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Complex singularities have been suggested in propagators of confined particles, e.g., the Landau-gauge
gluon propagator. We rigorously reconstruct Minkowski propagators from Euclidean propagators with
complex singularities. As a result, the analytically continued Wightman function is holomorphic in the
tube, and the Lorentz symmetry and locality are kept intact, whereas the reconstructed Wightman function
violates the temperedness and the positivity condition. Moreover, we argue that complex singularities
correspond to confined zero-norm states in an indefinite metric state space.
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I. INTRODUCTION

Color confinement, the absence of colored degrees of
freedom from the physical spectrum, is an essential element
of strong interactions. Understanding this fact in the
framework of relativistic quantum field theory (QFT) is
a fundamental issue of particle and nuclear physics.
To investigate such fundamental aspects of strong

interactions, the gluon, ghost, and quark propagators in
the Landau gauge have been extensively studied by both
lattice and continuum methods [1–3]. Based on this
progress, there has recently been an increasing interest
in the analytic structures of the gluon, ghost, and quark
propagators [4–21]. In particular, complex singularities,
which are unusual singularities invalidating the Källén-
Lehmann spectral representation [22], attract much atten-
tion. In old literature [23–28], e.g., for models motivated by
the Gribov ambiguity, it was predicted that the gluon
propagator in the Landau gauge has a pair of complex
poles, which is a typical example of such singularities.
The recent studies done without assuming the Källén-

Lehmann spectral representation, e.g., reconstructing the
propagators from Euclidean data [17,21], modeling the
propagators by the gluon mass [7,8,14,19,29–31], and
the ray technique of the Dyson-Schwinger equation
[5,20] consistently indicate the existence of complex
singularities of the Landau-gauge gluon propagator.

Note that complex singularities were also observed using
the ray technique in other models [32–34].
Since complex singularities should never appear in propa-

gators of observable particles, we can expect that they are
connected to confinement. Thus, theoretical aspects of com-
plex singularities are of crucial importance since they could
provide some hints for a better understanding of a confine-
ment mechanism. Theoretical consequences of complex
singularities have so far been discussed only heuristically.
For example, some argue that the appearance of complex
singularities might imply nonlocality, e.g., [25–27].
Nevertheless, this argument is not fully convincing due to
the use of the naive inverseWick rotation. To our knowledge,
a solid study on this subject is still lacking.
Therefore, we will scrutinize the reconstruction pro-

cedure, namely the reconstruction of Wightman functions,
or the vacuum expectation values of the products of field
operators, from Schwinger functions, or the Euclidean
correlators, by the analytic continuation.
We consider formal aspects of complex singularities.

Figure 1 frames our study in the reconstruction procedure.
In the standard reconstruction procedure, one begins with a
family of Schwinger functions satisfying Osterwalder-
Schrader (OS) axioms [35,36] and reconstructs a QFT
based on the OS theorem and the Wightman reconstruction
theorem (see Theorem 3–7 in [37]). In our study, we start
from two-point Schwinger functions in the presence of
complex singularities violating some of the OS axioms as
seen below. We first reconstruct the Wightman function
based on the holomorphy in “the tube” [37] according to
the flow shown in Fig. 1. We then examine general
properties of the two-point Wightman function and discuss
possible state-space structures.
In this paper, we illustrate a typical example of a

propagator with complex singularities and give a sketch
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of main results, omitting mathematical subtleties. We
provide full details of their rigorous proofs and derivations
in a longer version [38].

II. SETUP AND MAIN RESULTS

We use the following notations: The space of test
functions with compact supports is denoted by DðR4Þ,
and that of rapidly decreasing test functions by SðR4Þ.
Elements of these dual spacesD0ðR4Þ andS0ðR4Þ are called
distributions and tempered distributions, respectively. We
use x, y, ξ, η as elements of R4. We write ξ ¼ ðξ⃗; ξ4Þ for
Euclidean space and ξ ¼ ðξ0; ξ⃗Þ for Minkowski or com-
plexified space. In accordance with [37],R4 − iVþ is called
the tube, where Vþ denotes the (open) forward light cone

Vþ ≔ fðη0; η⃗Þ ∈ R4; η0 > jη⃗jg: ð1Þ

For simplicity, we consider a two-point function for a
scalar fieldϕðxÞ. In all the evidence for complex singularities
mentioned above, the complex singularities appear in an
analytically continued Euclidean propagator on the complex
squared momentum, k2, plane. Thus, we shall begin
with a Euclidean propagator, or a two-point Schwinger
function Sðx−yÞ¼S2ðx;yÞ¼hϕðxÞϕðyÞiEuc., assuming the
“temperedness” condition and Euclidean invariance. With
some regularity assumption of SðξÞ at ξ ¼ 0, namely
SðξÞ ∈ S0ðR4Þ, the Schwinger function can be expressed as

SðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDðk2Þ: ð2Þ

In the usual case where the Källén-Lehmann spectral
representation holds, Dðk2Þ has singularities only on the
negative real axis, which is called the timelike axis. We call
singularities except on the timelike axis complex singular-
ities. A typical example of these singularities is a pair of
complex conjugate poles as illustrated in Fig. 2.
For technical reasons we assume: (1) boundedness of

complex singularities in jk2j in the complex k2 plane,

(2) holomorphy ofDðk2Þ in a neighborhood of the real axis
except for the timelike singularities, (3) some regularity of
discontinuity on the timelike axis [39], and (4) Dðk2Þ → 0

as jk2j → ∞.
The following list outlines the main results of our study:
(A) The reflection positivity is violated for the

Schwinger function.
(B) The holomorphy of theWightman functionWðξ − iηÞ

in the tube R4 − iVþ and the existence of the
boundary value as a distribution WðξÞ ≔
lim η→0

η∈Vþ
Wðξ − iηÞ ∈ D0ðR4Þ are still valid. Thus, we

can reconstruct the Wightman function from the
Schwinger function.

(C) The temperedness and the positivity condition in
DðR4Þ are violated for the reconstructed Wightman
function. The spectral condition is never satisfied
since it requires the temperedness as a prerequisite.

(D) The Lorentz symmetry and spacelike commutativity
are kept intact.

We prove the assertions (A)–(D) rigorously in [38] and
provide essential ideas in this paper. From the assertion (C),
complex singularities may seem to have no physical
interpretation. However, we argue:
(E) Complex singularities can be realized in indefinite-

metric QFTs and correspond to pairs of zero-norm
eigenstates of complex energies.

To demonstrate these results, we first give sketches of
proofs of the assertions (A)–(D) for an important example
in the next section. We then mention their generalization to
arbitrary complex singularities and discuss a possible
realization in quantum theory.

III. SPECIAL CASE: ONE PAIR OF COMPLEX
CONJUGATE POLES

We begin with a propagator Dðk2Þ with one pair of
complex conjugate simple poles, which is decomposed
into the “timelike part” Dtlðk2Þ and “complex-pole part”
Dcpðk2Þ,

FIG. 1. The standard reconstruction procedure and contents of
our study consisting of α and β.

FIG. 2. Complex squared momentum k2 plane of the propa-
gator Dðk2Þ with a pair of complex conjugate poles given in (3).
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Dðk2Þ ¼ Dtlðk2Þ þDcpðk2Þ;

Dtlðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

;

Dcpðk2Þ ¼
Z

M2 þ k2
þ Z�

ðM�Þ2 þ k2
; ð3Þ

where ρðσ2Þ is the spectral function and M2 ∈ C is the
complex mass squared. Without loss of generality, we can
choose ImM2 > 0. Such a pair of complex conjugate poles
is a typical example of complex singularities, which is
suggested to appear in the transverse part of the Landau-
gauge gluon propagator in many works [7,8,14,17,19–
21,23–28]. Note that complex conjugate pairing ofDcpðk2Þ
is necessary for a real field due to the Schwarz reflection
principle.
We accordingly decompose the Schwinger function as

SðξÞ ¼ StlðξÞ þ ScpðξÞ;

StlðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDtlðk2Þ;

ScpðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDcpðk2Þ: ð4Þ

We proceed to reconstruct the corresponding Wightman
function as an analytic continuation of the Schwinger
function by identifying the Wightman function at pure
imaginary time with the Schwinger function,

Wð−iξ4; ξ⃗Þ ≔ Sðξ⃗; ξ4Þ; ð5Þ

for ξ4 > 0.
(B) As usual, for the timelike part, we can analytically

continue Wtlð−iη0; ξ⃗Þ ¼ Stlðξ⃗; η0Þ to the tube ξ − iη ¼
ðξ0 − iη0; ξ⃗ − iη⃗Þ ∈ R4 − iVþ. Moreover, the limit η → 0
in η ∈ Vþ, or “the boundary value,” can be taken as a
tempered distribution [in S0ðR4Þ],

Wtlðξ0; ξ⃗Þ ≔ lim
η→0
η∈Vþ

Wtlðξ − iηÞ

¼
Z

∞

0

dσ2ρðσ2ÞiΔþðξ; σ2Þ; ð6Þ

which is formally a sum of the free Wightman function
iΔþðξ; σ2Þ of mass σ2 with the weight ρðσ2Þ, where

iΔþðξ; σ2Þ ¼ ð2πÞ
Z

d4k
ð2πÞ4 e

−ikξθðk0Þδðk2 − σ2Þ ð7Þ

with the Loretzian vectors ξ ¼ ðξ0; ξ⃗Þ, k ¼ ðk0; k⃗Þ.
On the other hand, the complex-pole part ScpðξÞ can be

expressed as

Scpðξ⃗;ξ4Þ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ξ⃗

�
Z
2Ek⃗

e−Ek⃗jξ4j þ Z�

2E�
k⃗

e−E
�
k⃗
jξ4j

�
; ð8Þ

where Ek⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þM2

p
is a branch of ReEk⃗ > 0 and

ImEk⃗ > 0 holds from the choice ImM2 > 0. Similarly to
the timelike part, the complex-pole part of the Wightman
function,

Wcpðξ− iηÞ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðξ⃗−iη⃗Þ

×

�
Z
2Ek⃗

e−iEk⃗ðξ0−iη0Þ þ Z�

2E�
k⃗

e−iE
�
k⃗
ðξ0−iη0Þ

�
; ð9Þ

is holomorphic in the tube R4 − iVþ, since the integrand
decreases rapidly in jk⃗j for ξ − iη ∈ R4 − iVþ. Note
that ImM2 does not affect the convergence because of
Ek⃗ ¼ jk⃗j þOð1=jk⃗jÞ.
We can regard the Fourier transform in (9) as a tempered

distribution in ξ⃗ with a smooth parameter ξ0, which is a
distribution in D0ðR4Þ. Then, the limit η → 0 with η ∈ Vþ
can be taken to yield the reconstructed Wightman function,

Wcpðξ0; ξ⃗Þ¼
Z

d3k⃗
ð2πÞ3e

ik⃗·ξ⃗

�
Z
2Ek⃗

e−iEk⃗ξ
0 þ Z�

2E�
k⃗

e−iE
�
k⃗
ξ0
�
: ð10Þ

Therefore, we obtain the reconstructed Wightman function
WðξÞ ¼ WtlðξÞ þWcpðξÞ as a distribution in D0ðR4Þ.
(C) Due to the exponential increases of the integrand as

ξ0 → �∞, WcpðξÞ is a nontempered distribution. Thus, the
reconstructed Wightman function is nontempered in the
presence of complex poles: WðξÞ ∉ S0ðR4Þ.
Next, let us examine the positivity. While the Wightman

function is not a tempered distribution, we can still consider
the positivity condition in DðR4Þ, namely, for any test
function with compact support f ∈ DðR4Þ,

Z
d4xd4yWðy − xÞf�ðxÞfðyÞ ≥ 0: ð11Þ

This positivity condition (11) is violated due to the
nontemperedness.
An intuitive derivation is as follows: Intuitively, the

positivity corresponds to that of the sector fϕðxÞj0igx∈R4.
Suppose that this sector has a positive metric. From the
translational invariance of the two-point function, the
translation operator defined on the sector UðaÞϕðxÞj0i ≔
ϕðxþ aÞj0i is unitary. Since the modulus of a matrix
element of a unitary operator is not more than one in a
space with a positive metric, we have an a-independent
“upper bound,” i.e., jWðaÞj ¼ jh0jϕð0ÞUð−aÞϕð0Þj0ij ≤
h0jϕð0Þϕð0Þj0i. This upper bound will imply that WðaÞ
is tempered, which contradicts the nontemperedness.
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Of course, Wð0Þ ¼ h0jϕð0Þϕð0Þj0i is in general ill defined
since WðξÞ is a distribution. A more delicate analysis is
therefore required. We outline a rigorous proof in
Appendix.
(A) The reflection positivity is always violated with

complex poles, since steps (a) and (b) of the OS theorem
[35] imply that the reflection positivity essentially yields
the temperedness of the Wightman function. We give a
sketch of these steps in Appendix.
(D) We consider the Lorentz symmetry and spacelike

commutativity. The invariance of the complex-pole part
(9) under Lorentz boosts can be explicitly checked by an
integration path deformation. Since the spatial rotational
invariance is manifest, the Wightman function is Lorentz
invariant. As another derivation, one can utilize the
Euclidean invariance of the Schwinger function and the
holomorphy in the tube. An argument similar to
Bargmann–Hall–Wightman theorem (Theorem 2–11 and
its Lemma of [37]) yields complex Lorentz invariance of
Wðξ − iηÞ. The spacelike commutativity is an immediate
consequence of Lorentz invariance: WðξÞ ¼ Wð−ξÞ for
spacelike ξ.

IV. GENERAL CASES

Let us mention a generalization of the above assertions to
arbitrary complex singularities. With general complex
singularities, the spectral representation is modified as,
according to the Cauchy integral theorem,

Dðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

þ
X
M

I
ΓM

dζ
2πi

DðζÞ
ζ − k2

; ð12Þ

where M is a label of a complex singularity and ΓM is a
contour surrounding the singularity clockwise. The con-
tribution of each complex singularity is formally a sum of
complex poles with weight −DðζÞ=2πi over the contour
[41]. This leads to a generalization of the proof of (B) and
(D). We prove the nontemperedness of (C) as follows:
Suppose the Wightman function were tempered, then the
holomorphy in the tube would essentially imply the spectral
condition for the Wightman function in momentum repre-
sentation. This leads to the Källén-Lehmann spectral
representation, which contradicts complex singularities.
Other claims of (A) and (C) follow from the nontempered-
ness as above. For details, see [38].

V. REALIZATION IN QUANTUM THEORY

(E) We discuss a possible state-space structure. Since
abandoning the positivity of the full state space is common
in Lorentz covariant gauge-fixed descriptions of gauge
theories, we consider a quantum theory in a state space with
an indefinite metric. For a review on indefinite-metric
QFTs, see e.g., [42].

Our aim here is to argue the correspondence between
complex singularities and relevant complex-energy spectra.
To this end, we shall demonstrate (E1) necessity and (E2)
sufficiency of complex spectra for complex singularities
when a convenient completeness relation is applicable.
(E1) We begin with the necessity of complex spectra for

existence of complex singularities. Let us consider a
(0þ 1)-dimensional QFT satisfying:

(i) completeness of denumerable eigenstates jni of the
HamiltonianH: 1 ¼ P

n;n0 η
−1
n;n0 jnihn0j, where ηn;n0 ¼

hnjn0i is the nondegenerate metric [43],
(ii) translational covariance: ϕðtÞ ¼ eiHtϕð0Þe−iHt,
(iii) reality of eigenvalues En of the Hamiltonian H.

Then, with an assumption that the completeness relation
converges well, the Wightman function is tempered as
follows:

h0jϕðtÞϕð0Þj0i ¼
Z

dωρðωÞe−iωt;

ρðωÞ ¼
X
n;n0

η−1n;n0δðω − EnÞh0jϕð0Þjnihn0jϕð0Þj0i: ð13Þ

This observation demonstrates that complex singularities
do not appear without complex spectra, i.e., (E1) complex
singularities require complex spectra of H.
(E2) On the other hand, eigenstates of complex eigen-

values of a Hermitian operator H appear as pairs of zero-
norm states. For example, a pair of zero-norm states
fjαi; jβig can satisfy

�
Hjαi ¼ Eαjαi; Hjβi ¼ E�

αjβi
hαjαi ¼ hβjβi ¼ 0; hαjβi ≠ 0:

ð14Þ

This pair of states fjαi; jβig can yield a pair of complex
conjugate poles. Indeed, we find

WcomplexðtÞ≔
X

n;n0∈fα;βg
η−1n;n0e

−iEnth0jϕð0Þjnihn0jϕð0Þj0i

¼ðhβjαiÞ−1h0jϕð0Þjαihβjϕð0Þj0ie−iEαt

þðhαjβiÞ−1h0jϕð0Þjβihαjϕð0Þj0ie−iE�
αt; ð15Þ

which yields,

ScomplexðτÞ ¼ Wcomplexð−ijτjÞ

¼
Z

dk
2π

eikτ
�

Z
k2 þ E2

α
þ Z�

k2 þ ðE�
αÞ2

�
; ð16Þ

with Z ≔ 2Eαh0jϕð0Þjαihβjϕð0Þj0i
hβjαi for ReEα > 0. This indicates

that (E2) a pair of zero-norm states fjαi; jβig with complex
conjugate energies fEα; E�

αg satisfying ReEα > 0 yields a
pair of complex conjugate poles if fjαi; jβig are not
orthogonal to ϕð0Þj0i.
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These claims [(E1) and (E2)] establish the correspon-
dence between complex singularities and pairs of zero-
norm states of complex eigenvalues of the Hamiltonian.

VI. EXAMPLE

The above argument is in (0þ 1)-dimensional QFT. We
show an example of (3þ 1)-dimensional QFT yielding
complex poles based on a covariant operator formulation
[44] of the Lee-Wick model [45]. The Lagrangian density
of a complex scalar field ϕ with complex (squared) mass
M2 ∈ C is given by

L ≔
1

2
½ð∂μϕÞð∂μϕÞ þ ð∂μϕÞ†ð∂μϕÞ†

−M2ϕ2 − ðM�Þ2ðϕ†Þ2�: ð17Þ

We expand the field operator ϕ as

ϕðxÞ ¼ ϕðþÞðxÞ þ ϕð−ÞðxÞ;

ϕðþÞðxÞ ¼
Z

d3p⃗
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep⃗

p αðp⃗Þeip⃗·x⃗−iEp⃗t;

ϕð−ÞðxÞ ¼
Z

d3p⃗
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep⃗

p β†ðp⃗Þe−ip⃗·x⃗þiEp⃗t; ð18Þ

where Ep⃗ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p⃗2

p
, ReEp⃗ ≥ 0, and Re

ffiffiffiffiffiffi
Ep⃗

p
≥ 0. The

canonical commutation relation implies ½αðp⃗Þ; β†ðq⃗Þ� ¼
½βðp⃗Þ; α†ðq⃗Þ� ¼ ð2πÞ3δðp⃗ − q⃗Þ. We define the vacuum
j0i by ϕðþÞðxÞj0i ¼ ½ϕð−ÞðxÞ�†j0i ¼ 0, which is a
Lorentz invariant state (see [44] for details). Note that
one can explicitly check the spacelike commutativity at
least at the level of elementary fields.
The Hamiltonian reads,

H ¼
Z

d3p⃗
ð2πÞ3 ½Ep⃗β

†ðp⃗Þαðp⃗Þ þ E�
p⃗α

†ðp⃗Þβðp⃗Þ�; ð19Þ

up to some constant. The complex-energy states jp⃗; αi ≔
α†ðp⃗Þj0i and jp⃗; βi ≔ β†ðp⃗Þj0i form a pair of zero-
norm states: hp⃗;αjq⃗;αi¼hp⃗;βjq⃗;βi¼0, hp⃗; αjq⃗; βi ¼
hp⃗; βjq⃗; αi ¼ ð2πÞ3δðp⃗ − q⃗Þ.
We find that the Euclidean propagator of a Hermitian

combination with a constant Z ∈ C, Φ ≔
ffiffiffiffi
Z

p
ϕþ ffiffiffiffiffi

Z�p
ϕ†,

has complex poles. Indeed, the Wightman function of the
Lee-Wick model,

WΦðt;x⃗Þ≔h0jΦðxÞΦð0Þj0i

¼
Z

d3p⃗
ð2πÞ3

�
Z

2Ep⃗
eip⃗·x⃗−iEp⃗x0þ Z�

2E�
p⃗

eip⃗·x⃗−iE
�
p⃗
t
�
; ð20Þ

coincides with the Wightman function (10) reconstructed
from a pair of simple complex conjugate poles.

VII. CONCLUDING REMARKS

Some remarks on the nontemperedness, locality, and
Wick rotation are in order.

A. Nontemperedness

The exponential growth of the Wightman function WðξÞ
largely affects asymptotic states, which correspond to
“ξ0 → �∞ limit.” This indicates that asymptotic states
of the field are ill defined without some artificial manip-
ulations. Such states in the full state space are far from
being identified with asymptotic particle states and should
be excluded from the physical state space before taking the
asymptotic limit through, e.g., the Kugo-Ojima quartet
mechanism [46]. Thus, the complex singularities can be
considered as a signal of confinement. Incidentally, note
that the appearance of complex singularities in a propagator
of the gluon-ghost composite operator is a necessary
condition for eliminating complex-energy states in “the
one-gluon state” from the physical state space in the
Becchi-Rouet-Stora-Tyutin (BRST) formalism. Seeking
such complex gluon-ghost bound states would be interest-
ing for future prospects. Remarkably, the Bethe-Salpeter
equation for the gluon-ghost bound state has been dis-
cussed in light of BRST quartets in [47].

B. Locality

Some argue that complex singularities are associated
with nonlocality. For example, it is claimed in [25–27] that
complex poles describe short-lived excitations and that the
locality is broken in short range at the level of propagators
but that the corresponding S matrix remains causal.
However, this interpretation is different from ours. To
our knowledge, the only axiomatic way to impose locality
is the spacelike commutativity. Consequently, complex
singularities themselves do not necessarily lead to non-
locality, as shown in this paper.

C. Wick rotation

Our reconstruction procedure is different from the naive
inverse Wick rotation in the momentum space k2E → −k2.
Indeed, due to the complex singularities, the time-ordered
propagator cannot be Fourier transformed. On the other
hand, the inverse Wick rotation makes the time-ordered
propagator tempered and ruins the interpretation of
Euclidean field theory as an imaginary-time formalism.
Note also that the inverse Wick rotation invalidate the
Hermiticity of the Hamiltonian even in an indefinite space
unlike ours.
In summary, complex singularities are beyond the stan-

dard formulationyet consistentwith locality.Moreover, they
can appear in indefinite-metric QFTs, e.g., gauge theories in
Lorentz covariant gauges.
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APPENDIX: OUTLINES OF PROOFS FOR
POSITIVITY VIOLATIONS

We outline proofs for violations of the positivity (11) and
reflection positivity, by showing how temperedness arises
from each of the positivity conditions.

1. Violation of the positivity (11)

Suppose that the positivity (11) holds. We define a
positive semidefinite sesquilinear form on DðR4Þ: for
f; g ∈ DðR4Þ,

ðf; gÞW ≔
Z

d4xd4yWðy − xÞf�ðxÞgðyÞ: ðA1Þ

For a ∈ R4, ÛðaÞ denotes the translation operator
on DðR4Þ satisfying ðÛðaÞf; ÛðaÞfÞW ¼ ðf; fÞW . Since
ð·; ·ÞW is positive semidefinite, the Cauchy-Schwarz
inequality yields a bound on ðf � ðg �WÞÞðaÞ:
jðf � ðg �WÞÞðaÞj ¼ jðf�; ÛðaÞĝÞW j ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf�; f�ÞWðg; gÞW
p

for all f; g ∈ DðR4Þ, where ĝðxÞ ≔ gð−xÞ and � denotes
the convolution. Note that T ∈ D0ðR4Þ is tempered if and
only if α � T is a smooth function of at most polynomial
growth for any α ∈ DðR4Þ (see Theorem 6, Chapter 7, in

[48]). Using this criterion to ðf � ðg �WÞÞðaÞ and
ðg �WÞðxÞ, we obtain W ∈ S0ðR4Þ, which contradicts
the nontemperedness.

2. Violation of the reflection positivity

Let us sketch out a proof of the reflection-positivity
violation. It is sufficient to show the violation of the
reflection positivity for the two-point function, which is
a necessary condition for the reflection positivity: for
any test function with positive support f ∈ SðR4þÞ ≔
ff ∈ SðR4Þ; suppf ⊂ R3 × ½0;∞Þg,

Z
d4xd4yf�ðϑxÞfðyÞSðx − yÞ ≥ 0; ðA2Þ

where ϑ is the reflection defined by ϑx ≔ ðx⃗;−x4Þ.
Suppose that this condition (A2) holds. Then, the

positivity (A2) naturally provides a positive semidefinite
sesquilinear form on SðR4þÞ. By dividing SðR4þÞ by the
zero-norm subspace, N, and completing the pre-Hilbert

space, we obtain a Hilbert space K ¼ SðR4þÞ=N. In this
Hilbert space, the imaginary-time translation operators
fTτg form a semigroup of self-adjoint operators satisfying
kTτφk ≤ kφk for any φ ∈ K. Thus, we can represent
Tτ ¼ e−τH with a self-adjoint generator H. Using the
holomorphic semigroup Tτþis ¼ e−ðτþisÞH on ð0;∞Þ ×R,
we can construct an analytic continuation of SðξÞ (smeared
in the spatial directions). In the real-time direction, this
analytic continuation is tempered since T is is unitary
and thus bounded in s. This leads to the temperedness
of the Wightman function, which contradicts the
nontemperedness.
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