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A limiting temperature of a species can cause the Universe to asymptote to it yielding a de-Sitter (dS)
phase due to macroscopic emergent behavior. The limiting temperature is generic for theories slightly
shifted from their conformal point. We demonstrate such behavior in the example of unparticles/Banks-
Zaks theory. The unparticles behave like radiation at high energies reducing the Hubble tension and a
cosmological constant at low energies yielding a model that follows closely Λ cold dark matter model but
due to collective phenomenon. It is technically natural and avoids the no-dS conjecture. The model is free
of the coincidence and initial conditions problems, scalar fields, and modified gravity.
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I. INTRODUCTION

The cosmological data from the cosmic microwave
background (CMB) [1] as well as the discovery of the
acceleration of the Universe [2,3] strongly suggest that the
Universe is partially filled with dark energy (DE) [4], which
currently constitutes around 70% of the energy density
of the Universe. The simplest model that explains these
measurements assumes that DE is a cosmological constant
(CC) with the energy density of order of ρDE ∼ 10−119M4

p,
where Mp ≃ 2.435 × 1018 GeV is the reduced Planck
mass. A popular alternative is that DE originates from
some dynamical degree of freedom, due to a modification
of gravity or additional scalar fields [5]. The present-day
value of ρDE is a source of fine-tuning in several ways.
Assuming DE is a true CC (or a fluid with w ≃ −1
throughout the whole evolution of the Universe up to
today) one obtains ρDE ⋘ M4, where M could be taken
as any fundamental scale of known physics, such as
Mp ≃ 1018,MEW ∼ 102, orMQCD ∼ 0.3 GeV [6]. The huge
hierarchy between ρDE and other energy densities in the
early Universe is often labeled as a problem of initial value
of DE [7,8]. Another issue is the so-called coincidence
problem [9,10]. Since most of the evolution of the Universe
happened in eras of radiation or dust domination, it is a
rather big coincidence that “nowadays” energy densities of
dust and DE are of the same order of magnitude. A less
concerning problem is the Hubble tension, suggesting ≳4σ
discrepancy between the value of the Hubble parameter

measured by late Universe observations (z≲ 1) compared
to early Universe ones (z ≫ 1) [11]. Finally, the no–de
Sitter (no-dS) conjecture stipulates that true dS vacua or
long term dS-like phases such as inflation or dark energy
are problematic, if not completely forbidden according to
our knowledge of scalar fields in quantum gravity theories
[12–14]. We show that considering a broken conformal
field theory close to its conformal point may be a solution
to all these problems. Furthermore, this behavior is generic
for such theories. Finally, the resolution of these problems
is not due to a specific fundamental degree of freedom, but
due to the collective behavior of the theory.
One of the underlying assumptions of the aforemen-

tioned problems of cosmology is the use of perfect fluids
with pi ¼ wiρi, where wi, the equation of state parameter
for each species is approximately constant and, specifically,
there exists some inflaton/quintessence field, such that
wDE ≃ −1 for a long enough duration. This is achieved,
for instance, by tuning the potential of the inflaton/
quintessence to be flat. As such, at some point in time
_H ¼ − 1

2

P
ið1þ wiÞρi → 0 marking the onset of the dS

phase. A path less traveled is discarding the scalar field and
analyzing the macroscopic behavior of a sector resulting in
w ≠ const. While this is not the case considering standard
matter and radiation, it is the generic situation of broken
conformal field theories (CFTs) close to a conformal fixed
point. In such a case the trace of the energy momentum
tensor θμμ ¼ ρu − 3pu ∝ βðgÞ ¼ cTx, where x is some
anomalous scaling, and c is dimensionful [15,16].1 This
result is based solely on dimensional analysis and is valid to
all CFTs. Considering perfect fluids on top of the brokenPublished by the American Physical Society under the terms of
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1A more general situation can be if we simply demand θμμ ¼
ρ − 3p ¼ fðTÞ for some function f, with proper dimensions.
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CFT without additional couplings results in _H ¼
− 1

2
ðPið1þ wiÞρi þ 4ρu−cTx

3
Þ, and we can reach the limit

_H → 0 at some temperature Tc of ρu, pu. As a result, the
temperature of this species can approach a constant at
some temperature, and the species behaves as a CC, while
the rest of the species in the Universe continues to cool due
to its expansion.
We shall consider a specific example in the framework of

the Banks-Zaks theory [17,18]. At high temperatures (i.e.,
for T ≫ ΛU, where ΛU is a cutoff scale of the theory) one
finds the Universe with the standard model (SM) sector
coupled to Banks-Zaks (BZ) particles with energy density
ρ ¼ σBZT4. The coupling gives the anomalous dimension
to BZ. This radiationlike behavior adds relativistic species
and increases Neff partially relieving the Hubble tension.
Below the scale ΛU the BZ sector decouples from the SM
and the BZ sector can be described as unparticle “stuff”
[15,18] with anomalous scaling. Under certain conditions,
using the thermal average of the theory [15], the BZ sector
will asymptote to a limiting temperature [16], yielding a
valid DE behavior.2 The model resolves the initial con-
ditions problem because it does not need a small CC or a
small initial ρDE, since its energy density at early times is
similar to radiation. Hence, the model has a built-in tracker
mechanism. The solution is technically natural, since
taking a small parameter to zero reproduces a conformal
symmetry in the unparticle sector. The absence of a
fundamental scalar field makes the theory immune to the
no-dS conjecture. Finally, since the present acceleration is
given by the collective behavior of the BZ sector, it could
be that the true CC is zero, possibly solvable by some
symmetry argument, such as conformal symmetry [22],
reverting us back to the “old CC problem” of making the
CC vanish.

II. UNPARTICLES IN FRIEDMANN-LEMAÎTRE-
ROBERTSON-WALKER UNIVERSE

In this work we consider the unparticles as a possible
candidate for DE. A successful DE model must satisfy
several conditions, namely:

(i) The present-day value of DE energy density is
ρDE ≃ 1.7 × 10−119M4

p.
(ii) The energy density of DE must be subdominant at

the big bang nucleosynthesis (BBN)/CMB scale, in
order to satisfy the BBN and Neff constraints, i.e.,
ρDE
ρr

≤ 0.086 [23–25] at 95% confidence level.
(iii) Between eras of radiation and DE domination one

must have an era of dust domination, which is

essential to the growth of the large scale structure
of the Universe.

(iv) The equation of state of DE today defined as wDE ≡
pDE
ρDE

where ρDE and pDE are energy and pressure of
DE respectively, must lie within −1.14 < wDE <
−0.94 [1]. In our model, imposing the previous
constraints automatically fulfills this requirement.

Consider the flat universe filled with unparticles and the
perfect fluids of matter and radiation. In such case, the
Friedmann equations are

3H2 ¼ ρ ¼ ρu þ ρr þ ρm; ð1Þ

_H ¼ −
1

2
ðρþ pÞ ¼ −

1

2

�
ρu þ pu þ ρm þ 4

3
ρr

�
; ð2Þ

where ρm ∝ a−3 and ρr ∝ a−4 are energy densities of dust
and radiation respectively. Following [15,16], the energy
density and pressure of unparticles are

ρu ≃ σT4 þ BT4þδ ¼ σT4
cy4

�
1 −

4ðδþ 3Þyδ
3ðδþ 4Þ

�
; ð3Þ

pu ≃
σ

3
T4 þ B

δþ 3
T4þδ ¼ σ

3
T4
cy4

�
1 −

4yδ

δþ 4

�
; ð4Þ

where δ is associated with the anomalous dimension
accordingly: δ ¼ aþ γ; βðgÞ ¼ aðg − g⋆Þ is the beta func-
tion, a > 0, g⋆ is the value of the coupling at the fixed
point, and γ is the anomalous dimension of the operator.
δ < 0 corresponds to γ < −a < 0. σ is the number of the
degrees of freedom in the sector, y ¼ T=Tc is a dimension-

less temperature, and Tc ¼ ½4ðδþ3Þ
3ðδþ4Þ ð− σ

BÞ�
1
δ is the temperature

at which pu ¼ −ρu. Let us stress that Eqs. (3) and (4) are
merely approximate values, which are valid below the
cutoff scale [26]. Above the cutoff we should recover
radiationlike behavior. This naturally happens in the case
of negative δ in our approximation, since for T ≫ ΛU one
finds pu=T4 → const and ðρu − 3puÞ=T4 → 0. Hence, if
there are significant deviations from our approximation,
they will have to cancel one another quite accurately to
recover the radiationlike behavior. So in the case of
negative δ our approximation should remain perturbative
up to the cutoff, above which the anomalous term should
vanish, and we are left with the standard ρu ∼ T4 radiation-
like behavior [26].
From the continuity equation of unparticles _ρu ¼

−3Hðρu þ puÞ, we find that at Tc the energy density of
unparticles will become constant. Additionally, we use it to
solve for the scale factor,

aðyÞ ¼ y0
y

�
1 − yδ0
1 − yδ

�1
3

; ð5Þ

2In [19] the authors considered scalar unparticles with a mass
as a function of scaling dimension of unparticles. Unparticles
have been studied in framework of general relativity and loop
quantum cosmology [20,21] where authors discuss the stability of
unparticles interacting with standard radiation.
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where y0 is the present-day value of y, aðy0Þ ¼ 1, and
y ¼ 1 corresponds to future infinity, while in the past
y ≫ 1. The form of aðyÞ depends only on δ and Tc, which
are parameters of unparticles. The form of (5) does not
change if one considers more fluids filling the Universe. So
unparticles act as the “clock” of the Universe. Positive ρu
and Tc require −3 ≤ δ ≤ 0.3 In this parameter range
unparticles always fulfill the null energy condition,
w ≥ −1. If unparticles are in thermal equilibrium with
the SM at early times their temperature should be similar
to radiation T ∼ Tr. In the y ≫ 1 regime one finds
ρu ∝ y4 ∝ T4, a ∝ 1=T, and ρu=ρr → const. As a result,
in the early Universe unparticles behave like ordinary
radiation4 and the Universe evolves like the standard Λ
with cold dark matter (ΛCDM), but with some additional
relativistic degrees of freedom, Neff . As the Universe cools
the unparticles decouple and have a different temperature.

At late times, _ρu !y→1
0, and unparticles asymptote to a CC.

This feature is most easily demonstrated in the
jδj ≪ 1 limit, which results in an equation of state and
scale factor independent of δ at first order,

wu ≡ pu

ρu
≃
1

3

ln y − 1=4
ln yþ 1=12

; ð6Þ

aðyÞ ≃ y0 ln1=3 y0
y ln1=3 y

: ð7Þ

Notice that at y ≫ 1, wu ≃ 1=3, while at y ≃ 1, wu ≃ −1.
Therefore, unparticles have a built-in “tracker mechanism”
which is a crucial difference between unparticles and scalar
field models with tracker solutions, for which the equation
of state of the field becomes close to −1 during the
radiation domination era (see Ref. [27] for details). The
other regime that can be investigated analytically is the late
time, y≳ 1,

yðNÞ ≃ 1þ e−3Nðy0 − 1Þ; ð8Þ

ρuðNÞ ≃ −
δσT4

c

3ðδþ 4Þ ð1þ e−3N4ðδþ 4Þðy0 − 1ÞÞ; ð9Þ

wu ≃ −1þ e−3N4ðδþ 4Þðy0 − 1Þ; ð10Þ

where N ≡ logðaÞ < 0 are the so-called e-folds, N ¼ 0
today. From Eqs. (8) and (9) one can see that the

temperature and energy density of unparticles decreases
with N (and therefore with time) to obtain constant values
T ≃ Tc and ρ ≃ ρ∞ ≡ − δσ

3ðδþ4ÞT
4
c. As N increases radiation

and dust become negligible and unparticles dominate at late
times.5 Notice that the approach of ρu, wu to a constant is
exponential in e-folds, therefore the deviations from
ΛCDM are expected to be very small at low redshift.
An example of the behavior of the equation of state
parameter of unparticles wu as a function of N for
δ ¼ −2 is given in left panel of Fig. 1. At early times
wu ¼ 1=3, while today wu ¼ −1, and Tu ≃ Tc.
Let us define the usual density parameters,

Ωm ≡ ρm
ρ
; Ωr ≡ ρr

ρ
; Ωu ≡ ρu

ρ
: ð11Þ

According to the Planck data, present-day values of these
parameters are equal to Ω0

m ¼ 0.3089, Ω0
r ¼ 8.97 × 10−5,

and Ω0
u ¼ 0.6911 [1], assuming unparticles are responsible

for the present-day acceleration. This fitting constrains B
for a given δ and σ as shown in the right panel of Fig. 1.
Notice that this energy scale could be in a huge span of
energies, 10−30Mp < B−1=δ < Mp, for σ ¼ 100. Finally, in
Fig. 2 we show an example of the evolution of energy
densities and the total equation of state. The results are
not very sensitive to δ but require y0 − 1 < 10−3 for a long
enough dust domination era.

III. EARLY UNIVERSE EVOLUTION
AND BBN/CMB CONSTRAINTS

As mentioned in the previous section, in the y ≫ 1 limit
one finds yδ ≪ 1 and therefore ρu ∝ y4 ∝ a−4. Thus, in the
early Universe one should expect ρu=ρr to be constant.

FIG. 1. Left: the equation of state of unparticles wu as a
function of e-folds, N, for δ ¼ −2 and different initial conditions.
The unparticles have reached a CC behavior y0 ≃ 1. Right: the
energy scale B−1=δ which has a dimension of mass with Mp ¼ 1

vs δ for σ ¼ 100. The BðδÞ is obtained by matching ρ∞ to the
energy density of a present-day CC in ΛCDM. Note that
δ ∼ −0.068 results in B−1=δ ≃Mp.

3Let us note, that both δ ¼ −3 and δ ¼ 0 are well defined
limits, see [16]. For δ ¼ 0 one has ρu ¼ T4 þ 3AT4 lnT;
pu ¼ ðσ − AÞ=3T4 þ AT4 lnT. It preserves the most important
feature of the DE candidate, namely for T ¼ Tc one finds _H ¼ 0,
with Tc ¼ e

A−4σ
12A . For any finite δ there is a relation A ¼ δB

3þδ.
Eqs. (6), (7) are exact in the δ ¼ 0 case.

4This is expected, since for T > ΛU one should recover BZ
theory with ρBZ ¼ σBZT4.

5Following the procedure described in [5,28] we find that our
model is also free from any type of future singularity.
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Indeed, knowing Ωu0, and Ωr0 one finds in the y ≫ 1 limit
and y0 ≃ 1,

ρu
ρr

≃
Ωu0

Ωr0
3ðδþ 4Þð−δÞ1=3ðy0 − 1Þ4=3: ð12Þ

One can see that the ratio between ρu and ρr depends only
on values of δ and y0, as Ωu0 and Ωr0 are fixed by the data.
On the other hand, the BBN and CMB constrain the
allowed number of relativistic degrees of freedom at
BBN and decoupling [23–25,29]

ρu
ρr

����
BBN

≤
7

8
ð4=11Þ4=32ΔNeff ≃ 0.086; ð13Þ

at the 95% confidence level, where ΔNeff ¼ 3.28 −
3.046 ¼ 0.19 [25]. Thus, from the BBN/CMB data one
can constrain the ðδ; y0Þ parameter space, which is pre-
sented in the left panel of Fig. 3. For y0 − 1≲ 10−5 one
satisfies the BBN/CMB constraints for all δ. Taken at face
value, the addition of unparticles ameliorates the Hubble
tension to ≃2–3σ, as it pushes the CMB derived Hubble
parameter toward H0 ≃ 70 km/Mpc/sec [30]. Of course, a
full likelihood analysis should be performed for correct
inference.
The BBN constraint can also be translated into an

allowed range of temperatures in the high energy limit.
One can take the allowed range of y0 and evolve it back to
high energies, which gives the upper bound on Tu pre-
sented in the right panel of Fig. 3 taken at the Planck scale,
i.e., for ρ ≃ ρr ¼ M4

p. Note that any value Tu < 0.1Mp

gives ρu=ρrjBBN consistent with the data.
Of specific interest is the δ ¼ 0 limit. In such a case,

ρu=ρr ∝ logðyÞ−1=3 and does not approach a constant at
early times, though at T > ΛU the conformal symmetry is
restored and one recovers ρu ¼ σBZT4. However, the

dependence is so weak that ρu=ρr ≤ 0.022 at the Planck
scale, so it does not significantly modify the BBN/CMB
constraints. Therefore, the tracker solution is still effective
in avoiding the fine-tuning of the initial value.
Once we have applied all observational and theoretical

constraints, we can discuss possible signatures of the
model. Regarding the background observables (10), the
biggest deviation from ΛCDM is in the jδj ≪ 1 regime.
We find −1 ≤ wu ≤ −0.985 at best, at redshift z ∈ ½0; 2�.
For example y0 − 1 ¼ 10−4.5; δ ¼ −0.1 give wu ≃ −1þ
0.018z=ð1þ zÞ. Obviously, the exponential approach to
a CC at late times makes it difficult to observe deviations
from ΛCDM. One must either look for deviations at early
times such as ΔNeff ∼ 0.1, cumulative effects over a large
range of redshifts, or other observables that we turn to next.

IV. PERTURBATIONS IN MATTER
AND UNPARTICLES

The essential smoking gun of any time-dependent DE
model is its influence on the clustering in the Universe.
We therefore calculate the growth of perturbations and
compare the result to ΛCDM. In a spatially flat universe,
the evolution of the different density contrasts and gravi-
tational potential is determined by

̈δ̃i þ Ai
_̃δi þ Biδ̃i ¼ Si ð14Þ

_ϕþ
�
1þ k2

3H2

�
ϕ ¼ −

1

2
ðΩmδ̃m þ Ωuδ̃uÞ; ð15Þ

where i ¼ u, m mark the density contrast of unparticles
and matter respectively, ϕ is the gravitational potential,
and _ denotes differentiation with respect to e-folds. Since
unparticles can still be expressed as pðρÞ, the adiabatic and
effective speed of sound for unparticles are equal
c2a ≡ _p

_ρ ¼ δp
δρ and for the matter component both speeds

vanish. Hence, Ai, Bi, and Si are

FIG. 2. Left: comparison of the evolution of density parameters
ΩðNÞ for each fluid between ΛCDM (dashed) and unparticles
(solid) model. The dashed blue curve is the relative density of the
CC in the ΛCDM model. Right: evolution of the total equation of
state wðNÞ. Both Ω and w weakly depend on δ. The Universe
evolves from the radiation-dominated phase to matter domination
era followed by DE domination (i.e., the unparticles domination)
with w ≃ −1. If y0 − 1≳ 10−2 the matter-radiation equality and/
or the total w do not fit the data.

FIG. 3. Left: − log10ðy0 − 1Þ vs δ. White regions of parameter
space are consistent CMB constraints. Right: BBN constraints
on the ðδ; TiÞ parameter space, where Ti is a value of Tu for
ρr ≃ ρ ≃M4

p. Note that any value Tu < 0.1Mp gives a viable
ρu=ρr at BBN/CMB.
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Ai ¼
1

2
½1 − 3wuΩu þ 6c2ai − 12wi�;

Bi ¼
3

2

�
ðc2ai − wiÞð1 − 3Ωuwu − 3wiÞ þ

2k2

3H2
c2ai − 2 _wi

�
;

Si ¼ 3ð1þ wiÞ
�
_ϕ

�
1þ _wi

1þ wi

�

þ ϕ

�
3ð1þ wuΩuÞ þ

2k2

3H2

�

þ 3

2
ðΩmδ̃m þ ð1þ c2aiÞΩuδ̃uÞ

�
: ð16Þ

We solve the system of Eqs. (14) and (15) using our
background solution and the initial conditions of [31]

δ̃min
¼ −2ϕi

�
1þ k2

3H2
i

�
;

_̃δmin
¼ −

2

3

k2

H2
i
eNinϕi;

δ̃uin ¼ ð1þ wuinÞδ̃min
;

_̃δuin ¼ ð1þ wuinÞ _̃δmin
þ _wuin δ̃min

: ð17Þ

Considering the linear growth of matter perturbations,

DðzÞ ¼ δ̃mðzÞ
δ̃mð0Þ, one defines the growth rate of clustering

f ≡ d logD
d log a and the growth index γðzÞ ¼ dlnfðzÞ

dΩm
. The left

panel of Fig. 4 shows the relative difference of fðzÞσ8ðzÞ
between our model and ΛCDM, where σ8 is the mass
variance in a sphere of radius of 8 Mpc/h and can be written
as σ8ðzÞ ¼ σ8ð0ÞDðzÞ, where σ8ðz ¼ 0Þ is the present value
from [1]. The right panel of Fig. 4 shows the evolution of
growth index for unparticles cosmology compared to the
ΛCDM result. In all cases, the deviation from ΛCDM is at
most ∼0.1% at almost any given time, which is very
difficult to detect unless there is an integrated effect.

V. CONCLUSIONS

We have investigated the evolution of a thermal average
of a theory slightly shifted from its conformal fixed point.
In general, based on dimensional considerations, an anoma-
lous dimension can result in a sector behaving as radiation
at early times and as a CC at late times, obtaining a DE
model due to collective behavior. The model is technically
natural and has a built-in tracker mechanism. It can be
defined at practically any energy scale Tu < 0.1Mp, and
10−30Mp ≤ B−1=δ ≤ Mp. Therefore, it solves the initial
conditions and fine-tuning problems. It avoids the no-dS
conjecture, ameliorates the Hubble tension, and allows
the true CC to vanish. We demonstrated the idea with a
specific BZ/unparticles model. The most severe tuning
is the requirement of ρu=ρrjBBN ≲ 0.1 that predicts
y0 − 1≲ 10−4.5 which is very mild. This additional Neff
are also the best chance of detection, absent some inte-
grated effect. Two interesting future directions are a like-
lihood analysis of the current example and explicit
calculations of the fundamental parameters σ, B, and δ
in various CFTs, yielding much stronger predictions.
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