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Observed thermal emission from accreting neutron stars (NSs) in a quiescent state is believed to be
powered by nonequilibrium nuclear reactions that heat the stellar crust (deep crustal heating paradigm). We
derive a simple universal formula for the heating efficiency, assuming that an NS has a fully accreted crust.
We further show that, within the recently proposed thermodynamically consistent approach to the accreted
crust, the heat release can be parametrized by only one parameter—the pressure Poi at the outer-inner crust
interface (as we argue, this pressure should not necessarily coincide with the neutron-drip pressure). We
discuss possible values of Poi for a selection of nuclear models that account for shell effects, and we
determine the net heat release and its distribution in the crust as a function of Poi. We conclude that the heat
release should be reduced by a factor of few in comparison to previous works.
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I. INTRODUCTION

The crust of an accreting neutron star (NS) is driven out
of thermodynamic equilibrium by the accretion process
from the NS companion. Its composition is governed by
exothermal nuclear reactions, which act to return it to the
equilibrium. It is generally believed that the heat released in
these reactions is responsible for the observed thermal
luminosity of transiently accreting NSs [1–6] (deep crustal
heating paradigm [7]). Observations of such stars could
shed light on the properties of superdense matter in their
interiors [7–12].
Physics of accreted crust (AC) has been studied for about

forty years since the pioneering works by Sato [13] and
Haensel and Zdunik [14,15]. During this time a number of
AC models were developed. They are based on either
detailed [16] or simplified [17,18] reaction networks,
theoretical atomic mass tables, the liquid-drop approach
[19,20], or the density-functional theory [21]. The key
question researchers want to answer: What is the AC
composition and heat released in the crust per accreted
nucleon? This question is usually addressed within the
traditional approach, in which one follows the composi-
tional changes in the given accreted fluid element as it is
compressed under the weight of newly accreted material. In
this approach all constituents (nuclei, electrons, unbound
neutrons) in the fluid element move together, with one and
the same velocity. Thus, the traditional approach com-
pletely ignores the possibility that unbound neutrons,
presented in the inner crust, can redistribute themselves
independently of nuclei in order to reduce the system
energy. In [22] we reveal crucial importance of this effect
and show that neutrons in the inner crust must be in a
hydrostatic/diffusion equilibrium (nHD) state, in which
μ∞n ¼ μneν=2 ¼ const, where μn is the neutron chemical

potential and eν=2 is the redshift factor. Equation of state
(EOS) that respects the condition μ∞n ¼ const (hereafter
nHD condition), turns out to be rather close to the catalyzed
EOS of nonaccreting (ground state) inner crust, and is very
different from the traditional AC EOSs [22].
In this paper we further explore the consequences of nHD

equilibrium. First, we present a universal formula (3) show-
ing that the deep crustal heat releaseQ∞, as seen by a distant
observer, for a fully accreted crust (FAC) is determined by
EOS, but not by the details of nuclear transformations
proceeding in the crust. Second, we calculate the net heat
release and its distribution over the nHD crust.

II. GENERAL ENERGETICS

Consider an NS with AC and the mass M, and an NS
with catalyzed crust, the mass Mcat, and the same total
number of baryons, Ab (the cores of both NSs are assumed
to be in the ground state). The energy excess stored in the
NS with AC is Eex ¼ M −Mcat. This energy will be
released if one waits sufficiently long for the AC to relax
to catalyzed crust by means of nonequilibrium nuclear
processes.
To calculate the increase in Eex associated with the

accretion process, let us add δAb baryons (in the form of,
e.g., H or He) with the average mass per baryon m̄b. This
will increase M by an amount δM ¼ m̄bδAbeνs=2 [23,24],
where eνs=2 is the redshift factor at the NS surface. In turn,
Mcat will increase, after adding the same δAb baryons, by
δMcat ¼ δAbμ

∞
b;cat [23,24], where μ∞b;cat is the redshifted

baryon chemical potential in the catalyzed NS, which is
constant throughout the star [22,25,26]. As a result,

δEex ¼ ðm̄beνs=2 − μ∞b;catÞδAb: ð1Þ
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Generally, to determine what fraction of δEex goes into heat
and what is stored in the (nonequilibrium) crust, one should
study the kinetics of nuclear reactions there. However, in an
important case of an NS with FAC a general formula for the
heat release can be derived.

III. UNIVERSAL HEATING FORMULA FOR FAC

In the process of accretion an NS eventually reaches the
regime, in which crust EOS does not further change
noticeably in time. We call such crust “fully accreted.”
Subsequent accretion of material onto the surface of FAC
initiate nuclear reactions, which maintain the crust com-
position (see, e.g., [22]). The heat release associated with
these reactions can be calculated in analogy to the deriva-
tion of Eq. (1). Let us accrete δAb baryons onto the surface
of an NS with FAC. On the one hand, the energy of such a
star will change by m̄bδAbeνs=2; on the other hand, the star
energy will vary by ∂M=∂AbδAb, where the partial deriva-
tive is taken, by assumption, at fixed EOS of FAC. These
two energies are not equal to one another; they differ by an
amount of heat generated in the crust by nonequilibrium
nuclear reactions, caused by accretion of δAb baryons.
Correspondingly, the total heat release per accreted baryon,
redshifted to a distant observer, is given by

Q∞
tot ¼ m̄beνs=2 − ∂M=∂Ab: ð2Þ

As shown in the Supplemental Material [27] ∂M=∂Ab can
be presented as ∂M=∂Ab ¼ μ∞b;core þOðQ∞

totMc=MÞ, where
μ∞b;core is the redshifted baryon chemical potential in the NS
core; OðQ∞

totMc=MÞ is a small correction of the order of
Q∞

totMc=M; and Mc is the crust mass.
In the upper layers of NSs (up to the density

≲109 g cm−3) the accreted material fuse into heavy nuclei
(ashes with average mass per baryon m̄b;ash) [6]. The
respective energy, Q∞

ash ¼ ðm̄b − m̄b;ashÞeνs=2, is emitted
from the surface without significant heating of the crust.
The remaining part Q∞ ≡Q∞

tot −Q∞
ash is released in the

deep AC layers

Q∞ ¼ m̄b;asheνs=2 − ∂M=∂Ab

¼ m̄b;asheνs=2 − μ∞b;core þOðQ∞
totMc=MÞ: ð3Þ

It can be interpreted as an excess of gravitational energy,
which ashes have at the outer layers of the accreted crust
plus some (typically small) excess of nuclear energy of the
ashes with respect to the ground state composition (56Fe).
Below, we neglect small corrections ∼Q∞

totMc=M ≪
1 MeV in Eq. (3), but, in principle, they can be calculated.
Neglecting small energy carried away from the star in the
form of neutrinos [18,20,21,28], Q∞ represents the heat
deposited in the crust.
Equation (3) is very general and can be applied to any

FAC model. In the Supplemental Material [27] we show

that it reproduces, in particular, the results of a traditional
one-component model [14,15,19–21,29]. Equation (3) can
be further simplified for the nHD crust [see Eq. (4)], whose
properties are briefly considered below.

IV. THE NHD CRUST: BASIC FEATURES

The thermodynamically consistent model of the inner
crust should respect the nHD condition [22]. To account for
this condition, one should substantially modify the tradi-
tional approach by self-consistently analyzing nuclear
processes in the whole inner crust, allowing for redistrib-
ution of unbound neutrons over different crust layers and
the core. Let us summarize the main properties of the nHD
crust [22], which will be used in what follows.
The outer-inner crust interface (oi interface) plays an

important role. Above it unbound neutrons are absent and
cannot travel between different layers; hence the traditional
approach there is justified. Below the oi interface unbound
neutrons must redistribute in order to meet the nHD
condition. At first glance the position of this interface
should coincide with the point where neutrons drip out of
nuclei in the traditional AC model. However, as shown in
[22], it is not the case: unbound neutrons from the under-
lying layers can spread above this point if it is energetically
favorable. Therefore, the position of the oi interface (para-
metrized by the pressure Poi) should be considered as an
additional parameter of the nHD crust model. In particular,
Poi should vary over time until an NS reaches the FAC
state. In this state Poi is fixed by the requirement that the
total number of nuclei in the inner crust is almost constant
during the accretion process (otherwise EOS should evolve
in time, which contradicts the FAC definition).
The process that keeps constant the number of nuclei in

the crust has been identified in [22]; it is related to a specific
instability, which disintegrates nuclei in the inner crust at
the same rate as they are provided by accretion onto the NS
surface.

V. THERMODYNAMICALLY CONSISTENT
MODEL OF THE INNER CRUST:

HEAT RELEASE

According to the nHD condition μ∞n ¼ const in the inner
crust and core. On the other hand, in the core μn ¼ μb,
while at the oi interface (from the inner crust side) μn ¼ mn.
In view of these facts, one has μ∞b;core ¼ mneνoi=2, where
eνoi=2 is the redshift at the oi interface. Now, expressing
νs − νoi using one of the Tolman-Oppenheimer-Volkoff
equations [24], Eq. (3) can be rewritten as

Q∞ ¼ eνoi=2
�
m̄b;ash exp

�Z
Poi

0

dP
Pþ ϵ

�
−mn

�
; ð4Þ

where ϵ ¼ ϵðPÞ is the energy density and P is the pressure.
In contrast to Eq. (3) this formula applies only to the nHD

M. E. GUSAKOV and A. I. CHUGUNOV PHYS. REV. D 103, L101301 (2021)

L101301-2



crust. It says that the heat release Q∞, parametrized by the
pressure Poi, can easily be found provided that EOS in the
outer crust (at P < Poi) is known. Note that the outer crust
can be modeled within the traditional approach, so that
EOS there is relatively well established [16,20,21,30].
Another form of the expression for Q∞ is discussed in
the Supplemental Material [27], where we also present its
independent microscopic derivation valid for the smoothed
compressible liquid drop (CLD) model [22].
To illustrate usefulness of the formula (4), we calculate

Q∞ for several nuclear models (BSk24, BSk25, BSk26:
Hartree-Fock-Bogoliubov calculations [31]; FRDM12:
finite-range droplet macroscopic model [32]). The respec-
tive heat release Q, defined as Q ¼ Q∞e−νoi=2, is shown by
solid lines in Fig. 1 as a function of Poi (for simplicity,
following [14,20,21], pureA ¼ 56 composition of the ashes
is assumed). For the region of Poi depicted in the figure,
Q ∼ ð0.2–1Þ MeV=nucleon, being almost a linear function
of Poi. It is by a factor of few smaller than the heat release
∼ð1.5–2Þ MeV=nucleon, found in the traditional approach
[16,20,21,33]. Note that the shell effects increase the heat
release (for example, for the smoothed CLD model of [22],
which ignores them,we obtainQ ≈ 0.11 MeV=nucleon; see
Supplemental Material [27]). A similar feature was pointed
out for the traditional AC model in [21].
To analyze the heat release distribution in the FAC we do

the following. First, the net heat release in the outer crust
(Qo) and its distribution can easily be found in the tradi-
tional approach (see dots in Fig. 1). In turn, the heat release
at the oi interface (Qoi) is associated with exothermic
neutron absorptions and electron emissions by nuclei
crossing the oi interface. Neutrons, necessary for such
absorptions are supplied by continuous upward neutron

flow in the inner crust. The origin of the flow is the
disintegration instability mentioned above. Neutrons,
released in the course of this instability, redistribute in
the inner crust and core in order to maintain the nHD
equilibrium (for details see [22]). To find Qoi, we slightly
modified the reaction network of [18] by allowing for
absorptions of an arbitrary number of neutrons at the oi
interface by incoming nuclei [in the spirit of the extended
Thomas-Fermi plus Strutinsky integral (ETFSI) calcula-
tions of [21] ]. The resulting Qoi is shown in Fig. 1 by long
dashes. The remaining heat, Qi ¼ Q −Qo −Qoi, is
released in the inner crust and is shown by dot-dashed lines.

VI. Poi DETERMINATION AND HEAT RELEASE
DISTRIBUTION IN THE INNER CRUST

We demonstrate that Qo, Qi, and Qoi are fully deter-
mined by the pressure Poi, if EOS in the outer crust is
known. But how can we determine Poi? In Ref. [22] we
found Poi for the smoothed CLD model based on the SLy4
nuclear energy-density functional [34]. Here, to check the
sensitivity of Poi to the shell effects, we determined it for
the recently developed model [35]. The shell effects in this
model are incorporated by adding tabulated shell energy
corrections from [36,37] on top of CLD energy density
(CLDþ sh model in what follows). The resulting CLDþ
sh model reproduces well ETFSI calculations for four
modern energy-density functionals: BSk22, BSk24,
BSk25, and BSk26. As in the most advanced calculations
to date performed in the traditional approach [21], we
assume that the inner crust consists of nuclei of one
particular species at each given density. A detailed dis-
cussion of our results based on the CLDþ sh model [35] is
presented in [38]. Here we describe our basic findings,
obtained for pure A ¼ 56 composition of the ashes and one
of the CLDþ sh models of [35], corresponding to BSk24
functional. The results for other functionals are similar.
(i) As in the CLD model of [22], for CLDþ sh model

[35] there exists a pressure PðminÞ
oi such that for any Poi ≥

PðminÞ
oi the construction of the AC model is limited by the

instability disintegrating nuclei into neutrons. The pressure
PinstðPoiÞ, at which this instability takes place, is a
decreasing function of Poi (see Supplemental Material

[27]). Thus, PinstðPðminÞ
oi Þ is a maximum possible value of

Pinst. Generally, disintegration of nuclei is accompanied by
the energy release. It is interesting to note that for the
CLDþ sh model [35], the disintegration instability (for any
Poi) occurs at Pinst smaller than the pressure at the crust-
core boundary (where both P and μn must be matched).
A part of the crust at P > Pinst appears to be decoupled
from the rest of the crust: the atomic nuclei in this “relic”
part are not replaced during the accretion in the FAC regime
(because all the upcoming nuclei disintegrate at P ¼ Pinst).
The relic part of the crust is formed during the trans-
formation from the pristine catalyzed crust to FAC.

FIG. 1. The heat release Q, Qo, Qoi, and Qi vs Poi for several
nuclear models. BSk24, BSk25, BSk26: Hartree-Fock-Bogoliu-
bov calculations [31]; FRDM12: finite-range droplet macro-
scopic model [32]. Arrows indicate the neutron drip pressure

for catalyzed crust, PðcatÞ
nd . For each model, the pressure region

above the neutron drip point for AC (calculated within the
traditional approach) is shaded gray.
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(ii) The shell effects complicate determination of Poi in
FAC. This happens because the relic part of the crust can be
(at least, in principle) stabilized by the shell effects for a
range of Poi. The reason for that is largely unknown
composition of nuclei in the relic region, which depends
on the (highly uncertain) evolution preceding the FAC
formation. Thus, unambiguous determination of Poi
remains a task for the future. However, we numerically
found that for A ¼ 56 ashes and CLDþ sh model [35], Poi

does not exceed PðcatÞ
nd : for higher Poi the pressure Pinst

becomes so low that FAC at P < Pinst and NS core cannot
be connected in a thermodynamically consistent way for
any composition of the relic part of the crust [38]. The latter
result is obtained assuming that shell corrections can be
ignored for baryon densities larger than the proton drip
density, which is chosen to be 0.073 fm−3, the same as
in [36].
Obviously, the lower bound on Poi equals the

minimal value of Poi, at which the instability takes place,

i.e., Poi ¼ PðminÞ
oi . According to our calculations, for

the CLDþ sh model considered here, we have

PðminÞ
oi ≈ 0.91PðcatÞ

nd , PinstðPðminÞ
oi Þ ≈ 0.267 MeV fm−3, and

QiðPðminÞ
oi Þ ≈ 0.06 MeV=nucleon. Independently, Poi can

be bounded from below by the condition Qi > 0 (see
Fig. 1): otherwise disintegration of nuclei is not energeti-
cally favorable and cannot proceed. The Poi value corre-

sponding to Qi ¼ 0 is denoted as Pð0Þ
oi . Clearly, it must be

Pð0Þ
oi ≤ PðminÞ

oi . For the CLDþ sh model Pð0Þ
oi ≈ 0.89PðcatÞ

nd

and is close to PðminÞ
oi , so that below we consider Pð0Þ

oi as a
universal lower bound on Poi.
(iii) Assuming pure A ¼ 56 composition of the ashes, the

charge number of nuclei at the bottom of the outer crust is
Z ¼ 20. The shell effects stabilize Z at the value Z ¼ 20 in
almost the whole region P ≤ PinstðPoiÞ. This result is
related to the local energy minimum at Z ¼ 20 (which is
the proton “magic number” in the inner crust [36]) and does
not depend on the choice of Poi. Constancy of Z in the inner
crust implies that almost all heat Qi is released at the
instability point P ¼ PinstðPoiÞ. (Let us note that the heat
release in the inner crust cannot be associated with the
change of the mass number A, which is treated as a
continuous variable due to the presence of unbound
neutrons [21,35,37].)
Table I represents the heat release distribution in FAC for

two values of Poi: the lower bound Pð0Þ
oi ð≈PðminÞ

oi Þ, at which
Qi ¼ 0 and for Poi ¼ PðcatÞ

nd , which bounds Poi from above.
As in the case of Fig. 1, Table I was calculated using the
mass tables [31,32], rather than the simplified CLDþ sh
model based on ETFSI calculations. These two approaches

lead to a bit different predictions (in particular, PðcatÞ
nd differs

by a few percent [36]), which explains why Pð0Þ
oi ¼

0.92PðcatÞ
nd for BSk24 model in Table I appears to be larger

than PðminÞ
oi ¼ 0.91PðcatÞ

nd , calculated employing CLDþ
sh model.
As follows from Fig. 1, the minimal heat release Q

occurs if Poi equals the minimal value, at which disinte-

gration instability takes place, Poi ¼ PðminÞ
oi . It is interesting

to point out that exactly this Poi should be realized in FAC,
if the Prigogine minimum entropy production theorem [39]
works for our problem.

VII. SUMMARY AND CONCLUSIONS

We present a universal formula (3) for the heat release
Q∞ by nonequilibrium nuclear reactions in the fully
accreted NS crust. The formula is applicable to arbitrary
composition of nuclear ashes and crust model. We further
analyze the heat release in the outer crust Qo, in the inner
crust Qi, and at the oi interface, Qoi, for the thermody-
namically consistent FAC model respecting the nHD
condition. We show that these quantities are parametrized
by the pressure Poi at the oi interface, provided that the
nuclear mass model in the outer crust is specified [see Fig. 1
and Eq. (4)]. To calculate Poi for FAC and determine the
heat release distribution Qi in the inner crust, we apply
CLDþ sh model of [35] with shell corrections. We
demonstrate that for the ashes composed of 56Fe, almost
all heat Qi is released at the instability point, where nuclei
disintegrate into neutrons (at P ¼ Pinst). This result does
not depend on the actual value of Poi. The charge number is
fixed at the value Z ¼ 20 in almost the whole region
between the oi interface and the instability point.
We also argue that accounting for shell effects compli-

cates the unambiguous determination of Poi, which then
depends on the way the FAC is formed. Our analysis
indicates that Poi for the employed CLDþ sh model [35]

and 56Fe ashes is bounded from below by PðminÞ
oi —the

minimal possible value of Poi, for which the disintegration
instability can occur in the inner crust [22]. In turn, we also

numerically found that Poi does not exceed PðcatÞ
nd —the

TABLE I. Heat release distribution for the limiting values of
Poi. Q-values are in MeV=nucleon.

Model Poi Poi=P
ðcatÞ
nd Qo Qoi Qi Q

FRDM12 Pð0Þ
oi

0.85 0.18 0.03 0.00 0.21

PðcatÞ
nd

1.00 0.18 0.03 0.32 0.53

BSk24 Pð0Þ
oi

0.92 0.12 0.17 0.00 0.29

PðcatÞ
nd

1.00 0.12 0.15 0.19 0.46

BSk25 Pð0Þ
oi

0.93 0.17 0.19 0.00 0.36

PðcatÞ
nd

1.00 0.17 0.17 0.17 0.51

BSk26 Pð0Þ
oi

0.96 0.14 0.25 0.00 0.39

PðcatÞ
nd

1.00 0.14 0.13 0.20 0.47

M. E. GUSAKOV and A. I. CHUGUNOV PHYS. REV. D 103, L101301 (2021)

L101301-4



neutron drip pressure in the catalyzed crust (see [38] for
more details). We emphasize that this upper bound on Poi is
model-dependent, being sensitive to the density profiles of
the shell energies, which are still poorly known at large
baryon densities [36,40].
As a conservative estimate of Poi in the FAC regime,

we propose to take Pð0Þ
oi ≤ Poi < PðcatÞ

nd , where Pð0Þ
oi corre-

sponds to Qi ¼ 0, and is just a bit smaller than PðminÞ
oi

according to our calculations. The respective heat release
distribution is shown in Table I (see also Fig. 1).
In particular, the deep crustal heating energy release
Q∞ ∼ ð0.21–0.53Þeνoi=2 MeV=nucleon appears to be at
least several times smaller than in the traditional approach,
Q∞ ∼ ð1.5–2Þeνoi=2 MeV=nucleon. This fact calls for the
reinterpretation of the existing observational data on

thermal properties of transiently accreting NSs and should
stimulate further work on developing realistic accreted
crust models.
Concluding, we stress that the information provided in

this paper is, in principle, sufficient to start modeling the
thermal relaxation of x-ray transients, as well as their
quiescent temperatures within the nHD approach. Such a
modeling may help further constrain the pressure Poi.
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