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Proposed in 1954 by Gell-Mann, Goldberger, and Thirring, crossing symmetry postulates that particles
are indistinguishable from antiparticles traveling back in time. Its elusive proof amounts to demonstrating
that scattering matrices in different crossing channels are boundary values of the same analytic function, as
a consequence of physical axioms such as causality, locality, or unitarity. In this work we report on the
progress in proving crossing symmetry on shell within the framework of perturbative quantum field theory.
We derive bounds on internal masses above which scattering amplitudes are crossing symmetric to all loop
orders. They are valid for four- and five-point processes, or to all multiplicity if one allows deformations of
momenta into higher dimensions at intermediate steps.
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I. INTRODUCTION

Ever since its introduction in 1954 by Gell-Mann,
Goldberger, and Thirring, crossing symmetry has been
widely believed to be a fundamental property of nature
[1–3]. It postulates that particles are equivalent to antipar-
ticles with opposite energies and momenta, or—more
precisely—that their scattering amplitudes can be analyti-
cally continued between different crossing channels. It is
routinely taken as an assumption in various bootstrap
approaches to the scattering matrix theory; see, e.g.,
[4–13]. Yet, crossing symmetry does not directly follow
from any physical principle and there is only a limited
amount of theoretical evidence that it holds in the Standard
Model or even a generic quantum field theory. For instance,
crossing between 2 → 3 and 3 → 2 processes has never
been proven, and neither has any case involving massless
particles.
The extent to which we can be certain that crossing

symmetry is true nonperturbatively stems from the work of
Bros, Epstein, and Glaser, who proved it in the case of
2 → 2 [14,15] and 2 → 3 [16,17] scattering in local
quantum field theories with a mass gap, hinging on the
assumptions of causality and unitary. Since within the
Lehmann-Symanzik-Zimmermann formalism scattering
amplitudes do not converge on shell, one is forced to
consider off-shell Green’s functions, which can be defined
in a certain region of the complexified momentum

space [18–22]. We briefly review this point in
Appendix A of [23]. At this stage one is tasked with a
purely geometric problem of showing that the envelope of
holomorphy of this domain intersects physical regions in
all crossing channels on the correct sheet, e.g., using
versions of the edge-of-the-wedge theorem. The connection
between scattering amplitudes in different channels is
achieved via a complex kinematic region of large center-
of-mass energy. For reviews see [24–27]. Such proofs are
prohibitively long and technical [14–17], and while in
principle there is no obstruction to attempting generaliza-
tions to higher-point cases, they would certainly not
improve our physical understanding of crossing symmetry.
In view of these difficulties, Witten proposed to prove

crossing symmetry entirely on shell in perturbation theory,
where one might reasonably hope for a simpler and more
physical derivation that could potentially extend to higher
multiplicity. While work on this problem is ongoing and
will be published elsewhere, the purpose of this letter is to
demonstrate that even using simple arguments one can put
Oð1Þ bounds on the ratios of masses above which crossing
symmetry is satisfied to all loop orders.
Since for a CPT-invariant theory crossing is already

apparent on the level of Feynman diagrams, the challenge
lies in showing that Feynman integrals cannot develop
singularities when continued between any pair of crossed
processes. To make the problem well defined we assume
that any overall divergences (such as infrared or ultra-
violet), if present, have been regularized or renormalized.
As a consequence, one has to consider scalar diagrams of
all graph topologies with an arbitrary number of loops and
external legs n. To each of them we can assign the function

V ¼
X
e

αeðq2e −m2
eÞ; ð1Þ
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which can be thought of as the localized worldline action.
Here αe are the Schwinger proper times associated to the
internal edges e, while qμe and me are the momenta and
masses flowing through them, respectively, sourced by the
external momenta pμ

i . Due to homogeneity in αe’s, extrem-
izing the action requires V ¼ 0, which is a necessary
condition for a singularity, equivalent to putting propaga-
tors on shell.
Were it not for the requirement of causality, scattering

amplitudes would be analytic along complex paths con-
necting any two real nonsingular points in the space
of kinematic invariants pi · pj, because along such a
deformation X

e

αejq2e −m2
ej2 > 0; ð2Þ

ergo, it is impossible to simultaneously put all propagators
on shell. However, such analytic continuations generically
violate causality, which requires that ImV > 0 when
approaching physical points, as dictated by the iε pre-
scription. Its consistent implementation is what puts bounds
on crossing symmetry.
One way of ensuring causality is analytic continuation

via a region where V < 0 for all values of Schwinger
parameters. We will show it implies that the internal masses
me cannot be too light, or more precisely

me >
ffiffiffi
n

p

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i

�
M2

i ;

P
j M

2
j − 2M2

i

n − 2

�s
; ð3Þ

where Mi are the external masses. These are bounds for
crossing symmetry to be satisfied on shell to all loop orders
in perturbation theory.
For instance, the above bounds are satisfied for scattering

of massless particles with all the exchanged states having
arbitrary nonzero mass. This result implies crossing sym-
metry for a range of low-energy effective field theories,
which at present does not have a counterpart on the
nonperturbative level [15,17].
For n ¼ 4, 5 in the equal mass case, Mi ¼ M, we have,

respectively,

me ≳ 0.707M; me ≳ 0.791M; ð4Þ

and for scattering of the lightest states, i.e., me ≥ M,
crossing symmetry is valid for n < 8. A closely related
kinematic region was previously investigated in the context
of dispersion relations, majorization of Feynman diagrams,
and related topics for n ¼ 4 with the same bound in the
equal-mass case [31], and for n ¼ 5 [31–34] without
attempts to put bounds.
The above strategy relies on linear deformations of the

kinematic invariants pi · pj rather than the momenta pμ
i

themselves. The advantage of doing so is that we can

continue between crossed processes involving a different
number of incoming or outgoing particles, such as a
continuation from 2 → 3 to 3 → 2 scattering. A disadvant-
age of this approach lies in the fact that along the
deformation the momenta pμ

i will in general span an
(n − 1)-dimensional space. Hence for n ≥ 6 the proof
requires deformations of momenta into higher dimensions
at intermediate steps. While it certainly makes sense when
we treat scattering amplitudes as functions of complex
variables, the physical interpretation is obscured.
We work in Minkowski space with mostly minus

signature and use conventions where incoming momenta
are denoted with pμ

i and outgoing −pμ
i , such that the

momentum conservation reads
P

i p
μ
i ¼ 0.

II. REVIEW OF FEYNMAN INTEGRALS
AND THEIR SINGULARITIES

We find it most intuitive to interpret Feynman diagrams
in the worldline formalism, where Schwinger proper times
αe are the only dynamical variables. A scalar diagram with
n ≥ 4 external legs, E internal edges (propagators), and
L loops in D space-time dimensions can be written as

Z
∞

0

dEαe
UD=2 e

iV=ℏ; ð5Þ

where V is the localized action and U is the determinant
of the Laplacian of the diagram. For real kinematics, it is
then customary to use the rescaling invariance αe → λαe
to integrate out the overall scale λ, which gives up to
normalization

Z
1

0

dEαeδð
P

eαe − 1Þ
UD=2VE−LD=2 ; ð6Þ

where E − LD=2 is the superficial degree of divergence.
It is understood that causality and convergence are imposed
either by shifting V → V þ iε with infinitesimal ε, or as a
contour deformation; see Appendix B of [23]. Here we will
not deform αe’s, but instead implement causality by
deforming the external kinematics such that ImV > 0 when
a physical limit is approached. We complexify kinematics
only after the representation (6) is obtained.
We will assume that the Feynman integral is free of

overall divergences, which can be dealt with (for example
in dimensional regularization) without affecting the
singularities of the integral. Note that if a renormalization
scheme is employed, me’s denote the renormalized
masses which makes the bounds on masses (3) a
scheme-dependent statement. We have to consider only
diagrams dependent on at least one kinematic invariant,
since others are either finite or excluded by the above
assumption. Without loss of generality we consider one-
particle irreducible diagrams from now on, since inclusion
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of reducible diagrams can at most introduce simple poles
that do not affect the analytic continuation described below.
All quantities in (6) can be expressed in terms of

combinatorics of the Feynman diagram; see, e.g., [35].
The action can be written as (sums in this letter always
range in i; j ¼ 1; 2;…; n and e ¼ 1; 2;…;E):

V ≔ −
X
i<j

pi · pjGij −
X
e

m2
eαe; ð7Þ

where me is the mass associated to the edge e and Gij is the
Green’s function (for a scalar field on a graph) between
vertices where pμ

i and pμ
j enter the Feynman diagram. The

graph Green’s function Gij measures the response of the
diagram to changes in the dot product pi · pj and does not
depend on n but only on the topology of the diagram. This
representation makes it obvious that we are dealing with a
superposition of multiple two-point function problems, all
jumbled up due to the momentum conservation [36].
For completeness we give expressions for U and Gij,

though they will not be needed directly in the proof. The
polynomial U is given by

U ≔
X
T

Y
e∉T

αe; ð8Þ

where the sum is over all spanning trees T obtained by
removing exactly L edges from the diagram. The individual
Gij’s can be written as

Gij ≔
1

U

X
Fij

Y
e∉Fij

αe; ð9Þ

which sums over all spanning two-forests Fij ¼ Ti⊔Tj,
obtained by cutting Lþ 1 edges such that vertices where pμ

i
and pμ

j enter the diagram belong to (possibly empty) trees
Ti and Tj, respectively. An example is given in Appendix C
of [23].

A. Landau equations

Singularities of Feynman integrals are governed by
Landau equations [38], which in the representation (6)
read [39,40]

αe
∂V
∂αe ¼ 0 ð10Þ

for all edges e. Since a solution involving αe0 ¼ 0 gives
Landau equations for a simpler graph with the edge e0
contracted, and we already take into account all graph
topologies, we only need to consider leading Landau
equations with αe ≠ 0 (in other words, the analytic con-
tinuation we will employ avoids subleading Landau sin-
gularities just as well as the leading ones). One can interpret

them as the classical limit of the action V where all
propagators go on shell according to (1). See Appendix D
of [23] for more details [41]. Recent work on Landau
equations includes [43–47].
Given the definition in (7), V is a degree-one homo-

geneous function in αe’s, which means on the solution of
Landau equations we have

V ¼
X
e

αe
∂V
∂αe ¼ 0: ð11Þ

This is a necessary (but not sufficient) condition for a
singularity. Since leading Landau equations require αe > 0,
the definitions (8) and (9) give U > 0 and Gij > 0.

B. Upper bound on the graph Green’s functions

In the following steps we will need an upper bound on
Gij that does not depend on the number of loops, edges, or
external states. As a proxy for its derivation, let us briefly
consider the case n ¼ 2 off shell, where −p1 · p2 ¼ p2

1 is
allowed to vary and anomalous thresholds are absent.
We have

V ¼ p2
1G12 −

X
e

m2
eαe ≤ p2

1G12 −m2; ð12Þ

where m is the lightest of me > 0 and we used
P

e αe ¼ 1.
Since V < 0 for p2

1 ¼ 0, the action has to stay negative
before encountering the first physical threshold at

p2
1 ¼

�X
e∈R

me

�
2

≥ jRj2m2; ð13Þ

where R is the set of jRj intermediate particles, as in
Fig. 1. This implies G12 ≤ 1=jRj2. Since the labeling of the
momenta was arbitrary, we have

Gij ≤
1

4
; ð14Þ

because jRj ≥ 2 for one-particle irreducible diagrams. An
alternative derivation using only graph theory is given in
[48], which shows it holds without any restriction on
masses.
We remind the reader that analyticity of higher-point

on-shell amplitudes is not well understood because of
the presence of anomalous thresholds. The above trick
circumvents this issue by deriving bounds on the individual

FIG. 1. Normal threshold for n ¼ 2, where a subset R of
propagators goes on shell.
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Gij which are the building blocks entering (7) for
arbitrary n.

III. BOUNDS ON CROSSING SYMMETRY

We will show how to analytically continue between
two nonsingular points in the real kinematic space, denoted

by pð0Þ
i · pð0Þ

j and pð1Þ
i · pð1Þ

j , i.e., where Landau equations
are not satisfied. The deformation takes place in the
nðn − 3Þ=2-dimensional space of independent kinematic
invariants pi · pj, whose preimage in the momentum
vectors pμ

i can be only realized in an (n − 1)-dimensional
space in the intermediate steps.
We preface the discussion with a naive approach in order

to highlight why it is causality that puts bounds on crossing
symmetry.

A. Naive approach

We introduce a complex variable z and linearly deform
the kinematic invariants according to

pi · pj ¼ pð0Þ
i · pð0Þ

j þ zðpð1Þ
i · pð1Þ

j − pð0Þ
i · pð0Þ

j Þ; ð15Þ

as well as consider a path in the upper-half plane approach-
ing the two kinematic points at z ¼ 0 and z ¼ 1; see Fig. 2.
This deformation preserves momentum conservation and
on-shell conditions, p2

i ¼ M2
i .

Since V responds linearly to changes in kinematics, we
have

V ¼ V0 þ zðV1 − V0Þ; ð16Þ

where Vα ≔ VðpðαÞ
i · pðαÞ

j Þ. Remaining on the original
integration contour with αe real, the real and imaginary
parts of the leading Landau equations are, respectively,

∂V0

∂αe þ Rez

�∂V1

∂αe −
∂V0

∂αe
�

¼ 0; ð17Þ

Imz

�∂V1

∂αe −
∂V0

∂αe
�

¼ 0; ð18Þ

for all edges e. These cannot be simultaneously satisfied
along the deformation path with Imz > 0: vanishing of
the imaginary part implies ∂V0=∂αe ¼ 0 for all e, which is

a contradiction. Hence there are no singularities in the
upper-half plane of z.
Nevertheless, this deformation cannot be used because

by utilizing the imaginary part of V for the deformation we
lost a reliable way of imposing the iε prescription near both
of two physical points. Put differently, the path of analytic
continuation will in general veer away from the physical
sheet.
An exception to this point are planar diagrams, which

have vastly simpler analyticity properties and crossing for
n ≤ Dþ 1 can be proven without any constraints on
masses; see Appendix E of [23].

B. Fixing the iε

In order to guarantee the correct iε prescription we will
add an intermediate step in the deformation, which passes

through an open set fpð�Þ
i · pð�Þ

j g for which

V� < 0 ð19Þ

across the whole integration contour. For the time being let
us assume such points exist and deform

pi · pj ¼ pð�Þ
i · pð�Þ

j þ zðpð1Þ
i · pð1Þ

j − pð�Þ
i · pð�Þ

j Þ ð20Þ

followed by an analogous continuation connecting pð�Þ
i ·

pð�Þ
j to pð0Þ

i · pð0Þ
j . We further restrict to Rez ≥ 0. There

are two cases depending on the sign of V1 − V�. When
V1 > V� we have

ImV ¼ ImzðV1 − V�Þ > 0; ð21Þ

which is the correct causal prescription. Otherwise, when
V1 ≤ V�, we have

ReV ¼ V� þ RezðV1 − V�Þ < 0; ð22Þ

since V� < 0 by assumption. In those cases there is no
singularity on the real axis and hence the iε is not needed.
It remains to prove that a set of fpð�Þ

i · pð�Þ
j g with V� < 0

exists in the first place.

C. Bounds on masses

We consider kinematics with −pð�Þ
i · pð�Þ

j < c for each of
the nðn − 1Þ=2 kinematic invariants appearing in V� and
some positive constant c. Using the upper bound on Gij

from (14) and calling m ¼ mineðmeÞ the lightest internal
mass one finds

V� <
nðn − 1Þ

8
c −m2: ð23Þ

Therefore, requiring that V� < 0 yieldsFIG. 2. Path of deformation in the upper-half plane.
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−pð�Þ
i · pð�Þ

j < c <
8

nðn − 1Þm
2: ð24Þ

In terms of the external masses Mi this translates to
two types of constraints. Using momentum conservation
requires on the one hand

M2
i ¼ −pð�Þ

i ·
X
j≠i

pð�Þ
j <

8

n
m2 ð25Þ

and on the other

X
j

M2
j − 2M2

i ¼ −
X
j≠i

pð�Þ
j ·

X
k≠i;j

pð�Þ
k <

8ðn − 2Þ
n

m2 ð26Þ

for all i. They together imply the constraints (3). These are
the conditions for crossing symmetry to be satisfied to all
loops and multiplicities.

IV. OUTLOOK

Let us comment on two natural directions for future
work: optimizing the bounds and preventing the momenta
pμ
i from wandering into higher dimensions.
With respect to the former, let us notice that the upper

bounds Gij ≤ 1=jRj2 are saturated on configurations
where αe ≈ 1=jRj for each of the intermediate lines
e ∈ R, and αe ≈ 0 otherwise; cf. Fig. 1. Clearly, such
bounds cannot be attained for all Gij’s simultaneously,
because Gij are not mutually independent (for example,
they satisfy Gij þ Gjk ≥ Gik). It is not unlikely that exploit-
ing such interdependencies can improve bounds on cross-
ing symmetry, though probably not significantly so for
generic quantum field theories. On the other hand,

implementing conservation laws for specific processes
might improve the bounds, perhaps along the lines of
previous work on dispersion relations [49,50].
Remaining in four dimensions for Imz > 0 requires

imposing vanishing of every 5 × 5 minor of pi · pj treated
as a matrix, which would violate linear dependence on z
that our arguments hinged upon. Instead, one should
employ a deformation directly on the four-momenta pμ

i
that correspond to linear shifts of pi · pj, such as those used
in on-shell recursion relations [51]. Nonetheless, in some
situations it might be possible to get away without doing so,
such as in the case of four-point scattering in two
dimensions with equal external masses, Mi ¼ M. In this
setup we have ðp1 þ p3Þ2 ¼ 0 and repeating the steps from
previous sections gives

V� ≤
1

2
ðs� þM2Þ −m2 ð27Þ

with s� ¼ ðpð�Þ
1 þ pð�Þ

2 Þ2. Since we can choose s� to be
arbitrarily small, it guarantees crossing symmetry and
maximal analyticity for me > M=

ffiffiffi
2

p
to all loops.

Exceptions to this statement are scattering matrices of
integrable theories, which cannot be represented as boun-
dary values of a single analytic function (see, e.g., [52]),
reflecting vanishing probability for particle production and
hence breakdown of crossing symmetry.

ACKNOWLEDGMENTS

The author thanks Edward Witten for illuminating
discussions. He gratefully acknowledges the funding pro-
vided by Frank and Peggy Taplin as well as Grant No. DE-
SC0009988 from the U.S. Department of Energy.

[1] M. Gell-Mann, M. Goldberger, and W. E. Thirring, Use of
causality conditions in quantum theory, Phys. Rev. 95, 1612
(1954).

[2] M. Gell-Mann and M. Goldberger, Scattering of low-energy
photons by particles of spin 1=2, Phys. Rev. 96, 1433 (1954).

[3] M. Gell-Mann, We never wrote up the crossing relations,
Web of Stories.

[4] D. Atkinson, A proof of the existence of functions that
satisfy exactly both crossing and unitarity: I. Neutral pion-
pion scattering. No subtractions, Nucl. Phys. B7, 375
(1968); Erratum, Nucl. Phys. B15, 331 (1970).

[5] A. Martin, Scattering Theory: Unitarity, Analyticity and
Crossing (Springer, Berlin, Heidelberg, 1969), Vol. 3,
https://doi.org/10.1007/BFb0101043.

[6] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and
R. Rattazzi, Causality, analyticity and an IR obstruction to
UV completion, J. High Energy Phys. 10 (2006) 014.

[7] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P.
Vieira, The S-matrix bootstrap. Part III: Higher dimensional
amplitudes, J. High Energy Phys. 12 (2019) 040.

[8] A. L. Guerrieri, J. Penedones, and P. Vieira, Bootstrapping
QCD Using Pion Scattering Amplitudes, Phys. Rev. Lett.
122, 241604 (2019).

[9] B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau, and
F. Riva, Positive moments for scattering amplitudes, arXiv:
2011.00037.

[10] A. J. Tolley, Z.-Y. Wang, and S.-Y. Zhou, New positivity
bounds from full crossing symmetry, arXiv:2011.02400.

[11] A.Guerrieri, J.Penedones,andP.Vieira,S-matrixbootstrap for
effective field theories: Massless pions, arXiv:2011.02802.

[12] S. Caron-Huot and V. Van Duong, Extremal effective field
theories, arXiv:2011.02957.

[13] P. Tourkine and A. Zhiboedov, Scattering from production
in 2d, arXiv:2101.05211.

BOUNDS ON CROSSING SYMMETRY PHYS. REV. D 103, L081701 (2021)

L081701-5

https://doi.org/10.1103/PhysRev.95.1612
https://doi.org/10.1103/PhysRev.95.1612
https://doi.org/10.1103/PhysRev.96.1433
https://doi.org/10.1016/0550-3213(68)90091-6
https://doi.org/10.1016/0550-3213(68)90091-6
https://doi.org/10.1016/0550-3213(70)90120-3
https://doi.org/10.1007/BFb0101043
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1007/JHEP12(2019)040
https://doi.org/10.1103/PhysRevLett.122.241604
https://doi.org/10.1103/PhysRevLett.122.241604
https://arXiv.org/abs/2011.00037
https://arXiv.org/abs/2011.00037
https://arXiv.org/abs/2011.02400
https://arXiv.org/abs/2011.02802
https://arXiv.org/abs/2011.02957
https://arXiv.org/abs/2101.05211


[14] J. Bros, H. Epstein, and V. J. Glaser, Some rigorous
analyticity properties of the four-point function in momen-
tum space, Nuovo Cimento 31, 1265 (1964).

[15] J. Bros, H. Epstein, and V. Glaser, A proof of the crossing
property for two-particle amplitudes in general quantum
field theory, Commun. Math. Phys. 1, 240 (1965).

[16] J. Bros, V. Glaser, and H. Epstein, Local analyticity proper-
ties of the n particle scattering amplitude, Helv. Phys. Acta
45, 149 (1972).

[17] J. Bros, Derivation of asymptotic crossing domains for
multiparticle processes in axiomatic quantum field theory:
A general approach and a complete proof for 2 → 3 particle
processes, Phys. Rep. 134, 325 (1986).

[18] O. Steinmann, Über den Zusammenhang zwischen den
Wightmanfunktionen und den retardierten Kommutatoren,
Helv. Phys. Acta 33, 257 (1960).

[19] O. Steinmann, Wightman-Funktionen und retardierte Kom-
mutatoren. II, Helv. Phys. Acta 33, 347 (1960).

[20] D. Ruelle, Connection between Wightman functions and
Green functions in p-space, Nuovo Cimento 19, 356 (1961).

[21] H. Araki, Generalized retarded functions and analytic
function in momentum space in quantum field theory,
J. Math. Phys. (N.Y.) 2, 163 (1961).

[22] H. Araki and N. Burgoyne, Properties of the momentum
space analytic function, Nuovo Cimento 18, 342 (1960).

[23] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.103.L081701 for a re-
view of previous results and examples.

[24] H. Epstein, Some analytic properties of scattering ampli-
tudes in quantum field theory, in Proceedings of the 8th
Brandeis University Summer Institute in Theoretical Phys-
ics: Particle Symmetries and Axiomatic Field Theory
(Gordon and Breach, Science Publishers, Inc., New York,
1966), pp. 1–128.

[25] G. Sommer, Present state of rigorous analytic properties of
scattering amplitudes, Fortschr. Phys. 18, 577 (1970).

[26] N.Bogolubov,A.Logunov,A.Oksak, and I.Todorov,General
Principles of Quantum Field Theory, Mathematical Physics
and Applied Mathematics (Springer, Netherlands, 1989).

[27] See also [28] for progress using the assumption of asymp-
totic completeness and [29,30] for reviews of previous
incomplete attempts at proving crossing symmetry.

[28] J. Bros, Analytic structure of Green’s functions in quantum
field theory, in Mathematical Problems in Theoretical
Physics, edited by K. Osterwalder (Springer, Berlin, 1980),
pp. 166–199.

[29] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne,
The Analytic S-Matrix (Cambridge University Press,
Cambridge, England, 1966), Sec. IV.8.

[30] D. Iagolnitzer, The S Matrix (North-Holland Publishing
Company, Amsterdam, 1978), App. IV.

[31] T. T. Wu, Domains of definition for Feynman integrals over
real Feynman parameters, Phys. Rev. 123, 678 (1961).

[32] L. F. Cook and J. Tarski, Some properties of the five-point
function in perturbation theory, J. Math. Phys. (N.Y.) 3, 1
(1962).

[33] D. Branson, P. V. Landshoff, and J. C. Taylor, Derivation of
partial amplitudes and the validity of dispersion relations for
production processes, Phys. Rev. 132, 902 (1963).

[34] J. B. Boyling, Hermitian analyticity and extended unitarity
in S-matrix theory, Nuovo Cimento 33, 1356 (1964).

[35] N. Nakanishi, Graph Theory and Feynman Integrals,
Mathematics and its applications: A series of monographs
and texts (Gordon and Breach, New York, 1971).

[36] The representation (7) makes it transparent why proving
crossing symmetry off shell is trivial in perturbation theory:
all the nðn − 1Þ=2 kinematic invariants can be deformed
independently in Impi · pj < 0 for i ≠ j while preserving
analyticity and causality (see also [37] for the loop mo-
mentum perspective). It is imposing on shellness, i.e., fixed
p2
i ¼ M2

i , that introduces difficulties.
[37] C. De Lacroix, H. Erbin, and A. Sen, Analyticity and

crossing symmetry of superstring loop amplitudes, J. High
Energy Phys. 05 (2019) 139.

[38] L. Landau, On analytic properties of vertex parts in quantum
field theory, Nucl. Phys. 13, 181 (1960).

[39] N. Nakanishi, Ordinary and anomalous thresholds in per-
turbation theory, Prog. Theor. Phys. 22, 128 (1959).

[40] J. D. Bjorken, Experimental tests of quantum electro-
dynamics and spectral representations of Green’s functions
in perturbation theory, Ph.D. thesis, Stanford University,
1959.

[41] In going from (5) to (6) we broke projective invariance,
which obscures potential singularities at infinities [42].
They need not concern us because we will not deform
the integration contour.

[42] D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. Polkinghorne,
Singularities of the second type, J. Math. Phys. (N.Y.) 3, 594
(1962).

[43] P. Chin and E. Tomboulis, Nonlocal vertices and analyticity:
Landau equations and general Cutkosky rule, J. High
Energy Phys. 06 (2018) 014.

[44] I. Prlina, M. Spradlin, and S. Stanojevic, All-Loop Singu-
larities of Scattering Amplitudes in Massless Planar The-
ories, Phys. Rev. Lett. 121, 081601 (2018).

[45] J. Collins, A new and complete proof of the Landau
condition for pinch singularities of Feynman graphs and
other integrals, arXiv:2007.04085.

[46] S. Komatsu, M. F. Paulos, B. C. Van Rees, and X. Zhao,
Landau diagrams in AdS and S-matrices from conformal
correlators, J. High Energy Phys. 11 (2020) 046.

[47] M. Mühlbauer, Momentum space Landau equations via
isotopy techniques, arXiv:2011.10368.

[48] N. Nakanishi, Parametric integral formulas and analytic
properties in perturbation theory, Prog. Theor. Phys. Suppl.
18, 1 (1961).

[49] J. Boyling, Majorization of Feynman diagrams in which a
heavy particle is conserved, Ann. Phys. (N.Y.) 25, 249
(1963).

[50] J. Boyling, Majorization of Feynman diagrams involving
pions and nucleons, Ann. Phys. (N.Y.) 28, 435 (1964).

[51] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct Proof
of Tree-Level Recursion Relation in Yang-Mills Theory,
Phys. Rev. Lett. 94, 181602 (2005).

[52] D. Iagolnitzer, Factorization of the multiparticle S matrix in
two-dimensional space-time models, Phys. Rev. D 18, 1275
(1978).

SEBASTIAN MIZERA PHYS. REV. D 103, L081701 (2021)

L081701-6

https://doi.org/10.1007/BF02733596
https://doi.org/10.1007/BF01646307
https://doi.org/10.5169/seals-114374
https://doi.org/10.5169/seals-114374
https://doi.org/10.1016/0370-1573(86)90056-6
https://doi.org/10.5169/seals-113076
https://doi.org/10.5169/seals-113079
https://doi.org/10.1007/BF02732890
https://doi.org/10.1063/1.1703695
https://doi.org/10.1007/BF02725943
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
http://link.aps.org/supplemental/10.1103/PhysRevD.103.L081701
https://doi.org/10.1002/prop.19700181102
https://doi.org/10.1103/PhysRev.123.678
https://doi.org/10.1063/1.1703779
https://doi.org/10.1063/1.1703779
https://doi.org/10.1103/PhysRev.132.902
https://doi.org/10.1007/BF02749470
https://doi.org/10.1007/JHEP05(2019)139
https://doi.org/10.1007/JHEP05(2019)139
https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1143/PTP.22.128
https://doi.org/10.1063/1.1724262
https://doi.org/10.1063/1.1724262
https://doi.org/10.1007/JHEP06(2018)014
https://doi.org/10.1007/JHEP06(2018)014
https://doi.org/10.1103/PhysRevLett.121.081601
https://arXiv.org/abs/2007.04085
https://doi.org/10.1007/JHEP11(2020)046
https://arXiv.org/abs/2011.10368
https://doi.org/10.1143/PTPS.18.1
https://doi.org/10.1143/PTPS.18.1
https://doi.org/10.1016/0003-4916(63)90355-5
https://doi.org/10.1016/0003-4916(63)90355-5
https://doi.org/10.1016/0003-4916(64)90203-9
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1103/PhysRevD.18.1275
https://doi.org/10.1103/PhysRevD.18.1275

