
 

Hubble sinks in the low-redshift swampland
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Local determinations of the Hubble constant H0 favor a higher value than Planck based on cosmic
microwave background and Λ cold dark matter (ΛCDM). Through a model-independent expansion, we
show that low redshift (z ≲ 0.7) data comprising baryon acoustic oscillations, cosmic chronometers, and
Type Ia supernovae have a preference for quintessence models that lower H0 relative to ΛCDM.
In addition, we confirm that an exponential coupling to dark matter cannot alter this conclusion in the same
redshift range. Our results leave open the possibility that a coupling in the matter-dominated epoch,
potentially even in the dark ages, may yet save H0 from sinking in the string theory swampland.
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I. INTRODUCTION

Last century, Allan Sandage framed cosmology as the
search for two numbers [1]. Fifty years later, it is widely
accepted that the deceleration parameter q0 is negative
[2,3], and the Hubble constant H0 is known to within 10%
[4–8], making it one of the best measured quantities in late-
time cosmology. At the lower end of this H0 window, one
finds the Planck determination based on the cosmological
model ΛCDM and the cosmic microwave background
(CMB) [4]. In contradistinction, a host of local determi-
nations favor higher values [5–8], resulting in Hubble
tension [9], an intriguing discrepancy between early and
late Universe determinations of H0.
The convergence of different experiments suggests that a

high local H0 is legit (to lose one experiment, may be
regarded as a misfortune; to lose all looks like careless-
ness). One logical possibility, advocated by the swampland
program within string theory [10] is that we replace Λ with
quintessence [11,12], the simplest alternative in effective
field theory (EFT). Against this backdrop, our goal is to
ascertain ifH0 is raised or lowered relative toΛCDM by the
swampland.
To date the swampland [13] has led to an intriguing web

of conjectures (see [14,15] for reviews), which remarkably

impinge on the real world. The most consequential pre-
cludes de Sitter vacua [16] and is in conflict with ΛCDM
[10]. Subsequent to-and-fro discussion led to a refinement
[17,18] (also [19]), thus allowing the conjecture to coexist
with the Higgs’s potential [20]. Nevertheless, the de Sitter
conjecture is constrained by cosmological data [21–23],
and it was highlighted early on that Hubble tension may be
an issue [24].
Here, we return to the Hubble tension thread within the

context of generic quintessence models [11,12]. Recall that
“quintessence” may be defined as a canonically coupled
scalar with scalar potential V > 0 and an equation of state
(EOS) for dark energy that is bounded below w ≥ −1.
However, the latter can be relaxed within EFT by coupling
dark matter to dark energy through “coupled quintessence”
[25–27]. While it is known that a coupling allows one to
effectively reduce w and hence to raise H0 [28,29], in
contrast, specific uncoupled quintessence models lower H0

[30–33] (see also Table I [34]) [35], thus implying that H0

is in the swampland. In this paper we show that this is more
generally true.
In contrast to models with fixed potentials, e.g., [38–42],

here we exploit perturbation at low redshift to work in a
model-independent way. In short, we construct a large class
of “bottom-up” potentials, which we confront with direct
measurements of the Hubble parameter HðzÞ inferred from
cosmic chronometers [43–49] and baryon acoustic oscil-
lations (BAOs) [50,51]. In addition, we include low-z BAO
measurements by 6dF [52] (z ¼ 0.106) and SDSS-MGS
surveys [53] (z ¼ 0.15), and determinations of EðzÞ≡
HðzÞ=H0 from type Ia supernovae [54] (derived from [55]).
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Finally, we allow for an exponential potential, which is the
dark-matter-quintessence coupling of choice in string
theory.
Our findings are simply expressed. Quintessence models

prefer a lower H0 value than ΛCDM. Moreover, neither a
H0 prior [5] nor an exponential coupling to dark matter—
provided it is constrained by galaxy warps [56,57]—can
change the conclusion in the redshift range. Models where
the coupling is turned on earlier are still viable, but only at
higher redshifts, namely within the matter-dominated era
(0.4≲ z). Furthermore, if the coupling is turned on in the
dark ages beyond z ≈ 6 [34], a proper test of such a scenario
may rest upon future developments in 21-cm cosmology
[58,59]. Nevertheless, this loophole aside, low-redshift
observations place the de Sitter conjecture [16] at odds
with local determinations of H0, since the class of models
championed by the conjecture only exacerbates Hubble
tension.

II. SETUP

We consider flat Friedmann-Lemaitre-Robertson-Walker
spacetime and the following coupled quintessence equa-
tions:

H2 ¼ 1

3

�
V þ 1

2
_ϕ2 þ f

ρc
a3

þ ρb
a3

�
; ð1Þ

0 ¼ ϕ̈þ 3H _ϕþ ∂ϕV þ ρc
a3

∂ϕf; ð2Þ
where dots denote time derivatives, a is the scale factor, and
H ≡ _a

a is the Hubble parameter. In addition, fðϕÞ is a
coupling between the dark matter density ρc and the
quintessence field ϕ, while ρb denotes the baryonic matter
density. Observe that setting f ¼ 1, we recover uncoupled
quintessence with matter density ρm ¼ ρc þ ρb. These
equations allow an effective EOS weff < −1 when f < 1

[27]. Concretely, we consider f ¼ e−Cðϕ−ϕ0Þ where ϕ0

and C ≥ 0 are constant. Finally, observe that we have
set Mp ¼ 1 for simplicity.
We emphasize that the basic ingredients of equations (1)

and (2), i.e., a canonically coupled scalar, a potential, and
an exponential coupling are ubiquitous in low-energy
effective descriptions of string theory, e.g., [60–66], thus,
the basic building blocks of the swampland are in place.
Now, to solve these equations, we recall the usual definition
of the scale factor in terms of redshift a ¼ ð1þ zÞ−1,
normalized so that a ¼ 1 today. Using the chain rule, one
establishes that d=dt ¼ −ð1þ zÞHd=dz, and it is easy to
recast the Friedmann (1) and scalar equation (2) in terms of
redshift. We consider the following expansion for the
scalar,

ϕ − ϕ0 ¼ αzþ βz2 þ γz3 þ…; ð3Þ
around its value today ϕ0 at z ¼ 0, where α, β, and γ are
constants. At small z, ϕ − ϕ0 is small, and we can further
expand the potential:

V ¼ V0 þ V 0
0ðϕ − ϕ0Þ þ

1

2
V 00
0ðϕ − ϕ0Þ2 þ…; ð4Þ

where we have defined V0 ≡ Vðϕ0Þ; V 0
0 ≡ V 0ðϕ0Þ, etc. The

Hubble parameter to third order in redshift is

H ¼ H0ð1þ h1zþ h2z2 þ h3z3 þ…Þ; ð5Þ
where hi may be expressed in terms of the parameters as

h1 ¼
1

2
α2þ 3

2
Ωm0;

h2 ¼
1

8
α4þ 1

4
α2þαβ−

3

4
αCΩc0þ

3

8
Ωm0ð4− 3Ωm0Þ;

h3 ¼
1

48
α6þ 1

16
α4ðΩm0þ 2Þþαγ

þ 1

16
α2Ωm0ð9Ωm0− 2Þþ 1

2
αβ

�
α2þΩm0þ

4

3

�

þ 2

3
β2þ 1

16
Ωm0ð8− 36Ωm0þ 27Ω2

m0Þ

þ
�
1

8
α3þ 9

8
αΩm0−α−

1

2
β

�
Ωc0Cþα2

4
C2Ωc0: ð6Þ

Evidently, when α ¼ β ¼ γ ¼ 0, we recover the ΛCDM
cosmology, while at z ¼ 0, we have Hðz ¼ 0Þ ¼ H0.
Observe that we have employed the usual definitions
Ωc0 ¼ ρc=ð3H2

0Þ;Ωb0 ¼ ρb=ð3H2
0Þ;Ωm0 ¼ Ωb0 þ Ωc0, to

define the baryonic Ωb0 and dark matter density Ωc0 today.
Note that α ¼ β ¼ γ ¼ 0 is our reference model. Since

we are working perturbatively around z ¼ 0, we first
establish the range of validity of the expansion. To see
this, we note that when Ωm0 ≈ 0.3, namely the canonical
Planck value [4], the corresponding values for hi are
h1 ≈ 0.45; h2 ≈ 0.35; h3 ≈ −0.007. Concretely, if we
demand that our expansion is within 1% of the exact
analytic result, EðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm0 þ Ωm0ð1þ zÞ3

p
, then the

linear, quadratic and cubic approximations are good to
z ≈ 0.18, z ≈ 0.76, and z ≈ 0.82, respectively.
The potential and its derivatives at z ¼ 0 can be

expressed in terms of α, β, γ:

V0H−2
0 ¼ 3Ωϕ0 −

1

2
α2; ð7Þ

V 0
0H

−2
0 ¼ −αðh1 − 2Þ − 2β þ 3Ωc0C; ð8Þ

V 00
0H

−2
0 ¼ −ðh21 − 2h1 þ 2h2 − 2Þ − 6

βh1
α

−
6γ

α
− 3Ωc0

�
C2 − 3

C
α

�
; ð9Þ

where for a given coupling C, we have a one-to-one
correspondence between ðα; β; γÞ and ðV0; V 0

0; V
00
0Þ. Note

also that Ωϕ0 is the dark energy density today
Ωϕ0 ¼ 1 −Ωm0. The effective EOS can easily be
worked out,
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weff ¼ −1þ α2

3Ωϕ0
þ z
Ω2

ϕ0

�
α4

3
ðΩϕ0 − 1Þ þ α2

3
Ωϕ0ð5 − 3Ωϕ0Þ þ

4

3
αβΩϕ0 − αCΩc0Ωϕ0

�

þ z2

Ω3
ϕ0

�
α6

6
ðΩ2

ϕ0 − 3Ωϕ0 þ 2Þ þ α4

6
Ωϕ0ð17Ωϕ0 − 14 − 3Ω2

ϕ0Þ þ 2α3βΩϕ0ðΩϕ0 − 1Þ þ α2

3
Ω2

ϕ0ð10 − 9Ωϕ0Þ

þ 4

3
αβΩ2

ϕ0ð5 − 3Ωϕ0Þ þ
4

3
β2Ω2

ϕ0 þ 2αγΩ2
ϕ0 − CΩc0Ωϕ0

�
1

2
α3ðΩϕ0 − 3Þ þ ð3αþ βÞΩϕ0

�
þ 1

2
α2C2Ωc0Ω2

ϕ0

�

þ…: ð10Þ

Interestingly, regardless of the value of C, weff > −1 at
z ¼ 0 and a crossing into the phantom regime (weff < −1)
happens only at higher redshift. Note that when C ¼ 0, we
simply denote weff as w.

III. METHODOLOGY

We begin by generating 106 triples ðα; β; γÞ, in a normal
distribution about (0,0,0) with a uniform standard
deviation, which we take to be σ ¼ 0.1 [67]. We impose
a conservative redshift cutoff, zmax ¼ 0.7, and impose

jαj≳ zmaxjβj; jβj≳ zmaxjγj; jϕ − ϕ0j ≲ 1; ð11Þ

to ensure that perturbation makes sense; i.e., the higher
order numbers are smaller. Note that these cuts can be
implemented without establishing a best-fit value of Ωm0

and we are not imposing slow roll.
For the triples surviving these primary cuts, we perform

two-parameter fits of the data [43–50,52–54,68] and
demand that

V0 ≳ jV 0
0 · ðϕ − ϕ0Þj jV 0j≳ 1

2
jV 00

0 · ðϕ − ϕ0Þj; ð12Þ

once again to ensure a valid expansion. In addition, we
impose the nominal restriction Ωm0 ≳ 0.2, which is in line
with weak lensing results [69,70], and impose the 2σ
constraints from Fig. 1, which we have inferred from a
Markov chain Monte Carlo (MCMC) exploration of cosmic
chronometer, BAO, and Pantheon data below z < 0.7.
Observe that, in contrast to [21], our bounds come from
low redshift data, which means they are less constraining,
and for uncoupled models, we impose wðzÞ > −1.
It is worth emphasizing that our expansion is expected to

be valid to z ≈ 0.7, but if we include distance moduli or
angular diameter distance measurements, since they are
integrated quantities, the approximation holds only for
z≲ 0.3. This allows us to easily accommodate isotropic
BAO at z ¼ 0.106 [52] and z ¼ 0.15 [53], but for higher
redshift BAO we are restricted to DHðzÞ≡ c=HðzÞ and its
covariance matrix. For this reason, there is extra informa-
tion in Fig. 1. and this leads to additional constraints.
Finally, since we have a large parameter space, e.g.,

ðH0;Ωm0; α; β; γ; CÞ, one can expect any best-fit values
to be within 1σ of ΛCDM, which ultimately favors the
standard model. However, since our interest here is
exploring the effect on H0 of changing the underlying
potential (theory), we simply scan over α, β, γ, and C.
Once the cuts are imposed, we are left with a large class

of “bottom-up” quintessence models, which we further
divide into cosmologies where H0 increases/decreases
relative to the ΛCDM model, i.e., α ¼ β ¼ γ ¼ 0. For
reference, we record the best-fit values in this case,

H0 ¼ 68.89þ1.20
−1.15 km s−1Mpc−1;

Ωm0 ¼ 0.30þ0.02
−0.02 : ð13Þ

Note that the values are pretty consistent with Planck [4],
and due to our inflated errors this represents a ∼3.3σ
discrepancy with the highest local H0 determination based
on cepheid-calibrated supernovae [5].
Once the coupling is introduced, the dark matter particles

are subject to a long-range attractive force with an effective
Newton’s constant Geff ¼ GNð1þ 1

2
C2Þ. While the CMB

constrains the conformal coupling to be C≲ 0.1 [38,40], if
the coupling is turned on at late times; e.g., [34] this

FIG. 1. Bounds on the Chevallier-Polarski-Linderr (CPL)
parametrization [36,37], wðzÞ ¼ w0 þ waz=ð1þ zÞ, which are
constructed directly from the chains of an MCMC exploration
of cosmic chronometer, BAOs, and supernovae data restricted
to z ≤ 0.7.
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constraint can be evaded. Nevertheless, stronger constraints
exist for galaxies up to redshift z ∼ 0.05 [56,57], whereby
C≲ 0.05. This number will be constrained further in future,
but here we settle on the value C ¼ 0.1. This relaxes the
constraint of [56,57] slightly, but it still preserves its
integrity as a strong observational bound. Finally, since
baryonic matter is uncoupled, we instead adopt the Planck
prior Ωb0 ¼ 0.05 and only fit H0 and Ωc0.

IV. RESULTS

In Fig. 2 we present a plot of the χ2 as a function of the
best-fit H0 for uncoupled models, where a dashed line
denotes the χ2 for the ΛCDMmodel, α ¼ β ¼ γ ¼ 0. From
the plot it is clear that deviations fromΛCDM that lowerH0

are favored by the data. In contrast, H0 may increase, but
this worsens the fit to the data. Interestingly, we find no
exceptions to this statement in 87,675 random models and
we have checked that adding aH0 prior [5] throughout does
not change our conclusions.
In Fig. 3 we present the same plot but for coupled

quintessence models with C ¼ 0.1. We are again making a
comparison to the ΛCDM model. Concretely, here we first
identified triples of ðα; β; γÞ, i.e., potentials where w > −1,
thus ensuring that the uncoupled model is a bona fide
quintessence model, before adding the coupling. Once the
coupling is added, we can enter the w < −1 region of
parameter space and we repeat the fitting procedure. Thus,
the configurations presented in Fig. 3 are a subset of the
Fig. 2 configurations but subject to a coupling. In contrast
to the uncoupled case, the range of H0 is extended, but
since C is small, the effect is not so great. One could choose
a larger coupling, but this would bring us into conflict with
[56,57]. Finally, we have checked that removing the poorer
quality cosmic chronometer data do not change our
conclusions.

Finally, we can make some remarks on the universal
constants c, c0 from the de Sitter conjecture [16–18]. We
find that models that lower H0 occur at smaller values of
jV 0j=V relative to models that raise H0. Ostensibly, this
means that the de Sitter conjecture may (theoretically) favor
models that raise H0. That being said, such models have
exclusively V 00 > 0, whereas models that lower H0 allow
V 00 < 0. For this reason, the refined de Sitter conjecture
[17,18] favors models with lower H0 than ΛCDM. Note,
this is a statement that does not rely on χ2, but still makes
use of fits to data.

V. DISCUSSION

With an eye on the de Sitter swampland conjecture [16],
we have performed a scan over (coupled) quintessence
models at low redshift. Since α, β, γ are in one-to-one
correspondence with V0; V 0

0; V
00
0 , our best-fit values for H0

probe different models (potentials) in the vicinity of
ΛCDM. Within our assumptions and the data employed
we arrive at the conclusion that H0 decreases relative to
ΛCDM in any quintessence model with an exponential
coupling. Such models are expected to arise from string
theory constructions, e.g., [62,63], but explicit construc-
tions are especially challenging [71,72].
Our analysis here employs Taylor expansion around

z ¼ 0, so we are simply assuming analyticity. This allows
us to describe a large class of single field quintessence
models with a canonically normalized kinetic term.
Nevertheless, to turn any of these models into viable
cosmologies, one needs to ensure that there exists a high
redshift completion to CMB. In fact, modulo the fact that
truncating the w0waCDM or CPL model [36,37] at linear
order in (1 − a) is guaranteed to constrain the potential (see
comments in the Appendix) [73], the results of [32] suggest
little will change for uncoupled quintessence models that
admit a high redshift completion to CMB. So, uncoupled

FIG. 2. Distribution of our 87,675 models, which survive our
cuts, as a function of χ2 versus H0. The dashed green line
highlights the χ2 for ΛCDM and all models that raise H0 also
increase the χ2 value. In contrast 53,744 models lower both H0

and χ2.

FIG. 3. Distribution of 80,732 surviving models as a function of
χ2 versus H0 for the coupling C ¼ 0.1. Here all models that raise
H0 also raise the χ2, whereas 46,665 models lower H0 and χ2.
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quintessence is clearly at odds with high local determi-
nations ofH0 [5–8]. In short, if Hubble tension inΛCDM is
now a “problem” or “crisis,” quintessence simply instills a
sense of panic.
This leaves a coupling between quintessence and dark

matter as a potential loophole. Here we have focused on the
exponential coupling, which is the most natural from string
theory, and imposed strict bounds that are derived from the
absence of differential fifth forces in galaxy warps [56,57].
We find that the coupling is too small to induce any effect
within the redshift range. Indeed, it is clear from Eq. (6) that
the OðzÞ term in the Hubble parameter is unaffected by the
coupling, so the coupling is suppressed near z ≈ 0. With
such a small coupling, any interaction between quintes-
sence and dark matter will have to act over an extended
redshift range, in other words beyond the dark-energy-
dominated regime, to make progress on Hubble tension. In
particular, we may have to embrace a coupling that acts in
the dark ages [34], which is currently beyond the scope of
experiment, but interestingly, this may quickly change [59].
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APPENDIX: COMMENT ON THE CPL MODEL

In this Appendix, we review the analysis of Scherrer
[74], before taking it further using a combination of CMB,
BAO, and supernovae data. Recall that the CPL model
[36,37] can be expected to correspond to a specific class of
potentials when wðzÞ ≥ −1 [74]. More concretely, one can
solve the potential in terms of the scale factor [74],

VðaÞ ¼ V0

ð1 − w0 − wa þ waaÞ
ð1 − w0Þ

a−3ð1þw0þwaÞe3waða−1Þ;

ðA1Þ

where we have normalized the potential so that
Vða ¼ 1Þ ¼ V0. Now, to determine ϕ as a function of a,
one just needs to perform the following integral:

ϕ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ w0 þ wa − waaÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðρm0=ρϕ0Þa3ðw0þwaÞe3wað1−aÞ

q da
a
; ðA2Þ

where following [74], we adopt ρm0=ρϕ0 ¼ 3=7. Note that
ϕ is only defined up to a constant, but to fix it we assume
ϕða ¼ 1Þ ¼ 0. As can be seen from Figs. 1 or 2 of [74],
CPL models are not generic and they correspond to a
specific class of quintessence models.
Here, we will take the observation a little further in light

of the results of Vagnozzi et al. [32]. There, given that they
are fitting CMB data at z ≈ 1090, the authors impose the
conditions,

w0 ≥ −1; w0 þ wa ≥ −1; ðA3Þ

which will guarantee that wðzÞ ≥ −1 for all z. So, here we
will take the CMBþ BAOþ Pantheon MCMC chains
from Planck analysis of the CPL model [4] and impose
the constraints (A3). This then leaves one with 400 odd
pairs of ðw0; waÞ, which given the preference of the data for
the cosmological constant are all pretty close to ð−1; 0Þ. We
next integrate (A2) from a ¼ 0.00092 (z ¼ 1090) to a ¼ 1

(z ¼ 0). This provides us a mapping between ϕ and a for
each CPL model, i.e., each ðw0; waÞ pair. One can then
work outwards from ϕ ¼ 0, corresponding to a ¼ 1, to
determine V=V0 as a function of ϕ. In practice, we bin
V=V0 into bins of Δϕ ¼ 0.01 and extract out the mean and
1σ, 2σ intervals in each bin, before applying a spline to
these values. The end result is shown in Fig. 4.
There are a number of take-home points from the plot.

First, for reasons that we have explained above, the
quintessence potential corresponding to the CPL model
is pretty constrained. This is even more apparent when one
integrates (A2) all the way to a ≈ 0. This is in line with

FIG. 4. The 1 and 2σ intervals for the normalized potentialV=V0

corresponding to CPLmodels that are consistent with CMB, BAO
and Pantheon. For illustrative processes we plot the simplest
quintessence model, V=V0 ¼ e−λϕ for different values of λ.
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earlier comments in Ref. [74]. Second, CMB+BAO
+Pantheon data have a clear preference for the cos-
mological constant Λ, so it is no surprise that the potential
is extremely flat as one approaches ϕ ¼ 0 (a ¼ 1).
Finally, it is worth noting that if one interprets this even
in terms of the simplest quintessence model, one may
come to the erroneous conclusion that they are ruled out.

This is not the case, it is just simply that the quintessence
potentials corresponding to the CPL model are indeed very
special, so special that V ¼ V0e−λϕ falls outside the class
for certain ranges of ϕ, or the corresponding ranges in a.
That being said, it should be easy to show that our results
are consistent with [21] in the small ϕ regime, i.e., at
late times.
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