
tree level the condition reads (for a detailed discussion,
see Refs. [59,60])

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NλaλbNλ1λ2

p jT ðJÞ
λaλb;λ1λ2

ðsÞj ≤ 1

2
; ð3:1Þ

where the indices λa, λb (λ1, λ2) denote outgoing (incom-
ing) helicities, whereas Nxy ¼ 1=2 for identical particles,
i.e., x ¼ y, or otherwise Nxy ¼ 1. Then, the partial-

wave amplitudes T ðJÞ
λaλb;λ1λ2

ðsÞ enter in the partial-wave
expansion as

Mλaλb;λ1λ2 ¼ 16π
X∞
J¼0

ð2J þ 1ÞT ðJÞ
λaλb;λ1λ2

ðsÞ

×DðJÞ�
λ1−λ2;λa−λbðΩpðabÞ Þ; ð3:2Þ

where ΩpðabÞ is a solid angle in the direction

pðabÞ ¼ pa þ pb, and DðJÞ
mJ;λ

ðΩpÞ are the Wigner functions
satisfying the completeness relation

Z
dΩpD

ðJ0Þ
m0

J;λ
ðΩpÞDðJÞ�

mJ;λ
ðΩpÞ ¼

4π

2J þ 1
δJ0Jδm0

JmJ
: ð3:3Þ

We analyze the terms that grow with energy (∝ fi), in
which case no Coulomb singularity occurs and corre-
spondingly no phase-space regularization has to be
applied (e.g., a cut of 1 deg in the forward and backward
scattering regions). The results are cross-checked with
VBFNLO 1.4.0 [61] for operators where direct applicability
of the latter tool is possible in the context of the Warsaw
basis, obtaining good agreement in the unitarity limits.
When applied, the unitarity bound scale

ffiffiffiffiffi
sU

p
is denoted

by vertical lines in MWW distributions in figures below.
Notice also that the unitarity bounds of VBS processes
for dimension-six/-eight operators were presented in
Refs. [62,63].
We would like to emphasize that within the EFT

approach one does not have knowledge about what happens
above sU. There could be SM-like perturbative completion,
or the theory could be nonperturbative. In the former
case one expects ∼1=s, while in the latter ∼ðlog sÞ2, i.e.,
the saturation of the Froissart bound [64] for the asymptotic
behavior of cross sections. The Froissart bound has the
advantage of working in nonperturbative sense and might
be more appropriate in the case of QW treatment; the latter
is currently poorly constrained. Applying the Froissart
bound to the tail would enhance the signal, although only
slightly, as we argue below; hence, our results are some-
what on the conservative side.
We verify that the bulk of the SM EFTeffect is within the

EFT-valid region, i.e., originates from the region s < sU. To
this aim, we define the “EFT-controlled” signal estimate
[55] and compare it with the total BSM signal (the total
BSM signal defined at the beginning of this section). The
“EFT-controlled” signal estimate is calculated by replacing
the generated high-mass tail MWW >

ffiffiffiffiffi
sU

p
with the one

expected in the SM, while taking the EFT prediction for the
region MWW <

ffiffiffiffiffi
sU

p
. Hence, the “EFT-controlled” signal

defines a signal originating uniquely from the operator
within its (maximal) range of EFT validity. In turn,
comparison between the total BSM signal estimate and
the “EFT-controlled” signal allows for a verification of the
significance of the tail region: the conclusions based on
EFT are reliable only if the bulk of the BSM signal is in
the “EFT-controlled” region [55]. In Sec. III. D we show
that our results are approximately independent of how the
contribution in the region above the unitarity bound s > sU

is estimated, i.e., this issue should be a secondary effect;
quantitatively, we check that the total BSM signal and the
“EFT-controlled” estimate are statistically consistent within

10See Ref. [56] for a review and comparisons between several
unitarization schemes.

11The different exponents follow from the fact that unitarity is
first violated before the cross section gets dominated by its
asymptotic terms.

12Both channels are governed by the same Wilson coefficients.
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2σ for all of the operators and Wilson coefficients studied
in Sec. III. D, with the exception of fW ¼ 1 TeV−2 (dis-
cussed further therein).
Although it is well known that nonunitarized results

do not directly have a physics interpretation, they could be
safely taken as overestimated upper bounds on any uni-
tarized results. For this reason, agreement between non-
unitarized results and the “EFT-controlled” estimate
implies little dependence on unitarization details. We make
the corresponding comparison and observe consistency
within 2σ between nonunitarized results and the “EFT-
controlled” results for all of the cases (except
fW ¼ 1 TeV−2). Therefore, we choose to use the total
BSM signal defined at the beginning of this section
(popularly referred to as the “Kink” method) to obtain
our central results throughout this work.
Note also that positivity bounds are not harmed by

considering constant amplitudes for the asymptotic behav-
ior of cross sections in our analysis.

B. Method and kinematic variables

For the following analysis two samples of 6 × 105 events
consistent with the VBS topology for the process
pp → jjμþμþνν are generated, each corresponding to a
preselected arbitrary value of the fW or fφ□ coefficient, in
MadGraph5_aMC@NLO [65] v2.6.2 at leading order at 14 TeV
pp collision energy. Different fi values are obtained by
applying weights to generated events, using the reweight
command in MadGraph. The value fi¼0; ∀ i represents the
SM predictions for each study. Results for the remaining
relevant operators, i.e., QφD;QφW are obtained using the
reweight command with the Qφ□ sample.13

The SmeftFR code [66] v2.01 (based on FeynRules [67]) is
used to generate the UFO file [68] with an input parameter
scheme fGF;mW;mZ;mhg, in SM EFT. Cross sections in
the output of MadGraph are multiplied by a factor of 4 to
account for all of the lepton combinations in the final
state. Hadronization is done with PYTHIA v8.2 [69,70],
run within MadGraph. Reconstruction level is generated
via the MadAnalysis5 [71] v1.6.33 package (available within
MadGraph). The FASTJET [72] v3.3.0 package is used with
the jet clustering anti-kT algorithm with radius ¼ 0.35
and ptmin ¼ 20. Finally, the detector efficiencies are set
to 100%.
The SM process pp → jjlþlþνν is treated as the

irreducible background, while the “signal” is defined as
the enhancement of the event yield relative to the SM
prediction in the presence of a given operator Qi. None of
the reducible backgrounds are simulated. The reason is that
reducible backgrounds (as we learned from, e.g., Fig. 3
Ref. [11]) roughly double the total statistics overall in the

VBS fiducial region and are mostly concentrated at low
mass (both dilepton and dijet). Since VBS-related operators
mainly modify the opposite end of the spectrum, reducible
backgrounds probably will not be crucial to have an
estimate of the possible effects. Yet another aspect is that
additional operators might also modify the reducible back-
grounds in some unforeseen ways. But such potential
effects will need to be determined experimentally from
other studies, in which those processes are not backgrounds
but signals. We do not address this issue in our paper.
Following Ref. [55], the event selection criteria consist

of requiring at least two reconstructed jets and exactly
two leptons (muons or electrons) satisfying the following
conditions: Mjj > 500 GeV, Δηjj > 2.5, pj

T > 30 GeV,
jηjj < 5, pl

T > 25 GeV, and jηlj < 2.5, where ηj;l is the
pseudorapidity of jets j or leptons l, respectively. The total
BSM signal significances are computed as the square root
of a χ2 resulting from a bin-by-bin comparison of the event
yields in the binned distributions of different kinematic
observables. Moreover, event distributions are always
normalized to HL-LHC luminosity, i.e., 3000 fb−1.
For each benchmark value of fi¼W;φ□;φD;φW , the signal

significance is assessed by studying the distributions of a
large number of kinematic variables. These are

mjjll; mll; mjj; pj1
T ; p

j2
T ; p

l1
T ; p

l2
T ;

ηj1; ηj2; ηl1; ηl2; dηj; dϕj; dϕl;

RpT
≡ pl1

T p
l2
T =ðpj1

T p
j2
T Þ;

Mo1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗l1

T j þ jp⃗l2
T j þ jp⃗miss

T jÞ2 − ðp⃗l1
T þ p⃗l2

T þ p⃗miss
T Þ2

q
;

M2
1T ≡

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmllÞ2 þ ðp⃗l1Þ2 þ ðp⃗l2Þ2

q
þ jp⃗miss

T j
�

2

− ðp⃗l1 þ p⃗l2 þ p⃗miss
T Þ2; ð3:4Þ

where l1ð2Þ≡ (sub)leading lepton; j1ð2Þ≡ (sub)leading

jet; m is the invariant mass; pðmissÞ
T ≡ (missing) transverse

momentum; η≡ pseudorapidity; ϕ≡ azimuthal angle.
Some of these variables are well known to be VBS blind,
but in the context of a “background operator” they may still
be useful. We find both angular variables η and ϕ as well as
pT’s involving jet(s) to be at most subleading in sensitivity.
Moreover, all pT’s, m’s, and M’s are found to be at most
subleading in sensitivity in the case of Qφ□ and QφD.
The most sensitive variables are pl1

T for QW, Mo1 for QφW,
and RpT

for Qφ□; QφD.
We consider one-dimensional distributions of a single

variable. Each distribution is divided into ten bins, arranged
so that the Standard Model prediction in each bin is never
lower than two events. Overflows were always included in
the respective highest bins. Presented results and conclu-
sions are always based upon the most sensitive variables,
which is, in general, an operator-dependent outcome.

13Samples for QW were generated separately due to large
reported uncertainties when reweighting from Qφ□.
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The total BSM signal significance expressed in standard
deviations (σ) is defined as the square root of a χ2 resulting
from comparing the bin-by-bin event yields:

χ2 ¼
X
i

ðNBSM
i − NSM

i Þ2=NSM
i : ð3:5Þ

C. Background operator analysis

Before moving to the analysis of operators in Table I that
modify the WW → WW reaction (VBS operators), we
comment on the role of the dimension-six interactions
that, although not affecting the subprocess WW → WW
directly, may contribute at parton level to pp → jjll0νlν0l
(background operators), see Fig. 5. This is particularly
relevant for the consistency of the discussion of potential
effects of VBS operators when fi is constrained by the
global fit, but also for a more complete description in
general. We examine possible contributions (after the VBS
cuts are applied) operator by operator, based on the bounds
reported in Refs. [28,29] (non-four-fermion operators, the
global, more permissive constraints are used in this work)
and [30,31] (four-fermion operators) (with consistently
applied flavor assumptions). The so-called “dipole” oper-
ators, i.e., QuW;QuB;QdG;QdW;QdB, are not present in the

quoted references. They are however commonly claimed to
be strongly constrained [29,73]. We checked that among
these, only QuW;QdW, and QdG would lead to noticeable
effects for a representative fi ¼ 1 TeV−2. Importantly,
however, they also lead to commonly distinctive kinematic
features compared to VBS operators, and hence they are in
principle easily separated as part of “background” effects
(discussed in detail below). We limit our examination to
nonleptonic operators, because leptonic operators would
contribute only at loop level to the process pp → jjWW,
and it is known that the on-shell projection of the outgoing
W’s can be defined in a gauge-invariant way and constitute
a fine (≲5% error) approximation [74,75]. Moreover, in
this work we do not consider CP- or B-violating operators.
Out of the remaining, the coefficient corresponding to the
operator QG is known to be constrained at Oð0.01Þ TeV−2

via multijet channels [76], whereas Qφ does not contribute
to the tree-level amplitude. We also omit QφG as it is
constrained by the process of Higgs boson production via
gluon fusion at loop level [77]. In addition to this, we find
no sensitivity to the four-fermion operators in the
“ðL̄RÞðR̄LÞ” and “ðL̄RÞðL̄RÞ” classes even for generic
BSM coupling in the strong-interaction regime. The exper-
imental bounds on the remaining background operators are
compiled in Table II. One can see that strong suppression is
hidden in the Yukawa factors for the Quφ; Qdφ; QuG

interactions (the minimal flavor violation hypothesis is
assumed throughout the analysis). Since the light quarks
play (by far) the leading role in our reaction, the Wilson
coefficients are effectively of, at least, one-loop order in
this case.
As far as non-four-fermion operators are concerned, we

find that the current limits on all background dimension-six

TABLE II. Compilation of all of the experimental limits coming from global fits on dimension-six background
operators used in this work, in TeV−2 units, and the maximal effect in standard deviations (σ) in the WþWþ
scattering process from each operator separately. Flavor assumptions are implicit and follow the references quoted.
In particular, “×y” corresponds to the minimal flavor violation assumption.

ψ2φ3 [29] σ ψ2Xφ [29] σ

fuφ ½−120:;−36:� × yu 0.027 fuG ½þ5;þ18:� × yu 5.5 × 10−3

fdφ ½þ3.;þ7.9� × yd 0.

ψ2φ2D [28] σ ðL̄LÞðL̄LÞ [30,31] σ

fð1Þφq
½−0.23;þ0.12� 0.46 fð1Þqq

½−0.028;þ0.057� 1.1

fð3Þφq
½−0.18;þ0.17� 5.7

fφu ½−0.79;þ0.54� 0.
fφd ½−0.81;þ0.13� 0.

ðR̄RÞðR̄RÞ [30] σ ðL̄LÞðR̄RÞ [30] σ
fuu ½−0.1;þ0.23� 0. fð1Þqu

½−0.35;þ0.35� 0.

fdd ½−0.31;þ0.44� 0. fð8Þqu
½−0.5;þ1.� 0.

fð1Þud
½−0.44;þ0.44� 0. fð1Þqd

½−0.59;þ0.59� 0.

fð8Þud
½−0.59;þ1.56� 0. fð8Þqd

½−1.;þ1.56� 0.

FIG. 5. Examples of background operators indicated by the
associated Wilson coefficients.
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operators yield cross sections consistent with the SM
prediction, with the exception of

Qð3Þ
φq ¼ ðφ†iD

↔I
μφÞðq̄τIγμqÞ ð3:6Þ

that yields a systematic discrepancy of around ∼5%.
Detailed analysis reveals that this operator gives a up to
≈5.5σ potential discrepancy with SM at the HL-LHC.
The distributions in MWW and pl1

T are shown in Fig. 6 for

fð3Þφq ¼ þ0.17 (the negative boundary value fð3Þφq ¼ −0.18 is
very similar).
One can observe that this background operator [see

Fig. 5] has distinct dynamics compared to the VBS
operators (presented subsequently). In particular, the con-
tributions to χ2 are uniformly distributed among all of the
bins (pl1

T ) and a similar feature holds for the MWW
distribution. This is expected, because this background
operator has nothing to do with theWW mass, but as shown
in Fig. 5 it mainly contributes to the hard scattering for
longitudinalW bosons, so the energy dependence measured
in WW processes should be different.
This shows that even when the background operator

effect is large, it can be easily identified and disentangled
by studying kinematic distributions: if one gets more than

5σ betweenQð3Þ
φq and the SM, then one is also likely to get a

5σ difference between the predicted shapes forQð3Þ
φq and any

VBS operator. More quantitatively, we find, e.g., that pj1
T is

the most sensitive variable in the case of Qð3Þ
φq

14, while it is
by far subleading in sensitivity for the VBS operators.
Moreover, the weak sensitivity of jet pT’s also holds for the
leading dimension-eight operators [78], which are usually
considered as the leading effects in phenomenological/
experimental analyses for VBS processes so far. On the
other hand, the highest sensitivity to pj1

T also holds for the
relevant dipole operators, as well as for the operator Qφud,
which is not studied in the “bounds” literature either; this
constitutes the distinctive dynamics mentioned above for
the dipole operators.
Concerning the potential effects in four-fermion

dimension-six operators, we check that the limits
reported in Ref. [30] were already sufficient to claim
that the effects from these operators are at most negli-

gible. The exception was the left current operator Qð1Þ
qq for

which the search in the more up to date Ref. [31] was used
to derive the factor by which the limits reported in
Ref. [30] improve. We find the factor to be conservatively
estimated by ∼3, and using the improved constraints
concluded that the operator might generate only negli-
gible effects. Note that the other nonleptonic operator in

the ðLLÞðLLÞ category,Qð3Þ
qq , is identical toQ

ð1Þ
qq assuming

flavor-diagonal Wilson coefficients.

D. Main operator analysis

From the previous subsection, we conclude that in
practice it suffices to parametrize potential new physics
(NP) effects from Wilson coefficients associated with the
main dimension-six operators listed in Table I, i.e., the
operators that modify the WW → WW subprocess. By
saying this, we exclude from our discussion CP-violating
operators QW̃ and QφW̃

15 for two reasons: first, their
contribution in the cross sectionWW → WW is no different
than the CP-conserving QW and QφW , and second, these
operators are (usually) much more constrained than their
CP-conserving cousins. Therefore, we focus on the CPC
operators arranged in Table I for the numerical simulations
to follow.
We begin by examining the possible effects at the HL-

LHC assuming the bounds on EFT coefficients come from
the individual-operator-at-a-time analysis, based on the
recent Ref. [28]; we quote the relevant constraints indicated
as “individual” in Table III. The only fi upper-bounded by
Oð0.1Þ TeV−2 are fφ□ and fW , and the remaining two fφD
and fφW are bounded by Oð0.01Þ TeV−2 (or stronger,
depending on the sign) and give null discrepancies with the
SM. In fact, at the boundaries fφ□ ≈�0.5 yields negligible
effects as well. On the other hand, both boundaries on fW
allow for large effects. The distributions MWW (left) and
the total BSM signal in the most significant variable pl1

T
(right) are shown in Fig. 7 for fW ¼ þ0.36 TeV−2 and in
Fig. 8 for fW ¼ −0.15 TeV−2. Notice that in the right
plots the total BSM signal is drawn in red and the “EFT-
controlled” signal in green, and that the red histogram is
almost entirely covered by the green one, as anticipated
in Sec. III. A.
Next, we consider bounds on fi from the global fit

(indicated with “global” in Table III), again based on
recent literature [28]. One can observe that constraints
here are considerably more relaxed than the “individual”
ones allowing for fi as large as Oð1.Þ TeV−2. It is due to
correlations between various Wilson coefficients that
contribute to the same observables used to determine
the bounds. Therefore, such bounds could be understood
as complementary and in principle saturated in UV
models that normally allow for a plethora of dimen-
sion-six coefficients without too large hierarchies in their
magnitudes, e.g., one can construct such models exploit-
ing the UV vs tree-level matching dictionary [52] with a
large number of different heavy species. As no correlation
matrix was provided in Ref. [28], in what follows we

14Notice that it involves a contact interaction between two
quarks and two vectors, so it contributes to a hard scattering
of q and W.

15The operator QφW̃B does not enter the leading amplitudes;
see formulas in Appendix.
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examine the four VBS operators in a simplified way, i.e.,
one by one, and qualitatively describe the effect of
correlations below.
We take an estimate on correlations from Ref. [29],

which corresponds to similar physics assumptions. One can
see that the correlations among the four relevant operators
are mostly negligible. They are however somewhat mild
between the following pairs: ðQφ□; QφWÞ, ðQφ□; QWÞ,
and ðQφD;QWÞ. As we show in the Appendix, since the
operators in each pair modify distinct helicities of the
WW → WW subprocess, the corresponding effects do not
interfere. As a result, to account for correlations corre-
sponds to adding together the effects presented in this work
of each operator, with appropriate weights from the
correlation matrix. The most sensitive variables in
Eq. (3.4) for each operator feature an increase in the
number of events in the higher (relevant) bins independ-
ently of the sign of fi. Moreover, notice that the account for
mild correlation with QW may affect the estimated effects
because this operator is by far dominant in our analysis, and
in this sense the results presented below for Qφ□ and QφD

should be regarded as conservative ones.
The distributions in MWW together with the most

sensitive variable are shown in Figs. 9–12 for the operators
QφD, QφW , Qφ□, and QW , respectively (for fi¼φD;φW;φ□ at
the relevant boundary, either positive or negative).
As above, it is worth noticing that for all operators the

bulk of the SM EFT effect is within the EFT-valid region. In
terms of standard deviations (σ), the maximal discrepancies
for QφD, QφW , and Qφ□ at the HL-LHC allowed by current
data are 4.4, 15, 12σ, respectively. Hence, these operators

cannot in general be simply neglected in studies of HL-LHC
prospects of discovery potential via the EFT approach.
The possible effects from QW are, in accord with Sec. II,

exceptionally large: the obtained discrepancy at the HL-
LHC is Oð100Þσ. In this case the exact number of σ’s may
vary depending on the chosen method of unitarization, as
anticipated in Sec. III. A. For the scope of this paper it is
rather inessential, so we report only the order of magnitude.
Clearly, signal significance can be huge, far above 5σ even
in the “EFT-controlled” estimate, and therefore not at all
negligible in VBS data analyses from the HL-LHC per-
spective. Moreover, a simple rescaling to current luminos-
ity would imply large possible discrepancies already in the
currently collected LHC data set. Though counterintuitive
at first sight, it is partially a result of truncating the cross
section consistently at dimension six, which (as already
discussed in the Introduction) leads to conservative bounds
from the diboson production channel. Although the same-
signWW scattering studies illustrate the necessity for better
theoretical understanding (and as a consequence improve-
ment) in setting constraints based on diboson production
at the LHC, it also shows (i) the large potential in VBS
processes to set constraints on the fW coefficient or,
alternatively, (ii) by comparison of the red and green
histograms in the right plots in Figs. 7 and 12, the large
discovery potential which is characterizable by (seizable)
“EFT triangle” [55]; interestingly, the EFT triangles for
dimension-eight interactions are very limited [54,55] due to
EFT-validity issues caused by necessarily large high-MWW
tails, which makes indirect searches in transversal WW
scattering via dimension six even more attractive.

1000 2000 3000 4000 5000 6000
MWW[GeV]

1

10

100

1000

of events

FIG. 6. Distributions in WW system invariant mass MWW (left) and the most sensitive observable (here pl1
T ) for fð3Þφq ¼ þ0.17

compared to the SM case. The BSM signal estimate is in red and the SM is in yellow.

TABLE III. Experimental constraints on the subset of operators modifying the process WþWþ → WþWþ, based
on the individual-operator-at-a-time or global marginalized fit analyses, from Ref. [28].

fW fφ□ fφD fφW

“individual” [−0.15;þ0.36] [−0.44;þ0.52] [−0.025;þ0.0015] [−0.014;þ0.0068]
“global” [−1.3;þ1.1] [−3.4;þ2.4] [−2.7;þ1.2] [−0.14;þ1.6]
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IV. EPILOGUE

In this article we performed a detailed study of SM EFT
effects from dimension-six operators in a VBS process with
like-sign-W production proceeding to leptonic final states.

We studied all relevant dimension-six operators at tree level

which are responsible for NP in VBS, including “back-

ground” operators responsible for NP in non-VBS parts of

the full process pp → jjll0νν0. In addition, in our analysis
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of events

FIG. 9. Like in Fig. 7 for fφW ¼ þ1.6 TeV−2.
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FIG. 7. Distributions inWW pair invariant massMWW (left) and the most sensitive observable (right, here pl1
T ) for fW ¼ þ0.36 TeV−2

compared to the SM case. The total BSM signal estimate is in red and the SM is in yellow. Notice that in the right plot the “EFT-
controlled” signal estimate is shown in green (almost identical to the red one), normalized to the HL-LHC. The vertical line (left) denotes
the scale above which the partial-wave unitarity condition is violated (see Sec. III. A).
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FIG. 8. Like Fig. 7 for fW ¼ −0.15 TeV−2.
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we exploited all available constraints on SM EFT Wilson
coefficients and also derived the relevant perturbative
unitarity bounds. The latter were applied to obtain a
quantitative estimate on the role of high-energy tails that
cannot be described within the EFT approach. We have

presented useful analytical formulas which illustrate and
support the robustness of our simulations’ results.
We found that the role of dimension-six operators in

modifying the WþWþ → WþWþ process cannot be
neglected in full generality, particularly for perspective
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FIG. 11. Like in Fig. 7 for fφ□ ¼ −3.4 TeV−2.
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FIG. 12. Like in Fig. 7 for fW ¼ þ1. TeV−2.
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FIG. 10. Like in Fig. 7 for fφD ¼ −2.7 TeV−2.
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studies at the HL-LHC based on current constraints. This is
particularly true when the constraints on dimension-six
operators are taken from the global fit type analyses. The
potential effect based on current global fit limits is summed
up in Table IV for the relevant operators. It shows a
particular sensitivity to strong dynamics for transverse W
polarization, the effects of which can be conservatively
estimated with dimension-six truncated amplitudes.
Plausibly, the background operators are already constrained
strongly enough to claim that they play no role in WW-
scattering process even from the HL-LHC perspective, with

the exception of theQð3Þ
φq operator (and potentiallyQφud and

dipole operators). These VBS-polluting operators, how-
ever, feature very distinctive dynamics, and they can be
separated by studying different kinematic distributions.
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APPENDIX: HELICITY AMPLITUDES AND
CROSS SECTIONS

Probably the best way to write down the anatomy of a
cross section, especially for vector-boson scattering, is to
first calculate the helicity amplitudes for the given process.
Being definitive, let us assume the elastic scattering of Wþ
gauge bosons,

Wþðp1; λ1Þ þWþðp2; λ2Þ → Wþðp3; λ3Þ þWþðp4; λ4Þ:
ðA1Þ

We consider the scattering plane to be the xz plane with p⃗1

in theþẑ direction, with the outgoing particle-3 momentum

p3x in the positive x̂ direction. More specifically, the
kinematics are given by

p1 ¼ ðE; 0; 0; pÞ; ðA2Þ

p2 ¼ ðE; 0; 0;−pÞ; ðA3Þ

p3 ¼ ðE; p sin θ; 0; p cos θÞ; ðA4Þ

p4 ¼ ðE;−p sin θ; 0;−p cos θÞ: ðA5Þ

The center-of-mass scattering angle θ is restricted in the
θ ∈ ½0; π� interval. For process (A1) we have 81 helicity
amplitudes. However, not all of them are distinct because
of C, P, and T transformations as well as the rotational
invariance of the S-matrix. For example, the CPT and CP
transformations read as

CPT symmetry∶Mλ1;λ2;λ3;λ4ðθÞ ¼ M−λ3;−λ4;−λ1;−λ2ðθÞ;
ðA6Þ

CP symmetry∶Mλ1;λ2;λ3;λ4ðθÞ ¼ M−λ2;−λ1;−λ4;−λ3ð−θÞ;
ðA7Þ

which relate the amplitudes up to a phase factor [50,79].
For an elastic polarized cross section like

Wþðλ1ÞWþðλ2Þ → Wþðλ3ÞWþðλ4Þ we have

�
dσ
dΩ

�
λ1λ2λ3λ4

¼ 1

64π2s
jMλ1λ2λ3λ4ðs; cos θÞj2; ðA8Þ

while for unpolarized ones we have to sum over final and
initial helicities and average over initial helicities,

�
dσ
dΩ

�
unpolarized

¼ 1

9

X1
λ1;λ2¼−1

X1
λ3;λ4¼−1

�
dσ
dΩ

�
λ1λ2λ3λ4

: ðA9Þ

The integrated cross section is defined as

σðsÞ ¼
Z

2π

0

dφ
Z

π−θcut

θcut

dθ sin θ
dσ
dΩ

; ðA10Þ

where θcut is an angular cut in scattering angle.
In Appendix we provide the helicity amplitudes

Mλ1λ2λ3λ4 in SM EFT with dimension-six operators by
keeping the SM contributions to Oð1Þ and up to leading
OðsÞ amplitudes associated with the operators in Table I. In
Appendix we also provide a partial list of amplitudes for
SM EFT dimension-eight operators at leading Oðs2Þ that
relevant to our discussion. In calculating the amplitudes, we
follow the notation of Ref. [36] for vertices, while we use
SmeftFR [66] to output Feynman rules as input to FeynArts
[80] and FormCalc [81] for amplitude calculations. In the

TABLE IV. Maximal effect estimates in standard deviations (σ)
for the relevant dimension-six interactions in same-sign WW
scattering allowed within present constraints as reported in the
global fit analysis of Ref. [28], all normalized to the HL-LHC.

OW Oφ□ OφD OφW

σHL−LHC ≤ O(100.) 12. 4.4 15.
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case of longitudinal vector-boson scattering, we have
checked our results analytically with the Goldstone boson
equivalence theorem [37–43].

1. Helicity amplitudes for W + ðλ1ÞW + ðλ2Þ →
W + ðλ3ÞW + ðλ4Þ in SM EFT

The SM leadingOð1Þ contributions, where λ is the Higgs
self-coupling and ḡ is the SM EFT improved SUð2ÞL gauge
coupling, are

M���� ¼ −
8ḡ2

1 − cos2 θ
; ðA11Þ

M�∓∓� ¼ −2ḡ2
ð1 − cos θÞ
ð1þ cos θÞ ; ðA12Þ

M�∓�∓ ¼ −2ḡ2
ð1þ cos θÞ
ð1 − cos θÞ ; ðA13Þ

M0�0� ¼ M�0�0 ¼ −2ḡ2
�

1

1 − cos θ

�
; ðA14Þ

M�00� ¼ M0��0 ¼ −2ḡ2
�

1

1þ cos θ

�
; ðA15Þ

M0000 ¼
1

2
ðḡ2 þ ḡ02Þ

�
1 −

4

sin2θ

�
− 2λ: ðA16Þ

The SM EFT leading-s contributions from CP-conserving
couplings associated with operators in the CPC row in
Table I are

M�∓∓∓ ¼M∓�∓∓ ¼M∓∓�∓ ¼M∓∓∓� ¼−6ḡCW s
Λ2

;

ðA17Þ

M��∓∓ ¼ 12ḡCW s
Λ2

; ðA18Þ

M0�0∓ ¼ M�0∓0

¼ −
3

4
ḡCWð3þ cos θÞ s

Λ2
þ CφWð1 − cos θÞ s

Λ2
;

ðA19Þ

M0�∓0 ¼ M�00∓

¼ 3

4
ḡCWð3 − cos θÞ s

Λ2
− CφWð1þ cos θÞ s

Λ2
;

ðA20Þ

M0000 ¼ ð2Cφ□ þ CφDÞ s
Λ2

: ðA21Þ

The SM EFT leading-s contributions from CP-violating
couplings associated with operators in the CPV row in
Table I are

Mþþ−− ¼ −M−−þþ ¼ −12ḡCW̃ s
Λ2

; ðA22Þ

Mþ−−− ¼M−þ−− ¼ −M−−þ− ¼ −M−−−þ ¼ 6ḡCW̃ s
Λ2

¼ −M−þþþ ¼ −Mþ−þþ ¼Mþþ−þ ¼Mþþþ−;

ðA23Þ

M0þ−0 ¼ Mþ00−

¼ −
3

4
ḡCW̃ð3 − cos θÞ s

Λ2
þ CφW̃ð1þ cos θÞ s

Λ2

¼ −M0−þ0 ¼ −M−00þ; ðA24Þ

M0þ0− ¼ Mþ0−0

¼ 3

4
ḡCW̃ð3þ cos θÞ s

Λ2
− CφW̃ð1 − cos θÞ s

Λ2

¼ −M0−0þ ¼ −M−0þ0: ðA25Þ

The SM results for the amplitudes agreewithRefs. [38,82].
We convert the set of parameters fḡ; ḡ0; v̄; λg to a set of input
observables16 fGF;mW;mZ;mhg and write out analytically
the cross sections in the c.m. frame for longitudinal and
transverse gauge bosons, averaging over the initial helicities.
We find at leading order in s

σTTTTðsÞ ¼
8

πs
ðGFm2

WÞ2c
�
9 − c2

1 − c2

�

þ 36
ffiffiffi
2

p
c

πs
ðGFm2

WÞðjCW j2 þ jCW̃ j2Þ
�

s
Λ2

�
2

;

ðA26Þ

σLLLLðsÞ ¼
1

2πs
ðGFm2

ZÞ2
�
c
9 − c2

1 − c2
− 2ðcþ 2LcÞ

m2
h

m2
Z
þ
�
m2

h

m2
Z

�
2
�
þ

ffiffiffi
2

p

4πs
ðGFm2

ZÞð2Cφ□ þ CφDÞ
�

s
Λ2

��
ðcþ 2LcÞ − c

m2
h

m2
Z

�

þ c
16πs

�
s
Λ2

�
2

ð2Cφ□ þ CφDÞ2; ðA27Þ

16See, for example, Ref. [83] for the conversion.
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σLTLTðsÞ ¼ σTLTLðsÞ ¼ σTLLTðsÞ ¼ σLTTLðsÞ ¼
8

πs
ðGFmWÞ2

�
c

1 − c2

�

−
21=4

16πs
ðGFm2

WÞ1=2
�

s
Λ2

�
2

cð9 − c2ÞℜeðCWCφW� þ CW̃CφW̃�Þ

þ 3

16πs

�
s
Λ2

�
2
�
cð3þ c2Þ

9
ðjCφW j2 þ jCφW̃ j2Þ þ

ffiffiffi
2

p
cð27þ c2Þ

4
ðGFm2

WÞðjCW j2 þ jCW̃ j2Þ
�
: ðA28Þ

Since cos θ → 0 is not attainable, we have used a cut at the
small angle θcut and integrate over θcut to π − θcut. In
Eqs. (A26)–(A28) we used the abbreviations c≡ cos θcut
and Lc ≡ logð1−c

1þcÞ. Numerically, if θcut ¼ π=18, then
ð1 − c2Þ−1 ≈ 33 and Lc ≈ −5, and therefore cross sections
are dominated by angles close to the beam.

2. Helicity amplitudes for pure transversal W’s
with up to d = 8 operators

One of the important outcomes of our analysis is that the
VBS cross section is strongly affected by the operator
OW ¼ ϵIJKWI

μρWρσ;JWμ;K
σ which enters in the transverse-W

four-point interactions. Since this operator is not affected
by Higgs field redefinitions after EW symmetry breaking,
the inclusion of pure transverseW4 operators is straightfor-
ward. For pure interactions W4 the basis for dimension-
eight operators reads [16,17,48,49]17

Ot0 ¼ ðWI
μνWμν;IÞðWJ

αβW
αβ;JÞ; ðA29Þ

Ot1 ¼ ðWI
ανWμβ;IÞðWJ

μβW
αν;JÞ; ðA30Þ

Ot2 ¼ ðWI
αμWμβ;IÞðWJ

βνW
να;JÞ; ðA31Þ

Ot10 ¼ ðWI
μνW̃μν;IÞðWJ

αβW̃
αβ;JÞ: ðA32Þ

The leading-s, CP-even helicity amplitudes up to 1=Λ4 are
symbolically written as

M ¼ SMþ SM · dim 6þ ðdim 6Þ2 þ SM · dim 8; ðA33Þ

and are found to be

M���� ¼ −
8ḡ2

1 − cos2θ
þ 4ð2Ct1 þ Ct2Þ s

2

Λ4
; ðA34Þ

M�∓�∓ ¼−2ḡ2
1þ cosθ
1− cosθ

−
9

2
jCW j2cos2

�
θ

2

�
ð3− cosθÞ s

2

Λ4

þðcosθþ1Þ2ð2Ct0þCt1þCt2−2Ct10Þ s
2

Λ4
;

ðA35Þ

M��∓∓ ¼ 12ḡCW s
Λ2

−
9

2
ð3 − cos2θÞjCW j2 s

2

Λ4

þ ð1þ cos2θÞð4Ct0 þ 2Ct1 þ Ct2 þ 4Ct10Þ s
2

Λ4

þ 8Ct1 s
2

Λ4
; ðA36Þ

M�∓∓∓ ¼ −6ḡCW s
Λ2

: ðA37Þ

The multiplicities of the above helicity amplitudes into the
transversely polarized cross section σTTTT are 2∶4∶2∶8,
respectively. All other contributions not written explicitly
in Eqs. (A34)–(A37), growing at most like ðsv2=Λ4Þ, are
neglected. It is amusing to note that ðdim 6Þ2 terms do not
involve gauge couplings (as they should) in the broken
phase: they result from the sum of Z and γ tree diagrams
with identical Lorentz structures (see WWZ and WWγ
vertices in Ref. [36]). On the other hand, dimension-eight
leading-s contributions arise from contact terms only.
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