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Next-to-soft corrections for Drell-Yan and Higgs boson rapidity
distributions beyond N°*LO
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We present a formalism that resums both soft-virtual (SV) and next-to-SV (NSV) contributions to all
orders in perturbative QCD for the rapidity distribution of any colorless particle produced in hadron
colliders. Using state-of-the-art results, we determine the complete NSV contributions to third order in the
strong coupling constant for the rapidity distributions for Drell-Yan and for Higgs boson in gluon fusion as

well as bottom quark annihilation. Using our all-order z-space result, we show how the NSV contributions

can be resummed in two-dimensional Mellin space.
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I. INTRODUCTION

Accurate measurements of observables at the Large
Hadron Collider (LHC) and their precise theoretical pre-
dictions provide an opportunity to test the Standard Model
(SM) with unprecedented accuracy, thereby constraining
beyond-the-SM (BSM) scenarios. One of the cleanest
observables at the LHC is Drell-Yan (DY) production [1]
of on-shell vector bosons Z and W+ or a pair of leptons, and
hence it has received enormous attention from the theory
community. Measurements [2-4] of inclusive and differ-
ential rates of DY production are used as a standard candle to
calibrate the detectors and fit the nonperturbative parton
distribution functions (PDFs) [5-9]. Any deviation from the
SM predictions can provide crucial information to BSM
scenarios, such as R-parity-violating supersymmetric
models, models with Z’, and large extra-dimension mod-
els [10,11]. Similarly, the ongoing measurements of inclu-
sive and differential cross sections [12,13], along with the
theoretical predictions [14] on strong and electroweak
radiative corrections, help us to probe the symmetry-
breaking mechanism and the coupling of the Higgs boson
with other SM particles. This is possible owing to the third-
order QCD predictions for DY production [15,16] and
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Higgs boson productions in gluon fusion [14,17,18] and
bottom-quark annihilation [19,20].

Like inclusive rates, differential ones also get large con-
tributions from logarithms from phase-space boundaries of
the final-state particles, thus spoiling the reliability of the
fixed-order predictions. These large logarithms can be
summed up to all orders in perturbation theory. In the seminal
works of Sterman [21] and Catani and Trentadue [22],
resummation of leading large logs for the inclusive rates in
Mellin space and to differential distribution with respect to x
[22] using double Mellin moments were achieved. Using
factorization properties of differential cross sections and
renormalization group (RG) invariance, an all-order z-space
formalism was also developed in Ref. [23] to study the
threshold-enhanced contribution to the rapidity distribution of
any colorless particle. The formalism was also applied to Z
and W* [24] and DY and Higgs production at the N3LO level
[20,25]. In Ref. [26], the same formalism [23] was used to
study the threshold resummation of the rapidity distribution of
Higgs bosons and, later, DY production [27]. For different
approaches and their applications, see Refs. [28-36].

Besides the threshold logarithms, contributions from
subleading logarithms are also present in all of the partonic
channels beyond leading order in perturbation theory. These
subleading logarithms demonstrate perturbative behavior
similar to those from the threshold region, which allows one
to study their all-order structure. Such logarithms do appear
in inclusive reactions and there has been remarkable
progress in understanding them. See Refs. [37-49] for more
details. Recently, in a series of articles [50,51], we studied a
variety of inclusive reactions to understand these subleading
logarithms and found a systematic way to sum them up to all
orders in z as well as in Mellin NV spaces. The latter provides a
resummed prediction in N space for subleading logarithms
similar to that of threshold ones.

Published by the American Physical Society
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The differential distributions often show richer logarith-
mic structure due to their multidimensional space (spanned
by z; or N;), making it a challenging task to understand the
all-order structure. In the present paper, using factorization
properties of physical observables and RG invariance,
we complete the task of organizing the subleading loga-
rithms in a systematic fashion that is suitable for summing
them up to all orders in perturbation theory, in both z; and
N, spaces.

II. THEORETICAL FRAMEWORK

In the QCD-improved parton model, the rapidity dis-
tribution of a colorless state F' in hadron-hadron collisions
is given by

do* _ e /1dzl/1dzz < 2)
dy 02 9 22 Hi

ub q4.q.9

be< ’/‘F>A¢Ci,ab(zlv127qz’ﬂ%"//‘%)v (1)

where 6§ (uz) = 65(x0,x9, ¢, u%) is the Born cross section

and pp is the ultraviolet (UV) renormalization scale. The
scaling variables xl (I =1, 2) are defined through the
hadronic rapidity y: y = 3In(p,.q/p;.q) = 3In(x}/x9) and
7= ¢?/S = x9x). Here ¢ denotes the momentum of the
colorless state F and S = (p; + p,)? is the hadronic center-
of-mass energy, with p; (I = 1, 2) being the momenta of
incoming hadrons. For the case of lepton pair production in
DY, ¢¢ = do’(z, ¢*,y)/dq?, i.e., its invariant mass distri-
bution, and for the case of Higgs production in gluon fusion
or in bottom quark annihilation ¢¢ = 69 (7, g2, y) respec-
tively. The PDFs f.(x;,u%) of colliding partons ¢ =
q,4,9,b with momentum fractions x; (=1, 2) are
renormalized at the factorization scale pp. The partonic
coefficient functions (CFs) A, ,, are perturbatively calcu-
lated in QCD in powers of the strong coupling constant
a,(u%) = g?(yR) /167> and are functions of the scaling
variables z; = xV/x; (I = 1, 2). They are obtained from the
partonic processes through mass factorization. The UV-
finite partonic processes contain soft and collinear diver-
gences associated with the soft gluons and collinear
partons, beyond leading order in perturbation theory, which
can be removed by summing over degenerate final states
and by mass factorization. In this paper we restrict
ourselves to partonic CFs of only quark-antiquark-
initiated processes for DY, gluon-gluon, and bottom-
antibottom-initiated processes for Higgs production.
We call them diagonal CFs (dCFs) A,.; (a=
q, g, b). These dCFs are comprised of contributions

from (1 — z;) and D;(z)) = (1"(] (1=2)y  (namely, SV) and

the coefficients regular in z;. The leading contributions
of the latter near the threshold region z; = 1 contain terms

of the form D;(z;)In*(1 —z;) and §(1 —z;) In*(1 —z;),
with (I,j=1,2),(i,k=0,1,...). We call them next-to-
soft-virtual (NSV) contributions. In the Mellin N; space,
these terms are of the form In* N;/N,, with (j,1=1,2),
(k=0,1---). The dominant SV contribution has been
studied in the earlier works of one of the authors in
Ref. [23]. In the following, we discuss the NSV contribu-
tions of the dCFs in both z; and N, space.

II1. FIXED-ORDER FORMALISM

Using RG invariance and the factorization properties of
differential dCFs [23], the threshold-enhanced SV and NSV
terms of dCFs, denoted by A2X+NSV, are found to expo-
nentiate as

AtsiX+Nsv Z(qz,ﬂ%,ﬂ%,Zb227€)>|€:0’ (2)

= Cexp(¥
where the function W is computed in perturbative QCD in
4 + ¢ space-time dimensions, and z; =1 —z; and z, =
1 — z, are the shifted scaling variables. It was shown in
Eq. (9) of Ref. [23] that the UV- and IR-finite function ¥
can be decomposed in terms of the form factor F¢, soft
distribution @¢, and diagonal Altarelli-Parisi (AP) kernels
I',.. The soft distribution discussed in Ref. [23], using a
K + G-type Sudakov differential equation, accounts for the
soft enhancements associated with the real emissions in the
production channel and is universal in nature. This uni-
versality ensures that ®¢ is only sensitive to the initial legs
and is blind to the hard process under study. In this paper,
we find that the K + G equation admits a solution that can
account for next-to-soft contributions as well:

© 22 =\ i N2
(U225 [ (€)? A
@C: 1 Sl
‘ ZC“( w2 ) 5[421224"‘ (6)

i=1

e i) )
where S, = exp(5 [yg — In(4x)]), with yg being the Euler-
Mascheroni constant. The first term within the parentheses
accounts for the soft contributions, and the remaining two
terms correspond to next-to-soft contributions. The soft part
of the solution was proposed along with the predictions for
Higgs production and DY in Ref. [23] to third order,
without 6(Z;)8(Z,) terms. Later on, Refs. [20,25] gave the
complete result for SV. Through mass factorization,
the divergent part of the NSV solution cancels against
the collinear singularities from AP kernels and the finite

part contributes to dCFs. The coefficients (p% depend on Z;
and e in such a way that the NSV part is RG invariant
provided we sum the series to all orders. In addition,
we find that the logarithmic structure of ®§ and conse-
quently their predictions remain unaltered under the simul-
taneous transformation of the exponent in the first
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parentheses and the z; dependence in (pE;;)C(zl, €). The AP
kernels satisfy

1 _
uFd ZCIHFcc(uF,Zz) = P(as(pg),2) + 6P, (4)

where

“(as)

(Zl)+

Pelay.7) — z( +Bc<as>5<zl>+v<as,zl>), (5)

with A¢ and B¢ being the cusp and collinear anomalous
dimensions, L¢(a,,z;) = C¢(a,)In(z;) + D(ay), and the
0P¢ denote NSV and beyond-NSV terms, respectively. We
drop 6P¢ throughout. The NSV-improved solution ®
results in an integral representation of the finite function
V¢, which embeds all order information of the mass-
factorized differential distribution, the mass-factorized
differential distribution,

_ 77 2
e 021) </ ‘iipc( J(2).z )+Qg(as(q%),zz)>+

2
F

—_ DN

1 (Zi {P%as(q%z), %) + 2L (a,(¢%). %)

@) })
1

#5000 () ) <5 e 5 ©

N

ro (Qd< (a).52) + 20, (a

where  P¢(ay,Z;) = P°(a,, 7)) — 2B%(a,)8(2), q7 =
q*(1 —z;), and ¢3, = ¢*%,Z,. The subscript + indicates
the standard plus distribution. The function Q¢ in Eq. (6) is
given as

Q;(as’ Zl)

2 _
= Z_IDZ(C’S) + 205 (a5, 2p). (7)

The splitting function P¢ and the SV coefficient D¢ are
known to third order [26] in QCD. Here (PZ,C constitutes the
finite part of qog)c in Eq. (3) and is parametrized in the
following way:

The upper limit on the sum over k is controlled by the
dimensionally regularized Feynman integrals that contrib-
ute to order a'. The constant Jq0 in Eq. (6) results from the
finite part of the virtual contributions and pure 5(z;) terms

of @¢. The exponent ¥ that captures both SV and NSV
terms to all orders in perturbation theory is one of the main
results of this paper.

IV. MATCHING WITH THE INCLUSIVE

The NSV function <pf can be determined at every order
in perturbation theory using fixed- order predictions of A ...
Alternatively, we can determine (p 4. from corresponding
inclusive cross sections using the relation [23]

do© 1
/ dxl/ dxS(x0x9)N-! o :/ drtV=16c,  (9)
0

where ¢ is the inclusive cross section. This relation in the
large-N limit gives

© 2Ny . L .
>oai(%) st (@i 0 - e e
+i(z§"“<e>¢£ﬁ’9 (6) - 19 (€) <e>)} —0. (10)

Here we keep In*N as well as O(1/N) terms for the
determination of the SV and NSV coefficients. The con-
stants qﬁ ) and (p ) are the inclusive counterparts to the
SV and NSV coefficients, respectively, which are known to
third order in QCD for DY (¢ = ¢), for Higgs production in
gluon fusion (¢ = g), and in bottom-quark annihilation
(c = b) (for NSV, see Ref. [50]). The coefficients are

. ie(2—ie) € ;
ZIZWr2<1+l§>, l2:
ik o (T(1+a)
tg /= F<1 +i )8 x (Na+ie/2
a=i§

(i _ 0% (T(1+8)
! 8&k N& &:ie.

V. ALL-ORDER PREDICTION

In Refs. [20,23,25], we studied the predictive power of
the SV part of ¥ to dCFs to all orders using lower-order
results. Here, in particular, we predict NSV terms of the
form §(z)) In*z;,n + 1 <k <2n— 1, and D;(z;) In* z; for
i,k=0,1,....n;i +k < 2n — 1 atevery order a} provided
W¢ is known to order a’~!. From Y, ¢ = q, b, gdetermined
from second-order inclusive results [50], we obtain for the
first time the results for the third-order NSV contributions to
dCFs, A, ., forboth ¢ = ¢, b and ¢ = ¢ [52]. Further, using
the knowledge of third-order results [50] for inclusive
reactions and Eq (10), we have determined the NSV

) and dCFs to third order. They will be
presented towards the end in a concise form.

ie(1—ie)

S (1 +ie),

(11)

coefficients ¢ l
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VI. RESUMMATION

Near the hadronic threshold region, z; — 1, the PDFs
often become large (due to their small momentum fractions)
which allows the threshold contributions from CFs to
dominate at every order in a,. Hence, truncated perturbative
predictions become unreliable. In Mellin space, these
dominant ones show up as order-one terms of the form
ayfyIn NN, inthe large-N, region at every order. Thanks to
the all-order integral representation for ¥ in Eq. (6) and the
RG equation of a;, we can resum these terms to all orders.
Defining the double Mellin moment of any arbitrary fun-
ction F(z;,2,) as Fyg= [l dzy 2\ ™" [l dz, 25" F(21.2,), we
obtain A¢ o = 7o exp(V 5), which can be expanded in

R as (/«‘%e)A;%)
result for ‘I‘;N takes the following form:

terms of aj: ;K/ = . The resummed

, . L,
Yon= (92,1 (@) +N—gd,1(w)> In N,
1 =~C
+ Z gd ir2(@) + N_]gd.i+2<w)
+— N, 2 Z ai h

+ (N o N, (12)

where

hflo(a’ N)) = hgoo(“’) + hinl(a’) In Ny,

Zhdlk

where @ = a,fyInN{N,. The SV resummation coeffi-
cients, which are comprised of QZ’O and 92,1" were discussed
extensively in Refs. [26,53,54], and so from here onwards
we focus on the NSV resummation coefficients, namely, !72,1'
and h§ ;. In N space, the use of resummed a; allows us to

organize the series in such a way that w is treated as order one
at every order in a,. The coefficient g , is found to be zero.
i |

/’l;lel ln N[, (13)

TABLE L

A;’%) for a given set of resummation coefficients.

The all-order predictions for NSV logarithms in

Given Predictions

Resummation coefficients AC@ ACG) A
d.N d.N d.N

~C C C =C =C c C 3 5 (')’—l
4,00 94,12 9a259a,1> 9a 2> hg o hg In ¥, n® N, e N,

’ ’ ’ ’ N, N, N,

~C C —c c 4 (2i-2
9.1 Ya3 Jaz hao I“NN’ In 'N)NI

1 1

~e c —c c (2i=n)
dyn-1°9dn+1> 9dn+1° hg, In N N

The coefficients g5, ,, are controlled by the universal cusp
anomalous dimension AC while the i ;’s are controlled by
the NSV coefficients ¢’ 7. and C¢, D¢ from P¢(ay, Z;). The
resummation coefficients gg ;. 95 ;(®). 35, (®), and h ;(w)
encode the entire all-order information in a systematic
fashion through leading, next-to-leading, ---, SV, and
NSV logarithms present in the W¢. For instance, the knowl-
edge of second-order resummation coefficients,
{f}doo,gdl,gd2 951> 952> G0 1, } is sufficient to predict
the ”Nl of A (>f0rt > 2 to all orders. We present Table I
towards the end which demonstrates this feature for
(InfN;/N,) terms. In summary, we study the all-order
logarithmic structure of the NSV terms in N space, and
the resummation coefficients till four loops are provided in
the Supplementary Material [55].

VII. RESULTS

We present the third-order NSV results for dCFs, A, .,
with ¢ = g, b, corresponding to DY processes and for
bottom-quark-induced Higgs production after expanding

fa aé(A V0 4 Agiv U4 ...). We have
set u% = u% = g¢* and express the results in terms of
SU(N,) Casimirs, namely, Cp = (N>-1)/2N, and

C4 = N, and ny, the number of active quark flavors:

themas A, . =

192 _ 3 _ _
C2>-—11(640—%640534—19252)+—Ih(872—%192@2)%—336I5-—16OZ)J

557 7 5 192
(——384C5+496C3+—Cz+128{2(:3——{2) D0<697 816(:3—64(:2——CZ>

ARV = c}{Lgl (~85) + L* (445 — 40Dy) + L3 [5(132 + 32¢,) + 160D, — 160D
, 1136 _ _ _
+ L2, | =8( =5~ 432005 + 96, | + Do(416+96L;) + 416D, — 240D,
1675 88
+L, { (84853 —T——Cz
T [5
2

40 -
+Can{ (_?6> + L

27 9

— D, (384 + 6403 +288(,) + D, (456 +96¢,) + 80D; — 401')4] }

1040~ 1 _ 1
(fl%—J@DQ+l§{<wg—%£) Hﬂ%—é?DJ
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9080 320 32 - (1040 640 - 160 -

+Lzl{ 5( 31 +— 3 §3+3C2)—DO< 9 —64C2>—|—3D1—3D2]

99 2032 664 256 1448 320 32
=+ — TCz+ & 9 +TC3 +3CQ

200 160 220 - - 5756 880 -
+ D, 64(2—— +96D, ———Ds| p + C4C L | —==6 ) + L3 |8 328, ——— ) +—"Dp
9 9 27 9

3572 880
+I2 { (—— 168 ——cz) +Dy(96¢, — 640) +TD1}

70763 48 6068 - 3784 880
+Lz1 { ( + 42485 + —Cz —l-?é%) Do (T—336C3 —512C2> +D1<192C2—T> TDZ}

- (226 56101 11351 728 1456 48
+ 2———11653+16§253+2452 Dy R e
9 9 3 9 5
10 _ 176 -

+D, <T 336¢; — 44862) + D, (968, — 592) + —D3] } anf{ (7 5)

16 1678 176 - 14648 212 3536 352 -
+ L2 |6 ¢ - +—Dy| +L, |6 —— )| +=-D,

3 9 9

118984 11816 208 16952 608 32 3896 176 -

=+ { (TC3 729 &= Cz) 0( 81 Cz) ( {r - ) +TD2} }

16 - 152 16 - 1264 304 - 32 -
10856 32 304 1264 304 - 16 -
* {5( 729 *2743‘7@ ( 2= )JFWDI_E%H

484 _ 4676 98 484 - (2560 47386 176
+ CiCF{Lgl (——5) + L% {5( C2> —DO} L, {5(—4’2 — ——+ 20083 ——C2>

27 27 9 9 81
9496 176 968 _ 587684 21692 40844 17 656
+D, 202D 192¢5 — - -0
0< 77 3 Cz) 9 1] [5< 79 + 192¢5 77 {3 21 &+ 3 CzC,% 52)
49582 856 176 11476 176 484
—Do< Y 1765 — —gz §2> +D1< 7 _TQ) —sz]} (z1 < 22),

AN = ARVE) {C3{ ' (—963) + L2, (2885 — 288Dy) + L., [5(471 — 88L,) + 480D, — 576D

(447 _ _ _
+ {—5 (7 + 38453148CZ> + Dy(591 — 88¢,) + 288D, — 2882)2} }

+ Can{ L2 (-166) + L., [3 (% - 32§2> - 321‘)0] + [—5 <? - 48(:2) Dy <% - 3252> - 322')1] }

_ 9925 _
+ CACZF{L§1885 +L, [ (14453 12568, — T) + 176D0}

_ (4615 _ /10861 3
+ {6(7—4084“3 - 304@) - DO( 5~ 14405 25652) + 176D1} }

+ C3Cr{L, 85— [163]} + (21 < 2)]. (14)

Here, L. =In(z,). = 6(z,), @j _ (]nj_<22))+’ and ¢, = (which were given in Ref. [55]) with them as they are not
1.6449 - I and (3 = 1.20205 - - -. Con(ilzj)lete third-order  Publicly available. For DY, we have found that our third-

results for the Higgs production in gluon fusion are already ~ order prediction is in complete agreement with Ref. [56] for
known [52,56]; however, we cannot confirm our results  terms of the type D;(z)In/(z,), i,j>0,l,m=1,
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2. The remaining (Z;) In/(Z,,) terms in DY and the complete NSV predictions for Higgs production in the bottom-quark
annihilation channel at third order are new. Using results up to third order, we can predict the three highest NSV logarithms
to all orders. Here, we present the results at fourth order for In/(z,,), j = 7, 6, 5:

16 - 128 112 - . _ _ 56 -
AV = C‘}{LZI (— 5> + LS <5 - D0> + L3 [5(132 + 968,) + 240D, — 2241)1}} + Cin f{Lg (— 5)

3 3 3

1864 - 112 _ 308 -
vy (75 —TD())} i cAc;{Lg] (75

9
10576

o) ()]

64 - 704 1936 -

SV.,(4 SV, =
ANVW = ANV 4 (CHILS (<963)] + O(LE) + (21 < )}

16 - 692 112 - . 12224\ 1336 - _
Azzv.@) - Cj{LZI <——6) + LS [—5 - TDO] + L3 [5(14452 - —) +——D, - 2241)1] }

3 9

56 - 796 - 112 - 64 -

This way, we can predict most of the leading NSV terms to
all orders in a,. In fact, the resummation in N space
organizes SV and NSV threshold logarithms to all orders,
and the resulting resummation coefficients are controlled
by anomalous dimensions as well as ‘/’fz,c known to a
specific order. The knowledge of these coefficients to
specific orders in ay is sufficient to predict the infinite
tower of SV and NSV logarithms to a specific accuracy. We
summarize our findings in Table I. The results for dCFs and
the resummation coefficients are provided in the Supple-
mental Material [55].

VIII. SUMMARY

Using the factorization properties and RG invariance of
partonic dCFs we found that, in addition to the SV terms,
the NSV contributions also exponentiate for rapidity
distributions. The perturbative structure of NSV terms
for the differential distribution with respect to rapidity
were extensively analyzed for DY and Higgs productions to
all orders. Also, the all-order structure is manifested
through an integral representation in z; space, which was
used to resum the large logarithms in two-dimensional
Mellin space in terms of w. This allowed us to investigate

27 3

(15)

their numerical impact. Our result expressed in two-
dimensional z; space can be used to obtain leading SV
and NSV terms to all orders from the lower-order results as
well as from inclusive reactions. We presented the first
results for NSV terms of rapidity distributions till third-
order for DY [56] and Higgs boson production in the
bottom-quark annihilation. From the inclusive results
known up to third order in a,, we also predicted the
leading NSV terms to fourth order for the rapidity dis-
tributions of DY and Higgs production in both bottom-
quark annihilation and gluon fusion for the first time. The
entire setup advocated in this paper for the study of
diagonal partonic channels can be suitably extended to
investigate the all-order structure of other potential non-
diagonal partonic channels as well.
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