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We study the operator product expansion of stress tensors (TT OPE) in d > 2 conformal field theories
whose bulk dual is Einstein gravity. Directly from the TT OPE, we obtain, in a certain null-like limit, an
algebraic structure consistent with the Jacobi identity: ½Lm;Ln� ¼ ðm − nÞLmþn þ Cmðm2 − 1Þδmþn;0.
The dimensionless constant C is proportional to the central charge CT . Transverse integrals in the definition
of Lm play a crucial role. We comment on the corresponding limiting procedure and point out a curiosity
related to the central term. A connection between the d > 2 near-lightcone stress-tensor conformal block
and the d ¼ 2W algebra is observed. This note is motivated by the search for a field-theoretic derivation of
d > 2 correlators in strong coupling critical phenomena.
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I. INTRODUCTION

The operator product expansions of stress tensors (TT
OPE) in d ¼ 2 conformal field theory (CFT)

Tðz1ÞTðz2Þ ¼
c
2s4

þ 2

s2
Tðz2Þ þ

1

s
∂z2Tðz2Þ þOð∂2TÞ;

s ¼ z1 − z2 ð1Þ

leads to the Virasoro algebra

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm2 − 1Þδmþn;0;

Lm ¼ 1

2πi

I
dzzmþ1TðzÞ: ð2Þ

The Virasoro algebra is omnipresent in two-dimensional
critical phenomena [1] and has enormous implications; in
particular, the algebra provides a nonperturbative derivation
of d ¼ 2 conformal correlators. In higher dimensions,
the general TT OPE is contaminated by many model-
dependent details. However, we ask the question; can one
generalize the derivation (1)–(2) to d > 2 CFT in certain
physical limits?
Over 27 years ago, Osborn and Petkos [2] computed the

stress-tensor contribution to the d > 2 TT OPE, but we
have not found any computation based on such an explicit
TT OPE. A reason, presumably, is that the TT OPE is
complicated. Given the recent developments of gauge/
gravity correspondence and d > 2 strongly coupled field

theories, we find it necessary to revisit the d > 2 TT OPE
structure. In this paper, we adopt the following two
simplifying limits to reduce the complexity of the TT
OPE: (i) Infinitely large higher-spin gap, and (ii) Null/
lightcone-like limit.1

As shown in [3–5], the gap Δgap to the lightest spin > 2
single-trace primary controls the higher-order corrections
to Einstein gravity; the limit Δgap → ∞ then selects CFTs
with an Einstein gravity bulk dual. We will focus on stress-
tensor contribution to the TT OPE and suppress other
primary operators.2 On the other hand, the lightcone limit
has been adopted in the recent computation of the multi-
stress-tensor OPE data in d > 2 holographic CFTs [7–19].
The near-lightcone correlator at large central charge CT is
independent of higher-curvature terms in the purely gravi-
tational action [7]; however, the correlator depends on
certain nonminimal coupling bulk interactions which are
suppressed at an infinite gap [9]. These results suggest that
the simplest starting point is to impose the limits (i), and
(ii) on the TT OPE.3

In general, the results depend on the order of limits
(i.e., limiting procedure). A related motivation of this work
is to help identify a lightcone-like limiting procedure that
may be implemented to compute multi-stress-tensor OPE
coefficients and near-lightcone correlators in d > 2 CFTs

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We use “-like” to distinguish our limiting procedure from
similar limits used in the literature: the null-line limit is often
defined by directly setting xþ ¼ x2⊥ ¼ 0 in the Lorentzian sig-
nature, where x� ¼ x0 � x1 and x⊥ denotes transverse directions.

2For instance, the three-point function hTTOi is suppressed as
Δgap → ∞ [6].

3We should also assume the usual large N and large CT limits
but we will keep CT in our expressions.
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from the first principle via a Virasoro-like field-theoretic
approach.
The main result of this work is that we find a structure

similar to (2) in higher dimensions. Intuitively, one may
expect that a Virasoro-like structure arises because the null-
like limit brings stress tensors close to a line, a picture
reminiscent of the two-dimensional case where
T ¼ − π

2
Tz̄ z̄ðzÞ, T̄ ¼ − π

2
Tzzðz̄Þ are holomorphic and anti-

holomorphic functions, respectively. Note we are not
introducing a physical line defect.
This paper is organized as follows. In Sec. II, we discuss

the stress-tensor OPE structure. We focus on d ¼ 4 for
concreteness and expect that our results generalize to other
dimensions. In Sec. III, we consider a null-line limit and
obtain a Virasoro-like commutator via the stress-tensor
OPE. A d ¼ 4 single-stress-tensor-exchange derivation
without explicitly using an algebra is discussed in
Sec. IV, where we point out a curiosity related to the
central term. We observe a connection between the d > 2
lightcone stress-tensor conformal block and the central-
term of the d ¼ 2 W algebra.

II. STRESS-TENSOR OPE

Our starting point is the stress-tensor contribution to the
d ¼ 4 TT OPE [2],

Tμνðx1ÞTσρðx2Þ ¼ CT
Iμν;σρðsÞ

s8
þ Âμνσρ

αβðsÞTαβðx2Þ
þ Bμνσρ

αβλðsÞ∂λTαβðx2Þ þOð∂2TÞ; ð3Þ

where s ¼ x1 − x2. The first term has the familiar form

Iμν;σρðsÞ ¼ 1

2
ðIμσðsÞIνρðsÞ þ IμρðsÞIνσðsÞÞ − 1

4
δμνδσρ;

IμσðsÞ ¼ δμσ − 2
sμsσ

s2
: ð4Þ

The structures of Âμνσραβ and Bμνσραβλ are cumbersome so
we shall not list them here; see [2] for detailed expressions.
As noted in [2], there are three undetermined coefficients in
the TT OPE, denoted as a, b, c. The central charge CT is
given by4

CT ¼ π2

3
ð14a − 2b − 5cÞ: ð5Þ

In the lightcone limit, the relevant contribution is the
lightcone component of the stress tensor, Tþþ. We will
mostly work in the Euclidean space and adopt the line

element ds2 ¼ dzdz̄þP
i¼1;2ðdxðiÞ⊥ Þ2 where z, z̄, the

Euclidean analogue of the lightcone coordinates, are

complex coordinates. We will then focus on the
TzzTzz OPE.
The TT OPE simplifies significantly when one focuses

on the Tzz component. Using (3), we obtain

Tzzðx1ÞTzzðx2Þ ¼ CT
Izz;zzðsÞ

s8
þ Âzzzz

zzðsÞTzzðx2Þ
þ Bzzzz

zzλðsÞ∂λTzzðx2Þ þOð∂2TÞ ð6Þ

where I zz;zz ¼ 4ðszÞ4
s4 ,

Âzzzz
zz¼

4ðszÞ2
CTs10

ðð2bþcÞðs⊥Þ4

−2szsz̄ðð8a−b−3cÞðs⊥Þ2þð6a−b−2cÞszsz̄ÞÞ;
ð7Þ

Bzzzz
zzz ¼

sz̄

4
Âzzzz

zz; ð8Þ

Bzzzz
zz⊥ ¼ s⊥

2
Âzzzz

zz; ð9Þ

Bzzzz
zzz̄ ¼

ðszÞ3
9CTs10

ðð64aþ 18b − 11cÞðs⊥Þ4

− 2szsz̄ð4ð3a − b − 2cÞðs⊥Þ2
þ ð26a − 4b − 9cÞszsz̄ÞÞ: ð10Þ

We will argue that higher-order pieces, Oð∂2TÞ, are
irrelevant when imposing the null-like limit considered
in Sec. III. Observe that, from (7), ð8a − b − 3cÞ þ
ð6a − b − 2cÞ ¼ 3

π2
CT . While this combination is interest-

ing, we here consider a large N, large-gap condition which
places strong constraints on the flux parameters “t2” and
“t4" of the energy flux escaping to null infinity [20–22],

t2 ¼
30ð13aþ 4b − 3cÞ
ð14a − 2b − 5cÞ ¼ 0;

t4 ¼
−15ð81aþ 32b − 20cÞ

2ð14a − 2b − 5cÞ ¼ 0: ð11Þ

It isworthmentioning that two trace-anomaly central charges
become the same under these conditions. By imposing t2 ¼
t4 ¼ 0 without first requiring a strictly infinite CT , we can
reduce three parameters to one parameter.

III. STRESS-TENSOR OPE NEAR A LINE
AND A VIRASORO-LIKE COMMUTATOR

Consider the following operator in d ¼ 4,

Lm ¼ κ

2πi

I
dz̄z̄mþ1

Z
d2x⊥Tzzðz; z̄; xð1Þ⊥ ; xð2Þ⊥ Þ;

where
Z

d2x⊥ ¼
Z

l

0

dxð1Þ⊥
Z

l

0

dxð2Þ⊥ ð12Þ4The parameter c here should not be confused with the central
charge in two dimensions where CT ¼ c

2π2
.
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in the null-like limit z → 0, l → 0.5 We will determine the
overall normalization factor κ later. The interpretation of
the small l limit is that we consider the stress-
tensor contribution near a two-dimensional plane. We
are interested in computing the commutator ½Lm;Ln�.
The transverse integrals are crucial, as we will see, for
extracting a central extension consistent with a Witt-like
algebra.6

Let us first consider the c-number term which is
controlled by the stress-tensor two-point function. After
performing the transverse integrations, we consider a small
sz expansion,

lim
sz→δ

Z
d4x⊥

CTI zz;zzðsÞ
s8

¼ 4πCT

5ðsz̄Þ5
l2

δ
−

7πCT

16ðsz̄Þ9=2
lffiffiffi
δ

p þ CT

5ðsz̄Þ4

þð356þ315πÞCT

14400

δ4

l8
þ���: ð13Þ

We would like to extract the cutoff-independent piece. We
do so by next imposing a l → 0 limit such that the first two
terms are suppressed. The last piece of (13) and higher-
order terms, although divergent as l → 0, do not have a z̄
pole and thus do not contribute to the commutator. The CT

ðsz̄Þ4
term shares the same form as the c-number term in the
d ¼ 2 TT OPE (1). The transverse integrals compensate
for the additional dimensions of the d > 2 TT OPE.
This c-number term derivation does not require a
large-gap condition. The Cauchy’s integral formula
now leads to7

½Lm;Ln�jCT
¼

�
κ

2πi

�
2
I
Cð0Þ

dz̄2z̄
nþ1
2

I
Cðz̄2Þ

dz̄1z̄
mþ1
1

CT

5ðsz̄Þ4

¼ κ2
CT

30
mðm2 − 1Þδmþn;0: ð14Þ

We next turn to the operator part of the TT OPE, keeping
explicit a, b, c parameters and imposing the conditions (11)
at the end. We evaluate

lim
sz→δ

Z
d2ðx1Þ⊥ðÂzzzz

zzðx1 − x2ÞTzzðx2ÞÞ

¼ fða; b; cÞT
zzðx2Þ
πðsz̄Þ2 þOðδÞ ð15Þ

where fða; b; cÞ ¼ −52aþ10bþ19c
14a−2b−5c . The leading-order term is

cutoff-independent and only depends on ðx2Þ⊥ through the
stress tensor. To take the small sz limit, we may assume
Tzzðx2Þ is a suitable test function having a finite contribu-
tion only near y2 ¼ z2 ¼ 0, and then perform all the
transverse integrations before imposing the small sz limit.
But we find it simpler, as we did above, to take sz → δ right
after performing the integrations over the first set of
transverse coordinates ðx1Þ⊥.8 It is now straightforward
to complete the rest of the integrations,

½Lm;Ln�jA-term ¼
�

κ

2πi

�
2 fða; b; cÞ

π

I
Cð0Þ

dz̄2z̄
nþ1
2

I
Cðz̄2Þ

dz̄1

× z̄mþ1
1

Z
d2ðx2Þ⊥

Tzzðx2Þ
ðsz̄Þ2

¼ κfða; b; cÞ
π

ðmþ 1ÞLmþn: ð16Þ

Next, we have

lim
sz→δ

Z
d2ðx1Þ⊥ðBzzzz

zzzðsÞ∂zTzzðx2ÞÞ

¼ fða; b; cÞ ∂ z̄Tzzðx2Þ
2πsz̄

þOðδÞ; ð17Þ

lim
sz→δ

Z
d2ðx1Þ⊥ðBzzzz

zz⊥ðsÞ∂⊥Tzzðx2ÞÞ ¼ OðδÞ: ð18Þ

Since we only focus on the Tzz component in the null-like
limit and effectively turn off other components of the stress
tensor, the conservation of the stress tensor implies that we
also drop ∂zTzz. Observe that the structures (including the
relative coefficients) of (15) and (17), are the same as the
two-dimensional case (1). From (17), we get

½Lm;Ln�jB-term ¼ −
κfða; b; cÞ

2π
ðmþ nþ 2ÞLmþn: ð19Þ

Similar to the corresponding d ¼ 2 computation, we
have performed an integration by parts to evaluate the
∂ z̄Tzz term.
We will not include the higher-order corrections Oð∂2TÞ

in the TT OPE, but, based on the pattern from (15)

5One may perform a Wick-rotation to Lorentzian space and
impose the lightcone limit, and then Wick-rotate back to the
Euclidean space to carry out the z̄ integral via the residue
theorem. One may also formally impose a small z limit directly
in Euclidean space, which is what we will do here. For two stress
tensors, we take a small sz. A similar analysis applies to the
Tz̄ z̄Tz̄ z̄ OPE if one instead chooses a small sz̄ limit.

6This construction is essentially the same as the mode operator
introduced in [23], but in that work the author adopts a different
limiting procedure. See also [24–27] for related discussions.

7In general d, we find

½Lm;Ln�jCT
¼ ð−1Þdκ2 4CT

Γðdþ 2Þmðm2 − 1Þδmþn;0:

8In the process of simplifying (15), we formally assume l >
ðx2Þ⊥ > 0 to adopt the identity tan−1ðXÞ þ tan−1ð1=XÞ ¼ π=2
with X > 0. This, strictly speaking, means the end points of the
ðx2Þ⊥ integrals should be removed.
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and (17), it seems reasonable to assume that the higher-
order terms do not have a relevant pole in the null-like limit.
Combining (19), (16), and (14), the result is

½Lm;Ln� ¼ ðm − nÞLmþn þ κ2
CT

30
mðm2 − 1Þδmþn;0: ð20Þ

where κ ¼ 2π
fða;b;cÞ.

We choose a normalization κ such that the noncentral
term has a simple coefficient. If we now impose the
conditions listed in (11), we find the normalization factor
to be κ ¼ − 90π

181
.9

To summarize, we have described a null-line-like limit-
ing procedure that allows us to extract an algebraic
structure from the TT OPE. The result (20) is strikingly
similar to the two-dimensional Virasoro algebra. We do not
use holographic duality here, but it would be nice to find a
potential connection to the AdS=CFT computation dis-
cussed some time ago [28,29] where a higher-dimensional
generalization to the Brown-Henneaux symmetry [30] was
identified in a certain infinite momentum frame. Most
likely, whether or not there is a Virosoro-like structure at
infinity depends on boundary conditions.10

It would certainly be of great interest to extend the two-
dimensional CFT analysis to higher dimensions in the null/
lightcone-like limit, where one expects to find relatively
robust structures. By first focusing on a special class of
higher-dimensional CFTs with an Einstein gravity dual, we
would like to know if there is an effective algebraic
derivation of the multi-stress-tensor OPE coefficients and
conformal correlators. Considering perturbative corrections
due to a large but finite higher-spin gap could be interesting
as well.

IV. A d = 4 SINGLE-STRESS-TENSOR-EXCHANGE
DERIVATION

We conclude this paper by presenting some observations,
which hopefully shed light on more general cases. In the
following, we point out a simple derivation of the d ¼ 4
near-lightcone conformal scalar correlator via a mode
summation.11 This derivation does not explicitly rely on

an algebra. In fact, as we will see, this derivation presents a
central-term curiosity.
The scalar four-point conformal correlator can be written

in terms of the conformal block decomposition [31],

hOHð∞ÞOHð1ÞOLðz; z̄ÞOLð0Þi

¼
X
ΔT ;J

cOPEðΔT; JÞ
Bðz; z̄; τ; JÞ
ðzz̄ÞΔL

ð21Þ

where the twist of an operator is its dimension minus its
spin, τ ¼ ΔT − J. We formally nameOH the “heavy" scalar
and OL the “light” scalar although the heavy-light limit
[i.e.,ΔH, CT → ∞withΔH=CT fixed andΔL ∼Oð1Þ] does
not play a special role in the single-stress-tensor-exchange
computation. We adopt this notation as an example which is
useful to compare with the literature that discusses multi-
stress-tensor contributions to the heavy-light correlator.
The Ward identity fixes the stress-tensor OPE coefficient to
be cOPEð4; 2Þ ¼ ΔHΔL

9π4CT
in the convention of (3). The con-

formal block is12

Bðz;z̄;τ;JÞ¼ zz̄
z− z̄

�
z
τþ2J
2 z̄

τ−2
2
2F1

�
τþ2J
2

;
τþ2J
2

;τþ2J;z

�

×2F1

�
τ−2

2
;
τ−2

2
;τ−2;z̄

�
−ðz↔ z̄Þ

�
: ð22Þ

In the limit z → 0, the stress-tensor contribution in d ¼ 4
reads13

lim
z→0

ððzz̄ÞΔLhOHð∞ÞOHð1ÞOLðz; z̄ÞOLð0ÞijTÞ

¼ 1

9π4
ΔHΔL

CT
z̄32F1ð3; 3; 6; z̄ÞzþOðz2Þ

¼ 10

3π4
ΔHΔL

CT

3ðz̄ − 2Þz̄ − ð6þ ðz̄ − 6Þz̄Þ lnð1 − z̄Þ
z̄2

z

þOðz2Þ: ð23Þ

The higher-order pieces represent multi-stress-tensor con-
tributions to the correlator.
It is instructive if we temporarily forget about the algebra

and instead adopt the following operator,

L̃m ¼ lim
zT→δ

I
dz̄T
2πi

z̄mþ2
T TzzðzT; z̄T; x⊥ ¼ 0Þ: ð24Þ

Notice we directly set x⊥ ¼ 0 in this definition. The zT → δ
represents the null-line limit for the stress tensor. The
notation “mþ 2” will result in slightly more symmetric
expressions in the following computation. The mode

9Anoverall rescaling of themode operatorLm shouldnot affect a
scalar correlator computation. But one might wonder if the “right”
proportionality constant should instead be κ ¼ − 90π

180
¼ − π

2
. If we

formally adopt free-theory values of a, b, c [2], we notice that
κ ¼ − π

2
for both a fermion and aUð1Þ gauge field, but κ ¼ − 18π

37
for

a scalar. In fact, κ ¼ − π
2
is true only under the condition

4aþ 2b − c ¼ 0, which holds for both a free fermion and a
Uð1Þ gauge field, but a free scalar has 4aþ 2b − c ¼ − 1

9π6
. (In

d ¼ 2, on the other hand, 4aþ 2b − c ¼ 0 for both a free scalar
and a free fermion.)

10I thank Gary Gibbons for related remarks.
11The derivation presented here is simpler than previous work

[23] and we can avoid an arbitrary parameter introduced in that
paper.

12Our convention differs by an overall factor of ð− 1
2
ÞJ from the

convention used in Dolan and Osborn [31].
13One can also choose z̄ → 0 as the lightcone limit.
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operator (24) is essentially the same as the lightray operator
which does not contain transverse integrals [24,26,27,32].
We here use the Euclidean signature with complex coor-
dinates z; z̄. Similar to the d ¼ 2 case, we may expect that
the stress-tensor-exchange contribution can be computed
via the following mode summation,

VT ¼ lim
z→0

X∞
m¼m�

hOHð∞ÞOHð1ÞL̃†
mihL̃mOLðz; z̄ÞOLð0Þi

hOHð∞ÞOHð1ÞiN mhOLðz; z̄ÞOLð0Þi
ð25Þ

where the normalization factor is N m ¼ hL̃mL̃
†
mi. We will

find m� ¼ 3.
Using the three-point function

hTμνðx1ÞOΔðx2ÞOΔðx3Þi ¼
cTOO

x412x
4
13x

2Δ−4
23

�
XμXν

X2
−
δμν

4

�

ð26Þ

with Xμ ¼ xμ12=x
2
12 − xμ13=x

2
13 and cTOO ¼ − 2Δ

3π2
, we first

obtain

lim
zT→δ

lim
z→0

hL̃mOLðz; z̄ÞOLð0Þi
hOLðz; z̄ÞOLð0Þi

¼ −
2ΔL

3π2
lim
zT→δ

lim
z→0

I
Cðz̄Þ

dz̄T
2πi

z̄mþ2
T

z̄3z
z̄3TzTðz̄T − z̄Þ3ðzT − zÞ

¼ −
2ΔL

3π2
lim
zT→δ

lim
z→0

ðm − 1Þðm − 2Þz̄m
2zTðzT − zÞ z

¼ −
ΔL

3π2
ðm − 1Þðm − 2Þz̄m

δ2
z; ð27Þ

where we introduce a short-distance cutoff δ. We shall find
that the final four-point scalar correlator is independent of
the UV cutoff. It is important to adopt a proper order of
limits.
On the other hand, by taking L̃†

m ¼ L̃−m, we find

hOHð∞ÞOHð1ÞL̃†
mi

hOHð∞ÞOHð1Þi
¼ 2ΔH

3π2
lim
zT→δ

I
Cð1Þ

dz̄T
2πi

ðz̄TÞ−mþ2

ðz̄T − 1Þ3ðzT − 1Þ

¼ 2ΔH

3π2
lim
zT→δ

ðm− 1Þðm− 2Þ
2ðzT − 1Þ

¼ −
ΔH

3π2
ðm− 1Þðm− 2Þ: ð28Þ

The normalization factor can be computed using the stress-
tensor two-point function,

N m ¼ hL̃mL̃
†
mi

¼ lim
sz→δ

I
Cð0Þ

dz̄2T
2πi

I
Cðz̄2T Þ

dz̄1T
2πi

× ðz̄1TÞmþ2ðz̄2TÞ−mþ2hTzzðz1T; z̄1TÞTzzðz2T; z̄2TÞi

¼ lim
sz→δ

I
Cð0Þ

dz̄2T
2πi

I
Cðz̄2T Þ

dz̄1T
2πi

4CTðz̄1TÞmþ2ðz̄2TÞ−mþ2

ðz̄1T − z̄2TÞ6ðz1T − z2TÞ2

¼ CT

30

ðmþ 2Þðmþ 1Þmðm − 1Þðm − 2Þ
δ2

: ð29Þ

The UV-cutoff dependencies cancel out in the final mode
summation and we obtain exactly the d ¼ 4 stress-tensor-
exchange structure (23),

VT ¼ 10

3π4
ΔHΔL

CT

X∞
m¼3

ðm − 1Þðm − 2Þz̄m
mðmþ 1Þðmþ 2Þ z

¼ 1

9π4
ΔHΔL

CT
z̄32F1ð3; 3; 6; z̄Þz: ð30Þ

This computation does not require a large gap.
It is peculiar that we are able to reproduce the d ¼ 4

near-lightcone correlator, including the correct OPE coef-
ficient, via a mode summation. The final result is finite and
cutoff independent. Although the above single-stress-tensor
computation does not rely on knowing an algebra, we
would like to ask why such a derivation exists. Recall that,
in two-dimensions, a similar derivation exists because of
the Virasoro symmetry. Given the above d > 2 computa-
tion, one may speculate that a certain symmetry emerges
near the lightcone. An underlining algebra would provide a
precise interpretation of the modes counting in (30). Since
we have extracted a Virasoro-like commutator from the
stress-tensor OPE (20), it seems natural to link the
correlator computation to the algebra.
However, we find a curiosity related to the central term,

or more generally, to the limiting procedure. In the above
correlator computation, we emphasize that we take
x⊥ → 0 before imposing z → 0.14 The resulting “central”
term has the following m-dependence (in the notation of
L̃m ∼

H
dz̄z̄mþ2T),

TypeA∶ CTðmþ2Þðmþ1Þmðm−1Þðm−2Þδmþn;0: ð31Þ

Such an m-dependence is quite different from the central
term in the Virasoro-like commutator, which has the
structure,

TypeB∶ CTðmþ 1Þmðm − 1Þδmþn;0: ð32Þ

14Using this order of limits, one can include transverse
integrals but the correlator result is unchanged.
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As shown above, in this case, we take z → 0 before
imposing x⊥ → 0. The Type B central term has the familiar
form fixed by the Jacobi identity, but the correlator
derivation suggests that the Type A structure plays a
nontrivial role in recovering the scalar correlator. The
Type A structure, however, is incompatible with the Witt
algebra.
Ideally, we would like to also compute ½L̃m; L̃n� via the

d ¼ 4 TT OPE, but we find that the commutator compu-
tation using L̃m requires a higher-order term in the TT
OPE. Such a computation will not be included in this paper.
On the other hand, we observe that, up to an overall

coefficient, the d ¼ 4 Type A structure (31) is identical to
the central term of the W3 algebra in d ¼ 2 CFTs [33] (see
[34] for a review),

½Wm;Wn� ¼
c
360

ðmþ 2Þðmþ 1Þmðm − 1Þðm − 2Þδmþn;0

þ ðm − nÞ
�
1

15
ðmþ nþ 3Þðmþ nþ 2Þ

−
1

6
ðmþ 2Þðnþ 2Þ

�
Lmþn

þ 16

22þ 5c
ðm − nÞΛmþn; ð33Þ

½Lm;Wn� ¼ ð2m − nÞWmþn; ð34Þ

where Λm ¼ P
nðLm−nLnÞ − 3

10
ðmþ 3Þðmþ 2ÞLm. Wm is

the Laurent modes of a spin-three primary current. Note that
closure of theW3 algebra requires first knowing the operator
Lm that satisfies the Virasoro algebra. In general (even) d,
we find the Type A structure is ∼CTmðm2 − 1Þðm2 −
4Þ � � � ðm2 − ðd

2
Þ2Þ in the notation of L̃m ∼

H
dz̄z̄ðmþd

2
ÞT.

To our knowledge, a connection between d > 2 CFT
near-lightcone correlators and the W (-like) symmetry has
not been mentioned before.15 This central-term curiosity
needs to be better understood. Perhaps exploring more
general structures involving multi-stress-tensor exchanges
in d > 2 CFTs can help clarify its algebraic underpinnings.
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