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We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum
electrodynamics can be summed in all terms containing the field-strength invariants F ¼ 1

4
FμνFμνðxÞ,

G ¼ 1
4
F̃μνFμνðxÞ, including those also possessing derivatives of the electromagnetic field strength. This

partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler
Lagrangian density, except that now the electric and magnetic fields can depend arbitrarily on spacetime
coordinates.We provide strong evidence for this conjecture, which is proved to sixth order in the proper time.
Furthermore, and as a byproduct, we generate some solvable electromagnetic backgrounds. We also discuss
the implications for a generalization of the Schwinger formula for pair production induced by nonconstant
electric fields. Finally, we briefly outline the extension of these results in the presence of gravity.

DOI: 10.1103/PhysRevD.103.L081702

I. INTRODUCTION AND MAIN RESULTS

The Heisenberg-Euler Lagrangian [1] describes the
nonlinearities of quantum electrodynamics (QED) when
the fermionic degrees of freedom of matter are integrated
out and the strength of the electromagnetic background is
kept constant [2,3]. At leading order, the quantum-
corrected term of the Heisenberg-Euler action reads

Sð1Þ ¼ e4ℏ
360π2m4

ec8

Z
d4x½ðE⃗2− B⃗2Þ2þ7ðE⃗ B⃗Þ2�þ �� � ð1Þ

where me is the mass of the electron. The intrinsic non-
linearities of the quantum corrections have very important
implications: light-by-light scattering, vacuum polariza-
tion, pair creation from vacuum, etc. (see Ref. [4] and
references therein). A similar action can also be constructed
for scalar QED [5]. Both theories, when reexpressed in the
modern language of quantum field theory [6], can be
regarded as the archetypical models of effective field
theories (see also Ref. [7] for a charged vector field theory).
Furthermore, the phenomena of spontaneous pair creation
by electric fields is linked to the imaginary part of the
effective action, as first shown by Schwinger for a constant
electric field. Since the rate of particle production [6] has an

essential singularity in the electric charge, it is also
regarded as the prototype of an intrinsically nonperturba-
tive effect. It could be on the verge of being experimentally
detected [8]. Spontaneous particle creation is also funda-
mental in cosmology and black holes physics [9–13].
For arbitrary background configurations the form of the

effective action is generically unknown, up to some specific
exactly solvable cases [2]. However, one can construct a
generic asymptotic expansion for the one-loop effective
action for scalar/spinor QED based on the Schwinger
proper-time expansion of the Feynman propagator [6]. It
is closely connected to the heat-kernel expansion and
related techniques [14]. More precisely, the propagator
can be expressed as (from now on we take c ¼ 1 ¼ ℏ)

GFðx; x0Þ ¼ −i
Z

∞

0

dse−im
2shx; sjx0; 0i; ð2Þ

with the kernel hx; sjx0; 0i obeying an imaginary time
diffusion equation with appropriate boundary condition.
The “transition amplitude” hx; sjx0; 0i admits an asymptotic
expansion in powers of “proper time” s which translates, at
coincidence x ¼ x0, into an expansion of the one-loop
effective action Sð1Þ

Sð1Þ ¼ −
i
2

Z
d4x

Z
∞

0

ds
s
e−im

2strhx; sjx; 0i: ð3Þ

The role of the classical electromagnetic background
can be replaced by the gravitational field, which is naturally
coupled to quantized matter fields [15]. In general
hx;sjx;0i≡ i

ð4πisÞ2fðx;x;isÞ can be expanded as hx; sjx; 0i ¼
i

ð4πisÞ2
P∞

n¼0ðisÞnanðxÞ, where the DeWitt coefficients an
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are local, covariant, and gauge-invariant quantities of mass
dimension 2n [15,16] (see also Refs. [11–14]). In the
purely gravitational context, there is also a special soluble
case, namely, the static Einstein universe, for which the
Feynman propagator, and hence the effective action, can be
evaluated exactly [17]. Bekenstein and Parker found that
hx; sjx0; 0i can be expressed as a Gaussian path integral,
leading to hx; sjx; 0i ¼ i

ð4πisÞ2 e
−iRðxÞðξ−1

6
Þs, where ξ is the

coupling of the real scalar field with the Ricci scalar R. This
is a nonperturbative result since it involves all powers of s
(s → 0 represents the ultraviolet region, while s → ∞
describes the infrared behavior). The remarkable point
here is that the above solution captures the exact depend-
ence on the Ricci scalar in the generic Schwinger-DeWitt,
or heat-kernel, expansion. The general form of the kernel
admits the following factorization:

hx; sjx; 0i ¼ i
ð4πisÞ2 e

−iRðxÞðξ−1
6
Þsf̄ðx; x; isÞ; ð4Þ

where the proper-time series of f̄ ¼ P∞
n¼0ðisÞnānðxÞ con-

tain no terms which vanish when RðxÞ is replaced by zero
[13]. This was first conjectured by Parker and Toms [18],
providing evidence to third order in the proper time (for a
detailed proof see Ref. [19] and for the counterpart in
adiabatic regularization see Ref. [20]). Therefore, the
quantum piece of the gravitational effective Lagrangian
can be further expressed as

Lð1Þ
gravity ¼

1

2

Z
∞

0

ds
s

e−im
2s

ð4πisÞ2 e
−iRðxÞðξ−1

6
Þs X∞

n¼0

ðisÞnānðxÞ: ð5Þ

This factorization of the nonperturbative term e−iRðxÞðξ−
1
6
Þs

hasmajor physical consequences to account for the effective
dynamics of the Universe and the observed cosmological
acceleration [21–28], and also for curvature dependence in
the running of the gauge coupling constants [29].
In this Letter we point out a somewhat similar factori-

zation for the electromagnetic interaction. We formulate
the following conjecture: the proper-time asymptotic
expansion of the QED effective Lagrangian admits an
exact resummation in all terms involving the field-strength
invariants F ðxÞ ¼ 1

4
FμνFμνðxÞ, GðxÞ ¼ 1

4
F̃μνFμνðxÞ. The

form of the factor involved in this partial resummation is
just the Heisenberg-Euler Lagrangian for QED, where the
electric and magnetic fields depend arbitrarily on space-
time coordinates. We provide strong evidence of the
validity of this conjecture, for both scalar and spinor
QED. For simplicity we restrict ourselves to four-
dimensional Minkowski spacetime.
Since our partial resummation involves two quantities,

F ðxÞ and GðxÞ, instead of the single Ricci scalar RðxÞ, the
factorization property described here is more involved than
the factorization of the exponential term found in gravity.

We find that (for computational purposes we find it very
useful to use the notation of Ref. [13])

Lð1Þ
scalar ¼

Z
∞

0

ds
s
e−im

2s

�
det

�
esFðxÞ

sinhðesFðxÞÞ
��

1=2

× ḡðx; isÞ; ð6Þ

Lð1Þ
spinor ¼ −

1

2

Z
∞

0

ds
s
e−im

2s

�
det

�
esFðxÞ

sinhðesFðxÞÞ
��

1=2

× tr½e−1
2
esFμνσ

μν �h̄ðx; isÞ; ð7Þ

with FðxÞ≡ Fμ
νðxÞ and σμν ¼ 1

2
½γμ; γν�. While the factors

½det ð esFðxÞ
sinhðesFðxÞÞÞ�1=2 and tr½e−1

2
esFμνσ

μν � are functions depend-
ing only on F ðxÞ and GðxÞ, the proper-time series for
ḡðx; isÞ and h̄ðx; isÞ contain no terms which vanish when
F ðxÞ and GðxÞ (but not their derivatives) are replaced by
zero. Therefore, all dependence on F ðxÞ, GðxÞ has been
encapsulated in the Heisenberg-Euler type factors of the
above expansions. Furthermore, our conjecture also has a
direct extension to curved spacetime. Then the partial
resummation involves the three basic scalars: F ðxÞ, GðxÞ,
and RðxÞ.
Our computations rely on previous results for the

Schwinger-DeWitt expansion of the effective action
obtained within the so-called string-inspired world-line
formalism [30–33] (see also Refs. [34,35]).

II. SCALAR QED

Let us consider a quantized complex scalar field ϕ
coupled to an electromagnetic background field. The scalar
field satisfies the equation ðDμDμ þm2Þϕ ¼ 0, where
Dμ ¼ ∂μ − ieAμ. The one-loop effective action of the scalar

field Sð1Þscalar admits an adiabatic expansion, of the form (3),
consisting of an expansion in the number of external fields
and the number of derivatives. (It is also related to the so-
called large mass or inverse mass expansion.) This expan-
sion can be reexpressed, using the string-inspired method in
the world-line formalism [30], in the form

Sð1Þscalar ¼ −i
Z

d4x
Z

∞

0

ds
s
e−ism

2

gðx; isÞ ð8Þ

where (O0 ¼ 1)

gðx; isÞ ¼ i
ð4πisÞ2

X∞
n¼0

ð−isÞn
n!

OnðxÞ: ð9Þ

gðx; isÞ is directly related to the heat kernel, up to total
derivatives

gðx; isÞ ¼ hx; sjx; 0i þ total derivatives: ð10Þ
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The advantage of this expansion is that it is possible to find
a minimal basis for the coefficientsOnðxÞ using the Bianchi
identity, the antisymmetry of Fμν and also integration by
parts [36]. In this basis, the gauge-invariant coefficients of
the expansion On are written in the most compact form
possible. The coefficients On have been obtained up to
twelfth adiabatic order (n ¼ 6) [30]. The expressions given
in Ref. [30] are also valid for non-Abelian gauge back-
grounds and also include a matrix-valued scalar potential
VðxÞ. The first five coefficients of this expansion are given
by

O1 ¼ 0; O2 ¼ −
e2

6
FκλFκλ; O3 ¼ −

e2

20
∂μFκλ∂μFκλ;

ð11Þ

O4 ¼
e4

15
Fκ

μFκλFλ
νFμν þ

e4

12
FκλFκλFμνFμν

−
e2

70
∂ν∂μFκλ∂ν∂μFκλ; ð12Þ

O5 ¼
2e4

7
FκλFμν∂λFνρ∂μFκ

ρ −
4e4

63
Fκ

μFκλ∂λFνρ∂μFνρ

−
e4

9
Fκ

μFκλFνρ∂μ∂λFνρ −
16e4

63
FκλFμν∂μFκ

ρ∂νFλρ

þ 5e4

18
FκλFμν∂ρFμν∂ρFκλ þ

34e4

189
FκλFμν∂νFλρ∂ρFκμ

þ 25e4

189
FκλFμν∂ρFλν∂ρFκμ þ

4e4

21
Fκ

μFκλ∂ρFμν∂ρFλ
ν

þ e4

12
FκλFκλ∂ρFμν∂ρFμν −

e2

252
∂ρ∂ν∂μFκλ∂ρ∂ν∂μFκλ:

ð13Þ

We remark again that the above proper-time expansion can
be regarded as an adiabatic expansion, with the adiabatic
assignment 1 for Aμ, 2 for Fμν, 3 for ∂ρFμν, etc. The
adiabatic order for On is 2n. This is equivalent to grouping
terms with a fixed mass dimension. This expansion is
different from a purely derivative expansion of the effective
action, as given for instance in Ref. [37].
Our claim is that we can make a partial resummation of

the proper-time asymptotic expansion of the effective
action, factorizing all terms containing the field-strength
invariants F ðxÞ and GðxÞ, namely

gðx; isÞ ¼
�
det

�
esFðxÞ

sinhðesFðxÞÞ
��

1=2
ḡðx; isÞ

≡Uðx; isÞḡðx; isÞ; ð14Þ

where ḡðx; isÞ can be adiabatically expanded as

ḡðx; isÞ ¼ i
ð4πisÞ2

X∞
n¼0

Ōn

n!
ð−isÞn: ð15Þ

The first terms of the adiabatic/proper-time expansion of
the resummed function are

Uðx; isÞ ∼ 1þU2ðxÞð−isÞ2 þU4ðxÞð−isÞ4
þ U6ðxÞð−isÞ6 þ � � � ; ð16Þ

where

U2ðxÞ ¼
e2

12
TrðF2Þ; ð17Þ

U4ðxÞ ¼
e4

288
TrðF2Þ2 þ e4

360
TrðF4Þ; ð18Þ

U6ðxÞ ¼
e6

10368
TrðF2Þ3 þ e6

4320
TrðF2ÞTrðF4Þ

þ e6

5670
TrðF6Þ: ð19Þ

Combining the expansions above we can immediately
obtain the form of the Ōn adiabatic coefficients. For the
first terms we find Ō1 ¼ Ō2 ¼ 0, Ō3 ¼ O3,

Ō4 ¼ −
e2

70
∂ν∂μFκλ∂ν∂μFκλ; ð20Þ

Ō5 ¼
2e4

7
FκλFμν∂λFνρ∂μFκ

ρ −
4e4

63
Fκ

μFκλ∂λFνρ∂μFνρ

−
e4

9
Fκ

μFκλFνρ∂μ∂λFνρ −
16e4

63
FκλFμν∂μFκ

ρ∂νFλρ

þ 5e4

18
FκλFμν∂ρFμν∂ρFκλ þ

34e4

189
FκλFμν∂νFλρ∂ρFκμ

þ 25e4

189
FκλFμν∂ρFλν∂ρFκμ þ

4e4

21
Fκ

μFκλ∂ρFμν∂ρFλ
ν

−
e2

252
∂ρ∂ν∂μFκλ∂ρ∂ν∂μFκλ: ð21Þ

Note that the Ōn coefficients do not contain any terms
going as F ðxÞ and GðxÞ, or, equivalently, they do not
contain any terms proportional to TrðF2Þ;TrðF4Þ;
TrðF6Þ � � �. We have verified our conjecture to sixth order
in proper time. The expression forO6 contains 41 terms and
it is, as far as we know, the highest available coefficient in
the literature.
If we include an additional scalar field background ΦðxÞ

the quantized charged scalar satisfies ðDμDμ þm2 þ
ΦðxÞÞϕ ¼ 0. We have verified that the factorization of
the Heisenberg-Euler type factor also occurs. Furthermore,
we find that in this case we can also factorize an
exponential term, that is,
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gðx; isÞ ¼
�
det

�
esFðxÞ

sinhðesFðxÞÞ
��

1=2
e−isΦðxÞḡðx; isÞ: ð22Þ

Theexponential factorizationwas also found inRefs. [19,32]
without the electromagnetic background. For the case given
in Eq. (22) O6 has 97 terms while Ō6 has 62.
We note finally that a purely derivative expansion [37]

does not satisfy the factorization property obtained within
the proper-time expansion.

III. SPINOR QED

Let us consider now a quantized charged spin-1
2
field ψ .

The second-order equation for the spinor field is
ðDμDμ þm2 − i

2
eFμνσ

μνÞψ ¼ 0. As in the scalar case,
the induced one-loop effective action admits the following
adiabatic expansion:

Sð1Þ
spinor ¼

i
2

Z
d4x

Z
∞

0

ds
s
e−im

2shðx; isÞ; ð23Þ

with

hðx; isÞ ¼ i
ð4πisÞ2 tr

X∞
n¼0

ð−isÞn
n!

OnðxÞ

≡ i
ð4πisÞ2

X∞
n¼0

ð−isÞn
n!

onðxÞ; ð24Þ

and where we have defined on ¼ trOn. Note thatO0 ¼ I4×4
and o0 ¼ 4. Again, we will use the expansion given in
Ref. [30] (with the appropriate redefinitions). The leading
terms of this adiabatic expansion are

o1¼ 0; o2¼
4e2

3
FκλFκλ; o3 ¼

4e2

5
∂μFκλ∂μFκλ; ð25Þ

o4 ¼ −
56e4

15
Fκ

μFκλFλ
νFμν þ

4e4

3
FκλFκλFμνFμν

þ 12e2

35
∂ν∂μFκλ∂ν∂μFκλ; ð26Þ

o5¼
8e4

7
FκλFμν∂λFνρ∂μFκ

ρ−
16e4

63
Fκ

μFκλ∂λFνρ∂μFνρ

þ8e4

9
Fκ

μFκλFνρ∂μ∂λFνρ−
232e4

63
FκλFμν∂μFκ

ρ∂νFλρ

þ40e4

9
FκλFμν∂ρFμν∂ρFκλþ

136e4

189
FκλFμν∂νFλρ∂ρFκμ

−
656e4

189
FκλFμν∂ρFλν∂ρFκμ−

320e4

21
Fκ

μFκλ∂ρFμν∂ρFλ
ν

þ8e4

3
FκλFκλ∂ρFμν∂ρFμνþ8e2

63
∂ρ∂ν∂μFκλ∂ρ∂ν∂μFκλ:

ð27Þ

Here, the resummed expansion is given by

hðx; isÞ ¼
�
det

�
esF

sinhðesFÞ
��

1=2
tr½e−es12Fμνσ

μν �h̄ðx; isÞ

≡Wðx; isÞh̄ðx; isÞ; ð28Þ

where

h̄ðx; isÞ ¼ i
ð4πisÞ2

X∞
n¼0

ð−isÞn
n!

ōnðxÞ: ð29Þ

In this case, the adiabatic expansion of the resummed
function is given by

Wðx; isÞ ∼ trI þW2ðxÞð−isÞ2 þW4ðxÞð−isÞ4
þW6ðxÞð−isÞ6 þ � � � ; ð30Þ

where

W2ðxÞ ¼ −
2e2

3
TrðF2Þ; ð31Þ

W4ðxÞ ¼
e4

18
TrðF2Þ2 − 7e4

45
TrðF4Þ; ð32Þ

W6ðxÞ ¼ −
e6

324
TrðF2Þ3 þ 7e6

270
TrðF2ÞTrðF4Þ

−
124e6

2835
TrðF6Þ: ð33Þ

Then, combining all previous expansions, we find the
following coefficients for the resummed expansion,
ō0 ¼ 1, ō1 ¼ ō2 ¼ 0, 4ō3 ¼ o3:

4ō4 ¼
12e2

35
∂ν∂μFκλ∂ν∂μFκλ; ð34Þ

4ō5¼
8e4

7
FκλFμν∂λFνρ∂μFκ

ρ−
16e4

63
Fκ

μFκλ∂λFνρ∂μFνρ

þ8e4

9
Fκ

μFκλFνρ∂μ∂λFνρ−
232e4

63
FκλFμν∂μFκ

ρ∂νFλρ

þ40e4

9
FκλFμν∂ρFμν∂ρFκλþ

136e4

189
FκλFμν∂νFλρ∂ρFκμ

−
656e4

189
FκλFμν∂ρFλν∂ρFκμ−

320e4

21
Fκ

μFκλ∂ρFμν∂ρFλ
ν

þ8e2

63
∂ρ∂ν∂μFκλ∂ρ∂ν∂μFκλ: ð35Þ

We note here that we have proposed a factorization of
the one-loop effective action given by Eq. (28), but this
does not preclude the possibility of finding a somewhat
similar factorization for the heat kernel itself, as it happens
in the gravitational case. This deserves further analysis.
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Furthermore, the proposed form of the effective action
could also be of interest to analyze the backreaction issue in
the pair creation process (for a recent analysis in 1þ 1
dimensions see Ref. [38]).

IV. EXACTLY SOLVABLE ELECTROMAGNETIC
BACKGROUNDS

An involved test of the factorization property is provided
by the exact one-loop effective action obtained for an
electric field which points in the ẑ direction and depends
arbitrarily on the light-cone coordinate xþ ≡ ðtþ zÞ, as
described for spinor QED in Refs. [39,40]. In this case it is
convenient to evaluate the factors ḡðx; isÞ and h̄ðx; isÞ in
Eqs. (6) and (7). We found that all coefficients of the
expansions (15) and (29) are zero, Ōn>0 ¼ 0 ¼ ōn>0. We
checked this up to and including the sixth order in the
proper time expansion. Then we get ḡðx; isÞ ¼ h̄ðx; isÞ ¼
i=ð4πisÞ2. This implies that, the (unrenormalized) quantum
effective Lagrangians become

Lð1Þ
scalar ¼

−1
16π2

Z
∞

0

ds
s3

e−im
2s esEðxþÞ
sinh esEðxþÞ ; ð36Þ

Lð1Þ
spinor ¼

1

8π2

Z
∞

0

ds
s3

e−im
2s esEðxþÞ cosh esEðxþÞ

sinh esEðxþÞ : ð37Þ

Our result (37) agrees with that obtained in Ref. [39].
Renormalization can be simply done by subtracting off all
terms up to adiabatic order 4 (or, equivalently, up to second
order in the proper-time expansion).
Our factorization conjecture can be used to easily predict

the one-loop effective actions for some new families of
configurations for which Ōn>0 ¼ ōn>0 ¼ 0. In fact, we find
this cancellation happens for electric and magnetic fields
pointing in the ẑ direction that depend arbitrarily on the
light-cone coordinate xþ ¼ ðtþ zÞ. Then, the unrenormal-
ized effective Lagrangians are given by

Lð1Þ
scalar ¼

−1
16π2

Z
∞

0

ds
s3

e−im
2s e2s2EðxþÞBðxþÞ
sinh esEðxþÞ sin esBðxþÞ ;

ð38Þ

Lð1Þ
spinor ¼

1

8π2

Z
∞

0

ds
s3

e−im
2s e2s2EðxþÞBðxþÞ
tanh esEðxþÞ tan esBðxþÞ :

ð39Þ

This general result includes the case of a purely electric
field explained above and also the case of a pure magnetic
field of the form B⃗ ¼ BðxþÞẑ. The formulas above also
encapsulate the case in which one of the fields is constant,
and are consistent with the results found in Ref. [41].
The same results (38) and (39) appear if we consider the
coordinate dependence on x− ¼ ðt − zÞ.
Another interesting example is the single plane wave

field. As explicitly proved in Ref. [6] the spinor one-loop
effective action vanishes. This result can be easily under-
stood from the factorization property in Eqs. (6) and (7).
For a plane wave, the two Lorentz invariantsF ðxÞ and GðxÞ
vanish, and hence the corresponding effective actions.

V. GENERALIZATION OF SCHWINGER’S
FORMULA FOR THE PAIR PRODUCTION RATE

As a byproduct of our results we can estimate the
imaginary part of the one-loop effective action according
to Eq. (7). Following standard arguments, it can be obtained
by rotating the integration contour from along the positive
real axis to the negative imaginary axis (is → τ). The
factorization found in this paper suggests that the poles of
the imaginary part of the one-loop effective action are
located at the same points as in the constant electric field
case τn ¼ nπ=ejE⃗ðxÞj. This leads to the (proper-time)
expansion for the pair creation rate

ImSð1Þspinor ¼ Im
Z

d4x
8π2

Z
∞

0

ds
s3

e−im
2s esEðxÞ cosh esEðxÞ

sinh esEðxÞ

×

�
1þ

X∞
k¼3

ð−isÞk
k!

ōkðxÞ
�

¼ −2πi
Z

d4x
X∞
n¼1

Res

�
e−m

2τ

τ

eτEðxÞ cos eτEðxÞ
sin eτEðxÞ h̄ðx; τÞ; τn

�
ð40Þ

where h̄ðx; τÞ is given in Eq. (29) and ōk are the coefficients
given in Eq. (34) for the case F0i ¼ EiðxÞ and Fij ¼ 0. For
instance, ō3 ¼ 2

5
ðð∂jEiðxÞÞ2 − ð∂0EiðxÞÞ2Þ. The leading

factor of the integrand reproduces Schwinger’s result for
the rate of electron-positron pair production, except that

now the electric field can (slowly) vary on x. If one
truncates the series expansion in Eq. (40) one gets pertur-
bative weak-field corrections. To get significant (nonper-
turbative) corrections one has to sum all terms in the
proper-time expansion containing all derivatives for a given
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number of fields, or sum over all power of fields with a
given number of derivatives. The latter possibility has been
given for first derivative corrections via the derivative
expansion worked out in Ref. [37].

VI. ADDING GRAVITY

Finally, we would like to stress that the above results
appear to be robust against the gravitational interaction.1 In
a curved spacetime ḡðx; isÞ and h̄ðx; isÞ can be further
factorized as ḡðx; isÞ ¼ e−isRðxÞðξ−

1
6
Þg̃ðx; isÞ, h̄ðx; isÞ ¼

e−
is
12
RðxÞh̃ðx; isÞ, where the expansion of g̃ðx; isÞ does not

contain any term going as F ðxÞ, GðxÞ, or RðxÞ. This also
has implications for the Schwinger pair creation formula
since the exponential term in Eq. (40) generalizes to
exp ½−isðm2 þ 1

12
RðxÞÞ�. Furthermore, one of the conse-

quences of the exponential factorization of the scalar
curvature in h̄ðx; isÞ is the emergence of a logarithmic

correction of the form F ðxÞ logð1þ RðxÞ
12m2Þ to the effective

action of QED in curved spacetime. The leading terms
agree with the results in Refs. [44,45]. Note that we
also have higher-order corrections proportional to

õn
ðm2þRðxÞ=12Þðn−2Þ, with n ≥ 3. We also expect (nonperturba-

tive) implications in the effective field theory studies of
QED in curved spacetime, such as the issue concerning the
speed of light in the strong gravity regime [46].

VII. CONCLUSIONS AND FINAL COMMENTS

Inspired by the exact R-summed property of the effective
action in gravity we have proposed a somewhat similar
factorization in the proper-time form of the QED effective

action in terms of the two field-strength invariants F and G.
The functional dependence of the conjectured resummation
factor has the same functional form as that obtained by
Heisenberg and Euler for constant electromagnetic fields.
This is displayed in Eqs. (6) and (7). We have checked this
conjecture to sixth order in the proper-time expansion, and
for both scalar and spinor electrodynamics. As a straight-
forward application of this proposal we have easily
identified families of electromagnetic backgrounds for
which the effective action can be exactly solved. A
generalization of the Schwinger result for pair pro-
duction was also discussed. Furthermore, these results
appear to be robust in the presence of a gravitational
background.
We expect that a similar factorization of the effective

Lagrangian density could also be found for quantized
spin-1 fields and also for non-Abelian gauge backgrounds.
We leave this, and also the proof of the conjecture (along
the lines of Ref. [19]), for future studies.
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