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For the first time we search for the ηc2ð1DÞ in eþe− → γηc2ð1DÞ at ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV

with data samples of 89.5 fb−1, 711 fb−1, and 121.4 fb−1, respectively, accumulated with the Belle detector
at the KEKB asymmetric energy electron-positron collider. No significant ηc2ð1DÞ signal is observed in the
mass range between 3.8 and 3.88 GeV=c2. The upper limit at 90% confidence level on the product of the
Born cross section for eþe− → γηc2ð1DÞ and branching fraction for ηc2ð1DÞ → γhcð1PÞ is determined to
be σðeþe− → γηc2ð1DÞÞBðηc2ð1DÞ → γhcð1PÞÞ < 4.9 fb at

ffiffiffi

s
p

near 10.6 GeV.

DOI: 10.1103/PhysRevD.104.012012

The contemporary interest into heavy quarkonia largely
stems from the fact that many experimental results are
poorly understood on the theoretical side. Discoveries of
new states or new processes, and improved precisions for
known states in experiments help to verify various QCD
models. Among the charmonium states, a D-wave char-
monium state ψ2ð1DÞ decaying into γχc1 was observed in B
decays and eþe− annihilations by Belle [1] and BESIII
[2], respectively. The mass of ψ2ð1DÞ is ð3822.2�
1.2Þ MeV=c2 [1,2], and the upper limit at 90% confidence
level (C.L.) on the width is 16 MeV [2]. Using proton-
proton collision data, LHCb reported the observation
of Xð3842Þ in D0D̄0 and DþD− mass spectra [3]. The
observed mass and width are ð3842.71� 0.16�
0.12Þ MeV=c2 and ð2.79� 0.51� 0.35Þ MeV, which sug-
gest the interpretation of the new state as the spin-3
charmonium ψ3ð1DÞ state [3]. Only for the spin-singlet
low-lying D-wave state ηc2ð1DÞ there has been no exper-
imental clue yet.
The mass of ηc2ð1DÞ is predicted to be in the range of

3.80 to 3.88 GeV=c2 by various potential models [4–10],
which lies between the DD̄ and D�D̄ thresholds. Lattice
calculations [11,12] find that the ηc2ð1DÞ and ψ2ð1DÞ
masses are close to each other. Considering the hyperfine
splitting of the 1D charmonium states is small, we can
also deduce the mass of ηc2ð1DÞ using the known masses
of the 13DJ states: mηc2ð1DÞ ≈ ð3mψð3770Þ þ 5mψ2ð1DÞ þ
7mXð3842ÞÞ=15 ≈ 3822 MeV=c2 [13]. Quite different from

ψð3770Þ, the decay of ηc2ð1DÞ into DD̄ is forbidden due to
the conservation of parity. Thus ηc2ð1DÞ is a narrow
resonance, and its main decay modes are considered to be
hadronic decays and electromagnetic E1 transitions. The
branching fraction of ηc2ð1DÞ → γhcð1PÞ is larger than
50% over a large number of different predictions [7,9,14,15].
The first search for the ηc2ð1DÞ was carried out in B

decays by Belle based on the 711 fb−1 data sample collected
on the ϒð4SÞ resonance [13]. The decays of Bþ → ηc2
ð1DÞKþ, B0 → ηc2ð1DÞK0

S, B0 → ηc2ð1DÞπ−Kþ, and
Bþ → ηc2ð1DÞπþK0

S with ηc2ð1DÞ → γhcð1PÞ were exten-
sively investigated. No significant ηc2ð1DÞ signals were
observed. The upper limits at 90% C.L. on the product of
the branching fractions (BðB → ηc2ð1DÞ þ hÞBðηc2
ð1DÞ → γhcð1PÞÞ; h ¼ K or Kπ) are at the level of 10−5

to 10−4 [13]. Searches for conventional charmonia in the
reactions eþe− → γχcJ (J ¼ 0, 1, 2) and γηcð1SÞ have been
performed by Belle at center-of-mass energies (C.M.) 10.52,
10.58, and 10.867 GeV, respectively [16]. A significant γχc1
signal was observed for the first time at

ffiffiffi

s
p ¼ 10.58 GeV

with a significance of 5.1σ including systematic uncertain-
ties. The reported Born cross section is relatively large;
σðeþe− → γχc1Þ ¼ 17.3þ4.2

−3.9ðstat:Þ � 1.7ðsyst:Þ fb [16].
This may indicate a large production rate for other conven-
tional charmonia, i.e., ηc2ð1DÞ, in eþe− → γηc2ð1DÞ. From
theory, the cross section of eþe− → γηc2ð1DÞ at

ffiffiffi

s
p ¼

10.58 GeV is calculated to be 1.5 fb within the framework of
nonrelativistic QCD factorization formalism [17].
In this paper, we search for the ηc2ð1DÞ in eþe− →

γηc2ð1DÞ at
ffiffiffi

s
p

∼ 10.6 GeV with a data sample of
921.9 fb−1 at Belle. We search for ηc2ð1DÞ decaying into
γhcð1PÞ, and hcð1PÞ decaying into γηcð1SÞ. The ηcð1SÞ
candidates are reconstructed via five hadronic decays of
K0

Sð→ πþπ−ÞKþπ−, πþπ−KþK−, 2ðπþπ−Þ, 2ðKþK−Þ, and

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

SEARCH FOR THE ηC2ð1DÞ IN … PHYS. REV. D 104, 012012 (2021)

012012-3

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.012012&domain=pdf&date_stamp=2021-07-27
https://doi.org/10.1103/PhysRevD.104.012012
https://doi.org/10.1103/PhysRevD.104.012012
https://doi.org/10.1103/PhysRevD.104.012012
https://doi.org/10.1103/PhysRevD.104.012012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


3ðπþπ−Þ. For ηcð1SÞ → K0
SK

þπ−, the charge-conjugated
mode is implied.
The data used in this analysis correspond to 89.5 fb−1 of

integrated luminosity at 10.52 GeV, 711 fb−1 at 10.58 GeV,
and 121.4 fb−1 at 10.867 GeV, respectively, which were
recorded by the Belle detector [18,19] at the KEKB
asymmetric-energy eþe− collider [20,21]. The Belle detec-
tor was a large solid-angle magnetic spectrometer that
consists of a silicon vertex detector, a 50-layer central drift
chamber (CDC), an array of aerogel threshold Cherenkov
counters (ACC), a barrel-like arrangement of time-of-flight
scintillation counters (TOF), and an electromagnetic calo-
rimeter comprised of CsI(TI) crystals (ECL) located inside
a superconducting solenoid coil that provides a 1.5T
magnetic field. The ECL is divided into three regions
spanning θ, the angle of inclination in the laboratory frame
with respect to the direction opposite to the eþ beam. The
ECL backward end cap, barrel, and forward end cap cover
ranges of −0.91 < cos θ < −0.65, −0.63 < cos θ < 0.85,
and 0.85 < cos θ < 0.98, respectively. An iron flux-return
yoke instrumented with resistive plate chambers located
outside the coil was used to detect K0

L mesons and
identify muons.
Monte Carlo (MC) samples are generated with EVTGEN

[22] to determine detection efficiency and optimize event
selection criteria. The simulated events are processed with a
detector simulation based on GEANT3 [23]. No definite
model exists for the distribution of polar angle θγ in the
eþe− C.M. system for eþe− → γηc2ð1DÞ because the
combination of tensor-meson production and γ emission
is theoretically complicated and requires experimental
input. So we model the production as evenly distribu
ted in phase space and account for differences from
ð1� cos2 θγÞ distributions as systematic uncertainties.
Correction of initial state radiation (ISR) is taken into
account in the studied mode, where we assume the Born
cross section σðeþe− → γηc2ð1DÞÞ ∼ 1=sn (n ¼ 2) in the
calculation of the radiative correction factor, where s is the
eþe− C.M. energy squared. Changing the s dependence of
the cross section from n ¼ 2 to n ¼ 1 or n ¼ 4, the
maximum difference of the radiative correction factor is
considered as the systematic uncertainty. Generic MC

samples, i.e., B ¼ Bþ, B0, or Bð�Þ
s decays and eþe− →

qq̄ (q ¼ u, d, s, c) at
ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV,

normalized to the same integrated luminosity as real data,
are used to check for possible peaking backgrounds [24].
Except for the charged tracks from the relatively long-

lived K0
S decaying into πþπ−, impact parameters with

respect to the interaction point are required to be less than
0.5 cm perpendicular to and 2 cm along the beam axis,
respectively. For eþe− → γηc2ð1DÞ, we require the numbers
of charged tracks, Ntrk, to be exactly 6 for ηcð1SÞ →
3ðπþπ−Þ and 4 for ηcð1SÞ → K0

SK
þπ−=πþπ−KþK−

=2ðπþπ−Þ=2ðKþK−Þ, also with a zero net charge. For the

particle identification (PID) of a well-reconstructed charged
track, information from different detector subsystems,
including specific ionization in the CDC, time measurement
in the TOF, and the response of the ACC, is combined to
form a likelihood Li [25] for particle species i. Tracks with
RK ¼ LK=ðLK þ LπÞ < 0.4 are identified as pions with an
efficiency of 93%, while 6% of kaons are misidentified as
pions; tracks with RK > 0.6 are identified as kaons with an
efficiency of 94%, while 7% of pions are misidentified
as kaons.
Using a multivariate analysis with a neural network [26]

based on two sets of input variables [27], a K0
S candidate is

reconstructed from a pair of oppositely charged tracks that
are treated as pions. The invariant mass of the K0

S
candidates is required to be within 10 MeV=c2 (∼2.5σ)
of the nominal K0

S mass [28]. The ηcð1SÞ candidates are
required to satisfy jMðηcð1SÞÞ −mηcð1SÞj < 60 MeV=c2

(see below), where mηcð1SÞ is the nominal mass of
ηcð1SÞ [28].
An ECL cluster is treated as a photon candidate if it is

isolated from the projected path of charged tracks. The
energy of photons is required to be larger than 50 MeV in
the barrel and larger than 100 MeV in the end caps. The
ratio of energy deposited in the 3 × 3 array of crystals, with
the center being the one with the largest energy deposit, to
that in the 5 × 5 array sharing the same center is required to
be greater than 0.8. The number of photons in an event is
required to be at least 3. The most energetic photon in the
C.M. frame (γmax) is regarded as the primary photon in the
process eþe− → γηc2ð1DÞ. Among the remaining photons,
all combinations of two photons are considered for the
decay chain of ηc2ð1DÞ. We call the photon that appears
directly from ηc2ð1DÞ decay as γ1, and the one from hcð1PÞ
as γ2. We require jMðηcð1SÞγ2Þ −mhcð1PÞj < 30 MeV=c2

(∼2.5σ) and 3.7 < Mðηcð1SÞγ1γ2Þ < 4.0 GeV=c2, where
mhcð1PÞ is the nominal mass of hcð1PÞ [28]. Note that we do
not distinguish γ1 and γ2, i.e., rank them by their energies,
to increase efficiency and avoid possible bias. In this case,
the incorrect attribution rate of γ1ηcð1SÞ=γ2ηcð1SÞ for
hcð1PÞ signal is only 0.8% according to signal MC
simulations after applying a five-constraint (5C) kinematic
fit (see below) for final states from ηcð1SÞ, γmax, γ1, and γ2.
In both signal MC and the data, no events have multiple
entries. Therefore, the entire decay chain can be written as
eþe− → γmaxηc2ð1DÞ, ηc2ð1DÞ → γ1hcð1PÞ, hcð1PÞ →
γ2ηcð1SÞ, ηcð1SÞ → hadrons.
A 5C kinematic fit constraining the four-momenta of the

final-state particles to the initial eþe− collision system and
the invariant mass of γ2ηcð1SÞ to the hcð1PÞ nominal mass
[28] is performed; the fit has 5 degrees of freedom. The fit
is required to satisfy χ25C < 20 to improve the resolutions of
the momenta of charged tracks and the energies of photons,
and to suppress backgrounds with more than three photons,
such as ISR processes. The requirement of χ25C is optimized
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by maximizing the Punzi parameter S=ð3=2þ ffiffiffiffi

B
p Þ [29],

where S is the number of signal events in signal MC
samples assuming σðeþe− → γηc2ð1DÞÞ ¼ 1.5 fb [17] and
Bðηc2ð1DÞ → γhcð1PÞÞ ¼ 0.5 [7,9,14,15], and B is the
number of background events from hcð1PÞ mass sidebands
in data (see below).
We veto γ from π0 and η having jMðγiγjÞ −mπ0 j <

15 MeV=c2 and jMðγiγjÞ −mηj < 30 MeV=c2, where γi is
either γ1 or γ2 and γj is any photon in the event other than
γi. These veto ranges correspond to about 2.5σ in reso-
lution. The signal efficiencies are decreased by 1.5% and
10.6% after vetoing π0 and η backgrounds.
After applying the above requirements, the invariant

mass distribution for the selected ηcð1SÞ candidates from
signal MC samples is shown in Fig. 1(a). The ηcð1SÞ signal
shape is described by the convolution of a Breit-Wigner
(BW) with a Gaussian function. The fitted result is shown
by the solid curve in Fig. 1(a). Here, we require ηcð1SÞ
candidates to satisfy jMðηcð1SÞÞ −mηcð1SÞj < 60 MeV=c2,
where mηcð1SÞ is the nominal mass of ηcð1SÞ [28]. In this
region, more than 90% signal events are retained. This
relatively tight mass requirement is applied to avoid
possible ISR backgrounds with J=ψ candidates.
The invariant mass spectrum, before the application of

the 5C kinematic fit, for hcð1PÞ candidates from signal MC
samples is shown in Fig. 1(b). We fit the Mðηcð1SÞγ2Þ
distribution by modeling the hcð1PÞ signal with the
convolution of a crystal ball (CB) [30] with a Gaussian
function due to the asymmetric energy resolution of γ2. The
hcð1PÞ signal is required to satisfy jMðηcð1SÞγ2Þ −
mhcð1PÞj < 30 MeV=c2 (∼2.5σ), wheremhcð1PÞ is the nomi-
nal mass of hcð1PÞ [28].
Figure 1(c) shows the invariant mass spectrum for

ηc2ð1DÞ candidates in MC simulated eþe− → γηc2ð1DÞ
samples at

ffiffiffi

s
p ¼ 10.58 GeV with the ηc2ð1DÞ mass fixed

at 3.82 GeV=c2 and the width fixed at 0 MeV=c2. The
ηc2ð1DÞ signal shape is described by the convolution of a
CB with a Gaussian function. Based on the fitted results,
we obtain the efficiencies for each ηcð1SÞ decay mode (εi).
Further, one can obtain the value of εi × Bi for each mode,
where Bi is the product of all secondary branching fractions

[28]. The values of ΣiεiBi at
ffiffiffi

s
p ¼ 10.52, 10.58, and

10.867 GeV are obtained to be ð20.4� 2.0Þ × 10−4,
ð20.3� 2.0Þ × 10−4, and ð20.2� 2.0Þ × 10−4, respec-
tively, which are used to calculate the final Born cross
section for eþe− → γηc2ð1DÞ. The value of ΣiεiBi is
independent of the mass of ηc2ð1DÞ in our studied region
of ½3.80; 3.88� GeV=c2.
After applying all the above requirements, the invariant

mass distributions for ηcð1SÞ and hcð1PÞ candidates from
a combined

ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV data

sample are shown in Fig. 2. No clear ηcð1SÞ and hcð1PÞ
signals can be seen. A few events are around the J=ψ mass
point [28], where three candidates are expected from ISR
production of ψð2SÞ, with ψð2SÞ → γχc1ð→ γJ=ψÞ. The
red dashed curves show the required signal regions as
above. The blue dashed curves in Fig. 2(b) indicate the
hcð1PÞ mass sidebands on each side of the signal region.
Each sideband is separated from the signal region with a
30 MeV=c2 gap and has the same width as the signal
region. To determine the normalization factor of hcð1PÞ
mass sidebands, a second-order polynomial function is
used to describe the γ2ηcð1SÞ invariant mass spectrum, as
shown by the blue solid curve in Fig. 2(b).
The invariant mass distributions for ηc2ð1DÞ candidates

from
ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV data samples are

shown in Fig. 3. No clear signals can be seen, and only a
few candidates survived in the γ1hcð1PÞ mass spectra. The
green cross-hatched histograms are from the normalized
hcð1PÞ mass sidebands.
Since the number of selected signal candidate events is

small, we obtain the 90% C.L. upper limit of the signal yield
(NUL) at each ηc2ð1DÞ mass point by using the frequentist
approach [31] implemented in the POLE (Poissonian limit
estimator) program [32], where each mass region is selected
to contain 95% of the signal according to MC simulations,
the number of signal candidate events is counted directly,
and the number of expected background events is estimated
from the normalized hcð1PÞ mass sidebands. The scan mass
region is from 3.8 to 3.88 GeV=c2 in steps of 4 MeV=c2,
which corresponds to the half mass resolution of
Mðγ1hcð1PÞÞ. The systematic uncertainties discussed below
have been taken into account in the POLE program [32].
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FIG. 1. The invariant mass distributions for the selected (a) ηcð1SÞ, (b) hcð1PÞ, and (c) ηc2ð1DÞ candidates from signal MC samples.
The blue solid curves show the fitted results. The red dashed curves show the required signal regions.
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The upper limit on the product of the Born cross section
for eþe− → γηc2ð1DÞ and branching fraction for
ηc2ð1DÞ → γhcð1PÞ is calculated by

σULðeþe− → γηc2ð1DÞÞBðηc2ð1DÞ → γhcð1PÞÞ

¼ NUL × j1 − Πj2
L × ð1þ δÞISR × ΣiBiεi

; ð1Þ

where NUL is the upper limit on the signal events in data,
j1 − Πj2 is the vacuum polarization factor [33,34], L is the
integrated luminosity, ð1þ δÞISR is the radiative correction
factor [35], and ΣiBiεi is the sum over decay modes of the
product of branching fractions and reconstruction efficien-
cies. The values of these variables (except NUL) are
summarized in Table I. The values of σULðeþe− →
γηc2ð1DÞÞBðηc2ð1DÞ → γhcð1PÞÞ at

ffiffiffi

s
p ¼ 10.52, 10.58,

10.867 GeV, and from the combined data sample are shown

in Fig. 4. The upper limit at 90% C.L. on the product of the
Born cross section for eþe− → γηc2ð1DÞ and branching
fraction for ηc2ð1DÞ → γhcð1PÞ is 4.9 fb at

ffiffiffi

s
p

near
10.6 GeV.
There are several sources of systematic uncertainty in

the Born cross section measurements, including the
detection efficiency, the uncertainty on the estimated
signal efficiency due to limited MC statistics, the distri-
bution of polar angle θγ for eþe− → γηc2ð1DÞ, intermedi-
ate state branching fractions, the energy dependence of the
cross sections, and the integrated luminosity, which are
listed in Table II. The systematic uncertainty in detection
efficiency is a final-state-dependent combined uncertainty
for all the different types of particles detected, includ
ing tracking efficiency, PID, K0

S selection, and photon
reconstruction.
Based on a study of D�þ → πþD0; D0 → K0

Sπ
þπ−, the

uncertainty in tracking efficiency is taken to be 0.35% per
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FIG. 3. The invariant mass spectra for ηc2ð1DÞ candidates from ffiffiffi

s
p ¼ ðaÞ 10.52, (b) 10.58, and (c) 10.867 GeV data samples. The

green cross-hatched histograms are from the normalized hcð1PÞ mass sidebands.

TABLE I. The values used to determine the Born cross sections for eþe− → γηc2ð1DÞ at ffiffiffi

s
p ¼ 10.52, 10.58, 10.867 GeV, and from

the combined data sample, respectively.
ffiffiffi

s
p ¼ 10.52 GeV 10.58 GeV 10.867 GeV Combined

j1 − Πj2 0.931 0.930 0.929 0.930
L (fb) 89.5 711 121.4 921.9
ð1þ δÞISR 0.679 0.679 0.677 0.679
ΣiBiεi ð20.4� 2.0Þ × 10−4 ð20.3� 2.0Þ × 10−4 ð20.2� 2.0Þ × 10−4 ð20.3� 2.0Þ × 10−4

)2(1S)) (GeV/c
c

ηM(
2.8 2.9 3 3.1 3.2

2
E

ve
nt

s/
5 

M
eV

/c

0

2

4

6

8

10
(a)

)2(1S)) (GeV/c
c

η
2

γM(
3.4 3.45 3.5 3.55 3.6 3.65

2
E

ve
nt

s/
5 

M
eV

/c

0

5

10
(b)

FIG. 2. The invariant mass distributions for (a) ηcð1SÞ and (b) hcð1PÞ candidates from a combined
ffiffiffi

s
p ¼ 10.52, 10.58, and

10.867 GeV data sample. The red dashed curves show the required signal regions. The blue solid curve in (b) shows the fitted result. The
blue dashed curves show the defined hcð1PÞ mass sidebands.
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track. The uncertainties in PID for charged kaons and pions
are determined to be 1.1% and 1.0%, respectively, based on a
low-background sample of D�þ decays. The ratio of the
efficiencies in K0

S selection between data andMC simulation
is found to be ð97.9� 0.4� 0.6Þ% in the decay chain of
D�þ → πþD0, D0 → K0

Sπ
þπ−. We take 2.2% as the sys-

tematic uncertainty due to K0
S selection. The uncertainty in

the photon reconstruction is 2.0% per photon, according to a
study of radiative Bhabha events. The above individual
uncertainties from different ηcð1SÞ reconstructed modes are
added linearly, weighted by the product of the detection
efficiency and all secondary branching fractions (εiBi).
Assuming these uncertainties are independent and adding
them in quadrature, the final uncertainty related to the
reconstruction efficiency is 7.0%.
The statistical uncertainty in the determination of

efficiency from signal MC samples is 1.0%. For
eþe− → γηc2ð1DÞ, signal events are generated isotropically
by default. Alternative angular distributions ð1� cos2 θγÞ
are also generated, and the maximum difference in the

detection efficiencybetween the alternatives and the default
sample, 13.7%, is taken as the systematic uncertainty.
Uncertainties from the hcð1PÞ and ηcð1SÞ decay branching
fractionsare taken fromthePDG[28]; the finaluncertainties
on intermediate state branching fractions are summed in
quadrature over all the ηcð1SÞ decaymodesweighted by the
product of thedetectionefficiencyand secondarybranching
fractions (εiBi).
Changing the s dependence of the cross section from

n ¼ 2 to n ¼ 1 or n ¼ 4 [16,36], the differences of the
product of radiative correction factor and efficiency are
very small (< 1%). Thus, this uncertainty is neglected. The
total luminosity is determined to 1.4% precision using
wide-angle Bhabha scattering events. All the uncertainties
are summarized in Table II and, assuming all the sources
are independent, summed in quadrature to give the total
systematic uncertainty.
In summary, we search for eþe− → γηc2ð1DÞ at
ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV. We scan the
Mðγ1hcð1PÞÞ spectrum from 3.8 to 3.88 GeV=c2 in steps
of 4 MeV=c2. No significant ηc2ð1DÞ signals are observed
at any point. The largest upper limit in the mass scans is
regarded as the general upper limit. The upper limit at
90% C.L. on the product of the Born cross section for
eþe− → γηc2ð1DÞ and branching fraction for ηc2ð1DÞ →
γhcð1PÞ is σðeþe− → γηc2ð1DÞÞBðηc2ð1DÞ → γhcð1PÞÞ
< 4.9 fb at

ffiffiffi

s
p

near 10.6 GeV. Taking Bðηc2ð1DÞ →
γhcð1PÞÞ > 50% [7,9,14,15], the value of σðeþe− →
γηc2ð1DÞÞ is smaller than 9.8 fb at 90% C.L. at

ffiffiffi

s
p

near
10.6 GeV, which is consistent with the theoretical prediction
of σðeþe− → γηc2ð1DÞÞ ¼ 1.5 fb [17].

TABLE II. Relative systematic uncertainties (%) of the mea-
surements of the Born cross sections for eþe− → γηc2ð1DÞ at
ffiffiffi

s
p ¼ 10.52, 10.58, and 10.867 GeV, respectively.

Detection efficiency 7.0
MC statistics 1.0
The distribution of θγ 13.7
Branching fractions 9.8
Integrated luminosity 1.4
SUM 18.3
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FIG. 4. The upper limits on the product of the Born cross section for eþe− → γηc2ð1DÞ and branching fraction for ηc2ð1DÞ →
γhcð1PÞ at

ffiffiffi

s
p ¼ ðaÞ 10.52, (b) 10.58, (c) 10.867 GeV, and (d) from the combined data sample with systematic uncertainties included.
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