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It is shown that the Cotton tensor can describe the effects of gravity beyond general relativity. Any
solution of the Einstein equations with or without the cosmological constant satisfies the field equations
described by the Cotton tensor. It implies that the cosmological constant is an integration constant.
A vacuum of a theory is represented by the vanishing of the Cotton tensor, rather than the vanishing of the
Ricci tensor. An exact Schwarzschild-like solution for a static and spherically symmetric source is
discovered. Although the field equations involve the third order of derivative, it is found that they reduce to
the second-order differential equations due to a variational principle.
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I. INTRODUCTION

The Cotton curvature tensor, named after Émile Cotton
[1], is a rank-3 tensor that describes the curvature of a
Riemannian manifold of dimension n. For n < 3, it
identically vanishes. For n ¼ 3, it vanishes if and only if
a manifold is conformally flat. The Cotton tensor has
mainly been used to investigate the three-dimensional
manifolds [1] and three-dimensional gravity [2,3].
However, as we will see below, it is found that the
Cotton tensor can describe the effects of gravity beyond
general relativity in four-dimensional spacetime.
In this paper it is shown that the Cotton tensor emerges as

describing the gravitational field equations. This descrip-
tion has a number of advantages. First, any solution of the
Einstein equations with or without the cosmological con-
stant satisfies the given field equations. It implies that the
cosmological constant is an integration constant—there is
no need to add it to the field equations or to the action.
Second, a vacuum in such a theory is represented by the
vanishing of the Cotton tensor, rather than the vanishing of
the Ricci tensor. This implies that the field equations in
vacuum have more solutions than general relativity—it will
be shown that any metric of the Ricci-flat manifolds, the
Einstein manifolds, or the conformally flat manifolds is a
trivial vacuum solution. As a nontrivial solution, an exact
Schwarzschild-like metric for a static and spherically
symmetric source is discovered. It is the first discovered
nontrivial exact solution of the given field equations. Third,
it is found that the field equations described by the Cotton
tensor can be derived from the Weyl action of conformal
gravity, by varying the action with respect to the connection
keeping the metric fixed. Although the field equations
involve the third order of derivative, they reduce to the

second-order differential equations due to such a variational
principle.
Throughout this paper we work in n ¼ 4 dimensions.

The usual Levi-Civita connection is adopted to defined
the covariant derivative, though a choice is arbitrary.
The signature of metric is ð−;þ;þ;þÞ.

II. GRAVITATIONAL FIELD EQUATIONS

In electromagnetism, the Maxwell’s equations in vacuum
are written as ∂μFμν ¼ 0, where ∂μFμν denotes the diver-
gence of a linear curvature. In the case of gravity, there are
four possible terms as

∇μRμνρσ; ð1aÞ

ðgμρgνσ − gνρgμσÞ∇μR; ð1bÞ

∇μðgμρRνσ − gνρRμσ − gμσRνρ þ gνσRμρÞ; ð1cÞ

∇μCμνρσ; ð1dÞ

where ∇μ denotes the covariant derivative, and Cμνρσ is the
Weyl curvature tensor [4] which is defined by

Cμνρσ ≔ Rμνρσ þ
1

6
ðgμρgνσ − gνρgμσÞR

−
1

2
ðgμρRνσ − gνρRμσ − gμσRνρ þ gνσRμρÞ: ð2Þ

It should be also noted that the following Bianchi identity is
satisfied (this form may be unfamiliar, but it is useful),*jharada@hoku-iryo-u.ac.jp
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∇μRμνρσ þ 1

2
ðgμρgνσ − gνρgμσÞ∇μR

−∇μðgμρRνσ − gνρRμσ − gμσRνρ þ gνσRμρÞ ¼ 0: ð3Þ

Four possible terms (1a)–(1d) are not linearly indepen-
dent due to Eqs. (2) and (3), and therefore the gravitational
analog of ∂μFμν should be a linear combination of arbitrary
two terms of Eqs. (1a)–(1d). If we choose (1a) and (1b) as
two independent terms, then the gravitational analog of
∂μFμν can be written in the form,

a∇μRμνρσ þ bðgμρgνσ − gνρgμσÞ∇μR: ð4Þ

The coefficients a and b will be determined soon. We
regard this as the left-hand side of the gravitational field
equations. The right-hand side of field equations can be
similarly written. There are only two possible terms as

∇μðgμρTνσ − gνρTμσ − gμσTνρ þ gνσTμρÞ; ð5aÞ

ðgμρgνσ − gνρgμσÞ∇μT; ð5bÞ

where Tμν is the energy-momentum tensor and T ¼ Tμ
μ.

Therefore, the field equations can be written as

a∇μRμνρσ þ bðgμρgνσ − gνρgμσÞ∇μR

¼ c∇μðgμρTνσ − gνρTμσ − gμσTνρ þ gνσTμρÞ
þ dðgμρgνσ − gνρgμσÞ∇μT; ð6Þ

where c and d are coefficients.
Let us now determine the coefficients a, b, c, and d.

Multiplying Eq. (6) by gνσ, we find

ðaþ 6bÞ∇μRμρ ¼ 2c∇μTμρ þ ðcþ 3dÞ∇μðgμρTÞ; ð7Þ

where we have used the identity gμν∇μR ¼ 2∇μRμν. We
now require that the conservation law of the energy
momentum (∇μTμρ ¼ 0) is identically satisfied, and then
from Eq. (7), we obtain

aþ 6b ¼ 0; ð8aÞ

cþ 3d ¼ 0: ð8bÞ

We also require that any solution of the Einstein
equations satisfies Eq. (6). Inserting Tμν ¼ Rμν − Rgμν=2
(where we set 8πG ¼ 1, G is the Newton’s constant) and
T ¼ −R into the right-hand side of Eq. (6), we find that the
right-hand side of Eq. (6) is written as

c∇μRμνρσ −
�
c
2
þ d

�
ðgμρgνσ − gνρgμσÞ∇μR; ð9Þ

where the Bianchi identity (3) has been used. Comparing
Eq. (9) with the left-hand side of Eq. (6), we obtain

a ¼ c; ð10aÞ

b ¼ −
�
c
2
þ d

�
: ð10bÞ

From Eqs. (8a), (8b), (10a), and (10b) (three of them are
linearly independent), the coefficients a, b, c, and d are
determined as

a ¼ 1; b ¼ −
1

6
; c ¼ 1; d ¼ −

1

3
; ð11Þ

where we set a ¼ 1 as a normalization. Thus, we obtained
Eq. (6) with Eq. (11) as the field equations, but it is now
convenient to rewrite them in a simple form as follows.
It is convenient to define the rank-4 tensor by

Gμνρσ ≔ Rμνρσ −
1

6
ðgμρgνσ − gνρgμσÞR: ð12Þ

Multiplying Gμνρσ by gνσ, we find that

gνσGμνρσ ¼ Rμρ −
1

2
gμρR≕Gμρ; ð13Þ

where Gμρ is the Einstein tensor. It is also convenient to
define the rank-4 tensor by

Tμνρσ ≔
1

2
ðgμρTνσ − gνρTμσ − gμσTνρ þ gνσTμρÞ

−
1

6
ðgμρgνσ − gνρgμσÞT; ð14Þ

where an overall normalization of Eq. (14) has been chosen
so that the following relation is satisfied,

gνσTμνρσ ¼ Tμρ: ð15Þ
Therefore, Eq. (6) with Eq. (11) can be written as

∇μGμ
νρσ ¼ 16πG∇μTμ

νρσ; ð16Þ
where 8πG is explicitly written, and we have

∇μTμ
νρσ ¼

1

2
ð∇ρTνσ −∇σTνρÞ −

1

6
ðgνσ∇ρT − gνρ∇σTÞ:

ð17Þ

It is even more convenient to rewrite Eq. (16) as follows.
Using Eq. (12), we find

∇μGμ
νρσ ¼ ∇μRμ

νρσ −
1

6
ðgνσ∇ρR − gνρ∇σRÞ;

¼ ∇ρRνσ −∇σRνρ −
1

6
ðgνσ∇ρR − gνρ∇σRÞ;

≕Cνρσ; ð18Þ
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where the identity ∇μRμ
νρσ ¼ ∇ρRνσ −∇σRνρ has been

used, and Cνρσ is called the Cotton tensor that satisfies

∇νCνρσ ¼ 0; ð19aÞ

gνρCνρσ ¼ 0; ð19bÞ

Cνρσ þ Cνσρ ¼ 0; ð19cÞ

Cνρσ þ Cρσν þ Cσνρ ¼ 0: ð19dÞ

It should be noted that Cμνρσ denotes the Weyl tensor,
and Cνρσ denotes the Cotton tensor.
Consequently, we obtain the field equations of gravity,

Cνρσ ¼ 16πG∇μTμ
νρσ: ð20Þ

Multiplying Eq. (20) by gνσ, we can quickly confirm the
conservation law of the energy-momentum tensor as

gνσCνρσ ¼ ∇μGμ
ρ ¼ 16πG∇μTμ

ρ ¼ 0: ð21Þ

Here we should present some remarks. First, any solution
of the Einstein equations (Gμν ¼ 8πGTμν) satisfies
Eq. (20). Furthermore, it is obvious that any solution of
the Einstein equations with the cosmological constant
(Gμν þ Λgμν ¼ 8πGTμν) satisfies Eq. (20). This implies
that the cosmological constant is an integration constant. Of
course, Eq. (20) has other solutions which are not solutions
of the Einstein equations—Eq. (20) has more information
than general relativity. It should be noted that the Einstein
equations need not be satisfied in Eq. (20). These are shown
in Fig. 1.

III. EXACT VACUUM SOLUTIONS

In a vacuum, Eq. (20) yields

Cνρσ ¼ 0: ð22Þ

This should be regarded as a generalization of Rμν ¼ 0 of
general relativity. It is clear from Eq. (18) that if Rμν is zero,

then Cνρσ vanishes too, so any vacuum solution of the
Einstein equations is a solution of Eq. (22). We also find
from Eq. (18) that if Rμν ¼ Λgμν, then Cνρσ automatically
vanishes. Thus, the de Sitter (or the anti–de Sitter) metric is
a solution of Eq. (22), though there is no cosmological
constant in Eq. (22).
Furthermore, any metric of the locally conformally flat

manifolds satisfies Eq. (22). This can be understood as
follows. Using the Bianchi identity (3), we find

∇μGμ
νρσ ¼ 2∇μCμ

νρσ ¼ Cνρσ: ð23Þ

This indicates that the divergence ofGμνρσ and that of Cμνρσ

are equivalent (up to a factor two), though Gμνρσ and Cμνρσ

are different. It is clear from Eq. (23) that if Cμνρσ is zero,
then Cνρσ vanishes too, so any metric of the locally
conformally flat manifold (Cμνρσ ¼ 0) satisfies Eq. (22).
Thus, it is concluded that any metric that satisfies

Rμν ¼ 0; ðRicci-flat manifoldÞ ð24aÞ

Rμν ¼ Λgμν; ðEinstein manifoldÞ ð24bÞ

Cμνρσ ¼ 0; ðconformally flat manifoldÞ ð24cÞ

is a solution of Eq. (22).
The vacuum equations (Cνρσ ¼ 0) have other solutions,

which does not satisfy Eqs. (24a)–(24c). Here we present
such a nontrivial solution. We present a static, spherically
symmetric exact solution, which may be regarded as a
generalization of the Schwarzschild metric.
Let us focus on the Schwarzschild-like metric as

ds2 ¼ −eνðrÞdt2 þ e−νðrÞdr2 þ r2dΩ2; ð25Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. Inserting this into Eq. (22),
we find that the component of Cνρσ is given by

3e−νC010 ¼ −
2

r3

þ
�
ν000 þ 3ν0ν00 þ ν03 þ ν00

r
þ ν02

r
−
2ν0

r2
þ 2

r3

�
eν;

ð26Þ

where a prime denotes the derivative with respect to r.
Other components of Cνρσ vanish except for C212 and C313,
which are proportional to C010. The substitution

yðrÞ ¼
�
ν0 þ 1

r

�
eν ð27Þ

enables us to rewrite Eq. (26) in a simple form as

FIG. 1. The solutions of Einstein equations with or without the
cosmological constant are subsets of those of Eq. (20). Whenever
the Einstein equations (with or without the cosmological con-
stant) are satisfied, Eq. (20) is also satisfied. However, its inverse
is not true—even if Eq. (20) is satisfied, the Einstein equations are
not necessarily satisfied.

EMERGENCE OF THE COTTON TENSOR FOR DESCRIBING … PHYS. REV. D 103, L121502 (2021)

L121502-3



3e−νC010 ¼ y00 −
2

r3
: ð28Þ

Then, the vacuum equation C010 ¼ 0 is solved as

y ¼ 1

r
þ c1rþ c2; ð29Þ

where c1 and c2 are integration constants, and Eq. (27) is
written as

�
ν0 þ 1

r

�
eν ¼ 1

r
þ c1rþ c2: ð30Þ

This equation is easily solved as

−g00 ¼ 1=g11 ¼ eν ¼ 1þ c3
r
þ c1

3
r2 þ c2

2
r; ð31Þ

where c3 is an integration constant.
If we rename three integration constants as c3 ¼ −2M,

c1 ¼ −Λ, and c2 ¼ 2γ, then the solution is written as

−g00 ¼ 1=g11 ¼ 1 −
2M
r

−
Λ
3
r2 þ γr: ð32Þ

This is exact. This is nontrivial in the sense that it does not
satisfy Eqs. (24a)–(24c). This is the first discovered non-
trivial exact solution of Eq. (22). Furthermore, the linear
and quadratic curvature invariants are given by

RμνρσRμνρσ ¼
48M2

r6
þ 8γ2

r2
−
8γΛ
r

þ 8Λ2

3
; ð33aÞ

RμνRμν ¼
10γ2

r2
−
12γΛ
r

þ 4Λ2; ð33bÞ

R ¼ −
6γ

r
þ 4Λ; ð33cÞ

CμνρσCμνρσ ¼
48M2

r6
: ð33dÞ

We can confirm that these invariants reduces to those of the
Schwarzschild–de Sitter metric in the γ → 0 limit.
In Eq. (32), the γr term cannot be obtained from the

Einstein equations. When the γr term is negligible, Eq. (32)
reduces to the Schwarzschild–de Sitter metric, and there-
fore it is consistent with the observational tests of general
relativity in that case. Furthermore, Eq. (32) is approx-
imately equivalent to an exact solution of conformal gravity
[5,6]. In conformal gravity, the values of γ have been
estimated [7–9]. It has been pointed out that the γr term can
potentially explain the galactic rotation curve without the
need of dark matter [5,7,10], but there is still controversy in
astrophysics [11].

Here we point out about the possible role of the γr term
in the Solar System. In the Solar System, Eq. (32) can be
written as

−g00 ¼ 1=g11 ¼ 1 −
2GM⊙

rc2
þ γr; ð34Þ

where the Newton’s constant G and the speed of light c are
explicitly written, and we have ignored the cosmological
−Λr2=3 term, which is assumed to be small enough on the
scale of the Solar System. We find that

∂
∂r

�
−
c2g00
2

�
¼ GM⊙

r2
þ γc2

2
; ð35Þ

where GM⊙=r2 represents the usual inverse square law of
Newton’s gravity, and γc2=2 represents an additional
acceleration which is independent of r. Such a constant
acceleration has been observed by the Pioneer 10 and
Pioneer 11 spacecrafts at distances of 20–70 AU, and the
reported value is aPioneer ¼ 8.7 × 10−10 ms−2 [12]. If this is
due to γc2=2, then we have γ ¼ 1.9 × 10−26 m−1. Although
it has been reported that the observed anomalous accel-
eration can be explained by thermal effects [13], our gravity
theory also gives a possible explanation.
When M ¼ 0 in Eq. (32) (or when r is sufficiently large

so that −2M=r term can be ignored), the metric is
conformally flat (Cμνρσ ¼ 0). In such a case, any metric
that is conformal to Eq. (32) is a solution of Eq. (22). This
can be understood as follows. We can show that the Cotton
tensor transforms under the local conformal transformation
of the metric gμνðxÞ → Ω2ðxÞgμνðxÞ as

Cνρσ → Cνρσ þΩ−1ð∂μΩÞCμ
νρσ: ð36Þ

Thus, the Cotton tensor is locally conformally invariant if
and only if the Weyl tensor vanishes. Therefore, it is
concluded that any metric which is conformal to Eq. (32)
(with M ¼ 0) satisfies Eq. (22).
As explicitly shown in Eq. (26), the vacuum equations

(Cνρσ ¼ 0) involve the third-order of derivative. However,
as shown in Eq. (28), they reduce to the second-order
differential equations. This is a generic property of our
theory. As we will see below, this is originated from the
variational principle that yields Cνρσ ¼ 0.

IV. ACTION AND VARIATIONAL PRINCIPLE

The Weyl tensor in Eq. (23) aims our attention to the
following Weyl action,

IW ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
CμνρσCμνρσ;

¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−g

p �
RμνρσRμνρσ −

1

3
R2

�
; ð37Þ
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where g ¼ detðgμνÞ, and we have used the identity,

CμνρσCμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þ
1

3
R2; ð38Þ

and we have omitted the topological invariant from the
action. The Weyl action (37) is a unique gravity action that
is invariant under the local conformal transformation
gμνðxÞ → Ω2ðxÞgμνðxÞ. We will show that the Weyl action
(37) yields Cνρσ ¼ 0, but before showing it, we present
some remarks on the conformal gravity.
The gravity theory with the Weyl action (37) is usually

known as the conformal gravity [5]. However, our gravity
theory is different from conformal gravity, though the
action coincides. The difference is originated from not
the action but the variational principle; in conformal
gravity, one varies the Weyl action (37) with respect to
the metric, and it yields the rank-2 tensor equations, which
are described by the Bach tensor [5,14,15]. Thus, a vacuum
of conformal gravity is represented by the vanishing of the
Bach tensor. In contrast, Eq. (22) is described by the Cotton
tensor. This implies that the variational principle should be
different from that of conformal gravity.
The variational principle that yields Cνρσ ¼ 0 is as

follows. Varying the Weyl action (37) with respect to the
connection keeping the metric fixed, we find

δIW ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rμ

νρσδRμ
νρσ −

1

3
RgμνδRμν

�
;

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
CνρσδΓσνρ; ð39Þ

where δΓσνρ ≔ gσλδΓλ
νρ; we have used the identity

δRμ
νρσ ¼ ∇ρðδΓμ

σνÞ −∇σðδΓμ
ρνÞ; ð40Þ

and the boundary condition δΓρ
μν ¼ 0 at the boundary is

imposed. Thus, we find that δIW ¼ 0 yields Cνρσ ¼ 0.
Thus, it is found that the local conformal symmetry of the

action (37) can be broken in the field equations, as shown in
Eq. (36), due to a variational principle.
The variation of the connection (with keeping in mind

that the metric fixed) is given by

δΓρ
μν ¼

1

2
gρλðδð∂μgνλÞ þ δð∂νgμλÞ − δð∂λgμνÞÞ: ð41Þ

Therefore, we are varying the action with respect to the
derivative of the metric keeping the metric itself fixed. As a
consequence of this variational principle, the field equa-
tions that involve the third-order of derivative reduce to the
second-order differential equations, as shown in Eq. (28).
This is a generic property of the theory, and it is a
consequence of the variation presented here.
Finally, we present the gravitational analog of the source

term JμAμ in Maxwell’s theory,

Isource ¼ −8πG
Z

d4x
ffiffiffiffiffiffi
−g

p
TμνρσRμνρσ; ð42Þ

where Tμνρσ is defined by Eq. (14), and Tμν is a source that
does not include the connection. We find that the variation
of the action with respect to the connection keeping the
metric fixed yields,

δIsource ¼ −16πG
Z

d4x
ffiffiffiffiffiffi
−g

p ∇μTμνρσδΓσνρ: ð43Þ

Therefore, we find that δIW þ δIsource ¼ 0 yields Eq. (20).

V. CONCLUSION

It has been shown that the Cotton tensor can describe the
effects of gravity beyond general relativity. A vacuum is
represented by the vanishing of the Cotton tensor. An exact
Schwarzschild-like solution has been discovered. This
theory includes general relativity as part of itself, and
has more information on gravity. It is a potentially viable
theory of gravity, and it would be worth for further
investigations.
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