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We study the behavior of a free massive scalar wave-packet near the Cauchy horizon of an AdS2 black
hole and find that it becomes infinitely differentiable for smooth initial data, independently of the
parameters describing the spacetime or the scalar. This indicates a violation of the strong cosmic censorship
conjecture at the classical level. We discuss our result in connection with some recent observations of
violation of the conjecture for certain nearly extremal black holes.
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I. INTRODUCTION

The general theory of relativity is arguably the most
elegant classical theory of physics. The presence of Cauchy
horizons (CH) in some solutions of the Einstein equations
(e.g., the Reissner-Nordström and Kerr solutions), how-
ever, is an unwelcome feature of general relativity, since
one loses the predictive power of general relativity beyond
this horizon. One needs to introduce additional elements to
reinstate predictivity. The strong cosmic censorship (SCC)
conjecture [1] is one such element, which asserts that CHs
are generically unstable.
The question of the stability of CHs has been studied for a

long time now (see, e.g., [2–7]) and SCC is believed to be
true for a wide class of black holes (BH). It has received
some attention in the recent years—in particular, it has been
observed that SCC is violated for certain BHs (e.g., the BTZ
BH [8] and charged BH in de Sitter spacetime [9–11]) when
the BHs are sufficiently near extremality. A wide class of
extremal BHs have a common aspect—a near-horizon AdS2
factor [12]. Even when the BHs are nearly extremal, an
appropriate scaling does give rise to a near-horizon AdS2 BH
geometry (see, e.g., [13]). This naturally begs the question
whether the violation has anything to do with the AdS2
factor. This question is the motivation for this work and we
will answer this question in the affirmative.
Gravity in two spacetime dimensions is rather special—

the Einstein-Hilbert action is a topological invariant and
cannot describe dynamics. One needs to couple gravity to
other fields, typically scalars, to get interesting features.

One such model is Jackiw-Teitelboim (JT) gravity [14,15],
which describes a gravity-dilaton system. The JT model
has been extensively studied [16] in the recent years—its
connection with the quantum mechanical Sachdev-Ye-
Kitaev model [17–19] and its variants has attracted con-
siderable attention from the community. It has been
successful in describing features of nearly extremal BHs
with a near-horizon AdS2 geometry (see [13,20–22] and
references therein).
We shall be concentrating on an AdS2 BH with a CH.

Our strategy would be to consider a minimally coupled
massive probe scalar and examine its behavior near the CH.
We find that the scalar field is infinitely differentiable (C∞)
for initial smooth data on appropriate hypersurfaces. Our
result is stronger than in the case for BTZ BH. The authors
of [8] found that a neutral scalar would be Ck at the CH,
with k determined by the parameters of the geometry and
the conformal dimension of the scalar field. It was found
that k could be made arbitrarily large by making the BH
approach extremality. In our case, the violation of SCC
does not depend on the conformal dimension or the
parameters describing the geometry (this fact is actually
obvious from the point of view of symmetry).
Our analysis will be very similar to that in [8] and

therefore, we will be brief in describing the calculation,
drawing attention to the most important points, especially
those that differ from [8]. Readers concerned about various
subtle aspects not explicitly commented on here would
find the details in [8] illuminating. The question of SCC
in BTZ BH was addressed in [23] and more recently in,
e.g., [24–27].

II. SCC IN AdS2

We will consider a minimally coupled massive scalar
field in the background of an AdS2 BH. The line element
can be expressed as
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ds2 ¼ −ðr2 − r20Þdt2 þ
dr2

r2 − r20
: ð1Þ

There is a linearly varying time-independent dilaton as well
(in addition to possibly other 2d fields), but that does not
play an important role in our considerations [28]. We have
set LAdS2 ¼ 1.
The event horizon is located at r ¼ r0 and the CH is at

r ¼ −r0. It is an important property of AdS2 BHs, not
shared by other BHs even in two dimensions, that the
surface gravity at the inner and outer horizon are equal,
κ� ¼ r0.
We can set r0 ¼ 1 in the metric by a simultaneous

rescaling of t and r: t → r−10 t, r → rr0, so that the metric
takes the form,

ds2 ¼ −ðr2 − 1Þdt2 þ dr2

r2 − 1
: ð2Þ

Note that when there is a varying dilaton present, as in our
case, such a rescaling does change the dilaton. However, for
the discussion below involving a scalar, which couples only
to the metric, this issue is not important. The asymptotic
timelike boundary is located at a value of r ¼ rb ≫ 1. For
our purpose, we can essentially take rb → ∞. The causal
structure of the spacetime is depicted in Fig. 1.
It is our ability to scale r0 out of the problem that makes

the question of cosmic censorship independent of r0.
Whether cosmic censorship is violated or not is usually
determined by the quantity β≡ αr=κ−, where αr, known as
the spectral gap, is the negative imaginary part of a
quasinormal mode. Since the frequency is necessarily
proportional to r0 (as is κ−) because of the scaling
symmetry, it follows that β is independent of r0.
The scalar equation reads,

∇2ψ − μ2ψ ¼ 0; ð3Þ

where μ is the mass of the scalar. We seek a mode solution
of the form ψðω; t; rÞ ¼ e−iωtψðrÞ. Note that, we use the
same letter ψ whether or not t is part of the argument.
What we are referring to will be obvious from the context.
Eq. (3) reads,

ω2ψ þ ðr2 − 1Þ∂rððr2 − 1Þ∂rψÞ − μ2ðr2 − 1Þψ ¼ 0: ð4Þ

It is easy to solve this equation in terms of hypergeometric
functions [29]. We introduce a new variable,

y ¼ 1

2
ðrþ 1Þ: ð5Þ

This maps the CH, the event horizon and the asymptotic
boundary to y ¼ 0, y ¼ 1 and y ¼ ∞, the regular singular
points of the hypergeometric differential equation. There
exists a basis of a pair of linearly independent solutions

to Eq. (4) about each of these singular points. It is worth
noting that even in case of the BTZ BH, the solution can be
expressed in terms of hypergeometric functions [8,23]. We
can write down the solutions about these points as follows:

(i) About the CH:

ψCH
out ðyÞ ¼ y

1
2
ðc−1Þj1 − yj12ðaþb−cÞ

2F1ða; b; c; yÞ;
ψCH
in ðyÞ ¼ y−

1
2
ðc−1Þj1 − yj12ðaþb−cÞ

× 2F1ð1þ a − c; 1þ b − c; 2 − c; yÞ:
ð6Þ

(ii) About the event horizon:

ψH
outðyÞ ¼ y

1
2
ðc−1Þj1 − yj−1

2
ðaþb−cÞ

× 2F1ðc − a; c − b; 1þ c − a − b; 1 − yÞ;
ψH
inðyÞ ¼ y

1
2
ðc−1Þj1 − yj12ðaþb−cÞ

× 2F1ða; b; 1þ aþ b − c; 1 − yÞ: ð7Þ

FIG. 1. The Penrose diagram for the eternal AdS2 BH: In this
diagram, CH, H and I refer to the Cauchy horizon, event
horizons, and asymptotic boundaries respectively, while þð−Þ
refers to future (past). This diagram repeats infinitely in the
vertical direction. In this paper, we are interested in regions I
and II.
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(iii) About the asymptotic boundary:

ψI
nnðyÞ ¼ y

1
2
ðc−1−2aÞjy − 1j12ðaþb−cÞ

× 2F1

�
a; 1þ a − c; 1þ a − b;

1

y

�
;

ψI
norðyÞ ¼ y

1
2
ðc−1−2bÞjy − 1j12ðaþb−cÞ

× 2F1

�
b; 1þ b − c; 1þ b − a;

1

y

�
: ð8Þ

Here, the parameters of the hypergeometric function are
given by,

a ¼ Δ− − iω; b ¼ Δþ − iω; c ¼ −iωþ 1; ð9Þ

and,

Δ� ¼ 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2

q �
≡ 1

2
ð1� νÞ: ð10Þ

Let us make a few comments here. As suggested by the
names of the functions, the solutions are ingoing or
outgoing on the appropriate part of the various horizons,
as can be seen by going to the in/outgoing Eddington-
Finkelstein coordinates [30]. For example, ψCH

out is smooth
(∼e−iωu) on CHþ

R , but not on CHþ
L , and ψCH

in is smooth
ð∼e−iωvÞ on CHþ

L , but not on CHþ
R . The quantities Δ�

describe the asymptotic behavior of the scalar. We have, for
large y (i.e., large r),

ψI
nn ∼ y−Δ− ; ψI

nor ∼ y−Δþ : ð11Þ

We assume the scalar satisfies the Breitenlöhner-Freedman
bound [31]: i.e., ν is real: 4μ2 ≥ −1 and so Δþ ≥ Δ−.
The mode ψI

nn thus describes a non-normalizable mode at
the asymptotic boundary, while ψI

nor describes a normal-
izable fall-off. (Actually, in a slight abuse of terminology,
we continue to call the slower decaying solution non-
normalizable even when 0 < ν < 1.)
Using the conventions of [8], we can relate the event

horizon basis to the boundary basis:

ψH
in ¼ 1

T
ψI
nn þ

R
T
ψI
nor; ψI

nor ¼
1

T̃
ψH
out þ

R̃

T̃
ψH
in : ð12Þ

Using the well known hypegeometric transformation for-
mulas, [29] we easily obtain,

T ¼ ΓðΔþ − iωÞÞΓðΔþÞ
Γð1 − iωÞΓðνÞ ;

R ¼ Γð−νÞΓðΔþ − iωÞΓðΔþÞ
ΓðνÞΓðΔ− − iωÞΓðΔ−Þ

; ð13Þ

and,

T̃ ¼ ΓðΔþ − iωÞΓðΔþÞ
Γð2ΔþÞΓð−iωÞ

; R̃ ¼ ΓðiωÞΓðΔþ − iωÞ
Γð−iωÞΓðΔþ þ iωÞ :

ð14Þ

The exterior quasinormal modes (QNMs) can be read off
from the poles of T or T̃ and are given by,

ω ¼ −iðΔþ þ nÞ≡ ωext; ð15Þ

where n ¼ 0; 1; 2;… (we will continue to refer to all non-
negative integers with n throughout this paper). Note that,
in contrast with the results of [8], there is only one family of
exterior QNMs, which is related to the fact that the surface
gravities corresponding to the two horizons are equal.
As emphasized by the authors of [8], in exploring the

question of SCC the issue of what they refer to as interior
QNMs is also relevant. The interior scattering coefficients
are defined as follows. The CH basis can be written in terms
of the event horizon basis in the following form:

ψH
out ¼ AψCH

out þ BψCH
in ; ψH

in ¼ ÃψCH
in þ B̃ψCH

out : ð16Þ

An application of the hypergeometric identities again
yields,

A ¼ Γð1þ iωÞΓðiωÞ
ΓðΔþ þ iωÞΓðΔ− þ iωÞ ; B ¼ Γð1þ iωÞΓð−iωÞ

ΓðΔþÞΓðΔ−Þ
;

ð17Þ

and,

Ã ¼ Γð1 − iωÞΓð−iωÞ
ΓðΔþ − iωÞΓðΔ− − iωÞ ; B̃ ¼ Γð1 − iωÞΓðiωÞ

ΓðΔþÞΓðΔ−Þ
:

ð18Þ

Note immediately that in B and B̃, there are no zeroes in ω.
Therefore, the “out-out” and the “in-in”QNMs discussed in
the case of BTZ BH in [8] do not exist here. There do,
however, exist two families of QNM frequencies for each of
the “in-out” (Ã ¼ 0) or “out-in” (A ¼ 0) cases. These are
given by,

ωð1Þ
in-out ¼ −iðΔþ þ nÞ; ωð2Þ

in-out ¼ −iðΔ− þ nÞ; ð19Þ

and,

ωð1Þ
out-in ¼ þiðΔþ þ nÞ; ωð2Þ

out-in ¼ þiðΔ− þ nÞ: ð20Þ

Note that the quantities in (20) are complex conjugates of

(19) above. Further note that ωð1Þ
in-out is the same as ωext,

Eq. (15). Such a coincidence was crucial for establishing
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the result of [8]. It will perhaps not surprise the reader that
this fact will be crucial for us as well.

A. Classical wave packets

We are now ready to consider the question of SCC. To do
so, one needs to consider appropriate wave-packets on
surfaces suitable for an initial value formulation and
examine the behavior near the CH. The characteristic data
could be taken to have support on the future left event
horizon (Hþ

L ), past right event horizon (H−
R) and right

timelike boundary (IR). The data on these surfaces are
described by XHþ

L
ðωÞ, XH−

R
ðωÞ and XIR

ðωÞ, which corre-
spond to the Fourier transforms of compactly supported
data on these surfaces and thus, are entire in ω. We can then
carry out the analysis as in [8] and write the mode solution
in region II in the CH basis (6). (We do not reproduce the
various subtle arguments extensively covered in Ref. [8].)

ψðt; rÞ ¼ ψoutðt; rÞ þ ψ inðt; rÞ; ð21Þ

where,

ψoutðt; rÞ ¼
Z

dω½XHþ
L
Aþ ðXH−

R
R̃þ XIR

T ÞB̃�ψCH
out ;

ψ inðt; rÞ ¼
Z

dω½XHþ
L
B þ ðXH−

R
R̃þ XIR

T ÞÃ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GinðωÞ

ψCH
in :

ð22Þ

We have suppressed the ω-dependence in the scattering
coefficients and the mode solutions, but they are, of course,
ω-dependent, as can be seen from the definitions above.
To address the question of SCC, say, on CHþ

R , [32], we
need to consider only ψ inðt; rÞwhich could potentially have
non-smooth behavior there. On the other hand, ψoutðt; rÞ is
manifestly smooth here.
Let us now comment on the analytic structure of the

different terms of the function GinðωÞ, which appears in the
integrand of ψ inðt; rÞ in Eq. (22).

(i) The quantity B (17) has simple poles on the upper
half-plane (UHP), ω ¼ iðnþ 1Þ and on the lower
half-plane (LHP), ω ¼ −in. This includes a pole on
the real axis, ω ¼ 0 for n ¼ 0.

(ii) Ã (18) has a simple pole at ω ¼ 0 and double poles
at ω ¼ −iðnþ 1Þ—note that B has simple poles at
the location of these double poles. The zeroes of Ã
(18) are given by Eq. (19), namely ω ¼ ωext and
ω ¼ −iðΔ− þ nÞ.

(iii) R̃ (14) has simple poles at ω ¼ iðnþ 1Þ and ω ¼
ωext (15). It has zeroes at ω ¼ −iðnþ 1Þ and
at ω ¼ þiðΔþ þ nÞ.

(iv) Finally, T (13) has simple poles atω ¼ ωext (15) and
zeroes at ω ¼ −iðnþ 1Þ.

There is a simple pole of the integrand of ψ inðt; rÞ (22)
on the real axis at ω ¼ 0, due to those in Ã and B. A careful
argument in [8], however, shows that the pole is artefact of
the basis used to construct the solution and the integration
contour on the real axis can be deformed into the LHP to
avoid this pole. All we need to do now is find the poles of
GinðωÞ in the LHP.
It turns out that GinðωÞ in analytic on the LHP, except for

only simple poles at ω ¼ −iðnþ 1Þ:
(i) From the discussion above, it is obvious that B has

simple poles on the LHP at ω ¼ −iðnþ 1Þ.
(ii) Now, note that R̃ and T both have simple poles at

ω ¼ ωex, but this pole is removed by the zeroes of Ã
[which multiplies both in ψ inðt; rÞ (22)] at the same
location. As a result, there are no poles of GinðωÞ
at ω ¼ ωex.

(iii) Finally, note that Ã has double poles at ω ¼
−iðnþ 1Þ. However, both R̃ and T have zeroes
at the same locations. Since Ã is multiplied by either
R̃ or T , the potential double poles of GinðωÞ are
turned into simple poles.

We now examine the behavior of the mode function near
the CH at y ¼ 0. In the outgoing Eddington-Finkelstein
coordinate (u ¼ t − r�), we have, ψ inðω; t; rÞ ∼ e−iωuyiω.
Since the only actual simple poles are at ω ¼ −iðnþ 1Þ, it
follows immediately that the contribution of such a pole
gives rise to smooth behavior in y:

ψ in ∼ e−ðnþ1Þuynþ1: ð23Þ

Clearly, therefore, the right component of the scalar is
smoothly vanishing on CHþ

R , (y → 0, u varying) [33]. The
left component is smooth anyway. The scalar ψ is thus C∞

on the CH and this indicates a classical violation of SCC.

III. DISCUSSION

The violation of SCC in AdS2 is dependent on no
fewer than two coincidences. One coincidence was also
present for BTZ BHs [8], an interior quasinormal frequency
being equal to to an exterior quasinormal frequency. This
fact was responsible for the eventual violation of strong
cosmic censorship in BTZ BHs. In our case, an additional
coincidence—the equality of surface gravity on the
event and inner horizons—ensured that the violation was
stronger.
It is worth remarking that the violations of the SCC are

observed, both in this paper and in [8], in rather special
low-dimensional geometries. The black holes in these
scenarios, in contrast with their counterparts in higher
dimensions, can actually be obtained as coordinate trans-
formations of a global AdS spacetime. The BTZ black hole
is a quotient of global AdS3 and the black hole geometry
considered here is a patch of global AdS2 (it is worth
emphasizing that globally the spacetime is not global AdS2,
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but there is a genuine black hole here because of a
nontrivial dilaton background). From this perspective,
the violation can be thought of as a consequence of the
enhanced symmetry of these black hole spacetimes in lower
dimensions, as the horizons are somewhat less distin-
guished because of the symmetry.
We considered a classical scalar wave-packet. Classical

fields of other kinds could be considered (see [8]), but since
the equations of motion are eventually expected to be the
same in form as the scalar equation, the results are expected
to be no different. It is worth emphasizing that the violation
is independent of the mass of the scalar field. As long as
there is no instability associated with the violation of the
Breitenlöhner-Freedman bound, all fields are expected to
violate strong cosmic censorship.
One interesting aspect to consider would be a calculation

of holographic correlators in the Lorentzian signature [34].
A calculation similar to one in [23] suggests that the
holographic one-point function does not receive a divergent
contribution from the CH. There has been a recent work
[35] which explores the issue of probing behind the CH It
would be interesting to probe the deep interior of a BH from
a quantum theory like the SYK model.
While AdS2 geometries arise from near-extremal BHs, it

is clear that not all such higher dimensional geometries
would show the violation of strong cosmic censorship,
since the boundary conditions on the AdS2 boundary
connecting to the UV geometry in such cases, different
from the one considered here, would enforce strong cosmic
censorship, because the analytic structure of the function
GinðωÞ would be dramatically altered. See [8] for some
related comments.
What our work does show is that strong cosmic censor-

ship is generically violated for AdS2 BHs, when we have
the right boundary conditions. This is a pleasing result
because it is consistent with the observed violation in the
case of some near-extremal BHs in rather different

situations (e.g., the BTZ BH or RN-dS BH), as mentioned
in the Introduction—and this work connects these diverse
situations with the same thread. One might wonder why the
violation is stronger (C∞) in our case. This has to do with
the fact that the minimally coupled scalar in higher
dimensions is not the same as a minimally coupled scalar
in two dimensions (in our case, the scalar is insensitive to
the breaking of isometries of the AdS2 spacetime by the
varying dilaton—see also the comment on symmetries
made above). A dimensionally reduced minimally coupled
scalar will necessarily have a coupling with the dilaton of
two-dimensional gravity (Φd: the volume of the transverse
space);

Sψ ∝ −
Z

d2x
ffiffiffiffiffiffi
−g

p
Φdðð∇ψÞ2 þ μ2ψ2Þ: ð24Þ

This would certainly change the behavior of the scalar near
the CH in some respects. Furthermore, the corrections to
the AdS2 geometry arising from nonlinear dilaton terms
of the dimensionally reduced action would also make the
surface gravity on the two horizons different, which would
change our conclusions.
It would be interesting to consider other aspects of strong

cosmic censorship in 2d, e.g., effects of quantum fields.
We leave such studies for the future.
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