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Recently, Oðα3Þ corrections to the muon decay rate and Oðα3sÞ to heavy quark decays have been
determined by Fael, Schönwald, and Steinhauser. This is the first such perturbative improvement of these
important quantities in more than two decades. We reveal and explain a symmetry pattern in these new
corrections, and confirm the most technically difficult parts of their evaluation.
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I. INTRODUCTION

Muon decay provides one of the pillars of the Standard
Model, the Fermi constant GF [1]. Its determination relies
on precise measurements of the muon lifetime [2,3] and
mass [4], and on theoretical evaluation of radiative cor-
rections. These corrections arise primarily from quantum
electrodynamic (QED) interactions involving the muon and
the daughter electron, and are expressed as a power series in
the fine structure constant α ≃ 1=137.
Very recently, a new term in this series has been

calculated [5] using an expansion in the difference of
the muon and electron masses. Here we confirm the most
demanding parts of the expansion published in [5]. We also
explain a pattern governing the first two terms of the
expansion.
Determination of the coefficients of increasing powers of

α requires monumental efforts. A new result appears very
rarely, approximately once every one or two generations of
theorists. Each new result is witness to a new technology
available in perturbative quantum field theory. First-order
corrections, calculated in 1955 [6], were in fact the first
loop effects calculated for a decay process. They served as a
model for subsequent studies of quantum chromodynamics
(QCD) processes in heavy quark decays [7,8].
It took more than 40 years before the second-order

coefficient became known [9,10]. That progress was made

possible by the technique of recurrence relations based on
integration by parts [11,12] and on symbolic manipulations
with computers [13].
Now, another two decades later, the coefficient of α3 has

been determined [5]. Several theoretical developments
underly this advancement. Laporta algorithm [14] allows
one to express multiloop integrals in terms of a relatively
small number of master integrals. This algorithm can be
implemented in powerful symbolic algebra software
capable of parallelization [15,16]. Finally, despite the
electron being about 207 times lighter that the muon, the
calculation is done as an expansion around the situation
where the electron and the muon masses, me and mμ, are
equal [17–19].
Historically, radiative corrections to the muon decay

were calculated before corrections to heavy quark decays,
because QCD was developed only later. Computational
technology is the same in both QED and perturbative QCD,
and once the QED corrections are known, it is relatively
easy to evaluate additional diagrams involving multigluon
vertices. Reference [5] presents corrections both for the
muon and for the b-quark decays. Wherever our discussion
below is relevant for both types of processes, we refer to the
decaying particle’s mass as M, and denote the mass of the
produced charged particle by m. We use δ ¼ 1 −m=M to
denote the expansion parameter: the relative difference of
masses.
In Sec. II we present our calculation of five terms of the

expansion in δ for a subset of corrections, including the
most demanding part with all quanta (photons or gluons)
coupling to incoming or outgoing fermions, rather than, for
example, to virtual loops. In Sec. III we demonstrate how
the first two terms in the expansion in δ can be found from
a form factor, first determined in 2004 in Ref. [17].
Section IV contains our conclusions.
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II. EXPANSION IN THE MASS DIFFERENCE

As we shall demonstrate in Sec. III, the first two terms of
the expansion of the decay rate in the mass difference may
be obtained without a new calculation. Unfortunately, the
remainder of the expansion requires a challenging calcu-
lation. For this publication, we have evaluated the first five
terms of the expansion, δ5;…;9 of the three most difficult
contributions: those proportional to C3

F, C
2
Fnb, and CFn2b

where nb labels loops containing a fermion of massM. [We
use the standard notation for the SUðNÞ factors:
CF ¼ ðN2 − 1Þ=ð2NÞ, CA ¼ N, TF ¼ 1=2 with N ¼ 3
for QCD and CF ¼ 1, CA ¼ 0, TF ¼ 1 for QED [20].]
Our method, originally developed for corrections of
Oðα2Þ or Oðα2sÞ in Ref. [19], is the same as the one
employed in Ref. [5] for Oðα3sÞ (αs denotes the strong
coupling constant). However, we used a different software
implementation.
In this section we briefly describe our method using the

example of the muon decay. It was found in Ref. [19] that
an expansion in terms of δ is useful for computing high-
order corrections. In particular, the calculation is much less
involved than an expansion around m=M ¼ 0, and con-
verges very well all the way to the physical value ofmc=mb
orme=mμ, even thoughme=mμ ¼ 0.005 is very far from the
equal mass limit.
Our crucial tool is the optical theorem. It allows us to

write contributions to the decay rate of the b-quark or muon
as self-energy diagrams. To generate the diagrams, we use
DiaGen/IdSolver [21] modified to work with the types of
propagators and expansions that appear in the present
calculation. This code also produces the required integra-
tion by parts (IBP) identities and carries out the reduction to
master integrals. The reduction of the large number of
necessary integrals required the use of the WestGrid cluster
which is part of the high performance computing infra-
structure Compute Canada.
The decay is induced by an effective Fermi interaction

with the W boson contracted to a point, as shown in Fig. 1.
Corrections due to theW propagator including electroweak
effects are known up to two loops [22]. Here we are
interested in three-loop QED corrections in the limit of a

heavy W. They are described by five-loop self-energy
diagrams [the extra two loops are responsible for the
tree-level decay in Fig. 1(b)]. We show examples of such
diagrams in Fig. 2. The integral over the neutrino loop is
carried out first by integrating over k1 shown in Fig. 1(b).
This can be done at any QED order because the neutrinos
do not interact with each other in the approximation
considered here. The number of loops is thus reduced
by one, at the price of introducing a propagator with
noninteger power. This complicates the IBP reduction.
For the remaining four-loop integrals, we use an asymp-

totic expansion in δ, which we now describe.

A. Asymptotic expansion

General properties of the asymptotic expansion of the
loop integrals can be explained with the help of Fig. 1.
Since we have already integrated over the neutrino loop, we
only need to consider k2 when carrying out the expansion.
The following integral remains:

Z
ddk2
ð2πÞd

1

ðk22Þϵ½ðpþ k2Þ2 −m2�

¼
Z

ddk2
ð2πÞd

1

ðk22Þϵ½k22 þ 2p · k2 þM2δð2 − δÞ� ð1Þ

where we use dimensional regularization with d ¼ 4 − 2ϵ.
Without QED corrections, there are two regions: soft with
components k2 of the order of M −m, thus much smaller
than M, and hard with k2 ∼M. In the hard region, the term
M2δð2 − δÞ can be treated as small. After expanding in it,
the integral takes the form

Z
ddk2
ð2πÞd

1

ðk22Þϵ½k22 þ 2p · k2�
: ð2Þ

This is an on-shell self-energy integral with no imaginary
part and so it does not contribute to the decay. This is the

Wμ
νμ

e
νe

p

k1

p+k2
k1+k2

(a) (b)

FIG. 1. Tree-level contribution to muon decay. (a) Full ampli-
tude with the W boson. (b) Muon self-energy diagram whose
imaginary part we calculate to obtain the squared amplitude.
Circled crosses indicate effective interactions obtained by ne-
glecting the momentum dependence in W propagators (Fermi
interaction).

(a) (b)

(c)

FIG. 2. Examples of third-order radiative corrections to the
muon decay. Wavy lines represent photons, contributing to both
virtual and real radiation. In our approach, the imaginary part of
such five-loop diagrams is calculated.
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crucial observation which holds in any order in QED: if
the momentum flowing through the neutrinos is large, the
resulting integral has no imaginary part. This reduces the
number of regions that must be considered by half. At
Oðα3Þ this means that we only need to consider 8 regions
instead of the general 16. Moreover, among the noncon-
tributing regions is the computationally very difficult one
with all five hard loops.
In the soft region, k2 ∼ δ ·M and we simplify the integral

in Eq. (1) by noticing that some terms are suppressed by an
extra power of δ,

Z
ddk2
ð2πÞd

1

ðk22Þϵ½2p · k2 þ 2M2δþ k22 −M2δ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
small

� : ð3Þ

Thus we encounter integrals with so-called eikonal propa-
gators [23,24] whose general form is

Z
ddk
ð2πÞd

1

ðk2Þn1 ½2p · k�n2 ½2p · kþ Δ�n3 ; ð4Þ

where Δ does not depend on the integration variable k. We
have included another eikonal propagator that appears in
higher-order loop diagrams. As it turns out, in all cases Δ
takes the form of a constant or another eikonal propagator.
This makes it possible to apply this integral iteratively
when computing the required master integrals.

B. Master integrals

Expansion in relevant momentum regions of all diagrams
leads to a large number of eikonal and on-shell integrals.
We encounter at most three-loop on-shell integrals because
the four-loop on-shell integrals contribute only to the real
part and not to the imaginary part that we need.
Fortunately the three-loop on-shell master integrals have

been computed in Ref. [25] to the required order in ϵ for the
present calculation. We note that these integrals were
originally computed in Ref. [26] in the context of the
fermion anomalous magnetic moment, (g − 2), but it was
not until [25] that enough terms in the ϵ expansion where
known to make the present calculation possible.
The soft integrals appear up to four loops. After reducing

to master integrals, there are 1 one-loop, 1 two-loop,
3 three-loop and 13 four-loop master integrals that must
be computed. The general one-loop eikonal integral in
Eq. (4) is computed in [23]. The result has the property

Z
ddk
ð2πÞd

1

ðk2Þn1 ½2p · k�n2 ½2p · kþΔ�n3 ∝ΔD−2n1−n2−n3 : ð5Þ

As discussed in Sec. II A, the form of Δ in this result makes
it possible to iteratively apply the one-loop computation to
all two- and three-loop and almost all four-loop eikonal

type master integrals that are required. The remaining four-
loop eikonal integrals can be computed analytically using a
single Mellin-Barnes parameter. In all cases, the Mellin-
Barnes integral can be evaluated by summing over the poles
of the Gamma functions. Thus all eikonal integrals can be
written explicitly in terms of Gamma and hypergeometric
functions which are then expanded in ϵ to the needed order.
For the expansion of hypergeometric functions, we use the
Mathematica package HYPEXP [27]. Detailed examples
of evaluation of eikonal integrals can be found in
Refs. [28,29].
The final ingredient are the three-loop renormalization

constants. The mass dependent constants are known in an
expansion around the limit m=M ¼ 0 [30]. We require the
opposite expansion and thus had to compute the wave-
function and mass renormalization terms. The calculation
was done in an identical way to [30] except, of course,
expanding around m=M ¼ 1.
Interestingly, authors of [30] were able to present their

solution only in terms of one- and two-dimensional
integrals which must be computed numerically. In the limit
m=M ¼ 1 however, we obtain fully analytic results. (After
this calculation was completed, we learned about Ref. [31]
where analytic results in the limits m=M ¼ 0; 1;∞ are
presented.)
Using the approach described in this section, we have

been able to confirm terms in the first five orders, δ5;…; δ9,
of Ref. [5], in the most technically difficult groups: the ones
that contain three photons, all coupling to the main muon-
electron line, one example of which is shown in Fig. 2(a),
and diagrams containing one or two virtual loops with mass
M, as shown in Figs. 2(b) and 2(c).
In principle, an extension of our calculation to diagrams

containing virtual m loops and massless loops, and three-
gluon vertices is possible. Instead, in the following Sec. III,
we show how one can reproduce the first two terms of all
types from already known form factors.

III. INFORMATION FROM THE ZERO-RECOIL
FORM FACTOR

A. Hidden symmetry under M ↔ m

The starting point of the expansion in the difference of
masses is the equal mass limit. There, the three-loop
correction has been known for a long time [17]. That
result can be used to obtain the first two terms in the mass
difference expansion, as explained in Ref. [19].
Without radiative corrections, the effect of the electron

mass on the muon decay rate is known exactly,

Γðμ → eνν̄Þ
Γ0

¼ 1 − 8ρ2 þ 8ρ6 − ρ8 − 24ρ4 ln ρ; ð6Þ

where Γ0 ¼ G2
FM

5

192π3
is the decay rate in the limit of a massless

electron and ρ ¼ m=M is the ratio of electron and muon
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masses. Near the limit of equal electron and muon masses a
useful parameter is δ ¼ ðM −mÞ=M ¼ 1 − ρ, introduced
in Sec. II. The first two terms in the expansion of the tree-
level decay rate around δ ¼ 0 are

Γðμ → eνν̄Þ
Γ0

¼ δ5 −
3

2
δ6 þOðδ7Þ: ð7Þ

We see that the phase space suppresses the decay rate by
five powers of δ.
The following discussion applies equally to the muon

decay and to the semileptonic b → c and b → u quark
decays. Quark decays require a more extensive calculation
because QCD corrections have a richer gauge group
structure. We therefore use the b → c decay as an example,
use the language of QCD, and denote δ ¼ ðmb −mcÞ=mb.
Corrections to the muon decay can be deduced from a
subset of results obtained for quarks.
We want to argue that when radiative corrections are

included, the first two orders in δ, displayed in Eq. (7), are
affected only by virtual corrections and not by the real
radiation. Real radiation emission is suppressed by two
powers of the daughter fermion velocity in the rest frame of

the decaying fermion. That velocity, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

c
m2

b

q
, is at

most about δ. So, the real radiation affects the decay rate
only in the third order in the expansion, δ7.
It has also been demonstrated that the form factors

arising from virtual corrections do not have a linear term in
the δ expansion [19], as long as the coupling constant αs is
renormalized in the symmetric point μ2 ¼ mcmb. This is
because of the symmetry of the virtual gluon diagrams
under the interchange mb ↔ mc. We have therefore used
Eq. (7) to reproduce the first two terms of the expansion
in [5].
The available information about the form factors in [17]

is limited to the axial form factor. Fortunately, in the limit of
equal masses, the vector form factor does not receive
radiative corrections. Corrections are suppressed by the
square of momentum transfer q2 ¼ ðpb − pcÞ2 which
contributes again only in the third order, δ7.
Since the results of [17] assume the exact equal mass

limit, they do not differentiate between the two heavy
fermions. In Ref. [5] effects of b and c loops are labeled
with factors nb and nc, to indicate that they are proportional
to the number of those quarks in virtual loops (in reality of
course there is nb ¼ nc ¼ 1). We thus replace nb and nc in
the formulas of [5] by NH=2, so that the number of heavy
fermions NH in [17] corresponds to nb þ nc.
Finally, when we apply Eq. (7), we obtain corrections in

terms of the coupling constant normalized at the geometric
mean of the decaying and daughter fermion. On the other
hand, results of Ref. [5] use the mass of the decaying
fermion as the renormalization scale. To remedy this, we
run the coupling constant in the formulas resulting from
Eq. (7) using [32],

αsðmbmcÞ
π

¼ αsðm2
bÞ

π

�
1þ αsðm2

bÞ
π

β0δ

þ
�
αs
π

�
2

δðβ20δþ β1Þ
�
; ð8Þ

β0 ¼
1

4

�
11

3
CA −

4

3
TFnf

�
; ð9Þ

β1 ¼
1

16

�
34

3
C2
A −

20

3
CATFnf − 4CFTFnf

�
; ð10Þ

where nf ¼ nl þ NH. In the above formulas, δ originates
from the logarithm ln mb

mc
¼ − lnð1 − δÞ ¼ δþOðδ2Þ.

After this adjustment of the coupling constant in the axial
form factor, we reproduce all coefficients of δ5 and δ6

in Ref. [5].

B. Example of the pattern in terms δ5 and δ6

As an example of the procedure outlined above, we
consider the first two terms in the color part proportional to
CFC2

A. In the Supplemental Material of Ref. [5] these terms
read CFC2

Aðd5δ5 þ d6δ6Þ, with

d5 ¼ −
16241

270
−
512

15
a4 −

64

45
ln42 −

1423

90
π2

þ 1112

45
π2 ln 2 −

40

9
π2ln22þ 194

675
π4

þ 86

3
ζ3 þ

22

15
π2ζ3 − 32ζ5; ð11Þ

d6 ¼
1745

36
þ 256

5
a4þ

32

15
ln4 2þ 1247

60
π2−

156

5
π2 ln2

þ 20

3
π2 ln2 2−

97

225
π4 −

259

5
ζ3−

11

5
π2ζ3þ 48ζ5; ð12Þ

where a4 ¼ Li4ð1=2Þ ≃ 0.517 [33] and ζn is the Riemann
zeta function [34]. Following the discussion around Eq. (7),
the bulk of these terms should have the form
d5δ5ð1 − 3δ=2Þ. Consider the deviation from that pattern,
D ¼ d6 þ 3d5=2,

D ¼ −
1879

45
−
44

5
ζ3 −

44

15
π2 þ 88

15
π2 ln 2; ð13Þ

a much simpler expression than either d5 or d6, but
not zero.
We now show how this difference is removed by

changing the renormalization scale. To this end, consider
the one- and two-loop form factor [18,35–37], as summa-
rized in [17],
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ηAðδ→ 0Þ ¼ 1þ ηð1ÞA
αsðmbmcÞ

π
þ ηð2ÞA

ðαsðmbmcÞ
πÞ

2

þOðα3sÞ;

ð14Þ

ηð1ÞA ðδ → 0Þ ¼ −
CF

2π
; ð15Þ

ηð2ÞA ðδ→ 0Þ¼CFCA

�
−
143

144
−
1

4
ζ3þ

1

6
π2 ln2−

1

12
π2
�
þ…;

ð16Þ

where we have neglected other color structures in ηð2ÞA .
Change of the scale of αs in the square of the form factor
produces an additional contribution α3sCFC2

A,

48

5
η2A→

96

5
½ηð1ÞA β1þ2ηð2ÞA β0� ð17Þ

→
96

5

�
−
1

2
·
17

24
þ2

11

12

�
−
143

144
−
1

4
ζ3þ

1

6
π2 ln2−

1

12
π2
��

¼D; ð18Þ

where the factor 48=5 is related to the normalization of the
results in [5]. The result of changing the scale from the
symmetric point mbmc to m2

b, given by Eq. (18), provides
precisely the deviation from the pattern d5δ5ð1 − 3δ=2Þ we
found in Eq. (13).

IV. CONCLUSIONS

The third-order correction to the muon and the heavy
quark decay rates found in Ref. [5] is an important
milestone in perturbative quantum field theory. Here we
have confirmed the first five terms of the three technically
most difficult structures involving no light vacuum polari-
zation loops and no three-gluon couplings. We have also
revealed a pattern in the first two terms of the expansion of
all flavor and color structures, hidden when the symmetry
between the initial and the final fermion is broken by
renormalization. This pattern becomes visible when a
symmetric scale Mm is used to renormalize the coupling.
We close by congratulating the authors of Ref. [5] on

completing their heroic calculation.
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