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Our improved calculation of the nuclear spin-independent parity violating electric dipole transition
amplitude (E1PV) for 6s2S1=2 − 7s2S1=2 in 133Cs in combination with the most accurate (0.3%) measurement
of this quantity yields a new value for the nuclear weak charge QW ¼ −73.71ð26Þexð23Þth against the
Standard Model (SM) prediction QSM

W ¼ −73.23ð1Þ. The advances in our calculation of E1PV have been
achieved by using a variant of the perturbed relativistic coupled-cluster theory, which treats the contributions
of the core, valence, and excited states to E1PV on the same footing unlike the previous high precision
calculations. Furthermore, this approach resolves the controversy regarding the sign of the core correlation
effects. We discuss the implications of the deviation of our result for QW from the SM value by considering
different scenarios of new physics.
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The neutral current weak interactions due to the
exchange of a Z0 boson between the electrons and the
nucleus in an atom leads to parity violation [1,2]. This
phenomenon is referred to as atomic parity violation
(APV). The nuclear spin-independent (NSI) APV has been
measured to an accuracy of 0.35% in the 6s2S1=2 − 7s2S1=2
transition in 133Cs [3]. This is the most accurate APV
measurement to date, but two recent proposals [4,5] have
the potential to surpass this accuracy. Thus, the stage is now
clearly set to take the APV calculations in Cs to the next
level. This indeed provides the motivation for our present
work. The principal quantity of interest in the APV studies
is the nuclear weak charge (NWC), which is a linear
combination of the NSI neutral current weak interaction
coupling coefficients between electrons and up and down
quarks in an atom [1,6]. The difference in the model
independent value of NWC obtained from APV and that
obtained from the Standard Model (SM) could shed light
on new physics beyond the SM (BSM).

Following the conventions using four-fermion operators
defined in the Particle Data Group (PDG) [7], the parity-
violating lepton-hadron interactions at low energies can be
described by

LNP¼GFffiffiffi
2

p
�
ēγμγ5e

X
q

geqAVq̄γμqþ ēγμe
X
q

geqVAq̄γμγ
5q

�
; ð1Þ

whereGF is the Fermi constant and the sum over q includes
the interaction of electrons with up (u), down (d), and
strange (s) quarks. Note that in earlier editions of the PDG
[8], a different notation was used, writing C1q instead of
geqAV and C2q instead of geqVA. The coupling constants geqAV
and geqVA are defined in the static limit and are universal.
The temporal component of the quark currents determines
the NSI weak interaction Hamiltonian, which is used in the
atomic calculations. Assuming that the nucleons can be
treated nonrelativistically and pointlike, Eq. (1) allows us to
define parity-violating couplings for protons and neutrons
at vanishing momentum transfer,

gepAV ¼ 2geuAV þ gedAV and genAV ¼ geuAV þ 2gedAV: ð2Þ
These add up coherently across the nucleus giving rise to
the NWC of the nucleus. With Z protons and N neutrons,
the NWC at leading order is given by

QZ;N
W ¼ −2ðZgepAV þ NgenAVÞ: ð3Þ
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There are corrections due to the fact that the matrix
elements of the electromagnetic and axial-vector neutral
current operators between electronic states involved in the
atomic transition carry a spatial dependence on the electric
and weak charge distributions in the nucleus [9]. The
dominating part of this correction will be taken into account
in the calculation by using a nonpointlike charge distribu-
tion inside the nucleus and assuming that the proton and the
neutron distributions are the same. However, we will have
to add a small correction due to the difference between
proton and neutron distributions. It turns out that this
correction is dominated by the difference of radii of the
proton and neutron distributions, i.e., the neutron skin
(NSKIN) effect [10]. Therefore, it can be treated as an
additive contribution,

ΔQNS
W ¼ 2

�
1 −

qn
qp

�
NgenAV; ð4Þ

where qp and qn are determined from the electronic axial
form factor weighted by the proton and neutron distribu-
tions. Details and explicit expressions for qn and qp can be
found in [10], and we rely on this work to implementΔQNS

W
in our analysis below. The prescription could be extended
to include also the finite size of the nucleons provided
information about the weak charge distribution inside a
nucleon is available.
In the SM, the effective low-energy couplings are

determined by the weak neutral-current gauge couplings
of the Z boson to quarks and leptons. They are fixed by
the charge and isospin quantum numbers and the weak
mixing angle, sin2 θW . We have geuAV ¼ − 1

2
þ 4

3
sin2θW ,

gedAV ¼ 1
2
− 2

3
sin2θW , geuVA ¼−gedVA ¼ 1

2
− 2sin2θW , and there-

fore, gepAV ¼ − 1
2
þ 2sin2θW and genAV ¼ 1

2
.

At leading order, the SM predicts relations between the
weak mixing angle, the normalization of the effective four-
fermion operators given by the Fermi constant, and the
weak boson masses. The Fermi constant is given by GF ¼
πα=ð ffiffiffi

2
p

M2
W sin2 θWÞ with the fine structure constant α ¼

e2=ð4πÞ and the weak mixing angle is related to the gauge
boson masses by MW ¼ MZ cos θW. High-precision mea-
surements require to take into account higher-order electro-
weak radiative corrections, both in these parameter
relations as well as in predictions for observables. It is
convenient to choose the MS renormalization scheme,
where the weak mixing angle becomes a scale-dependent
running coupling, usually denoted by sin2 θ̄WðμÞ. Effects
due to Feynman diagrams with loops (γZ mixing, vertex
corrections, box graphs) contributing to the observable
have been calculated in [11] and can be absorbed into
corrected effective couplings, as described in Ref. [12].
Numerically, these corrections can be taken into account by
replacing Eq. (3) with

QZ;N
W ¼ −2

�
1 −

α

2π

�
ðZḡepAV þ NḡenAVÞ; ð5Þ

where ḡepAV ¼ρPVð−1
2
þ2sin2θ̄WðμÞ−0.00261Þ−0.01014

and ḡepAV¼ρPVð12−0.00282Þ−0.00242 with ρPV ¼ 1.00063.
The scale μ has to be chosen equal to the typical momentum
scale of the experiment. We follow Ref. [13] and set μ ¼
2.4 MeV for Cs, but the precise value is not important since
sin2 θ̄WðμÞ depends only very weakly on μ at low scales.
In a specific model, the coefficients of four-fermion

operators are predictions. They would be related to param-
eters of an underlying theory. For example, four-fermion
contact interactions can originate from Feynman diagrams
describing the exchange of a heavy particle at tree level.
Models with extra heavy Z0 bosons are well motivated, for
example, in string-inspired grand unified models with an E6

gauge group [14]. Spontaneous symmetry breaking gen-
erates two extra U(1) factors whose Z0 bosons mix with
each other in general. The lighter of them, with a massMZθ

,
contributes to the weak charge of the nucleon. The extra Z0
is denoted Zχ for the special case of no mixing, and one
finds [14,15]

ΔQZ;N
W ðZχÞ ¼ ðZ þ 2NÞ 4sin

2θWg2χ
5e2

M2
W

M2
Zχ

≃ 0.4ðZ þ 2NÞM
2
W

M2
Zχ

; ð6Þ

where gχ is the gauge coupling of the Z0 and MZχ
its mass.

APV measurements can therefore set a limit on the mass of
such an extra heavy Z0 boson.
A different type of heavy new particles without direct

couplings to the ordinary fermions can enter at the loop
level through the W and Z self energies. Examples would
be SUSYmodels at high mass scales or technicolor models.
Just three parameters are needed to describe the corre-
sponding effects on observables, usually called S, T, and
U [16]. We use the definition described in [7]. Such type
of BSM physics can be absorbed in a modification of
the neutral-current amplitudes by the factor ρnew ¼ 1þ
0.00782T and by replacing the weak mixing angle with
sin2 θW × ð1þ 0.0157S − 0.0112TÞ, where the numerical
coefficients in these relations are evaluated with the present
world-average values of the weak mixing angle and the
W-boson mass. This results in [15]

ΔQZ;N
W ðSTUÞ ¼ Zð−0.0145Sþ 0.011TÞ − Nð0.00782TÞ:

ð7Þ

For 133Cs, this gives

ΔQ55;78
W ðSTUÞ ¼ Q55;78

W × ð0.0109Sþ 0.7 × 10−4TÞ: ð8Þ

Thus, APV is sensitive to S, the isospin-conserving
parameter, while the dependence on the isospin-violating
parameter T is very small.
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Finally, we discuss the case of BSM physics at a low
mass scale, which has caused considerable interest recently
and is motivated by the search for a dark matter particle. A
light vector boson associated with a U(1) gauge symmetry
in the dark sector could couple to ordinary SM matter via
kinetic mixing with the photon and mass mixing with the
SM Z boson [17–20]. Such a new boson is known as dark-
Z boson and could be an additional source of parity
violation. Its effect can be described by a modification
of the running of the weak mixing angle in the intermediate
to low mass range without visible effects at high-energy
Z-pole measurements. A possible realization of such a
scenario can be found with a two-Higgs doublet model
where mixing is generated through loop diagrams. The
effective weak mixing angle seen at the energy scale μ
would be shifted by [19]

Δsin2θWðμÞ ¼ −ϵδ
MZ

MZd

sin θW cos θW
1þ μ2=M2

Zd

; ð9Þ

whereMZd
is the mass of the dark-Z, and ϵ and δ are model

parameters, depending for example on the charged Higgs-
boson mass if the model is realized with two Higgs
doublets. For APV, we can assume that μ ≪ MZd

, which
leaves us with

Δ sin2 θWðμÞ ≃ −0.43ϵδ
MZ

MZd

: ð10Þ

Several experiments have narrowed down the parameter
space for a dark Z recently, but there is still room for a
significant modification of sin2 θW that can be tested
with APV.
The NSI neutral current weak interaction Hamiltonian in

an atom is given by [1]

HNSI
APV ¼ −

GF

2
ffiffiffi
2

p QW

X
e

γ5eρnucðreÞ; ð11Þ

where ρnucðreÞ is the electron density within the nucleus
The charge in the nucleus is described by a Fermi
distribution. The atomic wave function (jΨvi) of a state
in the Cs atom is calculated by splitting the total
Hamiltonian into two parts,

H ¼ Hem þ λHw; ð12Þ

where Hem represents the dominant electromagnetic inter-
actions in an atom andHNSI

APV ≡ λHw with λ ¼ GF

2
ffiffi
2

p QZ;N
W . We

have considered the Dirac-Coulomb-Breit interaction
Hamiltonian along with lower-order QED corrections
due to the self-energy and vacuum polarization effects as
Hem in our calculations (for details, see [21]). Since the
strength of HNSI

APV is much weaker than that of Hem in an
atomic system, the wave function jΨvi represents a state

corresponding to the total Hamiltonian H ¼ Hem þ λHw
and its energy (say, Ev) can be expressed as

jΨvi ≃ jΨð0Þ
v i þ λjΨð1Þ

v i and Ev ≃ Eð0Þ
v þ λEð1Þ

v ; ð13Þ

where the superscripts 0 and 1 stand for the zeroth-order
and first-order contributions due to Hw, respectively. The
electric dipole transition amplitude (E1PV) corresponding
to two same nominal parity states jΨii and jΨfi in the
presence of HNSI

APV can be written as [1,6]

E1PV ≃ λ
hΨð1Þ

f jDjΨð0Þ
i i þ hΨð0Þ

f jDjΨð1Þ
i iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΨð0Þ
f jΨð0Þ

f ihΨð0Þ
i jΨð0Þ

i i
q ; ð14Þ

where D is the electric dipole (E1) operator. In the sum-
over-states approach, the first-order wave function is

expanded as jΨð1Þ
v i ¼ P

I≠v jΨð0Þ
I i hΨ

ð0Þ
I jHwjΨð0Þ

v i
Eð0Þ
v −Eð0Þ

I

, where I

denotes all possible intermediate states, that can be divided
into core states (contributions from these states are des-
ignated as “core”), low-lying bound states (contributions
from these states are given as “main”), and the remaining
high-lying states including continuum (whose contribu-
tions are mentioned as “tail”) for computational simplicity.
The latest two high-precision calculations, reported in

Refs. [22,23], are carried out by estimating the “core”,
“main” and “tail” contributions by applying mixed many-
body methods. The calculations in Ref. [22] included the
valence triple excitation effects to “main” by employing the
relativistic coupled-cluster (RCC) theory, and it was found
that these effects to the atomic properties of 133Cs were
relatively important in reducing the uncertainty in the E1PV
amplitude to 0.27% [22]. This result was in good agreement
with the SM; however, the calculation on which it is based
had used a sum-over-states approach in which the “main”
contributions were estimated only from the excited states
up to the principal quantum number n ¼ 9. Later Dzuba
et al. reported another result in Ref. [23] with 0.5%
accuracy by using the “main” contribution from
Ref. [22], but with different “core” (opposite sign than
[22]) and “tail” contributions by taking into account certain
subclasses of correlation effects. They found substantial
differences in these contributions from Ref. [22]; especially
the “core” contribution differed by about 200% (due to
opposite sign). This resulted in 0.8% difference between
the final results of Porsev et al. [22] and Dzuba et al. [23].
In addition, both the above works did not include double
core-polarization (DCP) effects [24], and contributions
from the Breit and QED effects were taken from the earlier
works. To include all these neglected contributions and to
treat all the electron correlation effects on an equal footing,
we solve the inhomogeneous equation for the first-order
wave function,
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ðHem − Eð0Þ
v ÞjΨð1Þ

v i ¼ ðEð1Þ
v −HwÞjΨð0Þ

v i; ð15Þ

where Eð1Þ
v ¼ 0 in the present case owing to the odd-parity

nature of Hw. This is achieved by expressing the unper-
turbed and the first-order wave function of the Cs atom in
the RCC theory framework as [25–27]

jΨð0Þ
v i ¼ eT

ð0Þf1þ Sð0Þv gjΦvi; ð16Þ

and jΨð1Þ
v i ¼ eT

ð0ÞfSð1Þv þ Tð1Þð1þ Sð0Þv ÞgjΦvi; ð17Þ

where jΦvi is obtained by determining the Dirac-Hartree-
Fock (DHF) wave function of the closed core (jΦ0i) and
then, appending the corresponding valence orbital v to it as
jΦvi ¼ a†vjΦ0i. Tð0Þ and Sð0Þv are the core and the valence
excitation operators. The superscript 0 represents the
absence of any external perturbation. Similarly, Tð1Þ and
Sð1Þv are the core and the valence excitation operators with
the superscript 1 representing the order of perturbation in
Hw. In our previous calculations, we had successfully
employed this approach based on RCC theory with singles
and doubles approximation (RCCSD method) for the
evaluation of E1PV amplitudes in Baþ [25], Raþ [26],
and Ybþ [27] and had achieved results within 1% accuracy.
In the present work, we have implemented additional triple
excitations beyond the RCCSDmethod (RCCSDTmethod)
to achieve sub-one percent accurate E1PV in 133Cs as there
is a renewed interest in the inclusion of the neglected
correlation effects in this atom (e.g., see discussions in
[28,29]). It is worth mentioning here that we excite all the
electrons in the RCCSD method to account for the electron
correlation effects but correlate all the electrons except
from the 1 − 3s, 2 − 3p, and 3d occupied orbitals and
beyond n ¼ 15 virtual orbitals for triple excitations due to
limitations in the available computational resources. Also,
we have considered active orbitals up to l ¼ 5 in our RCC
calculations, and contributions from the orbitals belonging
to higher angular momentum symmetries, quoted as
“extra” hereafter, are estimated using low-order perturba-
tive methods.
High-precision quantitative predictions of the hyperfine

interactions between the atomic nucleus and electrons
imply accurate determination of the wave functions in
the nuclear region of an atomic system. They are usually
expressed in terms of hyperfine structure constants to
determine them conveniently [30]. Accurate estimates of
energies and E1 matrix elements indicate that the wave
functions are reliable in the intermediate and far nuclear
regions. This is why, we first calculated the energies, E1
matrix elements, and magnetic dipole hyperfine structure
constants (Ahyf) of the states that give rise to dominant
contributions to the determination of E1PV in 133Cs.
By comparing these values with their corresponding
experimental results [31–46], we have assessed the accu-
racies of the wave functions in the regions close to and far

away from the nucleus. Our calculated values of these
properties at different levels of approximations can be
found in Ref. [21]; however, the final values along with
their experimental results are listed in Tables I and II. The
uncertainties in these quantities are estimated by analyzing
contributions from the neglected higher-level excitations in
the RCC theory and finite-size basis functions used in the
calculation by employing a lower-order many-body
method. As can be seen from these two tables, comparison
of our calculations of the above properties with their
precisely known experimental data is very impressive
and within sub-one percent accuracy. This strongly sug-
gests that our atomic wave functions are very reliable, and
they can be used to determine the transition amplitude E1PV
accurately.
Keeping in mind our classification of the RCC terms, we

find the “core: contribution to E1PV and also the “main”

TABLE I. Comparison of the calculated energies (in cm−1) and
Ahyf values (in MHz) from the present work with the NIST data
and experimental results. Since the uncertainties of the exper-
imental (Expt) results are below the significant digits, they are not
quoted here.

Method 6S 6P1=2 7S 7P1=2 8P1=2

Energy values
This work 31357(50) 20243(20) 12861(15) 9641(10) 5697(10)
Expt [31] 31406.47 20229.21 12871.94 9642.12 5698.63

Ahyf values
This work 2306(10) 291(2) 547(2) 94(1) 42(1)
Expt 2298.16a 291.91b 545.82c 94.40d 42.97e

aRef. [32];
bRef. [33];
cRef. [34];
dRef. [35];
eRef. [36].

TABLE II. Matrix elements of the operators E1 (in a.u.) and
HNSI

APV [in units of −iðQW=NÞ × 10−11], respectively, from our
calculations. We also list the precise E1 values inferred from
various measurements of lifetimes and Stark shifts of atomic
states.

E1 amplitude HNSI
APV amplitude

Transition This work Experiment This work

6P1=2 ↔ 6S 4.5067(40) 4.5097(74) [37] 1.2648(15)
4.4890(65) [38]
4.505(2) [39]
4.508(4) [40]

7P1=2 ↔ 6S 0.2805(20) 0.2825(20) [41] 0.7210(15)
0.2789(16) [42]
0.27810(45) [43]

8P1=2 ↔ 6S 0.0824(10) 0.4783(10)
6P1=2 ↔ 7S 4.2559(30) 4.233(22) [44] 0.6161(15)

4.249(4) [45]
7P1=2 ↔ 7S 10.2915(100) 10.308(15) [46] 0.3464(10)
8P1=2 ↔ 7S 0.9623(20) 0.2296(05)
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contribution using our calculated energies, E1 matrix
elements, and amplitudes of HNSI

APV for the intermediate
nð¼ 6; 7; 8ÞP1=2 states that are quoted in Tables I and II.
After subtracting the “core” and “main” contributions from
the final value, the remainder is taken as the “tail” con-
tribution. These contributions from the DHF, RCCSD, and
RCCSDT methods using the Dirac-Coulomb Hamiltonian
are quoted in Table III. In addition, we give contributions
from the Breit and QED interactions of our calculation using
the RCCSDT method in the same table. These estimated
corrections are found to be consistent with the previous
works [22,23,47–50]. Earlier, these higher-order relativistic
corrections were estimated using lower-order many-body
methods. Therefore, agreement between our estimations and
previous calculations suggests that these corrections to E1PV
are almost unaffected with the higher-order electron corre-
lation effects. Nevertheless, these corrections are included
more consistently here as the same method is employed to
estimate them along with the dominant Coulomb inter-
actions. The other neglected contributions due to “extra,”
possible neutral weak interactions among electrons (e − e),
and the NSKIN effect that were not included in our RCC
calculation, are also quoted in the above table. The small
e − e contribution to E1PV has been taken from Ref. [51].
In a seminal work, Fortson et al. [52] had analyzed the

NSKIN effect on APV. By adopting their analysis, the
effect of NSKIN on E1PV (δE1NS

PV) can be estimated by

δE1NS
PVð133CsÞ ≈ −

3

7
ðαZÞ2tE1PV; ð18Þ

where t is known as the neutron skin parameter which
describes the relative difference of the rms radii of the
neutron and proton distributions in the nucleus. This
empirical formula was used in Refs. [22,23] for determin-
ing δE1NSPV. Using t ¼ 0.033ð8Þ [53] and the uncorrected
E1PV value 0.8914, we get δE1NSPV ≃ −0.0020ð5Þ in units of
×10−11ið−QW=NÞea0. This is in good agreement with the
recently estimated value by Brown et al. in Ref. [53].

However, Sil et al. have estimated ΔQNS
W by employing a

more rigorous effective field theory framework [10]. We
use the relation,

δE1NSPVð133CsÞ ≈
ΔQNS

W

QW
E1PV; ð19Þ

and the numerical results from Ref. [10]. Interpreting
the two model results considered there to define a
central value and an uncertainty range, we find δE1NSPV ≃
−0.00377ð39Þ × 10−11ið−QW=NÞea0 by substituting
QW ≃ −73.23. This is a slightly larger correction than
considered in the previous Refs. [22,23,48].
We compare individual contributions with the previously

reported RCC results using the sum-over-states approach
[22,48] and the latest reported result [23] of E1PV in Cs.
These calculations include the 9P1=2 state in their “main”
contribution in the sum-over-states approach, whereas our
“tail” includes the contribution from this state. Our final
E1PV value is 0.8893(27) in contrast to the results that have
been reported previously as 0.8906(24) [22] and 0.8977
(40) [23] in units of ×10−11ið−QW=NÞea0. The major
difference between the results from Ref. [22] and ours is
because of the fact that they account for different
NSKIN effect. The large difference between the present
calculation and that of Ref. [23] is mainly due to the “core”
contributions, which have different signs in both the cases.
Nonetheless, one of the most important achievements of

our calculation is that it resolves the ambiguity of the sign of
the “core” contribution from the calculations reported in
Refs. [22,23]. We have adopted the same procedure as in
Ref. [22] to estimate the uncertainty of E1PV. This is also
independentlyverifiedbyanalyzinguncertaintiesarising from
the neglected higher level excitations in the RCC theory and
finite-size basis functions used in the calculation. If the
difference between the RCCSD and RCCSDT values is
assumed to be the maximum contribution from the neglected
higher level excitations and considering “extra” as the

TABLE III. The “core”, “main,” and “tail” contributions to the E1PV amplitude [in units of −iðQW=NÞea0 × 10−11] using the Dirac-
Coulomb Hamiltonian in the DHF, RCCSD, and RCCSDT methods. The “main” contribution is determined using the np2P1=2
intermediate states with n ¼ 6, 7, and 8. Contributions from Breit and QED interactions are quoted separately. Contributions from
“extra,” the neutral weak interactions among electrons (e − e), and the NSKIN effect are also mentioned. The final results (final) from
different works show significant differences.

Method Core Main Tail Breit QED Extra e − e δE1NSPV Final

DHF −0.0017 0.7264 0.0137
RCCSD −0.0019 0.8623 0.0357
RCCSDT −0.0018 0.8594 0.0391a −0.0055 −0.0028 0.0026 0.0003b −0.00377ð39Þ 0.8893(27)

Ref. [23] 0.0018(8) 0.8823(17)a,b 0.0238(35) −0.0055ð1Þb −0.0029ð3Þb −0.0018ð5Þb 0.8977(40)
Ref. [22] −0.0020 0.8823(17)a 0.0195 −0.0054b −0.0024b −0.00006 0.0003b −0.0017b 0.8906(24)
Ref. [47] 0.9078 −0.0055 0.0036 −0.0018 0.904ð1� 0.5Þ
Ref. [48] −0.002ð2Þ 0.893(7)a 0.018(5) −0.002ð2Þ −0.0006 0.907(9)
Ref. [49] 0.908 0.91(1)

aContains additional contribution from the 9p2P1=2 state.
bTaken from previous calculation [51].
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maximumuncertainty due to incompleteness in the used basis
functions, we also arrive at the same uncertainty of E1PV.
It is necessary to combine our E1PV value with the

precisely measured ImðE1PV=βÞ ¼ 1.5935ð56Þ mV=cm
[3], where Im refers to the imaginary part and β is the
vector polarizability of the 6s2S1=2 − 7s2S1=2 transition in
133Cs to extract QZ;N

W . However, this also requires an
accurate knowledge of β. Recently, it was estimated by
using the world averaged values of the previously reported
E1 matrix elements of the dominant transitions [54]. It used
uncertainties from the spread of the data rather estimating
them from the missing physics. Therefore, we determined
this quantity by using the actual uncertainties of the E1
matrix elements either from measurements or from our
calculation as discussed in detail in Ref. [21] and obtain its
value as β ¼ 27.12ð4Þea30. Using all these values, we get
QZ;N

W ¼ −73.71ð26Þexð23Þth. This is in agreement with the
SM prediction QSM

W ¼ −73.23ð1Þ, obtained from Eq. (5)
with sin2 θ̄Wð2.4 MeVÞ ¼ 0.23857ð5Þ [7]. At the 1σ con-
fidence level, we haveΔQZ;N

W ≡QZ;N
W −QSM

W ¼ −0.48ð35Þ.
In turn, our value ofQZ;N

W can be used to determine theweak
mixing angle. We find sin2 θ̄Wð2.4 MeVÞ ¼ 0.2408ð16Þ
with a slightly smaller uncertainty and a significant shift
of the central value compared with the previous determi-
nation [7].
The experimental value of QZ;N

W provides a constraint
on the low-energy effective electron-quark couplings:
376geuAV þ 422gedAV ¼ 73.71ð35Þ. Assuming the SM predic-
tion for one of them, we find a value for the other: geuAV ¼
−0.1877ð9Þ for gedAV ¼ 0.3419, and gedAV ¼ 0.3429ð8Þ for
geuAV ¼ −0.1888. Wealso find slightly improved limits on the
BSM parameters described in the Introduction. The isospin
conserving oblique parameter S can be constrained to
S ≃ 0.60ð44Þ assuming T ¼ 0 in Eq. (8). The central value
of S is shifted to positive values, compared with the previous

determination S ≃ −0.51ð52Þ [7]. From Eq. (6), we obtain a
limiton themassofanextraZ0 boson.Since theshift is always
positive, we find a one-sided exclusion limit at 95% con-
fidence limit ofMZx

> 2.36 TeV,usingMW ¼ 80.379 GeV
[7], compared with recent limits from the ATLAS
Collaboration who found values ranging from 3.5 to
4.5 TeV [55]. Furthermore, using Eq. (10), we can constrain
the dark-Z model parameter ϵδ MZ

MZd
≃ −0.0051ð37Þ.

In conclusion, we used a perturbed version of the
relativistic coupled-cluster theory to calculate the nuclear
spin-independent parity violating electric dipole transition
amplitude for the 6s2S1=2 − 7s2S1=2 transition in 133Cs. The
principal merit of this approach is that it treats the
contributions of the core, valence, and excited states to
the above parity violating transition amplitude on the same
footing, thereby overcoming the limitations of the previous
high precision calculations of this quantity. Our work
resolved the ambiguity in the sign difference for the
contribution from core states. In addition, we estimated
the uncertainty in our calculation of the parity violating
transition amplitude in 133Cs more rigorously than those in
previous calculations. The salient implications of the
deviation of the nuclear weak charge from the standard
model, that is obtained in the present work, for probing
possible new physics have been discussed. Our result, in
combination with measurements from proposed new high-
precision experiments, has the potential to improve the
constraints on beyond the standard model physics in the
future.
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