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We brute-force evaluate the vacuum character for N ¼ 2 vertex operator algebras labeled by
crystallographic complex reflection groups Gðk; 1; 1Þ ¼ Zk, k ¼ 3, 4, 6, and Gð3; 1; 2Þ. For Z3;4 and
Gð3; 1; 2Þ these vacuum characters have been conjectured to respectively reproduce the Macdonald limit of
the superconformal index for rank one and rank two S-foldN ¼ 3 theories in four dimensions. For the Z3

case, and in the limit where the Macdonald index reduces to the Schur index, we find agreement with
predictions from the literature.
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I. INTRODUCTION

In recent years there has been intense activity pertaining
to the study of superconformal theories (SCFTs) that do not
admit a Lagrangian description. Theories with N ≥ 2
superconformal symmetry are ideal for such explorations.
Despite the lack of perturbative control, one can still extract
nontrivial data by exploiting the large amount of symmetry,
e.g., by employing the power of dualities [1,2], implement-
ing the bootstrap program [3,4], or evaluating supercon-
formal indices [5].
In this context, “pure” N ¼ 3 SCFTs—N ¼ 3 theories

which do not automatically enhance to N ¼ 4—were
envisioned in [6,7] and engineered in string theory through
the Sk-fold constructions of [8,9]. These are isolated,
holographic SCFTs (a4D ¼ c4D) with an F-theory dual
on an AdS5 × ðS5 × T2Þ=Zk background. The gravity
description was used in [10,11] to evaluate the super-
conformal index in the large-rank limit. Candidates for
additional rank-one and rank-two N ¼ 3 examples were
presented in [12,13], by constructing corresponding
Coulomb-branch geometries via gaugings of N ¼ 4 the-
ories by a discrete subgroup of the R-symmetry and
electromagnetic duality groups. The “Coulomb” limit of
the superconformal index [14] and the Higgs-branch

Hilbert series for these models were evaluated in [15];
see also [16].
As N ¼ 3 theories are automatically N ¼ 2, a concrete

computational handle can be established through the descrip-
tion of a “Schur” Bogomol’nyi–Prasad–Sommerfield (BPS)
subsector of any N ¼ 2 4D theory [14] by a (nonunitary)
vertex operator algebra (VOA) [17]. VOAs for N ¼ 3
theories were initially constructed in [18,19] culminating
in the work of [20]. In that reference, it was conjectured that
certain VOAs labelled by non-Coxeter crystallographic
complex reflection groups encode the Schur subsector of
the known N ¼ 3 S-fold theories. In particular, [20] gave a
prescription for an elegant free-field realization of such
VOAs, along the lines of [21]. By constructing the latter,
one is able to recover the “Macdonald” limit of the super-
conformal index [14] for N ¼ 3 S-fold theories, from the
VOA vacuum character. See also [22] for an alternate
prescription on implementing a Macdonald grading of the
chiral algebra.
Albeit concrete, implementing the findings of [20] in

practice quickly becomes computationally intensive. It is
difficult to write down the explicit free-field realization of
the relevant VOAs in all but the simplest of cases, and also
to evaluate the corresponding vacuum characters in a
fugacity expansion for increasing conformal weights.
The goal of this short paper is to show how far one can
get by implementing a brute-force approach using math-
ematical software, for the VOAs labeled by the complex
reflection groups Gðk; 1; 1Þ ¼ Zk, k ¼ 3, 4, 6 (Z3;4 label
rank-one S-fold models) and Gð3; 1; 2Þ (labels a rank-two
S-fold model). We employ the Gðk; p; NÞ notation of [23],
where p is a divisor of k; general complex reflection groups
are denoted as G.
Towards that end, we reconstruct and explicitly exhibit

the free-field realizations of [20] for the theories of interest.
We then provide algorithms for automating the process of
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finding null states and for evaluating the VOA vacuum
characters. Our code, appended to this paper in the
Supplemental Material [24], can in principle be executed
to obtain the corresponding Macdonald index at arbitrary
orders in a fugacity expansion. Note however that the
vacuum character computation time increases exponen-
tially as a function of the conformal weight. Our code is
also customizable—and we have clearly signposted how to
do so—for the reader interested in extending it to the
evaluation of vacuum characters for VOAs labeled by other
complex reflection groups, once the complete free-field
realization of the VOA has been found.
Our results can be used to check the conjecture of [20]

against independent calculations of the Macdonald index of
4D N ¼ 3 S-fold theories and vice versa. For example, a
proposal for the Schur limit of the superconformal index—
a special case of the Macdonald index—for the rank-oneZ3

S-fold theory was put forward in [25]. In that limit, their
and our findings are in complete agreement.

II. FROM VACUUM CHARACTERS TO INDICES

We begin with a minimal introduction to the results of
[20], to which we refer the reader for a full account. 4D
N ¼ 2 SCFTs, T , contain a BPS subsector that is
isomorphic to a VOA, χ½T � [4]. In this correspondence,
the VOA central charge c is related to the type-B Weyl-
anomaly coefficient in four dimensions as c ¼ −12c4D,
while the VOA vacuum character reproduces the Schur
limit of the 4D superconformal index. The Schur subsector
of pure N ¼ 3 4D S-fold SCFTs was conjectured to be
isomorphic to “N ¼ 2 VOAs”—i.e., VOAs containing the
2D N ¼ 2 superconformal algebra (SCA) as a subalgebra
—WG labelled by non-Coxeter crystallographic complex
reflection groups. In fact, [20] proposed a free-field
realization of WG in terms of a subalgebra of rankðGÞ
copies of the βγbc ghost system. This subalgebra
was identified with the kernel of a screening operator,
S ¼ R

J, acting on the βγbc systems. The action of S is
defined as S · X ¼ fJXg1, where fJXg1 denotes the
coefficient of the order-one pole in the holomorphic
OPE of the screening current J with some operator X.
A nice feature of the free-field description, which wewill

use extensively in the evaluation of the vacuum characters,
is that null states built out of strong generators are
identically zero. The free-field realization also facilitates
the introduction of a corresponding R-filtration, inherited
from the R-symmetry of the 4D N ¼ 2 SCFT.
The vacuum character of the R-filtered VOA is

χWG
ðq; ξ; zÞ ≔ Trð−1ÞFqhξRþrzm; ð1Þ

where F is the fermion number, h is the conformal
dimension, and r, m are associated with the glð1Þ outer
automorphism and glð1Þ subalgebra of the 2DN ¼ 2 SCA
ospð2j2Þ respectively. R is the weight under the R-filtration

and the vacuum character is normalized so as to start with a
“1” in its q expansion. This vacuum character can be further
refined by taking ξRþr → yRvr. In the free-field realization
the βγbc fields carry the quantum numbers presented in
Table I.
Equation (1) was conjectured to correspond to the

Macdonald limit of the 4D superconformal index of a
theory for which WG is the associated VOA, WG ¼ χ½T �.
This is defined through [14]

IT
Macdonaldðq; t; zÞ ≔ Trð−1ÞFqE−2R−rtRþrzm; ð2Þ

where the trace is taken over the set of Schur operators of
the 4D SCFT. Here E is the 4D conformal dimension, while
R and r are charges for the Cartan generators of the SUð2ÞR
and Uð1Þr R-symmetry groups respectively. Note that
while from the point of view of this 4D N ¼ 2
Macdonald index m is a quantum number for a global
Uð1ÞF, in the fullN ¼ 3 description it is part of theUð3Þ ⊃
SUð2ÞR ×Uð1Þr ×Uð1ÞF R-symmetry group. We should
emphasize that in order to connect with (1) one needs to
redefine t → ξq so that

IT
Macdonaldðq; ξ; zÞ ¼ Trð−1ÞFqE−RξRþrzm: ð3Þ

III. IMPLEMENTATION

We now describe the strategy behind our code, while
detailed results for each case are presented in subsequent
subsections. We are interested in the evaluation of the
vacuum character for VOAs labeled by crystallographic,
non-Coxeter complex reflection groups Z3;4;6 and
Gð3; 1; 2Þ, and interpreting them as Macdonald indices
for 4D N ¼ 3 S-fold theories. To do so one needs to
consider (1) and trace over all the states created by acting
only with normal-ordered products and derivatives of the
strong generators of the VOA on the slð2Þ-invariant
vacuum, up to a given conformal weight, while removing
the contributions from null states. To speed up the calcu-
lation, we have taken advantage of the symmetry of the
spectrum under conjugation, by only constructing

TABLE I. Quantum numbers for the βlγlblcl ghost systems
used in VOA free-field realizations. The l ¼ 1;…; rankðGÞ
labels the ghost-system species and pl are the degrees of the
fundamental invariants of G. These are given for Zk by p1 ¼ k
and for Gð3; 1; 2Þ by ðp1; p2Þ ¼ ð3; 6Þ.

h m r R

βl 1
2
pl

1
2
pl 0 1

2
pl

bl 1
2
ðpl þ 1Þ 1

2
ðpl − 1Þ þ 1

2
1 − 1

2
pl

cl − 1
2
ðpl − 1Þ − 1

2
ðpl − 1Þ − 1

2
1
2
pl

γl 1 − 1
2
pl − 1

2
pl 0 1 − 1

2
pl

∂ 1 0 0 0
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positively-charged states under the two glð1Þ symmetries of
the VOA.
The identification of null states is usually laborious and

this is where the free-field realization becomes helpful. The
construction algorithm of [20] starts with a simple free-field
prescription for the generators of the 2D N ¼ 2 SCA and
the chiral strong generators of the WG-algebra. One then
introduces an ansatz for the remaining bosonic strong
generators constructed out of all possible super-Virasoro
primary, free-field combinations with the requisite quantum
numbers and undetermined coefficients, and fixes the latter
by closing the VOA under the OPE.
We have diverged slightly from this recipe in the

following way. For the VOAs χ½T � that have appeared
thus far in the literature, the OPE coefficients can be
completely fixed by writing down the most general
expressions for the expected set of generators and then
imposing associativity by solving the Jacobi identities [19].
TheW-algebra presentations of theWG VOAs of interest to
us were already given in [20] and inserting the free-field
ansatze into the existing OPEs straightforwardly fixes the
undetermined coefficients for all remaining strong gener-
ators (using the OPEdefs [26] and/or SOPEN2defs [27]
Mathematica packages); we will expand upon this point on
a case-by-case basis when discussing our results.
Equipped with this information we proceed to our main

algorithm. In summary, all null states at a given conformal
weight can be identified by looking for all possible
combinations of states with the same quantum numbers
that are identically zero upon using the free-field realiza-
tion. This last step requires manipulating normal-ordered
products of βγbc ghosts, making heavy use of the OPEdefs
[26] and ope.math [28] Mathematica packages. The null
states that we find contain all those predicted in [20]. It is
then straightforward to write down the vacuum character
for given values of quantum numbers. Note that by
unrefining in the R fugacity (e.g., if one were interested
in the Schur index) the algorithm becomes faster; we have a
dedicated section in our code for this special case.
In addition to the above method, we have cross-checked

our refinedZ3;4 results using a second algorithm that makes
no connection to the W-algebra presentation. This pro-
cedure constructs the VOA spectrum using all states in
rankðGÞ copies of the βγbc ghost system that lie in the
kernel of a screening operator, S. For G ¼ Zk this is given
by [20]

J ¼ beðk−1−1ÞðχþϕÞ; ð4Þ

where χ;ϕ are chiral bosons

β ¼ eχþϕ; γ ¼ ∂χe−χ−ϕ; ð5Þ

and all expressions should be considered as normal-
ordered. Such an approach is conceptually more

straightforward—construct all states using free fields and
then keep those in the kernel of S—but is computationally
more expensive as can be seen from Fig. 1. E.g., at h ¼ 9=2
one already needs to check 941 and 881 terms for Z3 and
Z4 respectively.

IV. RESULTS: G=Z3

This is a rank-one VOAwith central charge c ¼ −15. Its
W-algebra presentation involves the following strong gen-
erators: T , J , G, and G̃ from the 2DN ¼ 2 SCA, as well as
the chiral and antichiral generators W3, W3, and their
superpartners GW3

and G̃W3
. Here GW3

≔ fGW3g1 and so
on. For the explicit free-field realization in terms of a single
βγbc ghost system one starts with a prescription for the
N ¼ 2 SCA generators as well as forW3, GW3

. The ansatz
for W3 contains 8 undetermined coefficients. We always
count these before imposing the super-Virasoro primary
constraint. Through the OPEs from the W-algebra presen-
tation one can use it to also determine the free-field
realization of G̃W3

. We have calculated the fully refined

vacuum character (1) up to Oðq8Þ in the accompanying
“null states. nb” and have cross-checked this result using
the screening-operator approach in “screening. nb” up
to Oðq4Þ.
This VOA is expected to encode the Schur sector of a

rank one, 4D S-fold N ¼ 3 SCFT, with a Coulomb-branch
operator of dimensionΔ ¼ 3 and trace-anomaly coefficient

FIG. 1. Computation times for carrying out the calculation of
the vacuum character for VOAs at different conformal weights.
Several different VOAs are shown on the graph for comparison,
along with the Z3 theory computed using the kernel of the
screening operator. We used a desktop PC with an Intel Core i7-
6700K CPU clocked at 4 GHz, and 32 GB RAM.
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c4D ¼ 5
4
. Through (3) the Macdonald index of this S-fold

theory—including the global Uð1ÞF fugacity—can be
identified with the refined vacuum character. Below we
only present the simpler, Schur limit of these expressions
for brevity, where ξ → 1, z → 1. Then:

IZ3

Schur¼1þqþq2þ2q3−2q7=2þ3q4−2q9=2þ4q5−4q11=2

þ6q6−6q13=2þ8q7−8q15=2þ11q8þOðq17=2Þ:
ð6Þ

It is interesting to observe that the Schur index for this
theory matches the expansion of the following closed-form
expression up to Oðq10Þ, although we currently have
neither a derivation for it nor a justification for why it
should hold to all orders:

1

3

X
ϵ∈Z3

ϵffiffiffi
q

p P:E:

�
1

2
iN¼4ðqÞ

�
ϵþ 1

ϵ

��
: ð7Þ

Here P:E:½fðzÞ� ≔ exp½Pþ∞
n¼1

1
n fðznÞ� is the plethystic

exponential, while iN¼4ðqÞ ¼ 2q
1
2ð1−q12Þ
1−q coincides with the

single-letter Schur index of N ¼ 4 super-Yang–Mills.
In [25], an independent argument for determining the

Schur index of the G ¼ Z3 S-fold theory was presented.
This entailed starting from an N ¼ 1 4D UV Lagrangian
theory, and flowing to an interacting N ¼ 1 SCFT in the
IR, which can also be reached from theZ3 S-fold theory via
an N ¼ 1 preserving marginal deformation. Upon relabel-
ing q → p2, our result (6) agrees with that of [25]—listed to
Oðq7Þ—providing a strong consistency check of both
calculations.

V. RESULTS: G=Z4

This is a rank-one VOAwith central charge c ¼ −21. Its
W-algebra presentation involves the following strong gen-
erators: T , J , G and G̃ from the 2DN ¼ 2 SCA, as well as
the chiral and anti-chiral generators W4, W4 and their
superpartners GW4

and G̃W4
. For the explicit free-field

realization in terms of a single βγbc ghost system one
starts with a prescription for the N ¼ 2 SCA generators as
well as for W4, GW4

. The ansatz for W4 contains 19
undetermined coefficients. Through the OPEs in the
W-algebra presentation one can use it to also determine
the free-field realization of G̃W4

. We have calculated the

fully-refined vacuum character (1) up to Oðq8Þ in the
accompanying “null states.nb” and have cross-checked this
result using the screening-operator approach in “screen-
ing.nb” up to Oðq4Þ.
This VOA is expected to encode the Schur sector of a

rank one 4D S-fold N ¼ 3 SCFT, with a Coulomb-branch
operator of dimensionΔ ¼ 4 and trace-anomaly coefficient

c4D ¼ 7
4
. Through (3) the Macdonald index of this S-fold

theory can be identified with the vacuum character. The
Schur limit of these expressions yields:

IZ4

Schur¼1þq−2q3=2þ5q2−6q5=2þ10q3−16q7=2þ27q4

−38q9=2þ56q5−86q11=2þ129q6−178q13=2

þ251q7−362q15=2þ511q8þOðq17=2Þ: ð8Þ

In this case the W-algebra construction is such that the
bosonic states always appear with integer while the
fermionic ones with half-integer conformal weights.
Therefore there are no cancellations between bosonic
and fermionic states at each level and the chiral algebra
partition function reproduces the partition function of Schur
operators in the corresponding 4D N ¼ 3 theory.

VI. RESULTS: G=Z6

This is a rank-one VOAwith central charge c ¼ −33. Its
W-algebra presentation involves the following strong gen-
erators: T , J , G and G̃ from theN ¼ 2 SCA, as well as the
chiral and anti-chiral generators W6, W6 and their super-
partners GW6

and G̃W6
. For the explicit free-field realization

in terms of a single βγbc ghost system one starts with a
prescription for the 2D N ¼ 2 SCA generators as well as
for W6, GW6

. The ansatz for W6 contains 87 undetermined
coefficients. Through the OPEs in the W-algebra presen-
tation one can use it to also determine the free-field
realization of G̃W6

. We have calculated the fully-refined

vacuum character (1) up to Oðq8Þ in the accompanying
“nullstates.nb”. In the limit ξ → 1, z → 1 this reads:

χWZ6
¼ 1þq− 2q3=2þ 3q2− 4q5=2þ 8q3− 12q7=2þ 19q4

− 26q9=2þ 38q5− 58q11=2þ 85q6− 116q13=2

þ 165q7− 236q15=2þ 326q8þOðq17=2Þ: ð9Þ

No known S-fold theory is associated with this VOA [9].

VII. RESULTS: G =Gð3;1;2Þ
This is our only rank 2 example, with central charge

c ¼ −48. Its W-algebra presentation involves the following
strong generators: T , J , G and G̃ from the 2DN ¼ 2 SCA,
the chiral and anti-chiral generatorsW3,W6,W3,W6, plus
their superpartners GW3

, GW6
and G̃W3

, G̃W6
, as well as U—

which is self conjugate—and its superpartners GU , G̃U and
GG̃U

. One also needs non-chiral O, Ō and their super-

partners GO, G̃O, GŌ, G̃Ō, GG̃O
, GG̃Ō

.
The free-field realization requires two ghost systems,

βlγlblcl with l ¼ 1, 2. One starts with a prescription for
the 2DN ¼ 2 SCA generators as well as forW3,W6, GW3
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and GW6
. The ansatz for W3 contains 84 undetermined

coefficients. It turns out that through the OPEs in the W-
algebra presentation, one can fix the coefficients ofW3 and
by doing so also determine the free-field realization of all
remaining generators. We have calculated the fully refined
vacuum character (1) up to Oðq9=2Þ in the accompanying
“null states.nb”.
This VOA is expected to encode the Schur sector of a

rank-two 4D S-fold N ¼ 3 SCFT, with Coulomb-branch
operators of dimension Δ ¼ 3, 6 and trace anomaly
coefficient c4D ¼ 4. Through (3) the Macdonald index of
this S-fold theory can be identified with the vacuum
character. If for simplicity one considers the limit z → 1:

IGð3;1;2Þ
Macdonald ¼ 1þqξþq3=2ð−

ffiffiffi
ξ

p
þ ξ3=2Þþq2ðξþ ξ2Þ

þq5=2ð−
ffiffiffi
ξ

p
− ξ3=2þ 2ξ5=2Þþq3ðξ− ξ2þ 2ξ3Þ

þq7=2ð−
ffiffiffi
ξ

p
− 2ξ3=2þ 2ξ5=2þ ξ7=2Þ

þq4ð2ξ− ξ3þ 3ξ4Þ
þq9=2ð−

ffiffiffi
ξ

p
− 3ξ3=2þ ξ5=2þ ξ7=2þ 2ξ9=2Þ

þOðq5Þ: ð10Þ

VIII. CONCLUSIONS

In this letter we have calculated vacuum characters of
rank-one and rank-two VOAs labeled by non-Coxeter,
crystallographic complex reflection groups. This involved
a brute-force implementation of the algorithms presented in
[20] and leads to the Macdonald index of certain 4DN ¼ 3
S-fold SCFTs. Our results were given as an expansion in
the fugacity that keeps track of the conformal weight, and
were truncated to orders that require short computation
times when using a desktop computer; they can be pushed
to arbitrary higher orders by allocating appropriate

resources. As they stand, they can already be used as
new data forN ¼ 3 SCFTs. E.g., the G ¼ Z3 result agrees
in the Schur limit with [25].
Our code is customizable. We have clearly signposted

where changes would need to be made to return vacuum
characters of VOAs labeled by different complex reflection
groups, for which the free-field realization is known. In
particular, it would be very interesting to extend this
approach to theN ¼ 3 S-fold SCFTof rank two associated
with Gð4; 1; 2Þ and the rank-three example Gð3; 3; 3Þ; a
proposal for the Schur index of the latter was also given in
[25]. Unfortunately, finding the free-field realization for
both these VOAs—already needed before identifying the
null states—is a challenging task: the simplest antichiral
strong generator ansatze involve 425 and 2265 undeter-
mined coefficients respectively. It would perhaps be more
promising to use the screening-operator approach, upon
determining S. Although our screening-operator code is
currently more expensive to run, it could benefit from
optimizations that parallelize the computations, hence
making it significantly faster on multicore clusters. It will
also be interesting to check these results by directly
studying the BPS-states of N ¼ 3 theories. One way to
do so would be to study three-string junctions in S-fold
backgrounds as in [29]. We hope to return to some of these
questions in the near future.
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