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We present a formalism that resums both soft-virtual (SV) and next-to-SV (NSV) contributions to all
orders in perturbative QCD for the rapidity distribution of any colorless particle produced in hadron
colliders. Using state-of-the-art results, we determine the complete NSV contributions to third order in the
strong coupling constant for the rapidity distributions for Drell-Yan and for Higgs boson in gluon fusion as
well as bottom quark annihilation. Using our all-order z-space result, we show how the NSV contributions
can be resummed in two-dimensional Mellin space.
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I. INTRODUCTION

Accurate measurements of observables at the Large
Hadron Collider (LHC) and their precise theoretical pre-
dictions provide an opportunity to test the Standard Model
(SM) with unprecedented accuracy, thereby constraining
beyond-the-SM (BSM) scenarios. One of the cleanest
observables at the LHC is Drell-Yan (DY) production [1]
of on-shell vector bosons Z andW� or a pair of leptons, and
hence it has received enormous attention from the theory
community. Measurements [2–4] of inclusive and differ-
ential rates of DYproduction are used as a standard candle to
calibrate the detectors and fit the nonperturbative parton
distribution functions (PDFs) [5–9]. Any deviation from the
SM predictions can provide crucial information to BSM
scenarios, such as R-parity-violating supersymmetric
models, models with Z0, and large extra-dimension mod-
els [10,11]. Similarly, the ongoing measurements of inclu-
sive and differential cross sections [12,13], along with the
theoretical predictions [14] on strong and electroweak
radiative corrections, help us to probe the symmetry-
breaking mechanism and the coupling of the Higgs boson
with other SM particles. This is possible owing to the third-
order QCD predictions for DY production [15,16] and

Higgs boson productions in gluon fusion [14,17,18] and
bottom-quark annihilation [19,20].
Like inclusive rates, differential ones also get large con-

tributions from logarithms from phase-space boundaries of
the final-state particles, thus spoiling the reliability of the
fixed-order predictions. These large logarithms can be
summed up to all orders in perturbation theory. In the seminal
works of Sterman [21] and Catani and Trentadue [22],
resummation of leading large logs for the inclusive rates in
Mellin space and to differential distribution with respect to xF
[22] using double Mellin moments were achieved. Using
factorization properties of differential cross sections and
renormalization group (RG) invariance, an all-order z-space
formalism was also developed in Ref. [23] to study the
threshold-enhanced contribution to the rapidity distributionof
any colorless particle. The formalism was also applied to Z
andW� [24] andDYand Higgs production at the N3LO level
[20,25]. In Ref. [26], the same formalism [23] was used to
study the threshold resummation of the rapidity distribution of
Higgs bosons and, later, DY production [27]. For different
approaches and their applications, see Refs. [28–36].
Besides the threshold logarithms, contributions from

subleading logarithms are also present in all of the partonic
channels beyond leading order in perturbation theory. These
subleading logarithms demonstrate perturbative behavior
similar to those from the threshold region, which allows one
to study their all-order structure. Such logarithms do appear
in inclusive reactions and there has been remarkable
progress in understanding them. See Refs. [37–49] for more
details. Recently, in a series of articles [50,51], we studied a
variety of inclusive reactions to understand these subleading
logarithms and found a systematic way to sum them up to all
orders in z aswell as inMellinN spaces. The latter provides a
resummed prediction in N space for subleading logarithms
similar to that of threshold ones.
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The differential distributions often show richer logarith-
mic structure due to their multidimensional space (spanned
by zl or Nl), making it a challenging task to understand the
all-order structure. In the present paper, using factorization
properties of physical observables and RG invariance,
we complete the task of organizing the subleading loga-
rithms in a systematic fashion that is suitable for summing
them up to all orders in perturbation theory, in both zl and
Nl spaces.

II. THEORETICAL FRAMEWORK

In the QCD-improved parton model, the rapidity dis-
tribution of a colorless state F in hadron-hadron collisions
is given by

dσc

dy
¼ σcBðτ; q2Þ

X
a;b¼q;q̄;g

Z
1

x0
1

dz1
z1

Z
1

x0
2

dz2
z2

fa

�
x01
z1

; μ2F

�

× fb

�
x02
z2

; μ2F

�
Δc

d;abðz1; z2; q2; μ2F; μ2RÞ; ð1Þ

where σcBðμ2RÞ ¼ σcBðx01; x02; q2; μ2RÞ is the Born cross section
and μR is the ultraviolet (UV) renormalization scale. The
scaling variables x0l (l ¼ 1, 2) are defined through the
hadronic rapidity y: y ¼ 1

2
lnðp2:q=p1:qÞ ¼ 1

2
lnðx01=x02Þ and

τ ¼ q2=S ¼ x01x
0
2. Here q denotes the momentum of the

colorless state F and S ¼ ðp1 þ p2Þ2 is the hadronic center-
of-mass energy, with pl (l ¼ 1, 2) being the momenta of
incoming hadrons. For the case of lepton pair production in
DY, σc ¼ dσqðτ; q2; yÞ=dq2, i.e., its invariant mass distri-
bution, and for the case of Higgs production in gluon fusion
or in bottom quark annihilation σc ¼ σg;bðτ; q2; yÞ respec-
tively. The PDFs fcðxl; μ2FÞ of colliding partons c ¼
q; q̄; g; b with momentum fractions xl (l ¼ 1, 2) are
renormalized at the factorization scale μF. The partonic
coefficient functions (CFs) Δd;ab are perturbatively calcu-
lated in QCD in powers of the strong coupling constant
asðμ2RÞ ¼ g2sðμ2RÞ=16π2 and are functions of the scaling
variables zl ¼ x0l =xl (l ¼ 1, 2). They are obtained from the
partonic processes through mass factorization. The UV-
finite partonic processes contain soft and collinear diver-
gences associated with the soft gluons and collinear
partons, beyond leading order in perturbation theory, which
can be removed by summing over degenerate final states
and by mass factorization. In this paper we restrict
ourselves to partonic CFs of only quark-antiquark-
initiated processes for DY, gluon-gluon, and bottom-
antibottom-initiated processes for Higgs production.
We call them diagonal CFs (dCFs) Δd;aā (a ¼
q, g, b). These dCFs are comprised of contributions

from δð1 − zlÞ and DjðzlÞ≡ ðlnjð1−zlÞð1−zlÞ Þþ (namely, SV) and

the coefficients regular in zl. The leading contributions
of the latter near the threshold region zl ¼ 1 contain terms

of the form DiðzlÞ lnkð1 − zjÞ and δð1 − zlÞ lnkð1 − zjÞ,
with ðl; j ¼ 1; 2Þ; ði; k ¼ 0; 1;…Þ. We call them next-to-
soft-virtual (NSV) contributions. In the Mellin Nl space,
these terms are of the form lnk Nj=Nl, with ðj; l ¼ 1; 2Þ;
ðk ¼ 0; 1 � � �Þ. The dominant SV contribution has been
studied in the earlier works of one of the authors in
Ref. [23]. In the following, we discuss the NSV contribu-
tions of the dCFs in both zl and Nl space.

III. FIXED-ORDER FORMALISM

Using RG invariance and the factorization properties of
differential dCFs [23], the threshold-enhanced SVand NSV
terms of dCFs, denoted by ΔSVþNSV

d;c , are found to expo-
nentiate as

ΔSVþNSV
d;c ¼ C expðΨc

dðq2; μ2R; μ2F; z̄1; z̄2; ϵÞÞjϵ¼0; ð2Þ

where the function Ψc
d is computed in perturbative QCD in

4þ ϵ space-time dimensions, and z̄1 ¼ 1 − z1 and z̄2 ¼
1 − z2 are the shifted scaling variables. It was shown in
Eq. (9) of Ref. [23] that the UV- and IR-finite function Ψc

d
can be decomposed in terms of the form factor Fc, soft
distribution Φc

d, and diagonal Altarelli-Parisi (AP) kernels
Γcc. The soft distribution discussed in Ref. [23], using a
Kþ G-type Sudakov differential equation, accounts for the
soft enhancements associated with the real emissions in the
production channel and is universal in nature. This uni-
versality ensures that Φc

d is only sensitive to the initial legs
and is blind to the hard process under study. In this paper,
we find that the Kþ G equation admits a solution that can
account for next-to-soft contributions as well:

Φc
d ¼

X∞
i¼1

âis

�
q2z̄1z̄2
μ2

�
iϵ
2

Siϵ

� ðiϵÞ2
4z̄1z̄2

ϕ̂c;ðiÞ
d ðϵÞ

þ iϵ
4z̄1

φðiÞ
d;cðz̄2; ϵÞ þ

iϵ
4z̄2

φðiÞ
d;cðz̄1; ϵÞ

�
; ð3Þ

where Sϵ ¼ expðϵ
2
½γE − lnð4πÞ�Þ, with γE being the Euler-

Mascheroni constant. The first term within the parentheses
accounts for the soft contributions, and the remaining two
terms correspond to next-to-soft contributions. The soft part
of the solution was proposed along with the predictions for
Higgs production and DY in Ref. [23] to third order,
without δðz̄1Þδðz̄2Þ terms. Later on, Refs. [20,25] gave the
complete result for SV. Through mass factorization,
the divergent part of the NSV solution cancels against
the collinear singularities from AP kernels and the finite

part contributes to dCFs. The coefficients φðiÞ
d;c depend on z̄l

and ϵ in such a way that the NSV part is RG invariant
provided we sum the series to all orders. In addition,
we find that the logarithmic structure of Φc

d and conse-
quently their predictions remain unaltered under the simul-
taneous transformation of the exponent in the first
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parentheses and the zl dependence in φðiÞ
d;cðzl; ϵÞ. The AP

kernels satisfy

μ2F
d

dμ2F
C lnΓccðμ2F; z̄lÞ ¼

1

2
Pcðasðμ2FÞ; z̄lÞ þ δPc; ð4Þ

where

Pcðas; z̄lÞ ¼ 2

�
AcðasÞ
ðz̄lÞþ

þ BcðasÞδðz̄lÞ þ Lcðas; z̄lÞ
�
; ð5Þ

with Ac and Bc being the cusp and collinear anomalous
dimensions, Lcðas; z̄lÞ≡ CcðasÞ lnðz̄lÞ þDcðasÞ, and the
δPc denote NSV and beyond-NSV terms, respectively. We
drop δPc throughout. The NSV-improved solution Φc

d
results in an integral representation of the finite function
Ψc

d, which embeds all order information of the mass-
factorized differential distribution, the mass-factorized
differential distribution,

Ψc
d ¼

δðz̄1Þ
2

�Z
q2 z̄2

μ2F

dλ2

λ2
Pcðasðλ2Þ; z̄2Þ þQc

dðasðq22Þ; z̄2Þ
�

þ

þ 1

4

�
1

z̄1

�
Pcðasðq212Þ; z̄2Þ þ 2Lcðasðq212Þ; z̄2Þ

þ q2
d
dq2

�
Qc

dðasðq212Þ; z̄2Þ þ 2φf
d;cðasðq22Þ; z̄2Þ

���
þ

þ 1

2
δðz̄1Þδðz̄2Þ ln

�
gcd;0ðasðμ2FÞÞ

�
þ z̄1 ↔ z̄2; ð6Þ

where Pcðas; z̄lÞ ¼ Pcðas; z̄lÞ − 2BcðasÞδðz̄lÞ, q2l ¼
q2ð1 − zlÞ, and q212 ¼ q2z̄1z̄2. The subscript þ indicates
the standard plus distribution. The functionQc

d in Eq. (6) is
given as

Qc
dðas; z̄lÞ ¼

2

z̄l
Dc

dðasÞ þ 2φf
d;cðas; z̄lÞ: ð7Þ

The splitting function Pc and the SV coefficient Dc
d are

known to third order [26] in QCD. Here φf
d;c constitutes the

finite part of φðiÞ
d;c in Eq. (3) and is parametrized in the

following way:

φf
d;cðasðλ2Þ; z̄lÞ ¼

X∞
i¼1

X∞
k¼0

âis

�
λ2

μ2

�
iϵ
2

Siϵφ
ði;kÞ
d;c ðϵÞlnkz̄l;

¼
X∞
i¼1

Xi

k¼0

aisðλ2Þφc;ðkÞ
d;i lnkz̄l: ð8Þ

The upper limit on the sum over k is controlled by the
dimensionally regularized Feynman integrals that contrib-
ute to order ais. The constant gcd;0 in Eq. (6) results from the
finite part of the virtual contributions and pure δðz̄lÞ terms

of Φc
d. The exponent Ψc

d that captures both SV and NSV
terms to all orders in perturbation theory is one of the main
results of this paper.

IV. MATCHING WITH THE INCLUSIVE

The NSV function φf
d;c can be determined at every order

in perturbation theory using fixed-order predictions ofΔd;c.
Alternatively, we can determine φf

d;c from corresponding
inclusive cross sections using the relation [23]

Z
1

0

dx01

Z
1

0

dx02ðx01x02ÞN−1 dσ
c

dy
¼

Z
1

0

dττN−1σc; ð9Þ

where σc is the inclusive cross section. This relation in the
large-N limit gives

X∞
i¼1

âis

�
q2

μ2

�iϵ
2

Siϵ

�
ti1ðϵÞϕ̂c;ðiÞ

d ðϵÞ− ti2ðϵÞϕ̂c;ðiÞðϵÞ

þ
X∞
k¼0

�
tði;kÞ3 ðϵÞφði;kÞ

d;c ðϵÞ− tði;kÞ4 ðϵÞφði;kÞ
c ðϵÞ

��
¼ 0: ð10Þ

Here we keep lnk N as well as Oð1=NÞ terms for the
determination of the SV and NSV coefficients. The con-

stants ϕ̂c;ðiÞ and φði;kÞ
c are the inclusive counterparts to the

SVand NSV coefficients, respectively, which are known to
third order in QCD for DY (c ¼ q), for Higgs production in
gluon fusion (c ¼ g), and in bottom-quark annihilation
(c ¼ b) (for NSV, see Ref. [50]). The coefficients are

ti1 ¼
iϵð2− iϵÞ
4Niϵ Γ2

�
1þ i

ϵ

2

�
; ti2 ¼

iϵð1− iϵÞ
2Niϵ Γð1þ iϵÞ;

tði;kÞ3 ¼ Γ
�
1þ i

ϵ

2

� ∂k

∂αk
�
Γð1þαÞ
Nαþiϵ=2

�
α¼iϵ

2

;

tði;kÞ4 ¼ ∂k

∂α̂k
�
Γð1þ α̂Þ

Nα̂

�
α̂¼iϵ

: ð11Þ

V. ALL-ORDER PREDICTION

In Refs. [20,23,25], we studied the predictive power of
the SV part of Ψc

d to dCFs to all orders using lower-order
results. Here, in particular, we predict NSV terms of the
form δðz̄lÞ lnk z̄j; nþ 1 ≤ k ≤ 2n − 1, and DiðzlÞ lnk z̄j for
i; k ¼ 0; 1;…; n; iþ k < 2n − 1 at every order ans provided
Ψc

d is known to order a
n−1
s . FromΨc

d; c ¼ q, b, g determined
from second-order inclusive results [50], we obtain for the
first time the results for the third-order NSV contributions to
dCFs,Δd;c, for both c ¼ q, b and c ¼ g [52]. Further, using
the knowledge of third-order results [50] for inclusive
reactions and Eq. (10), we have determined the NSV

coefficients φc;ðkÞ
d;i and dCFs to third order. They will be

presented towards the end in a concise form.
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VI. RESUMMATION

Near the hadronic threshold region, zl → 1, the PDFs
often become large (due to their small momentum fractions)
which allows the threshold contributions from CFs to
dominate at every order in as. Hence, truncated perturbative
predictions become unreliable. In Mellin space, these
dominant ones show up as order-one terms of the form
asβ0 lnN1N2 in the large-Nl region at every order. Thanks to
the all-order integral representation forΨc

d in Eq. (6) and the
RG equation of as, we can resum these terms to all orders.
Defining the double Mellin moment of any arbitrary fun-
ction Fðz1; z2Þ as FN⃗¼

R
1
0 dz1z

N1−1
1

R
1
0 dz2z

N2−1
2 Fðz1;z2Þ, we

obtain Δc
d;N⃗

¼ g̃cd;0 expðΨc
d;N⃗

Þ, which can be expanded in

terms of as: Δc
d;N⃗

¼ P∞
i¼0 a

i
sðμ2RÞΔc;ðiÞ

d;N⃗
. The resummed

result for Ψc
d;N⃗

takes the following form:

Ψc
d;N⃗

¼
�
gcd;1ðωÞ þ

1

N1

ḡcd;1ðωÞ
�
lnN1

þ
X∞
i¼0

ais

�
1

2
gcd;iþ2ðωÞ þ

1

N1

ḡcd;iþ2ðωÞ
�

þ 1

N1

X∞
i¼0

aishcd;iðω; N1Þ þ ðN1 ↔ N2Þ; ð12Þ

where

hcd;0ðω; NlÞ ¼ hcd;00ðωÞ þ hcd;01ðωÞ lnNl;

hcd;iðω; NlÞ ¼
Xi

k¼0

hcd;ikðωÞ lnk Nl; ð13Þ

where ω ¼ asβ0 lnN1N2. The SV resummation coeffi-
cients, which are comprised of g̃cd;0 and g

c
d;i, were discussed

extensively in Refs. [26,53,54], and so from here onwards
we focus on the NSV resummation coefficients, namely, ḡcd;i
and hcd;i. In N⃗ space, the use of resummed as allows us to
organize the series in such away thatω is treated as order one
at every order in as. The coefficient ḡcd;1 is found to be zero.

The coefficients ḡcd;iþ2 are controlled by the universal cusp
anomalous dimension Ac, while the hcd;i’s are controlled by
the NSV coefficients φf

d;c and Cc, Dc from Pcðas; z̄lÞ. The
resummation coefficients g̃cd0;i; g

c
d;iðωÞ; ḡcd;iðωÞ, and hcd;iðωÞ

encode the entire all-order information in a systematic
fashion through leading, next-to-leading, � � �, SV, and
NSV logarithms present in the Ψc

d. For instance, the knowl-
edge of second-order resummation coefficients,
fg̃cd0;0; gcd;1; gcd;2; ḡcd;1; ḡcd;2; hcd;0; hcd;1g, is sufficient to predict

the lnð2i−1Þ Nl
Nl

ofΔc;ðiÞ
d;N⃗

for i > 2 to all orders.We present Table I
towards the end, which demonstrates this feature for
ðlnk Nl=NlÞ terms. In summary, we study the all-order
logarithmic structure of the NSV terms in N⃗ space, and
the resummation coefficients till four loops are provided in
the Supplementary Material [55].

VII. RESULTS

We present the third-order NSV results for dCFs, Δd;c,
with c ¼ q, b, corresponding to DY processes and for
bottom-quark-induced Higgs production after expanding

them as Δd;c ¼
P∞

i¼0 a
i
sðΔSV;ðiÞ

d;c þ ΔNSV;ðiÞ
d;c þ � � �Þ. We have

set μ2R ¼ μ2F ¼ q2 and express the results in terms of
SUðNcÞ Casimirs, namely, CF ¼ ðN2

c − 1Þ=2Nc and
CA ¼ Nc, and nf, the number of active quark flavors:

ΔNSV;ð3Þ
d;q ¼ C3

F

�
L5
z1ð−8δ̄Þ þL4

z1ð44δ̄− 40D̄0Þ þL3
z1 ½δ̄ð132þ 32ζ2Þ þ 160D̄0 − 160D̄1�

þL2
z1

�
−δ̄

�
1136

3
þ 320ζ3 þ 96ζ2

�
þ D̄0ð416þ 96ζ2Þ þ 416D̄1 − 240D̄2

�

þLz1

�
δ̄

�
848ζ3 −

1675

3
−
88

3
ζ2 þ

192

5
ζ22

�
− D̄0ð640þ 640ζ3 þ 192ζ2Þ þ D̄1ð872þ 192ζ2Þ þ 336D̄2 − 160D̄3

�

þ
�
δ̄

�
557

2
− 384ζ5 þ 496ζ3 þ

700

3
ζ2 þ 128ζ2ζ3 −

560

3
ζ22

�
− D̄0

�
697− 816ζ3 − 64ζ2 −

192

5
ζ22

�

− D̄1ð384þ 640ζ3 þ 288ζ2Þ þ D̄2ð456þ 96ζ2Þ þ 80D̄3 − 40D̄4

��

þC2
Fnf

�
L4
z1

�
−
40

9
δ̄

�
þL3

z1

�
1040

27
δ̄−

160

9
D̄0

�
þL2

z1

�
δ̄

�
32ζ2 −

620

9

�
þ 112D̄0 −

160

3
D̄1

�

TABLE I. The all-order predictions for NSV logarithms in

Δc;ðiÞ
d;N⃗

for a given set of resummation coefficients.

Given Predictions

Resummation coefficients Δc;ð2Þ
d;N⃗

Δc;ð3Þ
d;N⃗

Δc;ðiÞ
d;N⃗

g̃cd0;0; g
c
d;1; g

c
d;2; ḡ

c
d;1; ḡ

c
d;2, h

c
d;0; h

c
d;1

ln3 Nl
Nl

ln5 Nl
Nl

lnð2i−1Þ Nl
Nl

g̃cd0;1; g
c
d;3; ḡ

c
d;3; h

c
d;2

ln4 Nl
Nl

lnð2i−2Þ Nl
Nl

g̃cd0;n−1; g
c
d;nþ1, ḡ

c
d;nþ1; h

c
d;n

lnð2i−nÞ Nl
Nl
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þ Lz1

�
−δ̄

�
9080

81
þ 320

3
ζ3 þ

32

3
ζ2

�
− D̄0

�
1040

9
− 64ζ2

�
þ 640

3
D̄1 −

160

3
D̄2

�

þ
�
δ̄

�
1999

27
þ 2032

9
ζ3 −

664

9
ζ2 þ

256

15
ζ22

�
− D̄0

�
1448

9
þ 320

3
ζ3 þ

32

9
ζ2

�

þ D̄1

�
64ζ2 −

200

3

�
þ 96D̄2 −

160

9
D̄3

��
þ CAC2

F

�
L4
z1

�
220

9
δ̄

�
þ L3

z1

�
δ̄

�
32ζ2 −

5756

27

�
þ 880

9
D̄0

�

þ L2
z1

�
δ̄

�
3572

9
− 168ζ3 −

812

3
ζ2

�
þ D̄0ð96ζ2 − 640Þ þ 880

3
D̄1

�

þ Lz1

�
δ̄

�
70763

81
þ 424ζ3 þ

20

3
ζ2 þ

48

5
ζ22

�
þ D̄0

�
6068

9
− 336ζ3 − 512ζ2

�
þ D̄1

�
192ζ2 −

3784

3

�
þ 880

3
D̄2

�

þ
�
δ̄

�
2260

9
ζ2 −

56101

54
− 116ζ3 þ 16ζ2ζ3 þ 24ζ22

�
þ D̄0

�
11351

9
þ 728

3
ζ3 −

1456

9
ζ2 þ

48

5
ζ22

�

þ D̄1

�
1088

3
− 336ζ3 − 448ζ2

�
þ D̄2ð96ζ2 − 592Þ þ 880

9
D̄3

��
þ CACFnf

�
L3
z1

�
176

27
δ̄

�

þ L2
z1

�
δ̄

�
16

3
ζ2 −

1678

27

�
þ 176

9
D̄0

�
þ Lz1

�
δ̄

�
14648

81
−
212

3
ζ2

�
þ D̄0

�
32

3
ζ2 −

3536

27

�
þ 352

9
D̄1

�

þ
�
δ̄

�
196

3
ζ3 −

118984

729
þ 11816

81
ζ2 −

208

15
ζ22

�
þ D̄0

�
16952

81
−
608

9
ζ2

�
þ D̄1

�
32

3
ζ2 −

3896

27

�
þ 176

9
D̄2

��

þ CFn2f

�
L3
z1

�
−
16

27
δ̄

�
þ L2

z1

�
152

27
δ̄ −

16

9
D̄0

�
þ Lz1

�
δ̄

�
32

9
ζ2 −

1264

81

�
þ 304

27
D̄0 −

32

9
D̄1

�

þ
�
δ̄

�
10856

729
þ 32

27
ζ3 −

304

27
ζ2

�
þ D̄0

�
32

9
ζ2 −

1264

81

�
þ 304

27
D̄1 −

16

9
D̄2

��

þ C2
ACF

�
L3
z1

�
−
484

27
δ̄

�
þ L2

z1

�
δ̄

�
4676

27
−
98

3
ζ2

�
−
484

9
D̄0

�
þ Lz1

�
δ̄

�
2560

9
ζ2 −

47386

81
þ 200ζ3 −

176

5
ζ22

�

þ D̄0

�
9496

27
−
176

3
ζ2

�
−
968

9
D̄1

�
þ
�
δ̄

�
587684

729
þ 192ζ5 −

21692

27
ζ3 −

40844

81
ζ2 þ

176

3
ζ2ζ3 þ

656

15
ζ22

�

− D̄0

�
49582

81
− 176ζ3 −

856

3
ζ2 þ

176

5
ζ22

�
þ D̄1

�
11476

27
−
176

3
ζ2

�
−
484

9
D̄2

��
þ ðz1 ↔ z2Þ;

ΔNSV;ð3Þ
d;b ¼ ΔNSV;ð3Þ

d;q þ
�
C3
F

�
L3
z1ð−96δ̄Þ þ L2

z1ð288δ̄ − 288D̄0Þ þ Lz1 ½δ̄ð471 − 88ζ2Þ þ 480D̄0 − 576D̄1�

þ
�
−δ̄

�
447

2
þ 384ζ3148ζ2

�
þ D̄0ð591 − 88ζ2Þ þ 288D̄1 − 288D̄2

��

þ C2
Fnf

�
L2
z1ð−16δ̄Þ þ Lz1

�
δ̄

�
1642

9
− 32ζ2

�
− 32D̄0

�
þ
�
−δ̄

�
479

3
− 48ζ2

�
þ D̄0

�
1642

9
− 32ζ2

�
− 32D̄1

��

þ CAC2
F

�
L2
z188δ̄þ Lz1

�
δ̄

�
144ζ3 þ 256ζ2 −

9925

9

�
þ 176D̄0

�

þ
�
δ̄

�
4615

6
− 408ζ3 − 304ζ2

�
− D̄0

�
10861

9
− 144ζ3 − 256ζ2

�
þ 176D̄1

��

þ C2
ACFfLz18δ̄ − ½16δ̄�g þ ðz1 ↔ z2Þ�: ð14Þ

Here, Lz1 ¼ lnðz̄1Þ,δ̄ ¼ δðz̄2Þ, D̄j ¼ ðlnjðz̄2Þðz̄2Þ Þþ, and ζ2 ¼
1.6449 � � � and ζ3 ¼ 1.20205 � � �. Complete third-order
results for the Higgs production in gluon fusion are already
known [52,56]; however, we cannot confirm our results

(which were given in Ref. [55]) with them as they are not
publicly available. For DY, we have found that our third-
order prediction is in complete agreement with Ref. [56] for
terms of the type DiðzlÞ lnjðz̄mÞ, i; j ≥ 0; l; m ¼ 1,
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2. The remaining δðz̄lÞ lnjðz̄mÞ terms in DY and the complete NSV predictions for Higgs production in the bottom-quark
annihilation channel at third order are new. Using results up to third order, we can predict the three highest NSV logarithms
to all orders. Here, we present the results at fourth order for lnjðz̄mÞ; j ¼ 7, 6, 5:
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This way, we can predict most of the leading NSV terms to
all orders in as. In fact, the resummation in N⃗ space
organizes SV and NSV threshold logarithms to all orders,
and the resulting resummation coefficients are controlled
by anomalous dimensions as well as φf

d;c known to a
specific order. The knowledge of these coefficients to
specific orders in as is sufficient to predict the infinite
tower of SVand NSV logarithms to a specific accuracy. We
summarize our findings in Table I. The results for dCFs and
the resummation coefficients are provided in the Supple-
mental Material [55].

VIII. SUMMARY

Using the factorization properties and RG invariance of
partonic dCFs we found that, in addition to the SV terms,
the NSV contributions also exponentiate for rapidity
distributions. The perturbative structure of NSV terms
for the differential distribution with respect to rapidity
were extensively analyzed for DYand Higgs productions to
all orders. Also, the all-order structure is manifested
through an integral representation in zl space, which was
used to resum the large logarithms in two-dimensional
Mellin space in terms of ω. This allowed us to investigate

their numerical impact. Our result expressed in two-
dimensional zl space can be used to obtain leading SV
and NSV terms to all orders from the lower-order results as
well as from inclusive reactions. We presented the first
results for NSV terms of rapidity distributions till third-
order for DY [56] and Higgs boson production in the
bottom-quark annihilation. From the inclusive results
known up to third order in as, we also predicted the
leading NSV terms to fourth order for the rapidity dis-
tributions of DY and Higgs production in both bottom-
quark annihilation and gluon fusion for the first time. The
entire setup advocated in this paper for the study of
diagonal partonic channels can be suitably extended to
investigate the all-order structure of other potential non-
diagonal partonic channels as well.
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