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It is well known that a positive value of redshift drift is a signature of violation of the strong energy
condition within general relativistic Friedmann-Lemaître-Robertson-Walker (FLRW) universe models.
In the Lambda Cold Dark Matter (ΛCDM) paradigm of cosmology, founded on the FLRW model ansatz,
the violation of the strong energy condition is realized by a dark energy component with “equation of state”
equal to minus unity. This dark energy component, which is unexplained in the standard model of particle
physics, facilitates the acceleration of cosmological length scales. Such an acceleration is needed to provide
a consistent fit of the general relativistic FLRW universe models to available data. It remains a possibility
that dark energy, and the associated violation of the strong energy condition, is an artefact of the FLRW
model ansatz imposed for the interpretation of data, rather than due to a fundamental cosmological constant
of nature. Here we show—without making assumptions on the metric tensor of the Universe—that redshift
drift is a promising direct probe of violation of the strong energy condition within the theory of general
relativity. We discuss our results in relation to upcoming Lyman-α forest measurements of redshift drift.

DOI: 10.1103/PhysRevD.103.L081302

I. INTRODUCTION

In general relativistic theory energy conditions are
physically motivated constraints, which can be applied
to the energy momentum tensor of space-time. Energy
conditions are important tools for constraining the possible
solutions of the Einstein field equations and for deriving
general theorems about the nature of gravitating systems.
The Penrose and Hawking singularity theorems [1,2] use
energy conditions to arrive at physical scenarios where the
developments of singularities are unavoidable. In particu-
lar, the strong energy condition is a central assumption in
the focusing theorem, which states the conditions under
which a matter congruence develops singularities in finite
proper time. The strong energy condition stipulates that the
inequality Rμνnμnν ≥ 0 is satisfied everywhere, where Rμν

is the Ricci-curvature tensor of the space-time and nμ is any
timelike vector field, and physically amounts to the state-
ment that gravity between massive particles is universally
attractive [3].
Within the Friedmann-Lemaître-Robertson-Walker

(FLRW) framework of cosmology the strong energy con-
dition is considered abandoned by observations [4,5]. The
most direct evidence for violation of the strong energy
condition, comes from the observed acceleration of space
when interpreting data from supernovae of type Ia within
the FLRW class of models [6–8].

A number of studies have suggested different mecha-
nisms which can potentially result in the (apparent) accel-
eration of cosmological length scales without violation of
the strong energy condition. Studies of the effect of the
“backreaction” of cosmic structure on the evolution of large
scale volume sections [9,10], suggest that emergent accel-
eration effects can appear as a consequence of the differ-
ential expansion between regions with high concentrations
of gravitationally bound structures and fast expanding void
regions [11–13]. Furthermore, the possibility of significant
local acceleration of length scales in the frame of nonideal
observers in FLRW space-times due to a small peculiar
4-acceleration of the observers has been pointed out in
[14,15]. In addition, the possibility of inferring of a positive
acceleration of space when interpreting distance–redshift
data in a Universe with local inhomogeneities and anisot-
ropies within the FLRW framework of exact homogeneity
and isotropy has been described in [16].
Measurements of the drift of redshift in proper time of

the observer [17–19] are promising probes of the expansion
history of the Universe. In the conventionally studied
FLRW universe models, a positive value of redshift drift
is a signature of dark energy [20]. The direct detection of
the time-evolution of redshift—expected within one to a
few decades of observation time with facilities such as
CODEX and the Square Kilometer Array (SKA) [21–23]—
allows for model independent determination of kinematic
properties of the Universe.
So far most theoretical studies of redshift drift have

been done within the FLRW class of models—though*asta.heinesen@ens-lyon.fr
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see [24–31] for theoretical and numerical studies of the
redshift drift signal in certain types of Lemaître-Tolman-
Bondi, Bianchi I, and Szekeres models. Redshift drift has
been proposed as a discriminator between the Lambda Cold
Dark Matter (ΛCDM) concordance model and Lemaître-
Tolman-Bondi void models [24,25] and a particular axially
symmetric quasispherical Szekeres model [26]. Fully gen-
eral treatments of redshift drift, making no assumption
about the metric or the congruence of observers, have been
considered in [32,33]. To the best of my knowledge, so far
no model independent tests have been proposed for the
upcoming measurements of redshift drift signals.
As is evident from the study of backreaction effects over

cosmic volume sections [34,35], the lowest order descrip-
tion of a statistically homogeneous and isotropic general
relativistic space-time need not be that of an FLRW model
universe solution.1 The reason is that inhomogeneities and
anisotropies on small and intermediate length scales can
contribute with noncanceling effects in the evolution of
large scale integrated volume sections, thus systematically
affecting the large scale or “monopole” description of the
space-time. The same principle might be expected to hold
true in general for observations in a universe exhibiting
some level of statistical homogeneity and isotropy (irre-
spective of the magnitude of backreaction effects over
cosmic volumes): Local inhomogeneities and anisotropies
will in general contribute with accumulated effects along
null rays and systematic effects from the position of the
observer, resulting in a “monopole” description of the
observed signal with nontrivial contributions from
small and intermediate scale inhomogeneities. It has been
detailed how local structures alter measurements of redshift
drift in a general space-time setting [33]. Such effects
from local inhomogeneity are not a priori expected to be
subdominant—also not in space-times with a notion of
statistical homogeneity and isotropy—and the size of the
effects must ultimately be determined by data. This in
turn raises the question if redshift drift as a probe of dark
energy—or more generally the strong energy condition—is
valid in universe models that are not subject to the
FLRW idealization. In this paper we propose a model
independent test of the strong energy condition by redshift
drift measurements. The test is simple, despite its general
application, and relies on lower bound measurements of the
redshift drift signal.

A. Notation and conventions

Units are used in which c ¼ 1. Greek letters μ; ν;… label
space-time indices in a general basis. Einstein notation is
used such that repeated indices are summed over. The
signature of the space-time metric gμν is ð−þþþÞ and the

connection ∇μ is the Levi-Civita connection. Round
brackets () containing indices denote symmetrization in
the involved indices and square brackets ½ � denote anti-
symmetrization. Bold notation V for the basis-free repre-
sentation of vectors Vμ is used occasionally.

II. REDSHIFT DRIFT IN A GENERAL
SPACE-TIME

In this section we review the expression for redshift
drift for a generic space-time congruence of physical
observers and emitters—for details, see2 [33]. We consider
a general space-time congruence of observers and emitters
(henceforth referred to as the “observer congruence”) with
worldlines generated by the 4‐velocity field u and para-
metrized by the proper time function τ. The redshift drift of
light rays generated by the 4-momentum field k and passing
from an emitter placed at space-time point E to an observer
situated at space-time point O can be written

dz
dτ

�
�
�
�
O
¼ ð1þ zÞHO −HE þ SE→O; ð1Þ

with

SE→O ¼ EE

Z
λO

λE

dλI ; I ≡ −kν∇ν

�
eμ∇μE

E2

�
; ð2Þ

where the function λ satisfies kμ∇μλ ¼ 1, and is an affine
parameter along each null line. The redshift z and photon
energy functionE associated with the light rays are given by

z≡ EE

EO
− 1; E≡ −kμuμ; ð3Þ

and the change of the photon energy E along a given null
ray is given by

H≡ −
kμ∇μE

E2
¼ 1

3
θ − eμaμ þ eμeνσμν: ð4Þ

The spatial unit vector e describes the spatial propagation
direction of the null ray relative to an observer comoving
with u, and is defined by the decomposition

kμ ¼ Eðuμ − eμÞ: ð5Þ

The functionH is an observationally natural generalization
of the Hubble parameter of FLRW space-time: HO plays
the role of the proportionality constant between redshift and
distance in the generalized Hubble law valid for arbitrary
space-times in the OðzÞ vicinity of the observer [16]. The
variables θ, σμν and aμ describe the expansion, shear, and

1See [36,37] for a debate on the accuracy of the FLRW
approximation and the significance of cosmological backreaction
on different scales.

2For another interesting representation of redshift drift in
general space-time models, see [32].
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4-acceleration of the observer congruence. Together with
the vorticity tensor ωμν, they describe the kinematics of the
observer congruence

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ≡∇μuμ; σμν ≡ hβhνh
α
μi∇βuα;

ωμν ≡ hβνhαμ∇½βuα�; aμ ≡ _uμ; ð6Þ

where hνμ ≡ uμuν þ gνμ is the spatial projection tensor
defined in the frame of the 4‐velocity field u and where
triangular brackets hi denote traceless symmetrization in
the involved indices of a tensor in three dimensions.3 The
operator _≡ uμ∇μ denotes the derivative in proper time
along flow lines of u. From geometrical identities, the
evolution of the kinematic variables θ, σμν, and ωμν along
the observer flow lines can be expressed as

_θ ¼ −
1

3
θ2 − σμνσ

μν þ ωμνω
μν

− uμuνRμν þDμaμ þ aμaμ; ð7Þ

_σμν ¼ −
2

3
θσμν − σαhμσανi þ ωαhμωα

νi þ 2aασαðνuμÞ

þDhμaνi þ ahμaνi − uρuσCρμσν −
1

2
hαhμh

β
νiRαβ; ð8Þ

_ωμν ¼ −
2

3
θωμν þ 2σα½μων�α −D½μaν� − 2aαωα½μuν�; ð9Þ

where Rμν is the Ricci tensor of the space-time and Cμνρσ is
the Weyl tensor. The operator Dμ is the covariant spatial
derivative4 defined on the 3-dimensional space orthogonal
to u. The integrand in (2) is conveniently expressed in terms
of the (differentiated) kinematic variables of the observer
congruence in the following series expansion [33]:

I ¼ Io þ eμI e
μ þ dμId

μ þ eμeνIee
μν þ eμdνIed

μν

þ eμeνeρIeee
μνρ ð10Þ

with coefficients

Io ≡ −
1

3
ð4ωμνωμν þDμaμ þ aμaμÞ − dμdμ;

I e
μ ≡ 1

3
Dμθ þ

1

3
θaμ þ

2

5
Dνσ

ν
μ þ

2

5
aνσμν − 2aνωμν;

Id
μ ≡ −2aμ;

I ee
μν ≡ −ð4ωαμσ

α
ν þ 4ωαhμωα

νi þDhνaμi þ ahμaνiÞ;
I ed
μν ≡ 4ðσμν − ωμνÞ;

Ieee
μνρ ≡Dhρσμνi þ ahμσνρi; ð11Þ

where dμ ≡ hμνeα∇αeν denotes the spatially projected
“4-acceleration” of e. The magnitude of d can be seen
as a measure of the failure of e to define an axis of local
rotational symmetry, and is thus a quantification of the local
departure from isotropy [38]. In deriving (11), it has been
assumed that the null congruence is irrotational, such that
∇½αkν� ¼ 0. Note that all coefficients in (11) with more than
one space-time index are traceless.

III. MODEL INDEPENDENT TEST OF THE
STRONG ENERGY CONDITION

For the purpose of examining the strong energy con-
dition, it is convenient to rewrite the expression for redshift
drift (1), such that the Ricci curvature of the space-time
appears explicitly in the formula. For this purpose the
following identity:

ð1þ zÞHO−HE ¼EE

Z
λO

λE

dλA; A≡kν∇ν

�
H
E

�
ð12Þ

will be useful. Combining (1), (2), and (12) gives

dz
dτ

�
�
�
�
O
¼ EE

Z
λO

λE

dλΠ; Π≡ I þA: ð13Þ

In the FLRW limit, the integrand Π reduces to the well
known length scale acceleration “ä=a”, where a is the
uniform FLRW scale factor. The function −A=H2 enters in
the “Hubble law” for generic space-times [16] as an
effective deceleration parameter, replacing the FLRW
deceleration parameter in the series expansion of luminos-
ity distance in redshift—see [16] for details. In a similar
spirit as for H and I , the function A can be written as a
truncated multipole expansion

A ¼ Ao þ eμAe
μ þ eμeνAee

μν þ eμeνeρAeee
μνρ

þ eμeνeρeκAeeee
μνρκ ð14Þ

with coefficients

3For two indices we have that the traceless parts of symmetric
spatial tensors Tμν ¼ TðμνÞ ¼ hαμh

β
νTðαβÞ are given by Thμνi ¼

Tμν − 1
3
hμνT. Analogously for a tensor with three indices satisfy-

ing Tμνρ ¼ TðμνρÞ ¼ hαμh
β
νh

γ
ρTðαβγÞ, we have Thμνρi ¼ Tμνρ−

1
5
ðTμhνρ þ Tνhρμ þ TρhμνÞ. For four indices we have Thμνρκi ¼

Tμνρκ − 1
7
ðThμνihρκ þ Thμρihνκ þ Thμκihνρ þ Thνρihμκ þ Thνκihμρþ

ThρκihμνÞ − 1
5
ThðμνhρκÞ. We have used the short hand notations

Tμν ≡ hρκTμνρκ , Tμ ≡ hνρTμνρ, and T ≡ hμνTμν.
4The acting of Dμ on a tensor field Tν1;ν2;…;νn

γ1;γ2;…;

γm is defined as: DμTν1;ν2;…;νn
γ1;γ2;…;γm ≡ hν1

α1hν2
α2…

hνn
αnhβ1

γ1hβ2
γ2…hβm

γmhμσ∇σTα1;α2;…;αn
β1;β2;…;βm .
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Ao ≡ −
1

3
uμuνRμν þ

2

3
Dμaμ −

3

5
σμνσμν þ

1

3
ωμνωμν;

Ae
μ ≡ −

2

3
θaμ þ aνσμν þ aνωμν

−
1

3
Dμθ −

2

5
Dνσ

ν
μ − hνμ _aν;

Aee
μν ≡ 3ahμaνi − 2σαμω

α
ν −

9

7
σαhμσανi þ ωαhμωα

νi

þ 2Dhμaνi − uρuσCρμσν −
1

2
hαhμhβνiRαβ;

Aeee
μνρ ≡ −Dhρσμνi − 5ahμσνρi;

Aeeee
μνρκ ≡ 3σhμνσρκi; ð15Þ

where Rμν is the Ricci curvature of the space-time, and
where we have used the deviation Eqs. (7) and (8). In the
derivation of (14) we have used the definition (4) to write
A ¼ kμ∇μðHÞ=EþH2 together with the identity

kν∇νeμ

E
¼ðeμ−uμÞH−eν

�
1

3
θhμνþσμνþωμ

ν

�
þaμ: ð16Þ

By combining the multipole coefficients in (11) and (15) of
the same order, we finally have that the integrand in (13)
can be expressed as

Π ¼ Πo þ eμΠe
μ þ dμΠd

μ þ eμeνΠee
μν þ eμdνΠed

μν

þ eμeνeρΠeee
μνρ þ eμeνeρeκΠeeee

μνρκ ð17Þ

with coefficients

Πo ≡ −
1

3
uμuνRμν þ

1

3
Dμaμ −

1

3
aμaμ

− dμdμ −
3

5
σμνσμν − ωμνωμν;

Πe
μ ≡ −

1

3
θaμ þ

7

5
aνσνμ − aνωμν − hνμ _aν;

Πd
μ ≡ −2aμ;

Πee
μν ≡ 2ahμaνi −

9

7
σαhμσανi − 3ωαhμωα

νi − 6σαμω
α
ν

þDhμaνi − uρuσCρμσν −
1

2
hαhμhβνiRαβ;

Πed
μν ≡ 4ðσμν − ωμνÞ;

Πeee
μνρ ≡ −4ahμσνρi;

Πeeee
μνρκ ≡ 3σhμνσρκi: ð18Þ

The multipole coefficients (18) are given in terms of
kinematic and dynamic variables associated with the
observer congruence and the Ricci curvature tensor Rμν.
While the coefficients in (11) and (15) contain spatial
gradients of θ and σμν, these contributions cancel in (18),

and the only spatial gradients that remain are of the
4-acceleration aμ. The anisotropic function Π reduces to
the FLRW scale factor acceleration “ä=a” in the idealized
isotropic and homogeneous limit. In the FLRW limit, the
only nonzero contribution is the first term − 1

3
uμuνRμν of

the monopole contribution Πo—all of the remaining terms
in (18) arise from the contributions of inhomogeneity and
anisotropy along the null rays. These modifications of the
FLRW law for redshift drift need not be small or cancel
under the integral sign (13), and the measurements of
redshift drift cannot a priori be expected to obey FLRW
predictions in realistic universe models with structure.

A. The dominant monopole approximation

Let us consider the case where the monopole term Πo is
dominant in the integral expression for redshift drift (13),
such that the contributions to the integral from the
remaining terms in the series expansion (17) are small
compared to the contributions fromΠo. This corresponds to
the physical assumption that the systematic alignment
of e and d with the fluid variables such as shear and
4-acceleration is weak over the length scales of photon
propagation.5 In this scenario, we have that all spatial
directions of photon propagation can be treated on equal
footing at lowest order, with the leading order expression
for redshift drift

dz
dτ

�
�
�
�
O
¼ EE

Z
λO

λE

dλΠo: ð19Þ

From (18) we see that the only potentially positive
contributions to Πo are from the terms − 1

3
uμuνRμν and

1
3
ðDμaμ − aμaμÞ. The other terms entering the expression

for Πo are nonpositive and in general contribute with
accumulated negative contributions to the measured red-
shift drift. In general relativistic theory, negative values of
uμuνRμν are equivalent to violation of the strong energy
condition. It is not surprising that positive values of
Dμaμ of sufficient magnitude can cause positive redshift
drift signals in the observer’s frame, since positive

5The cancellation of spatially projected traceless combinations
of fluid kinematic variables has been argued to be a realistic
scenario in space-times where a notion of statistical homogeneity
and isotropy is present, and where structure is slowly evolving
relative to the timescale it takes for photons to pass an approxi-
mate homogeneity scale [39,40]. This suggested cancellation has
been shown to not hold true in general, exemplified by the
systematic alignment of the propagation direction e of the null ray
with the positive eigenvector of the shear tensor in a Tardis space-
time [41] and in Swiss cheese models based on Lemaître-Tolman-
Bondi and anisotropic Szekeres structures [42,43]. The level of
accuracy of the dominant monopole approximation

R λO
λE

dλΠ ≈
R λO
λE

dλΠo for light propagation over cosmological distances must
be tested under various model assumptions.
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values of Dμaμ contribute positively to the local acceler-
ation of length scales through Raychaudhuri’s equation (7).
Rewriting Πo in terms of the local acceleration of

length scales by using (7) yields Πo ¼ 1
9
θ2ð1þ 3

_θ
θ2
Þ−

2
3
aμaμ − dμdμ − 4

15
σμνσμν − 4

3
ωμνωμν, and it is evident that

all correction terms in Πo to the local acceleration of length

scales in the observer frame 1
9
θ2ð1þ 3

_θ
θ2
Þ are nonpositive.

For general relativistic space-times in which integrated
values of Π are dominated by the monopole contribution
Πo for light propagation over cosmological distances, the
only physical mechanisms that might result in the detection
of positive values for redshift drift are thus (i) a special
4-acceleration profile of the space-time congruence of
observers yielding integrated positive values of Dμaμ −
aμaμ along the detected null rays6; (ii) violation of the
strong energy condition. This realization is the main result
of this paper: A measured positive value of redshift drift
indicates that the strong energy condition is violated.
A positive detection of redshift drift is in principle possible
without such a violation, but it requires a 4-acceleration
profile of the observer congruence giving systematic
contributions along the null rays through its gradient.
Alternatively, contributions from systematic alignment of
the direction variables e and d with the dynamic fluid
variables Πe

μ, Πd
μ, Πee

μν, etc., in (18) over the length
scales of light-propagation can cause inaccuracy of the
approximation (19).
In the monopole approximation (19), inhomogeneities

tend to act with negative contributions to the redshift drift
signal. We might thus in general expect the redshift drift
signal to be negative in the absence of sources violating the
strong energy condition—even for space-times exhibiting
globally defined acceleration of large scale cosmological
volume sections due to the backreaction7 of cosmic
structures. This expectation is consistent with the numerical
findings in [30,31] for general relativistic inhomogeneous
models without a cosmological constant, where the only
example of positive redshift drift signals was obtained in an
unphysical space-time scenario with a source of negative
energy density violating the strong energy condition [31].

B. Applicability for Lyman-α forest measurements

A promising probe of redshift drift in the near future is
the Lyman-α forest, i.e., the plethora of absorption lines

observed in the spectra of quasars, resulting from the Lyman-
α electron transition of the neutral hydrogen atom [21,46].
Since the Lyman-α forest is only observable from the ground
for z≳ 1.7, the first detections of redshift drift are expected to
be at redshifts where theΛCDMmodel predicts close to zero
or negative values of redshift drift [22]—see Fig. 14 of [22]
for a comparison between the predicted redshift drift in the
concordance ΛCDM model and in a FLRW model with the
samematter density profile but without dark energy. Sources
with z ∼ 1 where the redshift drift signal is predicted to
be maximal within the ΛCDM model must be probed
by other strategies than ground based Lyman-α forest
measurements—see, e.g., [23,47].
Taking the ΛCDM estimates at face value, the regime

2≲ z≲ 5 probed by the Lyman-α forest [21,22] is not
suitable for directly probing the strong energy condition.
However, we might observationally infer lower bounds
on the integral of uμuνRμν from the emitter to the source,
given the above monopole approximation, and given that
assumptions can be made on the 4-acceleration profile of
the observer. For instance, if we assume a geodesic
observer congruence we have that (19) implies dz

dτ jO ≤
− 1

3
EE

R λO
λE

dλuμuνRμν. A measured lower bound d̂z
dτ jO;min ≤

dz
dτjO will in this case imply EE

R λO
λE

dλuμuνRμν ≤ −3d̂zdτ jO;min,
where the overbar represents the appropriate statistical

averaging of sources within a redshift bin. Thus d̂z
dτ jO;min

constrains the integrated amount of ordinary matter density
that can be present without violating the strong energy

condition. If d̂zdτ jO;min is negative but close to zero, we might
conclude that the matter density probed by null rays from
the emitters to the source is close to zero, resembling an
almost vacuum Universe, or that the strong energy con-
dition has been violated in the space-time regime probed.
On the other hand, if a detected upper bound on redshift
drift signals is below that of the ΛCDM predicted signal,
this would give rise to a reassessment of the ΛCDM
paradigm of cosmology. As suggested by the current
framework, the accumulated contribution of inhomogene-
ities along the null rays might bias redshift drift signals
towards lower values than anticipated in the homogeneous
and isotropic FLRWmodel universes and act as an effective
matter source.

IV. CONCLUSION

In FLRWuniverse models a positive detection of redshift
drift implies a nonzero cosmological constant [17–19] and
hence violation of the strong energy condition. In this paper
we have considered the redshift drift signal in a general
space-time, and written it in a form useful for examining the
sign of redshift drift and its link to the strong energy
condition in general relativistic universe models with no
symmetry assumptions imposed on the metric. The redshift
drift signal can be written in terms of a physically

6In general relativistic perfect fluid cosmologies, the
4-acceleration field is given by aμ ¼ −DμðpÞ=ðϵþ pÞ, where ϵ
is the energy density and p is the pressure associated with the
perfect fluid description [44] (see also the generalization in [45] to
arbitrary general relativistic space-times). Accumulated positive
values of Dμaμ−aμaμ¼−DμDμðpÞ=ðϵþpÞþDμðpÞDμðϵÞ=
ðϵþpÞ2 along null rays might in this case occur for specific
pressure and energy density profiles.

7For overviews of backreaction in cosmological modeling, see,
e.g., [34,35].
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interpretable multipole series, where the coefficients are
given in terms of kinematic variables and 4-acceleration of
the observer congruence along with Ricci and Weyl
curvature variables. The monopole contribution in this
series represents the isotropic contribution common for
all directions on the sky of the observer congruence. In a
Universe where this monopole contribution is statistically
dominant in the integral over the light path, and where
the 4-acceleration profile of observers is not of a special
form, a measured positive value of redshift drift is a
direct signature of violation of the strong energy condition.
We have discussed the applicability of the derived results

for upcoming Lyman-α forest measurements of red-
shift drift.
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